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Abstract

An advanced modeling framework is developed for predicting the failure of ductile mate-
rials relying on micromechanics, physical ingredients, and robust numerical methods. The
approach is based on a hyperelastic finite strain multi-surface constitutive model with mul-
tiple nonlocal variables. The three distinct nonlocal solutions for the expansion of voids
embedded in an elastoplastic matrix are considered: a void growth phase governed by the
Gurson-Tvergaard-Needleman yield surface, a void necking coalescence phase governed by
a heuristic extension of the Thomason yield surface based on the maximum principal stress,
and a competing void shearing coalescence phase triggered by the maximum shear stress.
The first solution considers the diffused plastic deformation around the voids while the last
two solutions correspond to a state of plastic localization between neighboring voids. This
combination captures the Lode variable and shear effects, which play important roles in dic-
tating the damage evolution rates. The implicit nonlocal formulation with multiple nonlocal
variables, including the volumetric and deviatoric parts of the plastic strain, and the mean
equivalent plastic strain of the matrix, regularizes the problem of the loss of solution unique-
ness when material softening occurs whatever the localization mechanism. The predictive
capability of the proposed model is demonstrated through different numerical simulations in
which complex failure patterns such as slant and cup-cone of respectively plane strain and
axisymmetric samples under tensile loading conditions develop.
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1. Introduction

Ductile failure is controlled by the nucleation, growth, and coalescence of voids, together
with extensive plastic dissipation accumulated before failure. A large number of predictive
computational models has been developed in the literature to represent a physical description
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of these mechanisms, see the reviews by Benzerga and Leblond (2010); Benzerga et al. (2016)
and references therein.

The most popular ductile failure model was pioneered by Gurson (1977), with the so-
called Gurson model, in which a macroscopic yield surface was derived from the homogeniza-
tion of a porous material containing spherical voids embedded in an ideal elastoplastic ma-
trix. The Gurson model introduces the void volume fraction into the macroscopic yield cri-
terion to account for the material degradation. This original model can only predict the void
growth phase. The Gurson model was subsequently extended in a semi-phenomenological
form by Tvergaard and Needleman (Tvergaard and Needleman, 1984; Needleman and Tver-
gaard, 1984), with the so-called the GTN model, in order to represent the void nucleation
and coalescence phases and to be in a better agreement with experimental measurements
and void cell simulations. An important limitation of the GTN model is its inapplicabil-
ity to correctly predict failure under low stress triaxiality. This limitation was resolved by
Nahshon and Hutchinson (2008) with a Lode-dependent enhanced term in the void evolu-
tion. The GTN model has also been enriched in order to incorporate different characteristics
of the voids, see the works by Gologanu et al. (1994, 1993); Pardoen and Hutchinson (2000);
Benzerga et al. (2004); Keralavarma and Benzerga (2010). Although these latter models im-
prove the physical description of the ductile failure process and better capture the low stress
triaxiality failure conditions (Scheyvaerts et al., 2011), the incorporation of void shape, void
orientation, and void rotation requires the calibration of a few more parameters (Pardoen,
2006). Therefore the original GTN framework is still preferred since its limited number of
material parameters can be easily identified based on macroscopic mechanical tests, see the
works of Springmann and Kuna (2005); Xue et al. (2010) for examples.

The void coalescence scenario depends on the loading conditions and on the spatial ar-
rangement of voids. The most common is the internal necking coalescence mode, i.e. the
shrinking of the ligament between neighboring voids along a localization band perpendicu-
lar to the main loading direction; the second is the shear coalescence mode, also called void
sheeting, which occurs with the formation of micro shear bands inclined to the main loading
direction and joining primary voids, possibly with secondary voids nucleated inside these
micro bands. The rare necklace coalescence mechanism occurs between voids parallel to the
main loading direction (Benzerga and Leblond, 2010). The void necking mechanism domi-
nates at high stress triaxiality while the shear mechanism dominates at low stress triaxiality,
favored by the presence of a second population of voids and a low strain hardening capacity
(Pineau et al., 2016). Although the GTN model provides a complete computational method-
ology for all stages of void evolution, its phenomenological description of void coalescence,
in which a critical value of the porosity is used to predict the onset of void coalescence be-
yond which the porosity growth rate is artificially accelerated through an effective porosity,
does not provide a realistic description of void coalescence. On the one hand, the critical
porosity is not a material constant but moderately depends on the stress state and on the
initial porosity (Pardoen and Hutchinson, 2000; Kim et al., 2004; Gao et al., 2010). On the
other hand, unit cell calculations under axisymmetric stress states reveal that the deforma-
tion mode during void coalescence is a pure uniaxial deformation (Pardoen and Hutchinson,
2000; Kim et al., 2004; Gao et al., 2010). This transition from a general pre-coalescence
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deformation mode to the uniaxial coalescence deformation mode cannot be correctly pre-
dicted using the GTN model. In order to overcome these limitations, micromechanics-based
coalescence models pioneered by Thomason (1985a,b), with the so-called Thomason model,
have been addressed and further elaborated over the last two decades.

The original Thomason model considers that coalescence starts when plastic deformation
localizes in the ligaments between neighboring voids as supported by unit cell calculations
(Pardoen and Hutchinson, 2000). This transition corresponds to a mode of plastic flow com-
pletely different than the one during the growth phase and not anymore correctly modeled
with the GTN yield surface. This original version was further extended, see e.g the works by
Pardoen and Hutchinson (2000); Benzerga (2002); Scheyvaerts et al. (2010); Benzerga and
Leblond (2014), to better represent the internal necking coalescence process. The Thoma-
son model and its extended forms can be used either to detect the onset of coalescence
while using the GTN framework (Zhang et al., 2000), or as an additional yield surface on
equal footing with the GTN yield locus (so-called multi-surface approach) (Pardoen and
Hutchinson, 2000; Benzerga et al., 2002; Pardoen and Hutchinson, 2003; Benzerga et al.,
2004; Pardoen, 2006; Besson, 2009). However these works considered neither the effect of
the Lode parameter in the yield condition, since the yield surface construction was based
on axisymmetric configurations, nor the effect of the void shearing mechanism, although
both of them play important roles in the ductile failure under general loading conditions
as revealed by unit cell computations (Barsoum and Faleskog, 2011; Tekoğlu et al., 2012;
Tekoğlu, 2014; Vadillo et al., 2016; Zhu et al., 2018) as well as by experiments (Bao and
Wierzbicki, 2004; Barsoum and Faleskog, 2007).

Although the contribution of shear on the ductile failure process might be captured us-
ing the modified GTN model coupled with a phenomenological damage evolution taking
into account the effect of shear on the damage evolution (Nahshon and Hutchinson, 2008;
Xue, 2008), the underlying micro-mechanical basis is not well established since the failure
process is no longer tied to an isotropic damage measure such as the void volume fraction.
To address this issue, micro-mechanical-based onset conditions of void coalescence under
combined tension and shear were proposed (Tekoğlu et al., 2012; Torki et al., 2015; Ker-
alavarma and Chockalingam, 2016; Torki et al., 2017; Torki, 2019). Although these models
represent better the physics of coalescence, their use in large scale simulations is still limited.
On the one hand, they rely on complex evolution laws for the void characteristics such as
void shape, relative void spacing, etc., so that the use of the GTN yield surface during the
pre-coalescence stage is not appropriate. On the other hand, these complex models cannot
easily be transformed into a yield surface representation. Recently, Reddi et al. (2019) pro-
vided an efficient way to derive a yield condition from the onset condition of void coalescence
following the work of Keralavarma and Chockalingam (2016) by defining the orientation of
the coalescence band as the combination of orientations of the principal stresses, leading
to a multiple-yield surface plasticity model governing the coalescence process. This model
considers the isotropic porosity to pilot the material degradation under the assumption that
the void spacings in the transverse and axial directions are equal. However, this model pre-
dicts the onset of coalescence under pure shear at zero plastic strain because the coalescence
surface always falls inside the Gurson yield surface under this loading condition. In addition,
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this model exhibits corners on the corresponding yield surface, leading to some difficulties
from a computational point of view.

The present work focuses on building a constitutive model relying as much as possible
on micromechanics grounds while making some empirical simplifications in the treatment of
void growth and void coalescence in order to maintain an acceptable computational cost.

The first originality of the present approach is to consider the void growth, internal neck-
ing coalescence, and shear driven coalescence mechanisms in a combined form. Each void
expansion solution (void growth, internal necking coalescence, and shear driven coalescence)
is governed by its corresponding plastic problem. The competition between different void
expansion solutions is obtained by defining a combined yield surface, leading to a multi-
surface approach. The void growth phase is governed by the Nahshon-Hutchinson version
of the GTN yield surface (denoted by ΦG = 0) motivated by the good trade between a lim-
ited number of material parameters and predictive capabilities. During the void coalescence
phase, the competition between void necking and void shearing mechanisms is considered.
First, the internal necking mechanism is a heuristic extension (denoted by ΦT = 0) of the
Thomason model and yield surface proposed by Pardoen and Hutchinson (2000). Since this
mechanism is known to be governed by the maximum principal stress (MPS), the latter is
then used as the controlling stress term in the Thomason yield surface. Next, under the as-
sumption that the void shearing mechanism is governed by the maximum shear stress (MSS),
a corresponding yield surface (denoted by ΦS = 0) is derived. As both maximum principal
stress and maximum shear stress are two Lode-dependent quantities, the effect of the Lode
parameter on the coalescence response is directly accounted for. The GTN, Thomason, and
shear yield surfaces are recasted under a combined form, i.e. Φe = max (ΦG,ΦT,ΦS) = 0,
to govern the failure process. Moreover, a special treatment based on an approximation of
the infinite norm is developed to avoid the corners of this combined form.

The second important element of the present approach is to work within a fully nonlocal
setting. Most ductile failure models are formulated in the context of the local action prin-
ciple, which implies that the damage indicator at one material point is estimated from the
local variables at that point. When dealing with problems involving material strain soften-
ing, ellipticity is lost at the softening onset, resulting in strain localization in a band whose
thickness depends on the mesh size. Consequently, the boundary value problem formulated
in a standard local continuum becomes ill-posed and the finite element resolution becomes
meaningless (De Borst et al., 1993). A simple remedy in engineering applications is to con-
sider the size of the finite element mesh as an additional material parameter (Xue et al.,
2010; Achouri et al., 2013). However, the choice of suitable finite element meshes is not an
easy task because the material softening propagates at the level of the integration points
and the localization band orientation depends on the element type and element direction.
Moreover, the model reduction due to the symmetry of the boundary value problem cannot
be exploited (Seidenfuss et al., 2011).

An extensive effort has been carried out to resolve the ill-posedness of the boundary
value problem at the constitutive level by nonlocal formulations (Jirásek, 1998; Peerlings
et al., 2001; Bažant and Jirásek, 2002) in which intrinsic lengths are incorporated into the
constitutive relations allowing interactions between neighboring material points. This is

4



achieved by assuming the dependence of the damage indicator on one or multiple nonlocal
variables, which are estimated by volume averaging over a characteristic volume of their
local counterparts. The dimensions of the characteristic volume then represent the intrinsic
nonlocal lengths. Nonlocal extensions of the GTN model may be divided into three different
categories: (i) integral type, see e.g. the works by Leblond et al. (1994); Tvergaard and
Needleman (1995); Enakoutsa et al. (2007); Andrade et al. (2014), (ii) explicit gradient type,
see e.g. the models by Chen and Yuan (2002); Zhang et al. (2018), and (iii) implicit gradient
type, see e.g. the developments by Ramaswamy and Aravas (1998); Reusch et al. (2003b,a);
H̊akansson et al. (2006); Reusch et al. (2008); Linse et al. (2012); Hütter et al. (2013); Hütter
et al. (2014); Zybell et al. (2014). The integral and implicit gradient types are found to be
largely equivalent and referred to being strongly nonlocal while explicit gradient type can be
considered as being weakly nonlocal (Peerlings et al., 2001). Besides, the explicit gradient
type cannot be considered in the standard finite element implementation as it requires higher
continuity (at least C1) of the nonlocal field (De Borst and Mühlhaus, 1992). Additionally,
the ill-posed regularization can be achieved by coupling the elastoplastic models with the
phase-field formulations, see e.g. the works of Ambati et al. (2016); Miehe et al. (2016);
Aldakheel et al. (2018), to capture the highly localized failure stage as a result of coalescence
of the voids. However, its underlying description remains phenomenological, in which some
limitations have been previously pointed out. The implicit gradient type is employed in this
work since it can be more easily integrated into a standard finite element implementation
in comparison with the integral type (Peerlings et al., 1996). In the implicit gradient type,
either the porosity (Ramaswamy and Aravas, 1998; H̊akansson et al., 2006), the effective
porosity (considered in the GTN model after applying the void expansion acceleration)
(Reusch et al., 2003b,a, 2008), or the volumetric equivalent plastic strain (Linse et al., 2012;
Hütter et al., 2013; Hütter et al., 2014; Zybell et al., 2014) is generally chosen as a nonlocal
variable.

