
SENSOR NETWORK DESIGN USING GENETIC ALGORITHM

C. Gerkens, G. Heyen

Laboratoire d’Analyse et de Synthèse des Systèmes Chimiques
University of Liège, Sart-Tilman B6a, B-4000 Liège (Belgium)

Tel: +32 4 366 35 23 fax: +32 4 366 35 25
Email: C.Gerkens@ulg.ac.be

Abstract
A systematic method to design optimal redundant sensor networks applying data validation theory is described.
Sensor networks are optimised thanks to a genetic algorithm. The design objective is to estimate the process key
variables within a required accuracy. The solution time is reduced by means of two parallelisation techniques
both using the MPI library: the global parallelisation method and the distributed genetic algorithm method.
Results are presented for an ammonia synthesis loop.

Keywords: design, sensor network, genetic algorithm, data validation, parallelisation, MPI.

1. INTRODUCTION

Chemical processes must be monitored correctly to
ensure that all safety and environmental constraints
are verified and that the quality required for products
is achieved. This requires a suitable measurement
system. Redundancy allows to detect and correct
some measurement errors, and reduces the
uncertainty of the estimates.
Moreover some variables of the process (such as
compressor’s efficiency, reactives’s conversion…)
can not be obtained directly by mean of a sensor.
Data validation techniques allow to solve these
problems by exploiting a model of the process and
measurements’ redundancy. Indeed each
measurement is corrected as little as possible to
satisfy balances and non-measured variables are
estimated. Moreover a posteriori accuracies are
calculated for all variables. As the state variables for
streams are enthalpy, pressure and partial molar flow
rates, link equations relating measurements and state
variables have to be added to the model. Moreover,
link equations expressing key parameters (such as
efficiencies, heat transfert coefficients) as functions
of state variables and measurements have also to be
added.
The efficiency of this method depends of the sensor
network that is used: indeed, according to the
number, the position and the accuracy of the different
sensors installed, process variables can be estimated
more or less accurately. The problem is therefore to
find out the cheapest redundant sensor network able
to estimate process key parameters within a
prescribed accuracy.

Until now only few studies have been carried out in
this field: thanks to a graph oriented method, Madron
(Madron, 1972) solved the linear mass balance case.
Some years after Bagajewicz (Bagajewicz, 1997)
analysed the problem for mass balance networks
where all constraint equations were linear.
The goal of our research is to solve broader problems
including energy balances and non-linear constraint
equations.
In our approach all state variables are candidates for
measurement. The unmeasured ones have a very
large standard deviation. The Lagrange formulation
of the data validation problem is thus:

() () ()min ' ' 2
,

TTL X X W X X A X D
X

λ
λ

= − − + + (1.1)

where
- X is the array of process variables
- X’ is the set of measurements
- W is the weight matrix (i.e. the inverse of the

measurement covariance matrix)
- A is the Jacobian matrix of the linearised model

(constant).
Solving this equation for stationarity conditions:

1

1' '

0

TX WX WXW A
M

D DAλ

−

−      = =      − −      
 (1.2)

The elements of M-1 are obtained using a LU
factorisation of M. To take advantage of the sparsity
of the sensitivity matrix; we used the Belsim’s sparse
matrix code. A singular matrix M corresponds to a
sensor network that does not allow to estimate all
process variables.
The variances of validated values of variables can be
estimated if the measurements variances are known
(Heyen et al., 1996):

 ()
()

()

2
1

,

1

var
var '

m
i j

i
j j

M
X

X

−

=

  
=∑ (1.3)

The major contributions to the objective function of
our optimisation problem are the annualised cost of
the sensor network and a function of sensor
accuracies. The objective function is optimised
thanks to a genetic algorithm.
As the time required to obtain a solution is quite
long, the algorithm has been parallelised by means of
the global parallelisation method and distributed
genetic algorithms.

2. GENETIC ALGORITHM DESCRIPTION

The proposed method is carried out in five steps that
are described in this section. An example of
application is presented in the next section.

2.1. FORMULATION OF THE VALIDATION MODEL AND

MODEL LINEARISATION

The coefficients of the model matrix A are
automatically generated from a Vali3 data validation
model (Belsim 2001). The model is build by drawing
unit operations in a process flow diagram and by
linking them by means of material or energy streams.
For material streams, a thermodynamic model has to
be chosen from the list proposed. The Vali3 software
writes automatically the link equations for standard
measurements types but link equations have to be
created for non-standard unmeasured variables such
as reaction conversion. The variables whose values
are known in the operating conditions are specified.
The number of specified values has to be at least
equal to the degree of freedom of the model. As
overspecifications bring additional information and
that data validation gives a “least square” solution,
overspecifications are allowed.
The problem is then solved thanks to the Lagrange
multiplier method or a SQP solver. When the
solution is obtained, a report file is generated
containing the value of all variables and their
accuracy, the linearised equations of the model and
the non-zero coefficient of the Jacobian matrix. This
report is then read by the sensor optimisation
program. If the sensor network have to be available
for several operating points, a report is generated for
each of them.

