- U. Liège: O. Absil, J. Surdej, S. Habraken, M. Van Droogenbroeck,
D. Defrère, C. Delacroix, G. Orban de Xivry, M. Reggiani, O. Wertz,
B. Carlomagno, V. Christiaens, C. Gomez Gonzalez, A. Jolivet
- U. Uppsala: M. Karlsson, P. Forsberg, P. Piron, E. Vargas Catalan
- Caltech/JPL: D. Mawet, E. Serabyn, K. Matthews, G. Ruane, AJ Riggs, E. Choquet, M. Bottom, H. Ngo, R. Jensen-Clem
- Obs. Paris: E. Huby, P. Baudoz
- + collaborators at ESO (J. Girard, J. Milli, M. Kasper, H.-U. Käufl), CEA Saclay (E. Pantin), U. Leiden (M. Kenworthy, F. Snik), Keck (B. Femenia, P. Wizinowich), U. Arizona (P. Hinz)

OLIVIER ABSIL

SIX YEARS OF HARVEST WITH THE VORTEX CORONAGRAPH

OUTLINE

history and technology development commissioning \& on-sky performance

selected scientific results

image processing with machine learning

future projects

ORTEX
 HISTORY AND
 TECHNOLOGY
 DEVELOPMENT

THE BIRTH OF A CONCEPT

FOPM \rightarrow sub-wavelength grating \rightarrow annular groove phase mask

, advantages:

* inner working angle
* clear 360° discovery space
* achromaticity

Mawet et al. (2005)
$\phi(\theta)$
vortex
phase
mask

THE VORTEX CORONAGRAPH IN A NUTSHELL

perfect on-axis cancellation for a circular aperture

IMPLEMENTATIONS OF THE VORTEX PHASE MASK

vscalar vortex

* helical piece of glass

D vector vortex

* liquid crystal polymers
* subwavelength gratings
* photonic crystals

OPTIMIZING THE GRATING DESIGN

MANUFACTURING DIAMOND AGPM @ UPPSALA

1. diamond coated with AI and Si layers (sputtering)
2. e-beam pattern transferred with solvent-assisted moulding

Al etching

ethanol bath
$10 \mu \mathrm{~m}$
3. reactive ion etching

SETING UP THE «YACADIRE BENCH @ MEUDON

AFTER SOME TUNING...

BLISS!

BEST PERFORMANCE NN THE LAB - 2018 UPDATE

v dedicated test bench (VODCA) now available at ULiège

- $10+$ science-grade L-band AGPMs etched \& tested
- broadband rejection up to 2500 : 1

EXTENDING THE CONCEPT

- AGPM first developed for thermal infrared (L, M, N bands)
* excellent performance on $\sim 30 \%$ bandwidth
, manufacturing tests for H-K bands promising, but more work needed
, now exploring higher topological charges
* less sensitive to tip-tilt, at the expense of larger IWA

$\dot{V} \bigcirc$ RTEX

COMMISCIONNG \&
 ON-SKY PERFORMANCE

INSTALLATION AND COMMISSIONING

piggyback on existing coronagraphic IR cameras
very short commissioning phase (1-2 nights)

AGPM FIRST LIGHT @ NACO (DEC 2012)

vorked out of the box with available Lyot stops
serendipitous discovery of M2V at 2入/D from FOV

Mawet et al. (2013)

ON-SKY OPERATIONS: THE VORTEX GLOWS!

thermal emission outside pupil partly diffracted inside pupil by vortex
> seen in all instruments (vortex upstream cold stop)
removed by background subtraction
) useful for centering

ON-SKY OPERATIONS: ACQUISITION \& CENTERING

- pointing errors create asymmetric «donut »

, central obstruction changes the expected behavior of the donut

> can be used to control pointing at low frequency

CLOSED-LOOP CENTERING CONTROL

1 fully automated vortex operations with OACITS validated on NIRC2

* includes acquisition \& calibration
- ensures consistant centering and data quality
> rms jitter ~ $0.02 \lambda / \mathrm{D}$ (2 mas) @ 0.03 Hz

ON-SKY STARLIGHT CANCELLATION @ NIRC2

D on-sky extinction limited by

* pupil geometry / Lyot stop
* AO residuals
* non-common path aberrations
daytime speckle nulling helps reduce NCPA ... but NIRC2 upgrade needed!

Bottom et al. 2016

IMPROVEMENT IN DEEECION LIMITS @ NIRC2

จ obvious gain in 3-10 N/D region ($0.25^{\prime \prime}-0.8^{\prime \prime}$)
vortex reduces throughput @ 1-2 N/D

vortex imaging

VORTEX PERFORMANCE ON VARIOUS INSTRUMENTS

VRTEX
 SELECTED

EARLY SCIENCE @ VLT/NACO: HD 169142

v point-like source at $0.15^{\prime \prime}$ from Herbig Ae star, inside H-band PDI inner cavity
not detected at J band (GPI) nor H-K bands (MagAO)
, possible explanations

* accreting protoplanet?
* disk feature?