The difference between the nonlocal GTN model based on the porosity and the one
based on the effective porosity is that the effective porosity is estimated from the nonlocal
porosity in the first case while in the second case the effective porosity is itself a nonlocal
variable estimated from its local counterpart. As shown by Jirásek and Rolshoven (2003),
the nonlocal formulation based on the effective porosity results in an important expansion
of the plastic zone with the transmitted stress stabilizing at a relatively high residual level,
while the formulation based on the porosity provides more reasonable results. However, a
constant length considered in a nonlocal formulation based on the damage indicator (the
effective porosity in case of the GTN model) can lead to nonphysical results during the final
failure process as pointed out by Jirásek (1998). Indeed if the nonlocal variable is chosen as
the damage indicator, its local and nonlocal values must coincide at the last failure stage
(Geers et al., 2000). This implies that the nonlocal length must vanish at final failure,
requiring to consider its decrease with damage evolution (Poh and Sun, 2017).

Although the models considering the volumetric equivalent plastic strain as the nonlocal
variable do not suffer from these pathologies, they fail to recover the solution uniqueness in
all configurations. Indeed, the void evolution predicted by the GTN model is governed by
three different sources: plastic incompressibility, nucleation, and shear deformation, which
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are respectively controlled by the volumetric equivalent plastic strain, matrix equivalent
plastic strain, and the deviatoric equivalent plastic strain (Nahshon and Hutchinson, 2008).
Note that the volumetric and deviatoric equivalent plastic strains are respectively defined
from the first and second invariants of the plastic deformation tensor. Consequently, if an
implicit gradient nonlocal model is based on only one of these three internal variables, the
mesh-dependency might not be resolved if the void evolution is mainly controlled by one of
the two other mechanisms. Moreover, the damage indicator in the coalescence phase is the
void ligament ratio whose evolution is controlled not only by the porosity but also by the
plastic dissipation (Besson, 2009). As a result, the nonlocal plastic deformation needs to be
considered in order to provide an efficient regularization of the internal necking and shearing
coalescence models. Therefore a nonlocal formulation must incorporate multiple sources as
proposed in the context of viscoelastic-viscoplastic-damage law for polymer materials by
Nguyen et al. (2016). For this purpose, the present approach is based on an implicit nonlocal
model with multiple nonlocal variables (the volumetric equivalent plastic strain, the matrix
equivalent plastic strain, and the deviatoric equivalent plastic strain) in order to achieve
a full regularization of the multi-surface model. The complete approach constitutes a new
step towards the development of ductile fracture frameworks relying on micromechanics and
on a rigorous nonlocal treatment.

The paper is organized as follows. The governing equations of a boundary value problem
with multiple nonlocal variables are first presented in Section 2 in a finite strain setting. In
Section 3, the constitutive laws are developed for a general porous medium. The numerical
fully-implicit integration scheme is provided. Next, this general framework is particularized
to the multi-surface model in Section 4. In Section 5, we show that the proposed multi-
surface model can capture the effect of the stress triaxiality and of the Lode parameter
under proportional loading conditions. Comparisons with unit cell simulations conducted
under different triaxiality and Lode parameter states are also provided. Finally, the modeling
framework is applied in Section 6 in order to demonstrate its ability to predict ductile failure
in elastoplastic solids subjected to different stress states.

2. Thermodynamically consistent nonlocal framework

The loss of solution uniqueness in problems involving material softening can be efficiently
addressed with the implicit gradient enhanced nonlocal approach pioneered by Peerlings
et al. (1996). In this section, the governing equations derive from a thermodynamically
consistent framework.

2.1. Elastoplastic kinematics

Let B0 be a body with boundary ∂B0. At time t > 0, the deformed configuration B is
characterized by a two-point mapping x = x (X, t) where x ∈ B and X ∈ B0. This mapping
determines the deformation gradient

F = x⊗∇0 = I + u⊗∇0 , (1)
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where ∇0 is the spatial gradient operator with respect to the reference configuration B0 and
where u = x−X denotes the displacement vector. The Jacobian satisfies J = det F > 0.

Following the standard multiplicative decomposition considered in elastoplastic materials
(Moran et al., 1990), the deformation gradient F is decomposed as

F = Fe · Fp , (2)

where Fe and Fp represent, respectively, the elastic and plastic parts. One defines

C = FT · F and Ce = FeT · Fe , (3)

as the right Cauchy strain tensor and its elastic counterpart, respectively.
From the decomposition of the deformation gradient following Eq. (2), the plastic spatial

gradient of velocity is defined by

Lp = Ḟp · Fp−1 . (4)

The tensor Lp can be decomposed into its symmetric part Dp, so-called the plastic strain
rate tensor, and its anti-symmetric part Wp, so-called the spin tensor, as Lp = Dp + Wp

with

Dp =
1

2

(
Lp + LpT

)
and Wp =

1

2

(
Lp − LpT

)
. (5)

By assuming an irrotational plastic flow1, Wp = 0, one has

Lp = Dp , (6)

from which the evolution of the plastic deformation can be determined by

Ḟp = Dp · Fp , (7)

with Dp specified from the plastic flow rule.

2.2. Governing equations

In this section, the generalized micromorphic framework suggested by Forest (2009) is
adopted. At each material point, besides the deformation gradient F as the conventional
kinematic variable, N nonlocal mechanisms are considered with N nonlocal variables Z̄k
with k = 1, . . . , N . The local generalized internal mechanical power is given by

P = P : Ḟ +
∑
k

(
σ̄k

˙̄Zk + M̄k ·∇0
˙̄Zk

)
, (8)

1For isotropic elastoplastic materials, when using the decomposition of the deformation gradient following
Eq. (2), it is widely assumed (Gurtin and Anand, 2005; Anand et al., 2012), without loss of generality, that
the plastic flow is irrotational –i.e. the plastic spin Wp vanishes, since this simplifies the developments.
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where P denotes the first Piola-Kirchhoff stress, and σ̄k and M̄k denote respectively the
nonlocal source and the nonlocal flux of the nonlocal variable Z̄k. The stress measures
P, σ̄k, and M̄k are energetically conjugate to the kinematic variables F, Z̄k, and ∇0Z̄k,
respectively.

Over an arbitrary control volume V0 with boundary ∂V0 in the reference configuration
B0, the total internal power within this volume is given by

Wint =

∫
V0

P dV0 . (9)

Without considering body force, the external power is expressed as

Wext =

∫
∂V0

(
T · u̇ +

∑
k

ζ̄k
˙̄Zk

)
dA0 , (10)

where T is the traction vector and ζ̄k is a scalar flux associated to the nonlocal variable Z̄k.
Applying the Gauss’s theorem on Eq. (9) and using the equality W int = W ext, which is sat-
isfied for an arbitrary control volume V0, lead to the equilibrium equation of the mechanical
field and the ones of the nonlocal fields as

P ·∇0 = 0 , and (11)

σ̄k − M̄k ·∇0 = 0 with k = 1 . . . N , (12)

and the traction vector and nonlocal scalar fluxes can be estimated from their stress measures
by

T = P ·N , and (13)

ζ̄k = M̄k ·N with k = 1 . . . N , (14)

where N is the unit outward normal in the reference configuration.
The set of Eqs. (11, 12) defines the strong form of the boundary value problem. In order

to complete the problem statement, on the one hand, the boundary conditions are applied
on the boundary ∂B0. For the displacement field u, ∂B0 is divided into two non-overlapping
parts: a Neumann part ∂NB0 with prescribed traction T̄ and a Dirichlet part ∂DB0 with
prescribed displacement ū as {

T = T̄ on ∂NB0 , and

u = ū on ∂DB0 .
(15)

For the nonlocal fields Z̄k with k = 1, . . . , N , it is assumed that no nonlocal fluxes stem
from the external boundary ∂B0 (Peerlings et al., 1996), i.e. ζ̄k = 0 with k = 1, . . . , N on
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∂B0. As a result, Eq. (14) leads to

M̄k ·N = 0 on ∂B0 with k = 1, . . . , N . (16)

On the other hand, the required constitutive relationships connecting the stress measures
P, σ̄k, and M̄k to the kinematic variables F, Z̄k, and ∇0Z̄k are derived from the second law
of thermodynamics in the next section.

2.3. Constitutive models

Under isothermal condition, the Helmholtz free energy ψ is assumed to depend on the
elastic logarithmic strain measure Ee = ln

√
Ce (characterizing the elastic deformation state)

and the nonlocal variables Z̄k with k = 1, . . . , N as well as their gradients ∇0Z̄k by the
following relationship

ψ = ψe (Ee) +
∑
k

ψnlk
(
Z̄k,∇0Z̄k

)
, (17)

where ψe is the reversible elastic part and the remaining term consists of the nonlocal parts
driven by the nonlocal variables.

The reversible part ψe depends on the elastic deformation measure only, which follows
the usual assumption in porous media that the porosity does not significantly affect the
elastic behavior as considered in numerous studies (Benzerga et al., 2016). The porosity
and other characteristics of the voids are taken into account in the yield condition: during
void expansion, the admissible region bounded by the yield surface in the stress space first
extends with the diffused plastic deformation and then shrinks with material softening.
The shrinkage of the yield surface corresponds to a decrease in the load carrying capacity
(Engelen et al., 2003). The ultimate failure occurs when the yield surface shrinks to a point.

The nonlocal part of the nonlocal mechanism k takes the following form (Peerlings et al.,
2004)

ψnlk = hk

[(
Zk − Z̄k

)2

2
+

∇0Z̄k ·Ck ·∇0Z̄k
2

]
, (18)

where Zk is the local counterpart of the nonlocal variable Z̄k, hk is the coupling modulus,
and Ck is the second order nonlocal length tensor associated with the nonlocal mechanism k.
In this work, an isotropic nonlocal interaction is considered, so that Ck takes the following
form

Ck = l2kI , (19)

where lk is the nonlocal length associated with the nonlocal mechanism k, and I is the second
order identity tensor. In a general case, anisotropic nonlocal interaction can be obtained by
introducing an anisotropic second order tensor as shown by Wu et al. (2013). Moreover, this
work assumes that the material softening is driven by the irreversible process, therefore the
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local variables considered in Eq. (18) will be defined as functions of the internal variables
related to the plastic deformation.

The Clausius-Duhem inequality requires the dissipation Ḋ to be non-negative. In the
isothermal cases, it reads

Ḋ = P − ρ0ψ̇ ≥ 0 . (20)

Using Eqs. (8, 17, 18), the condition Eq. (20) can be rewritten as

Ḋ =

[
P :

(
Ḟe · Fp

)
− ρ0

∂ψe

∂Ee
: Ėe

]
+
∑
k

[
σ̄k − ρ0hk

(
Z̄k − Zk

)] ˙̄Zk (21)

+
∑
k

[(
M̄k − ρ0hkCk ·∇0Z̄k

)
·∇0

˙̄Zk

]
+

[
P :

(
Fe · Ḟp

)
−
∑
k

ρ0hk
(
Zk − Z̄k

)
Żk

]
≥ 0 .

The condition (21) holds for all processes, leading to the following constitutive relationships

P = Fe−T · ρ0
∂ψe

∂Ee
· Fp−T , (22)

σ̄k = ρ0hk
(
Z̄k − Zk

)
with k = 1, . . . , N , and (23)

M̄k = ρ0hkCk ·∇0Z̄k with k = 1, . . . , N . (24)

As a result, the condition (20) reduces to

Ḋ = P :
(
Fe · Ḟp

)
−
∑
k

ρ0hk
(
Zk − Z̄k

)
Żk ≥ 0 . (25)

Equation (22) can be rewritten as

P = Fe−T · τ · Fp−T , (26)

where τ is the stress measure energetically conjugate to Ee with

τ = ρ0
∂ψe

∂Ee
. (27)

Using Eq. (26), the Kirchhoff stress κ is given by

κ = P · FT = Fe−T · τ · FeT . (28)

The polar decomposition of the elastic deformation gradient tensor reads Fe = Re ·Ue, where
the symmetric part Ue =

√
Ce is the right stretch tensor and Re is the orthogonal rotation

tensor satisfying ReT ·Re = I. Since τ is a tensorial function of Ue (as Ee = ln
√

Ce = ln Ue)
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and considering an isotropic elastic potential in Eq. (27), one has τ ·Ue = Ue · τ , and Eq.
(28) can be rewritten as

κ = Re · τ ·ReT . (29)

From the last equation, τ is interpreted as the Kirchhoff stress κ represented in the elastic
corotational space. The Cauchy stress tensor Σ and its corotational counterpart σ are
respectively estimated by

Σ =
κ

J
and σ =

τ

J
. (30)

Using Eqs. (23, 24), Eq. (12) can be rewritten as

hk
[
Z̄k − Zk −∇0 ·

(
Ck ·∇0Z̄k

)]
= 0 , with k = 1, . . . , N . (31)

One can consider arbitrary non-zero values of hk with k = 1, . . . , N . In this case, the
coupling modulus hk does not affect the relationship described by Eq. (31), leading to

Z̄k − Zk −∇0 ·
(
Ck ·∇0Z̄k

)
= 0 , with k = 1, . . . , N . (32)

The boundary conditions of the nonlocal variables following Eq. (16) are written as(
Ck ·∇0Z̄k

)
·N = 0 on ∂B0 with k = 1, . . . , N . (33)

If an isotropic nonlocal interaction is considered, i.e. Ck = l2kI with k = 1, . . . , N , the usual
natural boundary conditions for nonlocal variables (Peerlings et al., 1996) are recovered

∇0Z̄k ·N = 0 on ∂B0 with k = 1, . . . , N . (34)

In the following, one can define the nonlocal vector Z̄ and its local counterpart Z respec-
tively as Z =

[
Z1 Z2 . . . ZN

]T
, and

Z̄ =
[
Z̄1 Z̄2 . . . Z̄N

]T
.