2.2. SPECIFICATION OF SENSOR DATABASE, PRECISION

AND SENSOR REQUIREMENTS

The program needs three files besides the Vali3
report:

THE SENSOR DATABASE
This file contains for each sensor:
- the sensor name;
- the sensor annualised cost (operating, purchase

cost and installation costs);
- the sensor accuracy σ , which is related to the

measured values :
 'a b Xσ = + (2.1)

- the type of variable that can be measured by the
sensor.

THE PRECISION REQUIREMENTS
Key variables of the process have to be known quite
precisely. A file is prepared, listing all key variables
and their required accuracy target (maximum
standard deviation). At each generation of the
optimisation algorithm it is checked whether the key
variables accuracies are acceptable or not.

THE SENSOR REQUIREMENTS
Sometimes, the plant configuration is such that it
seems impossible or obligatory to put a sensor on a
determined place, or some sensors are already
installed on the plant and even if they are not located
optimally they can’t be displaced.
In such cases, sensors that must be installed in some
location, or that are to be excluded are listed in a file.

2.3. VERIFICATION OF PROBLEM FEASABILITY

At this step, the programme starts identifying by
looking for all possible sensors. This sensor network
is the most expensive one (Cmax) that can be found by
the algorithm. Afterwards it checks whether there
exists a solution to the problem by solving the
linearised data validation problem for the sensors
network it has just found. If a variable is measured by
more than one sensor, the variance of the most
accurate one is taken into account.
The two following conditions have to be met:
- the sensitivity matrix M of the problem must be

non-singular. If this condition is not met the
programme stops.

- the variances of the process key variables must
be acceptable. If this second condition is not
met, the programme may continue but a penalty
is added to the objective function. There are
different ways to met this condition: adding
more precise sensors, adding sensors that can
measure other type of variables, adding more
extra variables with their link equations so that
more variables can be measured.

2.4. OPTIMISATION OF THE MEASUREMENT SYSTEM

If a solution exists for the problem, the search for the
optimal solution can begin. The objective function to
be maximise (fitness) is evaluated this way:
- if the sensitivity matrix is singular:

max singular matrixFitness - C Penalty= (2.2)

- otherwise:

()

key
variables

i i
target target
i iN

2
target maxi i

2 targettarget key variables1 ii

target max2 i
target

key variables i

Fitness Cost

σ σ
1

σ σ

penalty Cσ σ
1 10

N σ
σ

penalty C σ
10 10

N σ

i

if

if

if

=

= −


 − ≤


− 




≥


∑ ≺ ≺

(2.3)
If the sensor network has to optimised for several
operating points, the objective function is estimated
by the following formula:

functioning
points

N

j functioning
pointsj=1

Fitness fitness N 1 ostC
 

= − − 
 

∑ (2.4)

The objective function is multimodal in most of the
cases. Moreover the number of binary variables of
the optimisation problem is large and the problem is
not derivable. That is why a genetic algorithm
(Goldberg, 1996) is used to perform the optimisation.
The implementation adopted is base on the code
developed by Carroll (Carroll, 1998). This code uses
the natural selection mechanisms of tournament
selection (random pairs are chosen thanks to a
shuffling technique), single-point or uniform
crossover and jump mutation.
The sensor network to be optimised is expressed as a
character string called chromosome. Characters are
binary decisions called genes and represent the
presence of a sensor at a given location in the
network.
The first population is generated randomly by biasing
the initial chromosome in which all the possible
sensors are chosen: a high probability of selection of
80 % is fixed for each sensor to be sure the number
of chosen sensors is at least equal to the number of
degrees of freedom. It appears that this parameter is
not critical.
The others parameters of the algorithm are fixed as
follow:
- the size of the population is most of the time

fixed to 20 chromosomes;
- the reproduction probability: 50%;
- the crossover probability: 50 %;
- the mutation probability after reproduction or

crossover: 1%.
At each generation, the objective function is
evaluated for each chromosome and the best
individual is kept. If the best individual stays
unchanged after a specified number of generations, it
is considered as the solution of the problem.

