
SENSOR NETWORK DESIGN USING GENETIC ALGORITHM 
 
 

C. Gerkens, G. Heyen 
 
 

Laboratoire d’Analyse et de Synthèse des Systèmes Chimiques 
University of Liège, Sart-Tilman B6a, B-4000 Liège (Belgium) 

Tel: +32 4 366 35 23 fax: +32 4 366 35 25 
Email: C.Gerkens@ulg.ac.be 

 
 
 

Abstract 
A systematic method to design optimal redundant sensor networks applying data validation theory is described. 
Sensor networks are optimised thanks to a genetic algorithm. The design objective is to estimate the process key 
variables within a required accuracy. The solution time is reduced by means of two parallelisation techniques 
both using the MPI library: the global parallelisation method and the distributed genetic algorithm method. 
Results are presented for an ammonia synthesis loop. 
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1. INTRODUCTION 
 

Chemical processes must be monitored correctly to 
ensure that all safety and environmental constraints 
are verified and that the quality required for products 
is achieved. This requires a suitable measurement 
system. Redundancy allows to detect and correct 
some measurement errors, and reduces the 
uncertainty of the estimates. 
Moreover some variables of the process (such as 
compressor’s efficiency, reactives’s conversion…) 
can not be obtained directly by mean of a sensor. 
Data validation techniques allow to solve these 
problems by exploiting a model of the process and 
measurements’ redundancy. Indeed each 
measurement is corrected as little as possible to 
satisfy balances and non-measured variables are 
estimated. Moreover a posteriori accuracies are 
calculated for all variables. As the state variables for 
streams are enthalpy, pressure and partial molar flow 
rates, link equations relating measurements and state 
variables have to be added to the model. Moreover, 
link equations expressing key parameters (such as 
efficiencies, heat transfert coefficients) as functions 
of state variables and measurements have also to be 
added. 
The efficiency of this method depends of the sensor 
network that is used: indeed, according to the 
number, the position and the accuracy of the different 
sensors installed, process variables can be estimated 
more or less accurately. The problem is therefore to 
find out the cheapest redundant sensor network able 
to estimate process key parameters within a 
prescribed accuracy.  

Until now only few studies have been carried out in 
this field: thanks to a graph oriented method, Madron 
(Madron, 1972) solved the linear mass balance case. 
Some years after Bagajewicz (Bagajewicz, 1997) 
analysed the problem for mass balance networks 
where all constraint equations were linear. 
The goal of our research is to solve broader problems 
including energy balances and non-linear constraint 
equations. 
In our approach all state variables are candidates for 
measurement. The unmeasured ones have a very 
large standard deviation. The Lagrange formulation 
of the data validation problem is thus:  
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where 
- X is the array of process variables 
- X’ is the set of measurements 
- W is the weight matrix (i.e. the inverse of the 

measurement covariance matrix) 
- A is the Jacobian matrix of the linearised model 

(constant). 
Solving this equation for stationarity conditions: 
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The elements of M-1 are obtained using a LU 
factorisation of M. To take advantage of the sparsity 
of the sensitivity matrix; we used the Belsim’s sparse 
matrix code. A singular matrix M corresponds to a 
sensor network that does not allow to estimate all 
process variables. 
The variances of validated values of variables can be 
estimated if the measurements variances are known 
(Heyen et al., 1996): 
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The major contributions to the objective function of 
our optimisation problem are the annualised cost of 
the sensor network and a function of sensor 
accuracies. The objective function is optimised 
thanks to a genetic algorithm. 
As the time required to obtain a solution is quite 
long, the algorithm has been parallelised by means of 
the global parallelisation method and distributed 
genetic algorithms. 
 
 
 

2. GENETIC ALGORITHM DESCRIPTION 
 
The proposed method is carried out in five steps that 
are described in this section. An example of 
application is presented in the next section. 
 