(35)

Following the assumptions that the local and nonlocal variables remain finite, and that
hk with k = 1, . . . , N are small enough, the second term in Eq. (25) driven by the nonlocal
variables is negligible in comparison with the plastic dissipation given by the first term, and
Eq. (25) reduces to

Ḋ = P :
(
Fe · Ḟp

)
≥ 0 . (36)

Using Eq. (26), one has the equality P :
(
Fe · Ḟp

)
= τ : Dp = Jσ : Dp in which Dp is the

11



plastic strain rate tensor given by Eq. (5). As a result, Eq. (36) becomes

Ḋ = Jσ : Dp ≥ 0 . (37)

The dissipation inequality can either be a priori fulfilled with suitable evolution laws of the
internal variables (Peerlings et al., 2004; Forest, 2009) or can be directly accounted for in
the yield criterion (Ling et al., 2018). In this work, because of the convexity of the yield
surface, which is used to define the plastic flow, the condition σ : Dp ≥ 0 is always satisfied.
Consequently, the dissipation inequality (37) is always satisfied. Moreover, the dissipation
inequality (37) is also constrained by the balance of the plastic dissipation given by Eq. (46)
in the next Section.

3. General porous elastoplastic model

Although the behavior of the neat matrix obeys a purely J2 plasticity model, the behav-
ior of the porous medium made from this matrix material exhibits a complex plastic flow
behavior which generally depends on the stress invariants I1, J2 and J3. In this section, a
unified multi-mechanism nonlocal porous plasticity model is presented including the general
yield surface, associative flow rule, and evolution laws for the internal variables, as well as
its numerical implementation. A rate independent, isotropic elastic, and isothermal behav-
ior is assumed. Additionally, the inelastic deformation does not affect the elastic material
response.

The elastic behavior is governed by the reversible free energy part ρ0ψ
e considered in

Eq. (17), written under the following form

ρ0ψ
e (Ee) =

K

2
[tr (Ee)]2 +Gdev (Ee) : dev (Ee) , (38)

where tr (A) and dev (A), respectively, represent the trace and the deviatoric parts of an
arbitrary second order tensor A and K and G are the bulk and shear modulii, respectively.
The corotational Kirchhoff stress τ is then estimated from the hyperelastic potential (38)
using Eq. (27) as

τ = ρ0
∂ψe

∂Ee
= C : Ee , (39)

where C = KI⊗ I + 2GIdev in which Idev is the deviatoric part of the fourth order identity
tensor. The first Piola-Kirchhoff stress P is estimated using Eq. (26) based on Eq. (39).

The plastic behavior of the porous medium depends on the geometry and distribution
of voids, which are characterized by several effective parameters. In the current work, a
representative cylindrical unit cell includes a void at its center, see Fig. 1(a). The geometry
of such a unit cell is completely determined by several dimensionless variables: the porosity
f , the void aspect ratio W , the void ligament ratio χ, the void spacing ratio λ, and the z−
main axis (with unit vector ez) of the void as shown in Fig. 1. Moreover, the actual shape
of the void, which might not be preserved during loading, is characterized by a shape factor,
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denoted by γ, with γ = 1
2

for a spheroid and γ = 1 for a cone (Benzerga, 2002), see Fig.
1(b). This assumes that the initial distribution of voids can be approximated by an effective
periodic distribution with initial values χ0, λ0, and effective initial shape W0, γ0. These void
characteristics are related by the following relationship (Benzerga, 2002)

f =
Vvoid

Vvoid + Vsolid
=
χ3W

3γλ
. (40)

The last equation can be rewritten as

f =
f cone

γ
, (41)

where f cone is the porosity of a unit cell in which a conical void with the same χ and W
is embedded. From Eq. (41), the parameter γ indicates to what extent the current shape
departs from the ideal conical one.

  

r

z

χ L

L

λ
L

W
χ
L

  

(a) (b)

Figure 1: Cylindrical unit cell including a void at its center: (a) geometrical parameters (the void aspect
ratio W , void ligament ratio χ, and void spacing ratio λ) and (b) different void shapes characterized by the
void shape factor γ.

When the failure mode is dominated by void growth, the porosity f is a damage indicator,
but when the failure mode is dominated by internal necking or shear-type coalescence, the
ligament ratio χ becomes the controlling damage indicator instead of the porosity. In general,
a set of parameters Y is used to describe the void characteristics, including the porosity and
the parameters related to the shape of voids as well as its main axis ez. This vector is here
given by

Y =
[
f χ W λ γ ez

]T
, (42)

but a more general description can be considered. Voids are assumed to be present from the

beginning with initial values Y0 =
[
f 0 χ0 W0 λ0 γ0 Ez

]T
.
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In a general form, the porous plasticity model is summarized as follows:

Φnl = Φnl (σ;σY,Y) , (43)

σY = σ0
Y +R (εm) , (44)

Dp = µ̇Np (σ;σY,Y) , (45)

σ : Dp = (1− f)σYε̇m , (46)

Ẏ = Ẏ
(
Y, Z̄,σ

)
, and (47)

µ̇ ≥ 0 ,Φnl ≤ 0 , µ̇Φnl = 0 , (48)

where Φnl is the yield function; σY is the mean yield stress of the matrix; σ0
Y is the initial yield

stress; R (εm) is the strain-hardening contribution; εm is the mean equivalent plastic strain of
the matrix; µ is the plastic multiplier; and Np is the plastic flow normal. The yield function
(43) is expressed in terms of the corotational Cauchy stress tensor σ. Moreover, the effects
of the porosity and of the void shape in the yield condition should be accounted for besides
strain-hardening. The use of the corotational Cauchy stress σ instead of the Cauchy stress
Σ is justified because the yield function is expressed in terms of the stress invariants which
are identical for σ and Σ, while the numerical implementation with the corotational Cauchy
stress tensor can be easily performed using Eqs. (30, 39). Eq. (44) represents the isotropic
hardening. Eq. (45) represents the plastic flow rule. This work considers an associative
plastic flow in which Np is directly derived from Φnl. Eq. (46) represents the balance of
the plastic dissipation in which the rate of apparent plastic work is equal to the rate of
plastic work in the matrix (Gurson, 1977; Tvergaard and Needleman, 1984; Needleman and
Tvergaard, 1984; H̊akansson et al., 2006). The term (1− f)σYε̇m represents an averaged
measure of the plastic dissipation rate over the matrix material within the representative
volume. The evolution of the plastic flow stress of the matrix σY is then evaluated by
postulating that it is a function of the equivalent accumulated plastic strain of the matrix
εm. Under a localized state such as during void coalescence, the use of Eq. (46) seems to
underestimate the flow stress in the localization region. Despite its approximate nature,
Eq. (46) was used in most studies (Benzerga et al., 2016) because it allows incorporating
the isotropic hardening effect as an additional equation governing the evolution of σY. Eq.
(47) describes the evolution laws for the void characteristics that depend not only on the
nonlocal variables Z̄ but also on the stress state. The loading-unloading is governed by the
consistency conditions (48). The explicit expressions of Φnl and of the evolution laws for Y
must be provided.

From the rate of the plastic tensor following the flow rule (45), one can define the
deviatoric and volumetric equivalent plastic strains respectively by

ε̇d =

√
2

3
dev (Dp) : dev (Dp) = µ̇

√
2

3
dev (Np) : dev (Np) , and (49)

ε̇v = tr (Dp) = µ̇tr (Np) . (50)

There is no restriction on the selection of the local variables Z used to define the nonlocal
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form and this selection does not affect the numerical implementation developed in the next
section. As stated in the introduction, this work focuses on the nonlocal enhancement of
the multi-surface model. An efficient regularization is required to impose the nonlocality to
the three different mechanisms respectively controlled by the volumetric equivalent plastic
strain, matrix equivalent plastic strain, and the deviatoric equivalent plastic strain. The
local variables and their nonlocal counterparts are chosen as

Z =
[
εv εm εd

]T
and Z̄ =

[
ε̄v ε̄m ε̄d

]T
. (51)

The fully implicit integration scheme of the porous plasticity model described by Eqs.
(43-48) is detailed in Appendix A. From the known kinematic inputs F, Z̄ and internal
variables, the unknown outputs P, Z, and their tangent operators ∂P

∂F
, ∂P
∂Z̄

, ∂Z
∂F

, and ∂Z
∂Z̄

have
to be evaluated for an iterative finite element procedure.

4. Multi-surface model

In this section, the general nonlocal framework described in Section 3 is particularized
into the multi-surface ductile damage model. The void growth solution corresponding to
a diffused mode of the plasticity around the voids is governed by the GTN model involv-
ing the correction proposed by Nahshon and Hutchinson (2008). The localization solution
corresponding to the void coalescence phase has two variants whether the internal necking
mechanism or shearing mechanism is activated. The internal necking mechanism follows an
heuristic extension of the Thomason condition with the use of the maximum principal stress
(MPS) as driving term, leading to the MPS-based Thomason model. The void shearing coa-
lescence mechanism is assumed to be governed by the maximum shear stress (MSS), leading
to the MSS-based model. Moreover, the following assumptions on the void evolution are
adopted in the present work:

• During the growth phase, voids are initially spherical (W0 = 1 and γ0 = 0.5) and do
not depart significantly from their initial shape (Besson, 2009). As a result, one can
consider Ẇ = 0, γ̇ = 0. This is a strong assumption as it is well known that the
voids shape changes, especially in the low stress triaxiality regime. Additionally, voids
can nucleate with a flat initial shape or an elongated prolate shape. The void shape
effects will be partly corrected through the fitting of the q2 parameter of the GTN
yield surface. Furthermore, in a variety of metallic alloys, nucleation occurs quite
late followed by early void coalescence. A very accurate treatment of the void growth
phase in these materials is thus less essential. Finally, regarding non spherical initial
shape, one can always define a corresponding effective spherical void. Once again,
these approximations are real but could be corrected with further elaboration of this
model following other works (Pardoen, 2006; Benzerga et al., 2016).

• During the coalescence phase, the void axes are attached to a coordinate system defined
by the principle stress directions. Additionally, the voids are supposed to maintain a
spheroidal shape. As a result, γ̇ = 0.
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Because of these assumptions, the GTN model can be used to model the void growth phase,
and the evolution of the void main axis ez does not need to be considered. The void
characteristics vector given by Eq. (42) reduces to

Y =
[
f χ W λ

]T
. (52)

Unlike f , which is an isotropic measure, the other void characteristics are determined with
respect to the direction of the coalescence plane, see Fig. 1.

4.1. Void growth phase: GTN model

4.1.1. Yield function

The GTN yield function (Tvergaard and Needleman, 1984; Needleman and Tvergaard,
1984) can be written under the canonical form2

Φnl = ΦG =
σ̂G

σY

− 1 , (53)

where σ̂G denotes the GTN effective stress, which is given by

σ̂G (σeq, p
′, σY, f) =

√
σ2

eq + 2σ2
Yfq1

[
cosh

(
3
2
q2

p′

σY

)
− 1
]

1− q1f
. (54)

In the last equation, σeq =
√

3
2
dev (σ) : dev (σ) is the von Mises equivalent stress related

to the J2 stress invariant by σeq =
√

3J2, p′ = tr(σ)
3

is the pressure related to the I1 stress
invariant by p′ = I1

3
, and q1 and q2 are two material parameters. These two parameters

q1 and q2 were introduced to account for voids interaction, matrix material hardening, and
void shape effects. When f = 0, a conventional J2−von Mises yield surface with isotropic
hardening is recovered. The other void-related parameters do not affect the void growth
response. With the use of the yield surface (53), the associative plastic normal reads

Np = Np
G = σY

∂ΦG

∂σ
=
∂σ̂G

∂σ
, (55)

where σY is introduce to generate a dimensionless tensor. The expression of Np
G is detailed

in Appendix F.

