

- **U. Liège**: O. Absil, J. Surdej, S. Habraken, M. Van Droogenbroeck, D. Defrère, C. Delacroix, G. Orban de Xivry, M. Reggiani, O. Wertz,
 - B. Carlomagno, V. Christiaens, C. Gomez Gonzalez, A. Jolivet
- U. Uppsala: M. Karlsson, P. Forsberg, P. Piron, E. Vargas Catalan
- Caltech/JPL: D. Mawet, E. Serabyn, K. Matthews, G. Ruane, AJ Riggs, E. Choquet, M. Bottom, H. Ngo, R. Jensen-Clem
- Obs. Paris: E. Huby, P. Baudoz
- + collaborators at ESO (J. Girard, J. Milli, M. Kasper, H.-U. Käufl), CEA Saclay (E. Pantin), U. Leiden (M. Kenworthy, F. Snik), Keck (B. Femenia, P. Wizinowich), U. Arizona (P. Hinz)

OLIVIER ABSIL

SIX YEARS OF HARVEST WITH THE VORTEX CORONAGRAPH

OUTLINE

history and technology development commissioning & on-sky performance selected scientific results image processing with machine learning future projects

HISTORY AND TECHNOLOGY DEVELOPMENT

THE BIRTH OF A CONCEPT

FQPM \rightarrow sub-wavelength grating \rightarrow annular groove phase mask

THE VORTEX CORONAGRAPH IN A NUTSHELL

perfect on-axis cancellation for a circular aperture

on-axis vortex

no vortex/ off-axis

IMPLEMENTATIONS OF THE VORTEX PHASE MASK

scalar vortex
helical piece of glass
vector vortex
liquid crystal polymers
subwavelength gratings
photonic crystals

Annular Groove Phase Mask

FΛ

OPTIMIZING THE GRATING DESIGN

L band. Period = $1.42 \mu m$, angle = 3.00°

MANUFACTURING DIAMOND AGPM @ UPPSALA

Vargas Catalan et al. (2016)

1. diamond coated with Al and Si layers (sputtering)

 e-beam pattern transferred with solvent-assisted moulding

SETTING UP THE « YACADIRE » BENCH @ MEUDON

ANGUISH.

AFTER SOME TUNING...

BEST PERFORMANCE IN THE LAB – 2018 UPDATE

dedicated test
 bench (VODCA)
 now available at
 ULiège

10+ science-grade
 L-band AGPMs
 etched & tested

broadband rejection up to 2500 : 1

VORTEX

EXTENDING THE CONCEPT

- AGPM first developed for thermal infrared (L, M, N bands)
 * excellent performance on ~30% bandwidth
- manufacturing tests for H-K bands promising, but more work needed
- now exploring higher topological charges
 - * less sensitive to tip-tilt, at the expense of larger IWA

COMMISSIONING & ON-SKY PERFORMANCE

INSTALLATION AND COMMISSIONING

- piggyback on existing coronagraphic IR cameras
- very short commissioning phase (1-2 nights)

AGPM FIRST LIGHT @ NACO (DEC 2012)

worked out of the hox

Mawet et al. (2013)

ON-SKY OPERATIONS: THE VORTEX GLOWS!

- thermal emission outside pupil partly diffracted inside pupil by vortex
- seen in all instruments (vortex upstream cold stop)
- removed by background subtraction
- useful for centering

0.6 λ/D

0.5 λ/D

0.4 λ/D

ON-SKY OPERATIONS: ACQUISITION & CENTERING

0.0 λ/D

0.1 λ/D

pointing errors create asymmetric « donut »

 central obstruction changes the expected behavior of the donut

need modeling to infer

 w/o central obstruction

 0.0 λ/D
 0.1 λ/D
 0.2 λ/D
 0.3 λ/D
 0.4 λ/D
 0.5 λ/D
 0.6 λ/D

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

0.2 λ/D

w/ central obstruction

0.3 λ/D

pointing error from image (QACITS algorithm)

can be used to control pointing at low frequency

CLOSED-LOOP CENTERING CONTROL

- fully automated vortex operations with QACITS validated on NIRC2
 - * includes acquisition & calibration
- ensures consistant centering and data quality
- rms jitter ~ 0.02 λ/D
 (2 mas) @ 0.03 Hz

ON-SKY STARLIGHT CANCELLATION @ NIRC2

on-sky extinction limited by

- * pupil geometry / Lyot stop
- * AO residuals
- * non-common path aberrations
- daytime speckle nulling helps reduce NCPA ... but NIRC2 upgrade needed!

pupil after Lyot stop

IMPROVEMENT IN DETECTION LIMITS @ NIRC2

vortex reduces
 throughput @ 1-2 λ/D

comparison based on two HR 799 data sets with similar integration time and parallactic angle rotation, processed using a standard PCA-ADI algorithm

vortex imaging

saturated imaging

VORTEX PERFORMANCE ON VARIOUS INSTRUMENTS

SELECTED SCIENTIFIC RESULTS

Biller et al. 2014, Reggiani et al. 2014

EARLY SCIENCE @ VLT/NACO: HD 169142

point-like source at 0.15" from Herbig Ae star, inside H-band PDI inner cavity

not detected at J band (GPI) nor H-K bands (MagAO)

possible explanations

* accreting protoplanet?