FIRST LIGHT @ KECKNIRC2: HIP 79124

Serabyn et al. (2017)
, brown dwarf around Sco-Cen A0 star
, 177 mas, $\Delta \mathrm{L}=4.3$
〉 only detected with aperture masking so far

- recovered with NIRC2+vortex during commissioning

KECK CORONAGRAPHIC DEEP FIELD: TW HYA

KECK CORONAGRAPHIC DEEP FIELD: EPS ERIDANI

0.8 MJup companion would have been detected if eps Eri was 200 Myr old

TRANSTIION DISK SURVEY (NIRC2 \& NACO)

SPHERE/IRDIS Y band polarimetry (Benisty et al. 2015)

Protoplanet prediction (Dong et al. 2015)

goal: search for protoplanets at the origin of disk structures

THE KECKJNIRC2 + VORTEX VIEW OF MWC758

MWC758B: A DISK-SCUPLTING PROTOPLANET CANDIDATE?

- main properties
* $0.1^{\prime \prime}$ separation (20 au), $\Delta \mathrm{L}=7$
* two epochs: PA difference consistent with Keplerian rotation in 1 yr
low probability for bckg star
- companion? needs to be $<6 \mathrm{M}_{\text {Jup }}$
\rightarrow not purely photospheric emission
, conclusion: accreting protoplanet or
 disk feature?
* no polarized disk emission there!

MWC758B: ORIGIN OF THE SPIRALS?

) now three spiral arms to reproduce with models
driven by protoplanet?

* outer planet? most likely explanation based on models, but strong constraints from observations (<6 M Jup)
* inner planet? might explain one spiral, but not all three

HOW TO BETER EXPLOIT THE DATA?

D interesting science at 1-3 $\mathrm{\lambda} / \mathrm{D}$
NIRC2+vortex image sequence

* strongly affected by residual speckles
* non-Gaussian noise -> more false positives
* hard to validate candidates

ADI-based techniques produce SNR maps, but do not inform on nature of the candidates
, machine learning can help

VRTEX

IMAGE PROCESSING WITH MACHINE LEARNING

MACHINE LEARNING IN A NUTSHELL

construction of algorithms that can learn from, and make predictions on data

Dimensionality reduction

SUPERVISED LEARNNG

goal: learn function f mapping input samples X to labels y given a labeled dataset $\left(x_{i}, y_{i}\right)_{i=1, \ldots, n}$:

$$
\min _{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(y_{i}, f\left(x_{i}\right)\right)+\lambda \Omega(f)
$$

- mapping function f can be based on a (deep) neural network

DEEP NEURAL NETWORKS

D DNN can be trained with labeled data set

* main challenge in HCl is to build the labeled data set

SUPERVISED DETECTION OF EXOPLANETS
2. training the DNN

0
1
y : Labels

X and y to train/test/validation sets

Sigmoid activation

3. prediction

Trained classifier

Probability of positive class

Labels: $y \in\left\{c^{-}, c^{+}\right\}$

SUPERVISED DETECTION OF EXOPLANETS
2. training the DNN

0
1
y : Labels

X and y to train/test/validation sets

Sigmoid activation

3. prediction

Trained classifier

Probability of positive class

TEST WITH INJECTED COMPANIONS (SPHEREIRDIS)

ROC CURVES

- Separation
* 2 -3 λ / D

Contrasts

* 2.9×10^{-5} to 1.4×10^{-4}

$$
\begin{aligned}
& \text { VORTEX } \\
& \text { FUIURE } \\
& \text { PROJECTS }
\end{aligned}
$$

NEAR - NEW EARTH IN THE ALPHA CENTAURI REGION

, ESO project funded by Breakthrough Watch

* what? search for rocky planets around a Cen A\&B
* how? refurbish VISIR and put it behind UT4+AOF
* when? 100h observing campaign in mid-2019
vortex team contribution
* provide optimized AGPM for 10-12.5 $\mu \mathrm{m}$ filter
* design optimized Lyot stop
* develop closed-loop pointing control with QACITS

NEAR LYOT STOP: TWO CHALLENGES

binary target star

* need to dim secondary star
, complicated pupil

AN APODIZED LYOT STOP

\ shaped-pupil: induce dark hole from $3^{\prime \prime}$ to $8^{\prime \prime}$ around B

NOTIONAL IMAGES OF ALPHA CENTAURI SYSTEM

habitable zone at $0.8^{\prime \prime}-1.1^{\prime \prime}(A)$ or $0.5^{\prime \prime}-0.65^{\prime \prime}(B)$
contrast around 10^{-6} for $2 \mathrm{R}_{\oplus}$ planet

NEXT STEPS: VLT/ERIS AND ELT/MEIIS

D ERIS: L \& M band AGPMs

* standard vortex coronagraph with simple Lyot stop
, METIS: L, M \& N band AGPMs
* ring-apodized vortex coronagraph: cancels diffraction from huge central obstruction

MEIIS SCIENCE HIGHLIGHTS

v direct imaging of several RV planets

- potential to detect temperate rocky planets
characterization with high-res LM-band IFS

Equilibrium Temperature [K]

CAN MACHINE LEARNING DO EVEN MORE FOR HCI?

deep learning = key to building fast, robust models

science camera to measure wavefront
inverse problem, requires model
approximate and fast, or complex and slow

$\dot{V} \bigcirc$ RTEX

KEEP LIGHT SPINNIN