2In the literature, the usual form is expressed as ΦG =
σ2
eq

σ2
Y

+ 2fq1 cosh
(

3
2q2

p′

σY

)
− 1− q21f2.
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4.1.2. Evolution laws of the void characteristics: local version

The evolution of the porosity results from the growth of existing voids and the nucleation
of new voids, and can be related to the plastic deformation with the following equation

ḟ = (1− f) tr (Dp)︸ ︷︷ ︸
ḟgr

+An (εm) ε̇m︸ ︷︷ ︸
ḟnu

+ kωφηφωf
dev (σ) : Dp

σeq︸ ︷︷ ︸
ḟ sh

, (56)

where the first term ḟ gr (so-called growth term) is the usual term associated to the plastic in-
compressibility of the matrix (Tvergaard and Needleman, 1984; Needleman and Tvergaard,
1984); the second term ḟnu (so-called nucleation term) is the contribution of new voids
nucleated due to particle debonding or cracking under the assumption of a plastic strain
controlled nucleation (Chu and Needleman, 1980); and the third term ḟ sh (so-called shear
term) corresponds to an effective change of porosity due to void deformation and reorien-
tation occurring under low stress triaxiality and shear-dominated distortions (Nahshon and
Hutchinson, 2008). In the nucleation term, An is the nucleation intensity function, which can
be taken as a function of the matrix equivalent plastic strain εm (Chu and Needleman, 1980;
Besson et al., 2003). In the shear term, kω is a material constant (Nahshon and Hutchinson,
2008), φη = φη (η), where η = p′

σeq
is the stress triaxiality, and φω = φω (ω), where ω is

defined in terms of the second invariant σeq and of the third invariant J3 = det (dev (σ)) of
the deviatoric part of the stress tensor as

ω =
27J3

2σeq
3
. (57)

For a general loading case, one has−1 ≤ ω ≤ 1. In particular, ω2 = 1 for axisymmetric stress
states and ω = 0 for a combination of a pure shear stress with a hydrostatic contribution.
The introduction of kω in Eq. (56) in order to capture a softening effect under shear loading
is purely phenomenological so that f should be considered in this version of the GTN model
as a damage variable. As a matter of fact, this heuristic addition to the GTN model is a
simple way to artificially account for void distortion and rotation under shear. Following
Nahshon and Hutchinson (2008), φη is equal to 1, and φω is equal to 1− ω2. However, this
choice can strongly affect the void growth under high stress triaxiality. To overcome this
issue, Nielsen and Tvergaard (2010) proposed to consider the function φη depending on the
level of stress triaxiality. At very low stress triaxiality, φη is close to 1 while φη vanishes at
high stress triaxiality. In the present work, φη and φω respectively take the forms

φη = exp

[
−1

2

(
η

ηs

)2
]
, and φω = 1− ω2 , (58)

where ηs is an additional parameter. The shear term almost vanishes when η > 3ηs. The
use of Eq. (55) with the definition of the deviatoric and volumetric equivalent plastic strains
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following Eq. (49) leads to 3

dev (σ) : Dp

σeq

=
dev (σ)

σeq

: µ̇
∂σ̂G

∂σeq

3dev (σ)

2σeq

= µ̇
∂σ̂G

∂σeq

= ε̇d , (59)

from which, using Eq. (50), Eq. (56) can be rewritten as

ḟ = (1− f) ε̇v + An (εm) ε̇m + kωφηφωf ε̇d . (60)

The current void spacing ratio λ evolves from its initial value λ0 following the deformation
history. Its evolution is assumed to be controlled by ε̇d through the following relationship
(Benzerga, 2002; Benzerga and Leblond, 2010; Benzerga et al., 2016)

λ̇ = κλε̇d , (61)

where κ is a user parameter, so-called void spacing control factor. The value of κ depends on
the distribution of voids. Following Benzerga et al. (2016), κ = 1.5 for a periodic distribution
under tension, κ = 0 for a random distribution, and 0 ≤ κ ≤ 1.5 for a clustered distribution
of voids.

As explained at the beginning of this section, the simplified assumption of considering
spherical voids is adopted during the growth phase using the GTN model to capture the
underlying physics with a reduced number of parameters. As a result of the evolution laws
of the porosity and of the void spacing ratio following Eqs. (60, 61), the evolution of the
void ligament ratio χ is directly deduced from Eq. (40) as

χ =

(
3fλ

2

) 1
3

. (62)

Clearly, the characteristics of the spherical voids in the evolution laws (60, 61, 62) do not
correspond to the “true” values due to the rotation and distortion of real voids, but they
are seen as corrected measures which are considered to obtain an equivalent constitutive
behavior. Assuming χ̃, γ̃, λ̃, W̃ , and f̃ being the true values of the void characteristics, Eq.
(40) can be rewritten as

χ̃3 =
3γ̃λ̃f̃

W̃
. (63)

3Using the equality
∂σeq

∂σ = 3dev(σ)
2σeq

, one has dev (Dp) = µ̇ ∂σ̂G

∂σeq

3dev(σ)
2σeq

since σ̂G depends on p′ and σeq. As

a result, one has ε̇d =
√

2
3dev (Dp) : dev (Dp) = µ̇ ∂σ̂G

∂σeq
.
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Eqs. (62, 63) imply the following equivalence

χ̃ =

(
3γ̃λ̃f̃

W̃

) 1
3

⇔ χ =

(
3λf

2

) 1
3

, (64)

where χ, λ, and f are the “equivalent” void characteristics considered in the present model in
the context of the simplified growth assumption. The evolution laws of the void characteris-
tics following Eqs. (60, 61) are expected to capture the equivalence (64). Consequently, this
equivalence requires the following parameters to be evaluated: q1 and q2 (for the contribu-
tion of the volumetric plastic deformation), kω and ηs (for the contribution of the deviatoric
plastic deformation ), and κ (for the evolution of the void spacing ratio), e.g. either from
direct identification on experimental tests or from unit cell simulations as shown in Section
5.4. The void nucleation can be accounted for but the equivalence (64) is still assumed.
Although the parameter kω was introduced in the GTN model by Nahshon and Hutchinson
(2008) as an enhanced damage growth parameter in order to account for shear failure, kω is
seen here as a correcting factor of the void evolution during the growth phase introduced in
order to satisfy the equivalence (64). The failure under shear-dominated loading conditions
is captured using the shear driven coalescence model as detailed in Section 4.3.

In summary, the evolution laws for f , W , and λ in their local forms are given by
ḟ = (1− f) ε̇v + An (εm) ε̇m + kωφηφωf ε̇d ,

Ẇ = 0 , and

λ̇ = κλε̇d .

(65)

The void ligament ratio χ is estimated using Eq. (62).

4.1.3. Evolution laws of the void characteristics: nonlocal enhancement

As shown in Eq. (65), the expansion of the voids is governed by three different terms
which are driven by the volumetric equivalent plastic strain ε̇v, the deviatoric equivalent
plastic strain ε̇d, and the matrix equivalent plastic strain ε̇m. In order to avoid the loss
of solution uniqueness for any kind of failure mechanism, the dependency of the evolution
laws on the local variables εv, εd, and εm in Eq. (65) is then modified using their nonlocal
counterparts ε̄v, ε̄d, and ε̄m, leading to

ḟ = (1− f) ˙̄εv + An (ε̄m) ˙̄εm + kωφηφωf ˙̄εd ,

Ẇ = 0 , and

λ̇ = κλ ˙̄εd .

(66)

The evolution of χ follows Eq. (62).
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4.2. Void coalescence by internal necking: MPS-based Thomason model

4.2.1. Onset of internal necking

At the onset of void coalescence, plastic deformation starts localizing inside the ligament
between voids while the material outside of the ligament zone unloads elastically. This regime
of plastic flow involves velocity fields completely different than during the diffuse growth
stage and which are very different than the ones used to generate the Gurson resolution.
According to Thomason (Thomason, 1985a,b), based on an appropriate choice of the velocity
fields, the onset of coalescence occurs when the maximum axial stress σzz supported by the
top surface of the localization zone reaches a limit load defined by CTfσY, where σY is the
yield stress inside the localization zone and CTf is the limit-load constraint factor whose
value depends on the considered microstructure (see the recent contribution by Benzerga
and Leblond (2014) for a reassessment of the Thomason analysis). An empirical fit of
the numerical solution of the minimization problems by Thomason (1985a,b) leads to the
following condition of the onset of coalescence

σzz − σYCTf = 0 , (67)

where CTf is a function of the void ligament ratio χ and of the void aspect ratio W as

CTf (W,χ) =
(
1− χ2

) [
h

(
1− χ
Wχ

)2

+ g

√
1

χ

]
, (68)

where h and g are two constants. Although in the original model h = 0.1 and g = 1.2 are
identified, following Pardoen and Hutchinson (2000), the value of h should be calibrated as
a function of the strain hardening exponent of the matrix, and g = 1.24.

Although first derived for axisymmetric configurations, see Fig. 1, the Thomason condi-
tion (67) is herein heuristically extended for any stress state. Under an axisymmetric stress
state σzz > σrr, one has σzz = p′ + 2

3
σeq, from which Eq. (67) can be rewritten as

p′ +
2

3
σeq − σYCTf = 0 . (69)

Since Eq. (69) is expressed in terms of the stress invariants (p′ and σeq), Eq. (69) was
often adopted to detect the onset of coalescence as well as to govern the coalescence phase
in general loading conditions (Benzerga et al., 2002; Besson, 2009; Benzerga and Leblond,
2010; Pardoen and Hutchinson, 2000, 2003; Pardoen, 2006). However, rigorously speaking,
the extended form (69) of the condition (67) for general stress states is valid only under ax-
isymmetric loading conditions. The effect of the Lode parameter on the onset of coalescence
is not accounted for. In this work, a new extension of the condition (67) is proposed as

max eig (σ)− CTfσY = 0 , (70)

where max eig (σ) denotes the maximum principal stress of σ. We however note that this
extension does not intend to capture failure under a shear void coalescence mode; for such
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failure mechanisms a shear-driven yield function will be introduced in Section 4.3. Clearly
Eq. (70) reduces to Eq. (69) under axisymmetric loading conditions. In general loading
conditions, three eigenvalues σ1 ≥ σ2 ≥ σ3 of the stress tensor σ are given as a function of
the stress invariants as σ1

σ2

σ3

 = p′

1
1
1

+
2

3
σeq

 cos θ
cos
(

2π
3
− θ
)

cos
(

2π
3

+ θ
)
 , (71)

where θ ∈
[
0 π

3

]
is the Lode angle which is estimated from the second and the third invariants

of dev (σ) as

θ (σeq, J3) =
1

3
arccosω , (72)

with ω = ω (σeq, J3) given by Eq. (57). The Lode angle θ relates directly to the Lode
parameter L through the following relationship

L =
2σ2 − σ1 − σ3

σ1 − σ3

=
√

3 tan
(
θ − π

6

)
. (73)

Combining Eqs. (70, 71) leads to the following Lode-sensitive coalescence criterion

p′ +
2

3
σeq cos θ − σYCTf = 0 . (74)

Since the maximum principal stress σ1 = p′ + 2
3
σeq cos θ is a convex function of the stress

tensor σ, see Appendix G for proof, Eq. (74) is considered as the yield condition governing
the internal necking process.

4.2.2. MPS-based Thomason yield function

During the void coalescence phase, following the assumption that the plasticity inside
the void ligament remains in a limit load state (Benzerga et al., 2002), the condition (74) for
the onset of void coalescence can be used as a Lode and triaxiality sensitive yield condition
(so-called MPS-based Thomason yield surface) governing the coalescence process by internal
necking, leading to

Φnl = ΦT =
σ̂T

σY

− 1 , (75)

where σ̂T denotes the Thomason effective stress, which is given by

σ̂T =
1

CTf

(
2

3
σeq cos θ + |p′|

)
. (76)
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In the last equation, |p′| is considered in order to generate a symmetric equation under
negative pressure as proposed by Pardoen and Hutchinson (2003).

With the use of the Thomason effective stress following Eq. (76), the MPS-based Thoma-
son yield surface (75) has singularities at p′ = 0 (under pure shear), at σeq = 0 (under
hydrostatic pressure), and at θ = π

3
(at the stress state σ1 = σ2 > σ3). These corners are

rounded in order to produce a smooth normal vector all along the yield surface as detailed
in Appendix E. The associative plastic normal is given by

Np = Np
T = σY

∂ΦT

∂σ
=
∂σ̂T

∂σ
, (77)

where σY is introduced to obtain a dimensionless tensor. The expression of Np
T is given in

Appendix F.

4.2.3. Evolution laws of the void characteristics in the internal necking phase: local version

During the coalescence phase, the void expansion no longer follows Eq. (60). The
evolution laws for χ, W , and λ are deduced from the plastic incompressibility of the matrix
following the work of Benzerga (2002) as

χ̇ = 3
4
λ
W

(
3

2χ2 − 1
)
ε̇d ,

Ẇ = 9
4
λ
χ

(
1− 1

2χ2

)
ε̇d , and

λ̇ = κλε̇d .

(78)

The porosity f is directly estimated using Eq. (40). Note that the void ligament ratio χ
can be considered as the controlling damage indicator during void coalescence.

4.2.4. Evolution laws of the void characteristics in the internal necking phase: nonlocal
enhancement

As shown in Eq. (78), the evolution of χ is governed by the deviatoric equivalent plastic
strain ε̇d. Since the MPS-based Thomason model is used only after the onset of coalescence,
the nonlocal regulation of this model must follow the nonlocal regulation of the GTN model.
Using the nonlocal variables that have been selected in Eq. (51), a fully nonlocal formulation
is proposed as 

χ̇ = 3
4
λ
W

(
3

2χ2 − 1
)

˙̄εd ,

Ẇ = 9
4
λ
χ

(
1− 1

2χ2

)
˙̄εd , and

λ̇ = κλ ˙̄εd ,

(79)

while the porosity is still estimated using Eq. (40).
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4.3. Void coalescence under shear: MSS-based model

4.3.1. Onset of the shear driven coalescence failure

From the three eigenvalues of the stress tensor in Eq. (71), the maximum shear stress
(MSS) is given by

τmax =
σ1 − σ3

2
=
σeq√

3
sin
(
θ +

π

3

)
. (80)

Following the works of Torki et al. (2015, 2017), the onset of a shear driven coalescence
mode under pure shear is obtained by applying a simple rule of mixture between the yield
stress in the matrix and the void. As a result, this condition reads

τmax −
(
1− χ2

) σY√
3

= 0 , (81)

where σY√
3

represent the shear flow stress of the matrix and χ is the void ligament parameter.