 
2.1. FORMULATION OF THE VALIDATION MODEL AND 

MODEL LINEARISATION 
 
The coefficients of the model matrix A are 
automatically generated from a Vali3 data validation 
model (Belsim 2001). The model is build by drawing 
unit operations in a process flow diagram and by 
linking them by means of material or energy streams. 
For material streams, a thermodynamic model has to 
be chosen from the list proposed. The Vali3 software 
writes automatically the link equations for standard 
measurements types but link equations have to be 
created for non-standard unmeasured variables such 
as reaction conversion. The variables whose values 
are known in the operating conditions are specified. 
The number of specified values has to be at least 
equal to the degree of freedom of the model. As 
overspecifications bring additional information and 
that data validation gives a “least square” solution, 
overspecifications are allowed. 
The problem is then solved thanks to the Lagrange 
multiplier method or a SQP solver. When the 
solution is obtained, a report file is generated 
containing the value of all variables and their 
accuracy, the linearised equations of the model and 
the non-zero coefficient of the Jacobian matrix. This 
report is then read by the sensor optimisation 
program. If the sensor network have to be available 
for several operating points, a report is generated for 
each of them. 
 
 
2.2. SPECIFICATION OF SENSOR DATABASE, PRECISION 

AND SENSOR REQUIREMENTS 
 
The program needs three files besides the Vali3 
report:  
 

THE SENSOR DATABASE 
This file contains for each sensor:  
- the sensor name; 
- the sensor annualised cost (operating, purchase 

cost and  installation costs); 
- the sensor accuracy σ , which is related to the 

measured values :  
 'a b Xσ = +                 (2.1) 

- the type of variable that can be measured by the 
sensor. 

 
THE PRECISION REQUIREMENTS 
Key variables of the process have to be known quite 
precisely. A file is prepared, listing all key variables 
and their required accuracy target (maximum 
standard deviation). At each generation of the 
optimisation algorithm it is checked whether the key 
variables accuracies are acceptable or not. 
 
THE SENSOR REQUIREMENTS 
Sometimes, the plant configuration is such that it 
seems impossible or obligatory to put a sensor on a 
determined place, or some sensors are already 
installed on the plant and even if they are not located 
optimally they can’t be displaced. 
In such cases, sensors that must be installed in some 
location, or that are to be excluded are listed in a file. 
 
2.3. VERIFICATION OF PROBLEM FEASABILITY 
 
At this step, the programme starts identifying by 
looking for all possible sensors. This sensor network 
is the most expensive one (Cmax) that can be found by 
the algorithm. Afterwards it checks whether there 
exists a solution to the problem by solving the 
linearised data validation problem for the sensors 
network it has just found. If a variable is measured by 
more than one sensor, the variance of the most 
accurate one is taken into account. 
The two following conditions have to be met:  
- the sensitivity matrix M of the problem must be 

non-singular. If this condition is not met the 
programme stops. 

- the variances of the process key variables must 
be acceptable. If this second condition is not 
met, the programme may continue but a penalty 
is added to the objective function. There are 
different ways to met this condition: adding 
more precise sensors, adding sensors that can 
measure other type of variables, adding more 
extra variables with their link equations so that 
more variables can be measured. 

 
 
2.4. OPTIMISATION OF THE MEASUREMENT SYSTEM 
 
If a solution exists for the problem, the search for the 
optimal solution can begin. The objective function to 
be maximise (fitness) is evaluated this way:  
- if the sensitivity matrix is singular:  



max singular matrixFitness - C Penalty=         (2.2) 

- otherwise:  
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(2.3) 
If the sensor network has to optimised for several 
operating points, the objective function is estimated 
by the following formula:  
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The objective function is multimodal in most of the 
cases. Moreover the number of binary variables of 
the optimisation problem is large and the problem is 
not derivable. That is why a genetic algorithm 
(Goldberg, 1996) is used to perform the optimisation. 
The implementation adopted is base on the code 
developed by Carroll (Carroll, 1998).  This code uses 
the natural selection mechanisms of tournament 
selection (random pairs are chosen thanks to a 
shuffling technique), single-point or uniform 
crossover and jump mutation.  
The sensor network to be optimised is expressed as a 
character string called chromosome. Characters are 
binary decisions called genes and represent the 
presence of a sensor at a given location in the 
network. 
The first population is generated randomly by biasing 
the initial chromosome in which all the possible 
sensors are chosen: a high probability of selection of 
80 % is fixed for each sensor to be sure the number 
of chosen sensors is at least equal to the number of 
degrees of freedom. It appears that this parameter is 
not critical.  
The others parameters of the algorithm are fixed as 
follow: 
- the size of the population is most of the time 

fixed to 20 chromosomes; 
- the reproduction probability: 50%; 
- the crossover probability: 50 %; 
- the mutation probability after reproduction or 

crossover: 1%. 
At each generation, the objective function is 
evaluated for each chromosome and the best 
individual is kept. If the best individual stays 
unchanged after a specified number of generations, it 
is considered as the solution of the problem. 
 