2.5. REPORT GENERATION

Once the optimal sensor network is obtained, the
programme prepares a report containing the list of
the sensors chosen with their position, the accuracy
predicted for all process variables and a comparison
between the obtained and the target accuracies for the
key variables.

3. A CASE STUDY: NH3 SYNTHESIS LOOP

In this section we will show the results obtained for
an ammonia synthesis loop. That process involved 14
units (one two-stage compressor with two
intercoolers, one recycle mixer, one recycle
compressor, one reactor preheater, one ammonia
converter, one waste heat boiler, one waste cooled
condenser, one ammonia cooled condenser, one
liquid-vapour separator, one purge divider and one
flash drum for expanded ammonia condensate), 19
process streams (composed of ammonia, nitrogen
hydrogen, argon and methane), 10 utility streams and
3 mechanical streams. The model comprises 224
variables and 177 constraint equations. Target
accuracies are specified for 58 key parameters.
The sensor database comprises 15 sensor types: 3
temperature sensors, 2 pressure gauges, 2
chromatographs, 1 poly-analyser, 1 oxygen sensor, 4
mass flowmeters and 1 molar flowmeter.
The maximum number of sensors that can be
installed is 117. That means that the solution space
involves 2117=1.7 1035 solutions. The total cost of this
network is 8600 units.
In the case of the obtention of a redundant sensor
network, the algorithm found a solution after 640
generations or 12800 objective function evaluations
for a stop criterion of 200 generations. The evolution
of the objective function is represented on figure 1.
The time required to obtain that solution was about
10 minutes on a Pentium II (330 MHz) computer.
The sensor network obtained costs 1580 units and
consists of 39 measurement tools: 1 chromatograph,

Evolution of the objective function

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

0 100 200 300 400 500 600 700

Generations

O
b

je
ct

iv
e

fu
n

ct
io

n

Figure 1: ammonia synthesis loop: evolution of
the objective function in the case of redundant
sensor network

7 mass flowmeters, 20 temperature sensors, and 11
pressure gauges. This sensor network is presented on
figure 2.
If it is desired that the sensor network stays
observable in the case of one sensor failure, the
measurement system is obtained after 366
generations for a stop criterion of 200 generations.
The time required to obtain that solution was about 8

hours and 15 minutes on a Pentium II (330 MHz)
computer. The sensor network obtained costs 3900
units and consists of 67 measurement tools: 2
chromatographs, 13 mass flowmeters, 31 temperature
sensors and 21 pressure gauges. This sensor network
is presented on figure 3.

Figure 2: validable measurement network for an ammonia synthesis loop

Figure 3: sensor network observable in case of one sensor failure for an ammonia synthesis loop

4. PARALLELISATION

As the solution time is quite important, larger
problem couldn’t be taken into consideration without
parallelising the code. Indeed, parallelisation
methods allow to reduce the solution time because
they share the computing work between several
processors. Parallelisation techniques are compared
using the notion of efficiency:

Speed up
Efficiency

Number of active processors
= (4.1)

Time for 1 processor
Speed up

Time for n processors
= (4.2)

The algorithm was parallelised applying MPI
routines (Gropp et al, 1999) to the global
parallelisation method and the distributed genetic
algorithms. All calculations were carried out on a
cluster of identical Apple Power Mac bi-processors.

4.1. GLOBAL PARALLELISATION

This method consists of carrying out in parallel the
evaluation of chromosomes’ fitness. In the case of
our algorithm, the time limiting step is the evaluation
of the objective function. Indeed, the size of the
sensitivity matrix to be inverted is equal to the sum
of the number of variables and the number of
equations of the problem. The solution time of the
algorithm increases thus much faster than the size of
the studied problems. As chromosomes are evaluated
independently from one another, the code can be
parallelized at that level so that chromosomes to be
evaluated are distributed among available processors.
As the others tasks of the algorithm (chromosomes
distribution, population evolution) are rapid, they do
not cause important efficiency loses when carried out

by the master processor only. The first generation is
evaluated simultaneously by all the available
processors: indeed all processors need some
information about the studied processes such as
initialisation and problem definition files.
If the number of processors is lower or equal to the
number of chromosomes to be evaluated, it appears
that the efficiency is better when the number of
processors is a divisor of the number of
chromosomes. As can be seen on the figure 4 for the
ammonia synthesis loop, the elapsed time and the
master processors time required to obtain the solution
are inversely proportional to the number of available
processors. The efficiency falls quickly when the
numbers of active processors approaches the number
of chromosomes. Indeed the first task of processors is
to check whether the sensitivity matrix is singular or
not. If it is the case, the processors that have to
evaluate the corresponding chromosome remains idle
while the others processors estimate the variances of
the problem variables.
The number of processors can be higher than the
number of chromosomes if the sensor network to be
found must remain observable in the case of one
sensor failure. Indeed, in this case, the number of
evaluations of the objective function is nearly equal
to the product of the number of possible sensors by
the number of chromosomes.