Combining Eqs. (80, 81), the onset of shear driven void coalescence can be rewritten as

σeq sin
(
θ +

π

3

)
− CSfσY = 0 , (82)

where CSf denotes the shear load factor given by

CSf = ξ
(
1− χ2

)
. (83)

In the last equation, ξ is introduced in order to better capture the onset of failure in shear.
The original form (Torki et al., 2015, 2017) corresponds to ξ = 1. Since the maximum shear
stress τmax is a convex function of the stress tensor σ, see Appendix G for proof, Eq. (82)
is considered as the yield condition governing the shear driven coalescence process.

4.3.2. MSS-based yield function

The condition (82) allows defining the yield condition (so-called MSS-based yield surface)
governing the shear coalescence process as

Φnl = ΦS =
σ̂S

σY

− 1 , (84)

where σ̂S denotes the shear effective stress, which is given as

σ̂S =
σeq

CSf

(
sin θ

2
+

√
3 cos θ

2

)
. (85)

With the use of the shear effective stress in Eq. (85), the MSS-based yield condition
(84) has singularities at θ = 0 and θ = π

3
respectively corresponding to ω = 1 and ω = −1.

These corners are rounded in order to produce a smooth normal vector all along the yield
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surface as detailed in Appendix E. The associative plastic normal reads

Np = Np
S = σY

∂ΦS

∂σ
=
∂σ̂S

∂σ
, (86)

where σY is introduced to obtain a dimensionless equation. The expression of Np
S is detailed

in Appendix F.

4.3.3. Evolution laws of the void characteristics in the shear-driven coalescence phase: local
version

The evolution laws for void characteristics under shear loading are available in the litera-
ture, see e.g Torki and Benzerga (2018). However, the complex description of voids requires
many parameters with complex evolution laws. In the present work, phenomenological laws
of the void characteristics are proposed as{

χ̇ = Kχε̇d , and

Ẇ = 0 ,
(87)

where Kχ is the accelerated factor of the void ligament under the shear driven coalescence
mode. As the MSS-based yield surface is insensitive to pressure, one can assume ḟ = 0 and
the void spacing ratio λ can be computed using Eq. (40) by considering γ = 0.5. Since
only χ affects the material response during a shear driven coalescence deformation mode,
the evolution laws of W , λ, and γ must not be considered. More physical-based evolution
laws will be elaborated in future works.

4.3.4. Evolution laws of the void characteristics in the shear-driven coalescence phase: non-
local enhancement

Using the nonlocal variables that have been selected in Eq. (51), the nonlocal enhance-
ment of the evolution laws given in Eqs. (87) follows

ḟ = 0 ,

χ̇ = Kχ ˙̄εd , and

Ẇ = 0 .

(88)

The void spacing ratio λ is estimated using Eq. (40) by considering γ = 0.5.

4.4. Competition between the different plastic flow solutions

The competition between the three modes of porosity evolution by diffuse void growth,
internal necking coalescence, and shear driven void coalescence respectively governed by the
GTN, the MPS-based Thomason, and MSS-based yield functions is modeled by defining an
effective yield function Φe as

Φnl = Φe = max (ΦG,ΦT,ΦS) , (89)
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which is delimited by all three yield surfaces ΦG, ΦT, and ΦS defined by Eqs. (53, 75, 84).
Eq. (89) can be rewritten under the canonical form

Φe =
σ̂

σY

− 1 , (90)

where σ̂ denotes the effective stress, which is estimated from σ̂G, σ̂T, and σ̂S given by Eqs.
(54, 76, 85)4 as

σ̂ = max (σ̂G, σ̂T, σ̂S) . (91)

In general, the effective yield surface (90) in combination with Eq. (91) involves sin-
gularities at the intersections between ΦG, ΦT, and ΦS. These singularities require special
treatment as the associative plastic normal is discontinuous across them. In order to resolve
such singularities, a unified treatment has been proposed with a smooth transition between
growth and coalescence, see the works by Morin et al. (2016); Torki (2019). The present
work follows an efficient treatment based on the approximation of the infinite norm, in which
Eq. (91) is replaced by its smoothed version

σ̂ = (σ̂minf
G + σ̂minf

T + σ̂minf
S )

1
minf . (92)

In the last equation, minf is a user parameter whose value should be chosen mush larger
than 1 in order to obtain an approximated version (92) close to the original one (91). When
minf → +∞, the original form (91) is recovered. In this work, minf = 50 is used. The
yield surface (90) in combination with the effective stress in Eq. (92) does not exhibit any
singularities, therefore the general framework described in Section 3 can be directly applied
to integrate the constitutive model. With the use of the yield surface (92), the associative
plastic normal reads

Np = Np
e = σY

∂Φe

∂σ
=
∂σ̂

∂σ
, (93)

where σY is used to obtain a dimensionless tensor. Using Eq. (92), Eq. (93) is rewritten as

Np
e =

∂σ̂

∂σ̂G

Np
G +

∂σ̂

∂σ̂T

Np
T +

∂σ̂

∂σ̂S

Np
S , (94)

where

∂σ̂

∂σ̂G

=

(
σ̂G

σ̂

)minf−1

,
∂σ̂

∂σ̂T

=

(
σ̂T

σ̂

)minf−1

, and
∂σ̂

∂σ̂S

=

(
σ̂S

σ̂

)minf−1

. (95)

The competition between the different damage regimes is illustrated in Fig. 2. At the

4When using the smoothing procedure on the different effective stresses as described in Appendix E,
this set of equations is substituted by the set of Eqs. (54, E.3, E.5)
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Figure 2: Combination of the GTN, MPS-based Thomason, and MSS-based yield surfaces at a constant
Lode parameter: the plastic problem is governed (a) by only the GTN surface (b) by the GTN and the MPS-
based Thomason yield surfaces, (c) by all the three yield surfaces, and (d) by the MPS-based Thomason
and the MSS-based yield surfaces.
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beginning of the deformation, the porosity and void ligament ratio are relatively small, hence
the diffuse plasticity mode governed by the GTN yield surface is preferred, see Fig. 2(a).
Once the onset of (necking or shearing) coalescence is reached for a given loading path,
the transition from the void growth phase to the void coalescence phase occurs. Beyond the
onset of coalescence, the plastic solution is governed by the GTN yield surface coupled either
with one surface of the two coalescence modes, see Fig. 2(b) or with the two coalescence
modes, see Fig. 2(c). When the damage is large enough, the plastic solution is only governed
by the two coalescence yield surfaces until the zero stress state is reached, see Fig. 2(d).

Since the evolution from one plastic mode to another plastic mode has been smoothed
with the yield surface (92), the conditions (74, 82) should not be used to detect the onset of
coalescence. Therefore it is important to define a suitable criterion of the onset of coalescence
after which the evolution laws of void characteristics switch from the ones of the growth phase
following Eqs. (65, 66) to the ones of the internal necking phase following Eqs. (78, 79) or
the ones of the shear driven coalescence phase following Eqs. (87, 88) . In this work, the
onset of coalescence is detected as follows:

• onset of void necking coalescence:

ε̇m > 0 , and σ̂T > max (σ̂G, σ̂S) . (96)

• onset of void shear coalescence:

ε̇m > 0 , and σ̂S > max (σ̂G, σ̂T ) . (97)

Additionally the present treatment assumes that the void coalescence phase cannot switch
from one mode to another. Therefore, the evolution laws for the void characteristics during
coalescence follow the ones of the coalescence mode whose onset condition is first met in the
loading history.

The numerical implementation of the present multi-surface model is detailed in Appendix
I.

4.5. Summary of the constitutive parameters

The material parameters of the thermomechanical nonlocal ductile fracture model are
summarized in Tab. 1. These parameters can be divided into different categories5:

(i) Elastoplastic parameters (K, G, σ0
Y, R);

(ii) Initial parameters of void characteristics (f 0, χ0, λ0);

(iii) Porous-plasticity parameters (q1, q2, An, kω, ηs, κ, h, g, ξ, and Kχ);

(iv) Nonlocal parameters (lεv , lεd , and lεm).

5The regularization parameters used for smoothing the singularities of the yield surfaces are not men-
tioned here as they are chosen large enough to minimize their effect on the material response.

27



Table 1: Material parameters of the nonlocal multi-surface model

Parameter Unit (SI) Meaning
K Pa Bulk modulus (see Eq. (38))
G Pa Shear modulus (see Eq. (38))
σ0

Y Pa Initial yield stress (see Eq. (44))
R Pa Strain hardening stress (see Eq. (44))
f 0 - Initial porosity

χ0, λ0 - Initial characteristics of voids
q1, q2 - GTN coefficients (see Eq. (53))
An - Nucleation intensity function (see Eq. (65, 66)))
kω - Shear-controlled void growth factor (see Eqs. (65, 66))
ηs - η-limited shear-controlled void growth (see Eq. (58))
κ - Void spacing control factor (see Eq. (61))
h, g - CTf coefficients (see Eq. (68))
ξ - CSf coefficient (see Eq. (83))
Kχ - Ligament growth rate under shear (see Eq. (87))

lεv , lεd , lεm m Nonlocal lengths (see Eqs. (19, 32))

In general, the identification of a parameter of such a material model can be performed
either by direct experimental characterization (Pardoen, 2006), by inverse modeling based
on mechanical tests (Xue et al., 2010; Dunand and Mohr, 2011) depending on its physical
meaning, or by using, for some of them, finite element unit cell calculations.

5. Loading path dependence on the onset of coalescence

In this section, we show that the proposed multi-surface model can capture the variations
of failure scenarios under different loading conditions. To this end, the void growth phase
is considered under proportional loading conditions, i.e characterized by a constant stress
triaxiality η = p′

σeq
and a constant Lode parameter L, which directly relates to the Lode

angle θ, until reaching the onset of void coalescence.

5.1. Analytical void growth solution under proportional loading conditions

During the diffuse void growth phase, Eqs. (43, 45, 48) can be rewritten in the particular
case of the GTN yield surface (53) respectively as follows

X2 + 2q1f cosh (1.5q2ηX)− q2
1f

2 − 1 = 0 , (98)

ε̇v = φε̇d , and (99)

Xε̇d + ηXε̇v = (1− f)ε̇m , (100)

where X = σeq
σY

, and

φ (f,X) =
3q1q2f sinh (1.5q2ηX)

2X
. (101)
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In the absence of void nucleation, Eq. (65) can be rewritten as

ḟ = (1− f) ε̇v + kωφηφωf ε̇d . (102)

The evolution laws for the other void characteristics following Eqs. (61, 62) can be inte-
grated, leading to

λ = λ0 exp (κεd) and χ =

(
3fλ0

2

) 1
3

exp
(κεd

3

)
. (103)

The onset of the necking mode of coalescence is detected using Eq. (74) as

X

(
η +

2

3
cos θ

)
− CTf = 0 , (104)

where CTf is estimated by Eq. (68) using h = 0.1 and g = 1.24. The onset of the shear
mode of coalescence is verified following Eq. (82) as

X sin
(
θ +

π

3

)
− CSf = 0 , (105)

where CSf is estimated using Eq. (83). The last equation shows that the onset of shear coa-
lescence predicted by the multi-surface model is insensitive to the sign of the Lode parameter
contrarily to the onset of internal necking coalescence predicted by Eq. (104).

Under a constant stress triaxiality (η) and a constant Lode parameter (L), the void
growth phase dictated by Eqs. (98 - 103) can be solved until the onset of coalescence
defined by Eqs. (104, 105) is met in order to find the solutions of X, εv, εd, f , λ, and χ as a
function of the plastic dissipation driven by εm without the need of an explicit form of the
hardening law of the matrix described by Eq. (44). For this purpose, Eqs. (99, 100, 102)
can be rewritten as  ḟε̇v

ε̇d

 =
1− f

X (1 + ηφ)

(1− f)φ+ kωφηφωf
φ
1

 ε̇m . (106)

The last equation is solved using an explicit Euler scheme from the initial solution (f = f 0,
εv = 0, εd = 0, εm = 0, and X = X0), in which X0 is obtained by solving Eq. (98) with
f = f 0. From these solutions, the other void characteristics are known from using Eqs.
(103), and the value of X is found by solving the nonlinear equation (98) once f is known.
The onset of coalescence is detected by Eqs. (104, 105). In the following, the ductility
defined by the deviatoric equivalent plastic strain at the onset of coalescence (denoted by
εdc) predicted by the current multi-surface model is investigated under different constant
Lode parameters and under different constant stress triaxialities.
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5.2. Failure under pure shear

The parameter ξ considered in Eq. (83) plays an important role in the initiation of the
failure under shear loading. In order to better understand its contribution, a pure shear
condition (characterized by η = 0 and L = 0) is first studied. For this purpose, Eq. (102) is
easily integrated since φη = 1 when η = 0 and φω = 1 when L = 0, yielding

f = f 0 exp (kωεd) . (107)

The GTN yield surface (98) under a pure shear condition reduces to

X = 1− q1f = 1− q1f 0 exp (kωεd) . (108)

The energy balance (100) becomes

1− q1f

1− f
ε̇d = ε̇m . (109)

Shear coalescence is the preferred failure mode under pure shear loading and the onset
condition following Eq. (105) reads

X = CSf (χ) = ξ
{

1− χ2
0 exp

[
2

3
(κ+ kω) εds

]}
, (110)

where the function CSf (χ) is given by Eq. (83), χ0 =
(

3f0λ0
2

) 1
3 is the initial void spacing ratio,

and εds = εdc at (η = 0, and L = 0) denotes the deviatoric equivalent plastic deformation at
the onset of coalescence under pure shear loading. Combining Eqs. (108, 110) results into

ξ =
1− q1f 0 exp (kωεds)

1− χ2
0 exp

[
2
3

(κ+ kω) εds

] . (111)

The parameter εds has a physical meaning, i.e. the onset of failure under pure shear, which
could be identified from an experimental test or from unit cell computations, e.g the value
of εds was identified in the range of [0.8 1.2] in experiments of medium and high-strength
steels performed by Barsoum and Faleskog (2007). Once εds is known, Eq. (111) plays
as a constraint on the constitutive parameters and allows estimating ξ from εds and other
parameters.