 
 
2.5. REPORT GENERATION 

 
Once the optimal sensor network is obtained, the 
programme prepares a report containing the list of 
the sensors chosen with their position, the accuracy 
predicted for all process variables and a comparison 
between the obtained and the target accuracies for the 
key variables. 
 
 
3. A CASE STUDY: NH3 SYNTHESIS LOOP 

 
In this section we will show the results obtained for 
an ammonia synthesis loop. That process involved 14 
units (one two-stage compressor with two 
intercoolers, one recycle mixer, one recycle 
compressor, one reactor preheater, one ammonia 
converter, one waste heat boiler, one waste cooled 
condenser, one ammonia cooled condenser, one 
liquid-vapour separator, one purge divider and one 
flash drum for expanded ammonia condensate), 19 
process streams (composed of ammonia, nitrogen 
hydrogen, argon and methane), 10 utility streams and 
3 mechanical streams. The model comprises 224 
variables and 177 constraint equations. Target 
accuracies are specified for 58 key parameters. 
The sensor database comprises 15 sensor types: 3 
temperature sensors, 2 pressure gauges, 2 
chromatographs, 1 poly-analyser, 1 oxygen sensor, 4 
mass flowmeters and 1 molar flowmeter. 
The maximum number of sensors that can be 
installed is 117. That means that the solution space 
involves 2117=1.7 1035 solutions. The total cost of this 
network is 8600 units. 
In the case of the obtention of a redundant sensor 
network, the algorithm found a solution after 640 
generations or 12800 objective function evaluations 
for a stop criterion of 200 generations. The evolution 
of the objective function is represented on figure 1. 
The time required to obtain that solution was about 
10 minutes on a Pentium II (330 MHz) computer. 
The sensor network obtained costs 1580 units and 
consists of 39 measurement tools: 1 chromatograph, 
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Figure 1: ammonia synthesis loop: evolution of 
the objective function in the case of redundant 
sensor network 



7 mass flowmeters, 20 temperature sensors, and 11 
pressure gauges. This sensor network is presented on 
figure 2. 
If it is desired that the sensor network stays 
observable in the case of one sensor failure, the 
measurement system is obtained after 366 
generations for a stop criterion of 200 generations. 
The time required to obtain that solution was about 8 

hours and 15 minutes on a Pentium II (330 MHz) 
computer. The sensor network obtained costs 3900 
units and consists of 67 measurement tools: 2 
chromatographs, 13 mass flowmeters, 31 temperature 
sensors and 21 pressure gauges. This sensor network 
is presented on figure 3. 
 
 

 

Figure 2: validable measurement network for an ammonia synthesis loop 

 
Figure 3: sensor network observable in case of one sensor failure for an ammonia synthesis loop 



4. PARALLELISATION 
 
As the solution time is quite important, larger 
problem couldn’t be taken into consideration without 
parallelising the code. Indeed, parallelisation 
methods allow to reduce the solution time because 
they share the computing work between several 
processors. Parallelisation techniques are compared 
using the notion of efficiency: 

Speed up
Efficiency

Number of active processors
=         (4.1) 

Time for 1 processor
Speed up

Time for n processors
=          (4.2) 

The algorithm was parallelised applying MPI 
routines (Gropp et al, 1999) to the global 
parallelisation method and the distributed genetic 
algorithms. All calculations were carried out on a 
cluster of identical Apple Power Mac bi-processors. 
 