* disk feature?

0.5"

Quanz et al. 2013

FIRST LIGHT @ KECK/NIRC2: HIP 79124

Serabyn et al. (2017)

Ν

brown dwarf around Sco-Cen A0 star 177 mas, ΔL=4.3 only detected with aperture masking so far recovered with NIRC2+vortex during 0.2" commissioning

Ruane et al. (2017)

TEX

KECK CORONAGRAPHIC DEEP FIELD: EPS ERIDANI

0.8 MJup companion would have been detected if eps Eri was 200 Myr old

Final image

TRANSITION DISK SURVEY (NIRC2 & NACO)

SPHERE/IRDIS Y band polarimetry (Benisty et al. 2015)

Protoplanet prediction (Dong et al. 2015)

goal: search for protoplanets at the origin of disk structures

THE KECK/NIRC2 + VORTEX VIEW OF MWC758

Reggiani et al. 2018

MWC758B: A DISK-SCUPLTING PROTOPLANET CANDIDATE?

main properties

- * 0.1" separation (20 au), $\Delta L = 7$
- * two epochs: PA difference consistent with Keplerian rotation in 1 yr
- Iow probability for bckg star
- companion? needs to be <6 M_{Jup}
 → not purely photospheric emission
- conclusion: accreting protoplanet or disk feature?

* no polarized disk emission there!

Reggiani et al. 2018

MWC758B: ORIGIN OF THE SPIRALS?

- now three spiral arms to reproduce with models
- driven by protoplanet?
 - * outer planet? most likely explanation based on models, but strong constraints from observations (< 6 M_{Jup})
 - inner planet? might explain one spiral, but not all three

Reggiani et al. 2018

HOW TO BETTER EXPLOIT THE DATA?

• interesting science at 1-3 λ /D

- * strongly affected by residual speckles
- * non-Gaussian noise
 –> more false positives
- hard to validate candidates

ADI-based techniques produce SNR maps, but do not inform on nature of the candidates

machine learning can help

IMAGE PROCESSING WITH MACHINE LEARNING

MACHINE LEARNING IN A NUTSHELL

construction of algorithms that can learn from, and make predictions on data

SUPERVISED LEARNING

• goal: learn function f mapping input samples X to labels Y given a labeled dataset $(x_i, y_i)_{i=1,...,n}$:

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_i, f(x_i)) + \lambda \Omega(f)$$

mapping function f can be based on a (deep) neural network

DEEP NEURAL NETWORKS

DNN can be trained with labeled data set

* main challenge in HCl is to build the labeled data set

SUPERVISED DETECTION OF EXOPLANETS

1. generation of labeled data

2. training the DNN

3. prediction

Gomez Gonzalez et al. 2018

LABELED DATASET

Labels: $y \in \{c^-, c^+\}$

SUPERVISED DETECTION OF EXOPLANETS

1. generation of labeled data

2. training the DNN

3. prediction

Gomez Gonzalez et al. 2018

TEST WITH INJECTED COMPANIONS (SPHERE/IRDIS)

Full-frame mean FPs

FUTURE PROJECTS

NEAR - NEW EARTH IN THE ALPHA CENTAURI REGION

ESO project funded by Breakthrough Watch * what? search for rocky planets around a Cen A&B * how? refurbish VISIR and put it behind UT4+AOF * when? 100h observing campaign in mid-2019 vortex team contribution * provide optimized AGPM for 10-12.5µm filter * design optimized Lyot stop * develop closed-loop pointing control with QACITS

NEAR LYOT STOP: TWO CHALLENGES

binary target star * need to dim secondary star complicated pupil M3 (folded)

AN APODIZED LYOT STOP

shaped-pupil: induce dark hole from 3" to 8" around B

Lyot stop

apodized Lyot stop

courtesy G. Ruane, AJ Riggs

NOTIONAL IMAGES OF ALPHA CENTAURI SYSTEM

habitable zone at 0.8" - 1.1" (A) or 0.5" - 0.65" (B)

Contrast around 10⁻⁶ for 2 R⊕ planet

NEXT STEPS: VLT/ERIS AND ELT/METIS

- ERIS: L & M band AGPMs
 - * standard vortex coronagraph with simple Lyot stop
- METIS: L, M & N band AGPMs
 - ring-apodized vortex coronagraph: cancels diffraction from huge central obstruction

ELT+VC

METIS SCIENCE HIGHLIGHTS

- direct imaging of several RV planets
- potential to detect temperate rocky planets
- characterization with high-res LM-band IFS

Quanz et al. (2015)

CAN MACHINE LEARNING DO EVEN MORE FOR HCI?

fast adaptive optics

problem = lag in AO loop

- speed limited by hardware & photons

predictive control, requires model

deep learning = key to building fast, robust models

non-common path aberrations science camera to measure wavefront

inverse problem, requires model

approximate and fast, or complex and slow

KEEP LIGHT SPINNIN'