5.3. Ductility under proportional loading conditions

In the absence of void nucleation, the evaluation of the void growth solution until the
onset of coalescence requires the following parameters: q1, q2, κ, f 0, λ0, kω, ηs and ξ. Initial
spherical voids are considered with λ0 = 1. In the following, without any other indications,
q1 = 1.5, q2 = 1, κ = 1, f 0 = 0.005, kω = 0, and ηs = 0.2 are used and the value of
ξ = 1.032 is chosen to obtain εds = 0 as a result of Eq. (111). At each given values of
stress triaxiality (η) and the Lode parameter (L), the ductility function εdc = εdc (η, L) is
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Figure 3: Internal necking coalescence: (a) failure surface and (b) extracted function of ductility depending
on the stress triaxiality for various constant values of the Lode parameter.

easily deduced using the procedure described in Section 5.1. This function allows defining
the failure surface in the (η, L)-space.

The failure surface predicted by the internal necking coalescence model alone is shown
in Fig. 3(a), from which the triaxiality dependence of the ductility for various constant
values of the Lode parameter is extracted and depicted in Fig. 3(b). The results not only
evidence the η-dependence, i.e. the ductility decreases with increasing stress triaxiality,
but also demonstrate the L-dependence: the ductility increases with the increase of the
Lode parameter from L = −1, corresponding to the triaxial extension state, to L = 1,
corresponding to the triaxial compression state, although the L-dependence is not as strong
as the η-dependence. As a result, the ductility is lower-bounded by the one predicted with
L = −1 and upper-bounded by the one predicted with L = 1. However, the internal necking
model alone cannot correctly predict the ductility under shear-dominated conditions, in
which the decrease of the ductility was experimentally observed6 (Bao and Wierzbicki, 2004;
Barsoum and Faleskog, 2007; Barsoum et al., 2012; Faleskog and Barsoum, 2013).

Figs. 4(a) and (b) show respectively the failure surface predicted by the shear driven
coalescence model alone and the triaxiality dependence of the ductility for various constant
values of the Lode parameter extracted from this failure surface. The insensitivity to the
sign of the Lode parameter is found as a result of using the maximum shear stress as the
driven mechanism. The ductility is lower-bounded by the one predicted with L = 0 and
upper-bounded by the one predicted with L = ±1. The ductility is equal to 0 at η = 0 and
L = 0 because εds = 0 was assumed. If ξ = 1 is employed, the model predicts zero ductility

6In the literature, depending on the materials, specimen geometries, boundary conditions, and mea-
surement techniques, different conclusions on the influence of the stress state on the failure strain can be
obtained. Under low stress triaxialities, a nonmonotonic dependence to the stress triaxiality (with a dip
when decreasing stress triaxiality) was found by Bao and Wierzbicki (2004); Barsoum and Faleskog (2007);
Barsoum et al. (2012); Faleskog and Barsoum (2013), while a monotonic dependence was found by Haltom
et al. (2013); Ghahremaninezhad and Ravi-Chandar (2013); Papasidero et al. (2014). The origin of this
difference is still an open question in the literature and goes beyond the scope of the present work.

31



-0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

d
c

L=-1

L=-0.5

L=-0.25

L=0

L=0.25

L=0.5

L=1

(a) (b)

Figure 4: Shear dominated coalescence: (a) failure surface and (b) extracted function of ductility depending
on the stress triaxiality for various constant values of the Lode parameter.

in a range of stress triaxiality, which is not physical and justifies the use of the parameter
ξ > 1. The obtained results in Figs. 4(a) and (b) show that the proposed shear driven
coalescence model is able to reproduce the trend of the variation of ductility under low stress
triaxialities with high η-dependence and high L-dependence as experimentally observed by
Bao and Wierzbicki (2004); Barsoum and Faleskog (2007); Barsoum et al. (2012); Faleskog
and Barsoum (2013). However, the shear driven coalescence model alone cannot correctly
predict the η-dependence of the ductility at high stress triaxialities.

The failure surface predicted by the multi-surface model is shown in Fig. 5(a). The
intersection between the failure surfaces predicted by the internal necking coalescence model
and by the shear driven coalescence model is also reported. Although the internal necking
coalescence model or the shear driven coalescence model alone cannot correctly predict
the ductility in the entire range of the stress triaxiality and of the Lode parameter, in
the multi-surface model, these two models compete, leading to the shear coalescence mode
dominating at low stress triaxialities while the necking coalescence is the driving failure
mode at high stress triaxialities. This trend agrees well with the experimental observations
by Bao and Wierzbicki (2004); Barsoum and Faleskog (2007); Barsoum et al. (2012); Faleskog
and Barsoum (2013). From the failure surface depicted in Fig. 5(a), one can extract the η-
dependence of the ductility for various constant values of the Lode parameter as shown in Fig.
5(b) and the L-dependence of the ductility for various constant values of the stress triaxiality
as demonstrated in Figs. 5(c) and (d) under polar plots. At low stress triaxialities (e.g
η < 0.5), the failure process is fully controlled by the shear coalescence model. At moderate
stress triaxialities (e.g 1 < η < 1.2), the competition is clearly observed, in which shear
coalescence dominates at low absolute values of the Lode parameter and necking coalescence
dominates at high absolute values of the Lode parameter. At high stress triaxialities (e.g
η > 2), only necking coalescence mode is activated.

The failure surface defines the admissible region, in which for each value of the stress
triaxiality η, the ductility is upper-bounded and lower-bounded as εdc,min (η) ≤ εdc (η, L) ≤
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Figure 5: Multi-surface model: (a) failure surface with the intersection between the one predicted by the
internal necking coalescence model alone and the one predicted by the shear driven coalescence model alone,
(b) extracted function of ductility depending on the stress triaxiality for various constant values of the Lode
parameter, (c) polar plot of the ductility predicted by the multi-surface model as a function of the Lode angle
under various constant low values of the stress triaxiality, and (d) polar plot at various constant high values
of the stress triaxiality. “TXE”, “TXC”, and “SHR” refer to “TriaXial Extension” (L = −1), “TriaXial
Compression” (L = 1), and “SHeaR” (L = 0), respectively.
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Figure 7: Dependence of the admissible region on: (a) q1, (b) q2, (c) f0, and (d) κ.

εdc,max (η) where {
εdc,min (η) = min (εdc (η, L) , L ∈ [−1 1]) , and

εdc,max (η) = max (εdc (η, L) , L ∈ [−1 1]) ,
(112)

are respectively the upper-bound and lower-bound of the ductility. The admissible region
is defined as the region delimited by these two bounds. In the case of internal necking
coalescence, one has εdc,min (η) = εdc (η,−1) and εdc,max (η) = εdc (η, 1). In case of the shear
driven coalescence, one has εdc,min (η) = εdc (η, 0) and εdc,max (η) = εdc (η,−1) = εdc (η, 1).
The admissible region predicted by the multi-surface model is presented in Fig. (6), in which
a more pronounced L-dependence of the ductility is observed at low stress triaxialities in
comparison with the one at high stress triaxialities.

The influence of the constitutive parameters on the ductility is investigated in Fig. 7
and Fig. 8 in terms of the admissible region. The influence of the GTN constants q1,
and q2 is noticeable mainly at moderate and high stress triaxialities and at high |L| in the
region with low stress triaxiality, see Figs. 7(a) and (b). Since κ and f 0 are the main
parameters governing the evolution of the void characteristics, they have a large effect on
the ductility, especially, at moderate and high stress triaxialities and at high |L|, see Figs.
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7(c) and (d). In the case of low stress triaxiality and low |L| (shear-dominated loading),
the dominant parameters are ξ (or εds), and kω together with ηs as demonstrated in Fig. 8.
When considering εds = 0, ξ is equal to 1.032 and independent to the value of kω as a result
of Eq. (111). In this case, the admissible region is almost insensitive to the value of kω, see
Fig. 8(a). However, the admissible region is very sensitive to the value of εds, from which ξ
can be estimated using Eq. (111), as demonstrated in Fig. 8(b). When considering εds > 0,
the shape of the lower-bound of the admissible region is governed by kω and ηs, see Figs.
8(c) and (d) with εds = 0.4, and with ξ estimated from kω, εds, and other parameters using
Eq. (111). From this sensitivity analysis, a suitable calibration plan can be developed to
identify the constitutive parameters in an efficient way.

5.4. Comparison with unit cell simulations

The ductility values predicted by the present model are compared to the finite element
unit cell simulations provided by Dunand and Mohr (2014). The unit cell contains an initial
spherical void at the center with an initial porosity f 0 = 7×10−3 and an initial void spacing
λ0 = 2. The unit cell simulations performed under stress triaxiality values η = 0.3 and
η = 0.5 are considered with different values of the Lode variable.

To ascertain the validity of the equivalence (64) used in the present model, we consider
q1 = 1.5, q2 = 1, and ηs = 1 while varying kω and κ in order to recover the ductility observed
by the unit cell simulations. Since the parameter εds has as physical meaning, which is the
strain at the onset of failure under pure shear, its value is fixed in this study: two values,
0.5 and 0.8, of εds are successively considered.

The failure strain obtained with the unit cell simulations given by Dunand and Mohr
(2014) is defined based on the integral of the plastic work over the whole unit cell. Therefore
the mean equivalent plastic strain of the matrix at the onset of coalescence (denoted by εmc)
predicted by the present model is considered as an equivalent quantity. The results in Figs.
9(a), (b), (c) and (d) show that the present model, although considering a simplified void
growth assumption, is able to capture the strain at the onset of failure predicted by the unit
cell simulations, except for states close to the triaxial compression (TXC).

However, under low stress triaxialities, the voids could become so prolate (Pardoen and
Hutchinson, 2000) that the void growth cannot be correctly captured by an “equivalent”
spherical voids as assumed in Eq. (64). An obvious but complex solution would be to
consider the extended void growth version proposed by Gologanu et al. (1994, 1993). An-
other solution is to consider the q2 parameter in the context of the simplified void growth
assumption allowing to artificially account for the effect of void shape.

6. Numerical applications

This section presents some representative numerical examples. Owing to the nonlocal
formulation, the finite element resolution is mesh-independent. Furthermore, the proposed
model has the capability to capture the slant failure mode in the plane strain specimens,
shear failure in “V-notched” plates under shearing, and the cup-cone failure scenario in the
axisymmetric smooth and notched bars.
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Figure 9: Mean equivalent plastic strain of the matrix at the onset of coalescence εmc predicted by the
present model as function of the stress state and material parameters: (a) εds = 0.5 and η = 0.3, (b)
εds = 0.5 and η = 0.5, (c) εds = 0.8 and η = 0.3, and (d) εds = 0.8 and η = 0.5. The results of the unit cell
simulations provided by Dunand and Mohr (2014) at η = 0.3 and η = 0.5 are also reported.
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Table 2: Material parameters used for numerical analyses

Elastoplastic parameters E = 210 GPa, ν = 0.3, σ0
Y = 420 MPa,

ε0 = 0.002, α = 0.15
Initial void characteristics f 0 = 5× 10−4, λ0 = 1, χ0 = 0.0909
Porosity related parameters q1 = 1.5, q2 = 1, An = 0, kω = 0, κ = 1,

h = 0.1, g = 1.24, ξ = 1.015, Kχ = 5
Nonlocal parameters lεv = lεd = lεm = l = 100 µm

The strain hardening of the matrix material obeys a power law in terms of the equivalent
plastic strain of the matrix

σY = σ0
Y

(
1 +

εm

ε0

)α
, (113)

where σ0
Y is the initial yield stress, ε0 is a reference strain, and α is the strain hardening

exponent. Unless otherwise stated, void growth by nucleation and by shear are deactivated
by setting An = 0 and kω = 0. The initial void spacing parameter λ0 = 1 is chosen
indicating an isotropic material. Eq. (62) allows estimating χ0 = (1.5f 0λ0)1/3 = 0.0909.
The value ξ = 1.015 is used, leading to εds = 0.95 as a result of Eq. (111). The assumption
lεv = lεd = lεm = l is adopted for simplicity. Unless otherwise stated, the material parameters
detailed in Tab. 2 are used.