 
4.1. GLOBAL PARALLELISATION  
 
This method consists of carrying out in parallel the 
evaluation of chromosomes’ fitness. In the case of 
our algorithm, the time limiting step is the evaluation 
of the objective function. Indeed, the size of the 
sensitivity matrix to be inverted is equal to the sum 
of the number of variables and the number of 
equations of the problem. The solution time of the 
algorithm increases thus much faster than the size of 
the studied problems. As chromosomes are evaluated 
independently from one another, the code can be 
parallelized at that level so that chromosomes to be 
evaluated are distributed among available processors. 
As the others tasks of the algorithm (chromosomes 
distribution, population evolution) are rapid, they do 
not cause important efficiency loses when carried out 

by the master processor only. The first generation is 
evaluated simultaneously by all the available 
processors: indeed all processors need some 
information about the studied processes such as 
initialisation and problem definition files. 
If the number of processors is lower or equal to the 
number of chromosomes to be evaluated, it appears 
that the efficiency is better when the number of 
processors is a divisor of the number of 
chromosomes. As can be seen on the figure 4 for the 
ammonia synthesis loop, the elapsed time and the 
master processors time required to obtain the solution 
are inversely proportional to the number of available 
processors. The efficiency falls quickly when the 
numbers of active processors approaches the number 
of chromosomes. Indeed the first task of processors is 
to check whether the sensitivity matrix is singular or 
not. If it is the case, the processors that have to 
evaluate the corresponding chromosome remains idle 
while the others processors estimate the variances of 
the problem variables. 
The number of processors can be higher than the 
number of chromosomes if the sensor network to be 
found must remain observable in the case of one 
sensor failure. Indeed, in this case, the number of 
evaluations of the objective function is nearly equal 
to the product of the number of possible sensors by 
the number of chromosomes. 
 
 
4.2. DISTRIBUTED GENETIC ALGORITHM 
 
In the technique of distributed genetic algorithms 
(Herrera et al, 1999), the chromosomes are shared in 
several sub-populations independent from one 
another and evolving thanks to their own genetic 
algorithm. A migration operator allows periodically 
some chromosomes to move from one sub-population 
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Figure 5: distributed genetic algorithm: influence 
of the number of sub-populations in the case of 
an ammonia synthesis loop 
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Figure 4: global parallelisation: determination of 
a validable sensor network in the case of an 
ammonia synthesis loop 

 



to another one. The migrating and the replaced 
chromosomes are chosen randomly to keep as most 
information as possible about the global population. 
The parameters of this algorithm are fixed as follow: 
- the number of chromosomes in each sub-

populations is fixed equal to 10: indeed with 
sub-populations of 20 chromosomes, the solution 
is the same but the computing time is twice 
longer. 

- the number of migrating chromosomes in each 
sub-population is chosen equal to 2.  

- the number of sub-populations: this parameter 
was fixed to 5 because is seem to be the best 
compromise between solution time and 
computing resources (figure 5). 

- The number of iterations between two 
migrations is chosen, as in the literature, equal to 
5 (figure 6). 

As can be seen on figure 7 for the ammonia synthesis 
loop, the distributed genetic algorithm requires less 
time than the global parallelisation. Moreover, it 
appears that the values of the objective function are 
better in the case of distributed genetic algorithms. 
 
 

5. CONCLUSIONS 
 

The proposed method allows to design redundant 
sensor networks for chemical plants. The optimised 
networks are much cheaper than the one containing 
all possible sensors. Moreover, accuracies on key 
parameters are acceptable. 
Parallelisation methods allowed to reduce the 
computing time in an acceptable way for small and 
medium problems. However, the design of sensor 

networks for larger plants like refineries can still not 
be considered nowadays but suboptimal solutions can 
be obtained by treating individual plant sections. 
The two parallelisation methods that were tested 
allowed to reduce the solution time but distributed 
genetic algorithms appeared to be better than global 
parallelisation. 
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Figure 6: distributed genetic algorithm: influence 
of the number of generations between two 
migrations in the case of an ammonia synthesis 
loop 
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Figure 7: time comparison between global 
parallelisation and distributed genetic algorithm 

Influence of the number of iterations 
between two migrations

0

500

1000

1500

2000

0 5 10 15 20 25

Number of iterations between two migrations

Total number of iterations

Master time(sec)

Objectif  function

 
Figure 6: distributed genetic algorithm: 
influence of the number of iterations between 
two migrations 