4.2. DISTRIBUTED GENETIC ALGORITHM

In the technique of distributed genetic algorithms
(Herrera et al, 1999), the chromosomes are shared in
several sub-populations independent from one
another and evolving thanks to their own genetic
algorithm. A migration operator allows periodically
some chromosomes to move from one sub-population

Influence of the number of 10
chromosoms sub-populations

0
300
600
900

1200
1500
1800

0 5 10

Number of sub-populations

Total number of iterations

Master time (sec)

Objectif function

Figure 5: distributed genetic algorithm: influence
of the number of sub-populations in the case of
an ammonia synthesis loop

Validable measurement system

0
50

100
150
200
250
300
350

0 0.2 0.4 0.6

1/ processors number

T
im

e
(s

ec
)

50

60

70

80

90

100

E
ff

ic
ie

nc
y

(%
)

Master time Elapsed time Efficiency

Figure 4: global parallelisation: determination of
a validable sensor network in the case of an
ammonia synthesis loop

to another one. The migrating and the replaced
chromosomes are chosen randomly to keep as most
information as possible about the global population.
The parameters of this algorithm are fixed as follow:
- the number of chromosomes in each sub-

populations is fixed equal to 10: indeed with
sub-populations of 20 chromosomes, the solution
is the same but the computing time is twice
longer.

- the number of migrating chromosomes in each
sub-population is chosen equal to 2.

- the number of sub-populations: this parameter
was fixed to 5 because is seem to be the best
compromise between solution time and
computing resources (figure 5).

- The number of iterations between two
migrations is chosen, as in the literature, equal to
5 (figure 6).

As can be seen on figure 7 for the ammonia synthesis
loop, the distributed genetic algorithm requires less
time than the global parallelisation. Moreover, it
appears that the values of the objective function are
better in the case of distributed genetic algorithms.

5. CONCLUSIONS

The proposed method allows to design redundant
sensor networks for chemical plants. The optimised
networks are much cheaper than the one containing
all possible sensors. Moreover, accuracies on key
parameters are acceptable.
Parallelisation methods allowed to reduce the
computing time in an acceptable way for small and
medium problems. However, the design of sensor

networks for larger plants like refineries can still not
be considered nowadays but suboptimal solutions can
be obtained by treating individual plant sections.
The two parallelisation methods that were tested
allowed to reduce the solution time but distributed
genetic algorithms appeared to be better than global
parallelisation.

6. REFERENCES

Bagajewicz M.J., 1997, « Process Plant

Instrumentation: Design and Upgrade », chapter
6, Technomic Publishing Company

Goldberg D.E., 1989, « Genetic Algorithms in
Search, Optimization and Machine Learning »,
Addison-Wesley

Gropp W., Lust E., Skjellum A., 1999, « Using MPI:
Portable Parallel Programming with the Message
Passing Interface », Second Edition, The MIT
Press

Herrera F., Lozano M., Moraga C., November 1999,
« Hierarchical Distributed Genetic Algorithms »,
International Journal of Intelligent Systems,
Volume 14 (11), 1099-1121

Heyen G., Maréchal E., Kalitventzeff B., 1996, «
Sensitivity Calculations and Variance Analysis in
Plant measurement Validation », Computers and
Chemical Engineering, volume 20S, 539-544

Madron F., 1992, « Process Plant Performance
Measurement and Data Processing for
Optimisation and Retrofits », section 6.3, Ellis
Horwood

Influence of the number of
iterations between two migrations

0
500

1000
1500
2000

0 5 10 15 20 25

Number of iterations between two migrations

Total number of iterations

Master time(sec)

Objectif function

Figure 6: distributed genetic algorithm: influence
of the number of generations between two
migrations in the case of an ammonia synthesis
loop

Time comparison between global
parallelisation and distributed

algorithm

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

Number of processors or sub-populations

T
im

e
(s

ec
)

Global parallelisation : master time

Global parallelisation : elpased time

Distributed algorithm : master time

Distributed algorithm : elapsed time

Figure 7: time comparison between global
parallelisation and distributed genetic algorithm

Influence of the number of iterations
between two migrations

0

500

1000

1500

2000

0 5 10 15 20 25

Number of iterations between two migrations

Total number of iterations

Master time(sec)

Objectif function

Figure 6: distributed genetic algorithm:
influence of the number of iterations between
two migrations