When dealing with problems involving material softening, the load drops fast under
strain localization and the convergence of a resolution method based on a prescribed force
or displacement cannot be guaranteed, and totally fails if snap-back occurs. In order to
improve the convergence and to handle the snap-back loading path which possibly occurs,
the arc-length path following technique (Riks, 1979, 1992; Geers, 1999) is considered. The
numerical implementation of the monolithic nonlocal finite element resolution in the context
of an arc-length path following technique is briefly recalled in Appendix J.

6.1. Plane strain tension specimen

This section investigates the failure of a plane strain tension specimen. The geometry
and loading conditions are sketched in Fig. 10. The specimen dimensions are chosen as
L = 12.5 mm and e0 = 3 mm. A very small thickness reduction (0.5%) is introduced in
the central section to trigger the localization process. The mesh sensitivity is investigated
with four different meshes: (a) very coarse mesh consisting of 2040 elements, (b) coarse
mesh consisting of 3250 elements, (c) medium mesh consisting of 9120 elements, and (d)
fine mesh consisting of 17800 elements, see Figs. 11(a), (b), (c), and (d) respectively. In
all meshes, six-node triangular elements under-integrated by three Gauss points are used.
The entire specimen is modeled in order to capture the slant failure mode that destroys the
symmetry of the problem.

Fig. 12(a) plots the force-thickness reduction curves in terms of the nominal axial stress
(F/e0) versus the relative thickness reduction (−∆e/e0). The results are mesh insensitive. In
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Figure 10: Plane strain tension specimen - geometry and boundary conditions.

(a) (b) (c) (d)

Figure 11: Plane strain tension specimen - different finite element meshes in the central region of the
specimen for the mesh sensitivity analysis: (a) very coarse mesh, (b) coarse mesh, (c) medium mesh, and
(d) fine mesh.

0 0.1 0.2 0.3 0.4

- e/e
0

0

200

400

600

800

F
/e

0
 (

M
P

a
)

very coarse mesh

coarse mesh

medium mesh

fine mesh

(a)

0.101

0.545

0.99

0.101

0.545

0.99

0.101

0.545

0.99

0.101

0.545

0.99

(b) (c) (d) (e)

Figure 12: Plane strain tension specimen - mesh sensitivity: (a) force-thickness reduction curves and distri-
bution of the void ligament ratio χ at the last converged step with (b) the very coarse mesh, (c) the coarse
mesh, (d) the medium mesh, and (e) the fine mesh.
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Figure 13: Plane strain tension specimen - effect of the constitutive model. Several points are marked for
which the distributions of the active plasticity and of the active coalescence states are extracted.

this simulation, the Lode parameter is close to 0 and the stress triaxiality remains moderate.
As a result, the failure is driven by shear coalescence. Prior to the shear band formation, the
plastic flow first develops homogeneously, and then localizes inside a diffuse necking region.
As the void ligament ratio (denoted by χ) is the damage indicator in the coalescence-driven
failure mechanism, Figs. 12(b)-(e) show its distribution at the last converged step, which
corresponds to the last point in the force-thickness reduction curves depicted in Fig. 12(a).
Since material discontinuity is not considered, a critical value χ = 0.99 is chosen to represent
the ultimate failure state. The localization band thickness is insensitive to the mesh size
and follows a slanted path, which is consistent with the experimental observations (Besson
et al., 2003). The coarse mesh is used in the subsequent simulations.

6.1.1. Cooperation between localization and coalescence

As observed by Besson et al. (2003), the GTN model is able to capture the slant failure
mode when triggering a sufficiently high void growth rate, which can be generated either by
introducing a second population of voids through a large enough void nucleation contribution
or by using a large value of the q2 parameter of the GTN yield surface. In the present
model, the slant failure path emerges without the need of any artificial acceleration of
the void growth process. To demonstrate this capability, the influence of the constitutive
model is investigated by considering the GTN model only, the GTN model coupled with
internal necking coalescence, and the full model, in which the GTN model is coupled with
both internal necking and shearing coalescence mechanisms. The force-thickness reduction
curves are shown in Fig. 13. In the absence of void coalescence, the GTN model predicts
a very high ductility. When both void coalescence modes are considered, the shear driven
coalescence mode is preferred since it leads to a lower ductility than the one obtained when
only the internal necking coalescence mode is allowed. The interesting question addressed
is whether the shear banding process precedes or follows the onset of coalescence and how
they influence one another. The dominating failure mechanism is investigated by analyzing
the two following sets of material points:
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Figure 14: Plane strain tension specimen - GTN model only: the active plastic zone (APZ) at the different
loading stages 1-5 reported in Fig. 13.

• The active plastic zone (APZ) consisting of all material points in which plasticity is
active, i.e. ε̇m (x) > 0; and

• The active coalescence zone (ACZ) consisting of all material points in which one of
the coalescence yield surfaces is active, i.e. ΦS (x) = 0 or ΦT (x) = 0. Note that one
always has ΦS (x) < 0 if the shear driven coalescence mode is prohibited.

Figure 14 shows the active plastic zone in the case when only the GTN model is considered.
The shear banding process does not occur and the necking process proceeds down to a
point, see Fig. 14(e). The results with the GTN model combined with the internal necking
coalescence mode are presented in Fig. 15. A crack develops inside the necking region and
the failure process continues with a relatively smooth evolution of the necking. With the full
multi-surface model, a shear band is formed and the slant failure path is observed, see Fig.
16. In this case, the first coalescence event starts before the development of the shear band,
see Fig. 16(g). The shear band is thus triggered by the occurrence of a shear coalescence
event. The shear band develops and the failure process continues inside by propagation of a
slant crack through a repetition of shear coalescence events near the crack tip region. More
detailed analysis of these aspects of competition versus cooperation between localization and
coalescence dominated failure, see also the work by Tekoğlu et al. (2015), will be addressed
in a future investigation.

6.1.2. Sensitivity analysis

As demonstrated in Fig. 8(b), the parameter εds plays an important role in controlling
the onset of the shear driven coalescence under shear-dominated loading conditions. With
the known value of εds and other constitutive parameters, the value of ξ can be estimated
using Eq. (111). The case without considering the shear driven coalescence mode can
be achieved using a very large value of ξ. The effect of this parameter on the numerical
results is investigated in Fig. 17. The force-thickness reduction curves are plotted in Fig.
17(a) for different values of εds showing a negligible effect up to the onset of coalescence at
the center of the specimen since the pre-coalescence stage is only governed the GTN yield
surface. A larger value of ξ (same role as εds) leads to an earlier localization initialization
and alleviates the slant fracture mode, see Figs. 17(b)-(g). Once the localization process has
started, multiple localization bands nucleate at the center of the specimen at approximately
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Figure 15: Plane strain tension specimen - GTN with internal necking: the active plastic zone (APZ) and
active coalescence zone (ACZ) at the different loading stages 1-5 reported in Fig. 13.
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Figure 16: Plane strain tension specimen - multi-surface model: the active plastic zone (APZ) and active
coalescence zone (ACZ) at the different loading stages 1-5 reported in Fig. 13.
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Figure 17: Plane strain tension specimen - sensitivity to εds: (a) force-thickness reduction curves and
distribution of the void ligament ratio χ at the last converged step with (b) εds = 0 (corresponding to
ξ = 1.0076), (c) εds = 0.4 (corresponding to ξ = 1.0101), (d) εds = 0.95 (corresponding to ξ = 1.015), (e)
εds = 1.25 (corresponding to ξ = 1.0186), (f) εds = 1.5 (corresponding to ξ = 1.0222), and (g) without
possible shear coalescence (corresponding to ξ = +∞).
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Figure 18: Plane strain tension specimen - sensitivity to Kχ: (a) force-thickness reduction curves and
distribution of the void ligament ratio χ at the last converged step with (b) Kχ = 1, (c) Kχ = 3, (d)
Kχ = 5, and (e) Kχ = 10.

45o to the loading direction. The localization band can propagate following non-symmetric
or symmetric configurations. If the value of ξ is large enough, the localization band deviates
at the region close to the free surface, see Figs. 17(e) and (f). When ξ becomes very large,
the shear-driven coalescence mechanism cannot occur and the slant fracture mode cannot
be reproduced as shown in Fig. 17(g).

The effect of Kχ is also investigated in Figs. 18(a)-(e). Larger values of Kχ mean a
stronger void ligament growth rate, leading to a thinner localization band and a faster drop
in the softening parts of the force-thickness reduction curves. Moreover, a deviation of the
localization band appears when Kχ is sufficiently large, see Fig. 18(e).

The present multi-surface model can model size effect through the nonlocal length scale
l as a characteristic of a nonlocal framework. The force-thickness reduction curves are
reported in Fig. 19(a) for different values of the nonlocal length. The effect of the nonlocal
length on the behavior prior to the initiation of the localization band remains negligible but
is considerable during the localization stage. Figs. 19(b)-(d) show the distribution of the
void ligament ratio χ at the last converged step corresponding to the last point of the curves
in Fig. 19(a). When decreasing the nonlocal length, the load drops faster and the width of
the localization band becomes thinner, evidencing a less ductile behavior.

6.2. V-notched specimen under shear

This section investigates the failure of a V-notched specimen under shear loading. The
geometry and loading conditions are described in Fig. 20. The specimen dimensions are
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Figure 19: Plane strain specimen - size effect: (a) force-thickness reduction curves and distribution of the
void ligament ratio χ at the last converged step with (b) l = 50 µm, (c) l = 100 µm, and (d) l = 150 µm.

chosen as L = 4.5 mm, H = 1.50 mm, e0 = 1 mm, and the notch angle equal to 45o.
In this example, the Lode parameter is close to 0 and the stress triaxiality remains low.
Consequently, the failure is driven by shear coalescence.

6.2.1. Mesh sensitivity and choice of nonlocal variables

The mesh sensitivity is investigated by considering three different meshes: (a) a coarse
mesh consisting of 674 elements, (b) a medium mesh consisting of 2094 elements, and (c)
a fine mesh consisting of 6662 elements, see Figs. 21(a), (b), and (c) respectively. For all
meshes, six-node triangular elements under-integrated by three Gauss points are used.

Since the current framework considers two distinct softening indicators: f and χ, their

  

Rigid grips

Figure 20: V-notched specimen – geometry and boundary conditions.
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(a) (b) (c)

Figure 21: V-notched specimen – the different finite element meshes for the mesh sensitivity analysis: (a)
coarse mesh, (b) medium mesh, and (c) fine mesh.

nonlocality needs to be considered to resolve the mesh-dependency issue. Whenever the
void coalescence occurs, the nonlocality of χ is mandatory since it is the only parameter
governing the failure process. In the present framework, the nonlocal plastic state, i.e.
the nonlocality of εv, of εd, and of εm, is considered in order to achieve full regularization.
Fig. 22(a) illustrates the force-displacement curves in terms of the nominal shear stress
(F/e0) versus the relative vertical displacement (Uy/e0). The results are mesh-insensitive
owing to the non-locality in εd. Figs. 22(b)-(d) show the distribution of the void ligament
ratio (denoted by χ) at the last converged step, which corresponds to the last point in the
force-displacement curves depicted in Fig. 22(a). The localization band follows the loading
direction and its thickness converges with respect to the mesh size.

If only εv were chosen as the nonlocal variable, the mesh dependency would not be
resolved in the case of shear coalescence-controlled failure as shown in Fig. 23.

Failure governed by void nucleation is now artificially produced by increasing the nu-
cleation intensity to An = 0.2 and considering ξ as being sufficiently large in order not to
trigger shear coalescence. When considering only εv as the sole nonlocal variable, mesh
sensitivity is observed in Fig. 24(a), while mesh-independent results are obtained using the
current framework with three nonlocal variables, see Fig. 24(b) because of the non-locality
of εm.

Finally, nonlocality of the volumetric plastic strain εv is necessary for cases involving
high stress triaxiality, in which the void growth is mainly controlled by this mechanism and
the localization could occur before void coalescence by internal necking as pointed out by
Tekoğlu et al. (2015).

Another possibility to generate a nonlocal plastic formulation is to consider a strain gra-
dient based plasticity approach (De Borst and Mühlhaus, 1992) by incorporating a Laplacian
term of the hardening variable in the yield condition as considered by Zhang et al. (2018).
However, this approach belongs to the family of explicit nonlocal methods, which are not
truly nonlocal as pointed out by Peerlings et al. (2001). Indeed, in this family of models,
the gradient terms of order higher than two have been neglected whereas these terms are
indirectly accounted for in the implicit formulation considered in the present framework.
Moreover, because for explicit nonlocal methods the nonlocal variable at a point depends
only on the local value and their gradients at the same point, spatial interactions are there-
fore limited to an infinitesimal neighborhood (Peerlings et al., 2001).
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Figure 22: V-notched specimen – mesh sensitivity: (a) force-displacement curves, and distribution of the
void ligament ratio χ at the last converged step for (b) the coarse mesh, (c) the medium mesh, and (d) the
fine mesh.
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Figure 23: V-notched specimen – with as sole nonlocality the volumetric plastic strain εv.
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Figure 24: V-notched specimen – failure governed by void nucleation using a nucleated intensity An = 0.2
and a sufficiently large ξ in order not to trigger the shear coalescence: (a) with as sole nonlocality the
volumetric plastic strain εv, and (b) with the current framework with three nonlocal variables.

6.2.2. Effect of model parameters

The effects of the constitutive parameters on the shear-driven failure of the V-notched
specimen are now studied. The effect of εds is studied in Fig. 25(a). The result given by
the GTN model considering kω = 0 is also reported for comparison purpose. When the
value of εds decreases while keeping kω = 0, an earlier onset of failure is observed, showing
a similar effect as the one of kω in the GTN model enhanced with the original shear-growth
model proposed by Nahshon and Hutchinson (2008). The effect of kω in the present model
is studied in Figs. 25(b) and (c) for the two following cases:

i) The value kω increases while ξ = 1.015 is kept constant: as a result of Eq. (111) the
value of εds decreases. The obtained results are depicted in Fig. 25(b) showing that
kω has a similar effect as decreasing εds.

ii) The value kω increases while εds = 0.95 is kept constant: as a result of Eq. (111) the
value of ξ increases. The obtained results are depicted in Fig. 25(c) showing that a
larger value of kw leads to a later onset of failure, which is also observed in Fig. 8(c).

6.3. Axisymmetric smooth bar in tension test

This section investigates the failure of the axisymmetric smooth bar under uniaxial tensile
loading. The geometry and loading conditions are reported in Fig. 26. The geometry
parameters are chosen as L = 12.5 mm and R0 = 3 mm. The finite element meshes
presented in Figs. 11(a)-(d) are reconsidered in this section but with the axisymmetric
6-node triangular elements.

Fig. 27(a) plots the force-radius reduction curves in terms of the nominal stress (F/(πR2
0))

versus the relative radius reduction (−∆R/R0) for the different meshes. In this case test, the
stress triaxiality remains moderate and evolves within the necking region. The shear driven
coalescence mode is preferred. The convergence with the mesh refinement is clearly observed
for the medium and fine meshes. In the force-radius reduction curve, different stages can
be distinguished: (i) a homogeneous elastoplastic stage with hardening until reaching max-
imum nominal stress; (ii) the necking stage in which the nominal stress starts to decrease;
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Figure 25: V-notched specimen: (a) influence of εds for constant kω = 0, (b) influence of kω for constant
ξ = 1.015, and (c) influence of kω for constant εds = 0.95.

  

Figure 26: Axisymmetric smooth bar - geometry and boundary conditions.
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Figure 27: Axisymmetric smooth bar - mesh sensitivity: (a) force-radius reduction curves and distribution
of the void ligament ratio χ at the last converged step with (b) the very coarse mesh, (c) the coarse mesh,
(d) the medium mesh, and (e) the fine mesh.

  

Figure 28: Axisymmetric notched bar: geometry and boundary conditions.

(iii) the nominal stress starting to drop faster corresponding to the onset of cracking stage
in which a localization band perpendicular to the loading direction is formed, so-called cup-
failure mode; (iv) the localization band propagating towards the free boundaries, a so-called
cone-failure mode inclined at 45o with the loading direction at the last failure stage and
characterized by a suddenly drops of the load in the load-radius reduction curve. During
these four stages, mesh convergence is observed for the medium and fine meshes because
of the multi-nonlocal variable formulation. The cup-cone failure profiles for different finite
element meshes are shown in Figs. 27(b)-(e) with the distribution of the void ligament ratio
χ at the last converged step of each finite element mesh. Fig. 27(b) shows that the very
coarse mesh cannot capture the cup-cone failure profile.
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Figure 29: Axisymmetric notched bar - effect of the notch radius Rn: (a) force-radius reduction curves and
distribution of the void ligament ratio χ at the last converged step with (b) R0/Rn = 0.2, (c) R0/Rn = 0.6,
(d) R0/Rn = 1, and (e) R0/Rn = 1.5.

6.4. Ductile fracture of axisymmetric notched bars

The plane strain specimen and the axisymmetric smooth bar under tension considered
in the previous sections correspond to the cases with quite low to moderate stress triaxiality
(η < 1 during necking). The failure under higher stress triaxiality is considered in this
section with axisymmetric notched bars under tensile loading conditions. The geometry
and loading conditions are described in Fig. 28. The stress triaxiality at the center of the
specimen at the notched section can be increased by decreasing the notch radius Rn while
R0 remains constant. The smooth specimen corresponds to Rn = ∞. Fine enough meshes
using axisymmetric 6-node triangular elements under-integrated by three Gauss points were
chosen in order to ensure convergence upon mesh refinement.

Fig. 29(a) plots the force-radius reduction curves in terms of the nominal axial stress
(F/(πR2

0)) versus the relative radius reduction at notched section (−∆R/R0) for different
notch radii. The result corresponding to the smooth bar is also reported for comparison
purpose. The ductility corresponds to the relative radius reduction at failure. The decrease
of the ductility as a function of the notch radius is observed and agrees well with the
experimental observations (Bao and Wierzbicki, 2004; Barsoum et al., 2012).

The failure pattern with different notch radius is shown in Figs. 29(b)-(e) as the dis-
tribution of the void ligament ratio χ at the last converged step corresponding to the last
point in the force-radius reduction curve depicted in Fig. 29(a). A cup-cone failure profile is
visible, demonstrating the ability of the model to capture this complex failure mode, which
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is sometimes observed in notched specimens.

7. Conclusion

An implicit gradient enhanced nonlocal framework is proposed to predict ductile failure
in general loading conditions, involving conditions with extensive shear.

Three distinct nonlocal solutions for the expansion of voids embedded in an elastoplastic
matrix are considered: (1) the void growth phase corresponding to the diffuse mode of
plastic flow around the voids is modeled by the GTN yield surface as corrected by Nahshon
and Hutchinson (2008) for shear; (2) the void coalescence mechanism corresponding to the
localization of the plastic deformation between neighboring voids by internal necking is
modeled by an extended version of the Thomason yield surface based on the maximum
principal stress; and (3) the coalescence in shear is modeled by a yield surface based on
the maximum shear stress. The three solutions are integrated in a multi-surface model,
which is sensitive to both the stress triaxiality and the Lode variable. Under proportional
loading conditions, the loading path dependence of the ductility defined by the deviatoric
equivalent plastic strain at the onset of coalescence agrees with experimental observations by
Bao and Wierzbicki (2004); Barsoum and Faleskog (2007); Barsoum et al. (2012); Faleskog
and Barsoum (2013) for different loading states.

The implicit gradient enhanced nonlocal formulations are applied to multiple variables,
leading to an efficient regularization of the loss of solution uniqueness when material soften-
ing occurs. A nonlocal effect is inactive if its corresponding nonlocal variable is not involved
in the evolution laws of void characteristics. In this case, its corresponding nonlocal equa-
tion does not need to be integrated as it is separated from others with a trivial solution.
Consequently, a nonlocal framework with 1, 2, or 3 nonlocal variables can be obtained that
makes the current framework flexible. Since the multiple surface model involves different
governing evolution laws, considering the nonlocality of the deviatoric and volumetric plastic
equivalent strains is mandatory to obtain mesh-independent solution because of the porosity
and void ligament ratio evolution, while considering the nonlocality of the mean equivalent
plastic strain of the matrix is only required with the presence of void nucleation.

The constitutive relations are integrated in a fully implicit predictor-corrector scheme.
The numerical framework was shown to be easily integrated into the conventional kinematics-
based finite element formulation as a result of the implicit nonlocal formulation. The capabil-
ities of the proposed framework were studied through different numerical examples, showing
that complex failure patterns such as slant and cup-cone of respectively plane strain and
axisymmetric specimens under tensile loading conditions can be captured.

In future works, the material parameters calibration will be considered with a proper
procedure followed by an experimental campaign. The evolution laws for void character-
istics under the shear driven coalescence mode could be enhanced with a more complex
micromechanics-based model. When the damage indicator is close to its critical value, the
transition to crack will be considered by an energy consistent framework as considered by
Wu et al. (2014); Leclerc et al. (2018, 2020).
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Appendix A. Fully implicit integration of constitutive equations

The numerical implementation of the porous plasticity model described by Eqs. (43-48)
is detailed in this section. From the known kinematic inputs F, Z̄ and internal variables,
the unknown outputs P, Z, and their tangent operators have to be evaluated for the finite
element resolution. Their computation follows a fully implicit predictor-corrector scheme
during the time interval [tn tn+1 = tn + ∆t]. For the sake of simplicity, all quantities at time
tn are marked by a time index n while the ones at time tn+1 are specified without a time
index.

Appendix A.1. Elastic predictor

The elastic predictor assumes a purely elastic state and the plastic part of the deformation
gradient tensor is initialized from the one at the previous step, i.e. Fppr = Fp

n. The
predictor of the elastic part of the deformation gradient tensor is predicted using Eq. (2)
by Fepr = F · Fppr−1. The predictor of the elastic Cauchy strain tensor follows as Cepr =
FeprT ·Fepr = Fppr−T ·FT ·F ·Fppr−1 = Fppr−T ·C ·Fppr−1, from which the predictor of the
elastic strain tensor is evaluated by Eepr = ln

√
Cepr. From the value of Eepr, the predictor

of the corotational Kirchhoff stress tensor τ pr is deduced using Eq. (39) as

τ pr = C : Eepr . (A.1)

The predictor of the corotational Cauchy stress is given by σpr = J−1τ pr, where J = det F.
The evolution laws for Y are known following Eq. (47) and can be integrated in the time

interval [tn tn+1], leading to a general form7

Ypr = Yn + ∆Y
(
∆Z̄,σpr

)
, (A.2)

where ∆Z̄ = Z̄ − Z̄n. The function ∆Y is known and depends on the way the influence of
the voids is accounted for, i.e. following the Gurson model or coalescence model.

The value of the yield surface Φnl in Eq. (43) is estimated with all the relevant pa-
rameters. If the condition Φnl ≤ 0 is satisfied, the elastic predictor is the solution and the
final step described in Appendix A.3 is reached. Otherwise, the corrector step described in
Appendix A.2 follows.

7The evolution laws of void characteristics are assumed to be integrated during the time interval
[tn tn+1 = tn + ∆t] leading to an explicit dependence Y = Yn + ∆Y

(
∆Z̄,σ

)
.
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Appendix A.2. Plastic corrector

Integrating Eq. (45) in the time interval [tn tn+1] using an implicit approximation leads
to the estimation of the current plastic part Fp of the deformation gradient

Fp = exp (∆µNp) · Fppr = exp (∆Ep) · Fppr . (A.3)

where ∆µ = µ− µn, Np is the normal of the plastic flow, which is estimated at the current
stress state, and ∆Ep = ∆µNp is the correction of the plastic deformation.

Using Eq. (A.3), the plastic problem described in Eqs. (43 - 48) results in the following
finite incremental equations

τ = τ pr − C : ∆Ep , (A.4)

σ = J−1τ , (A.5)

σY = σY (εmn + ∆εm) , (A.6)

Y = Yn + ∆Y
(
∆Z̄,σ

)
, (A.7)

Φnl (σ;σY,Y) = 0 , (A.8)

∆Ep −∆µNp (σ;σY,Y) = 0 , and (A.9)

σ : ∆Ep − (1− f)σY∆εm = 0 . (A.10)

Eqs. (A.4-A.10) can be iteratively solved for the unknowns τ , σ, σY, ∆εm, Y, ∆Ep, and
∆µ. Since Eqs. (A.4-A.7) can be eliminated from the other ones, the following nonlinear
system of equations must finally be iteratively solved:

r =

 r0

vec (r1)
r2

 =

 Φnl

vec (∆Ep)−∆µ× vec (Np)
σ:∆Ep−(1−f)σY∆εm

σ0
Y

 = 0 , (A.11)

where ∆Ep, ∆µ, and ∆εm are unknowns, r0, r1 and r2 denote the residuals of Eqs. (A.8-
A.10), σ0

Y is used to obtain a dimensionless equation, and where vec (A) is the vector rep-
resentation of an arbitrary symmetric second order tensor A defined by

vec (A) =
[
A00 A11 A22 A01 A02 A12

]T
. (A.12)

Since ∆Ep is symmetric, one can define an unknowns vector

X =
[
[vec (∆Ep)]T ∆µ ∆εm

]T
. (A.13)

The nonlinear system of Eqs. (A.11) is iteratively solved using the Newton-Raphson proce-
dure. For this purpose, the residual vector r is linearized at the current iteration as

r(k+1) = r(k) + J
(
X(k+1) −X(k)

)
= 0 , leading to X(k+1) = X(k) − J−1r(k) , (A.14)
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where the Jacobian matrix J is given by

J =
∂r

∂X
=


[
vec
(

∂r0
∂∆Ep

)]T ∂r0
∂∆µ

∂r0
∂∆εm

mat
(

∂r1
∂∆Ep

)
vec
(
∂r1
∂∆µ

)
vec
(

∂r1
∂∆εm

)
[
vec
(

∂r2
∂∆Ep

)]T ∂r2
∂∆µ

∂r2
∂∆εm

 , (A.15)

in which mat (B) denotes the matrix representation of an arbitrary fourth order tensor
B = ∂A

∂C
for two arbitrary symmetric second order tensors A and C, see Appendix B for

details. The derivatives of the residuals r0, r1 and r2 with respect to the unknowns ∆Ep,
∆µ, and ∆εm at the iteration k are detailed in Appendix C.

Once the system of equations (A.11) is solved, the solution ∆Ep allows estimating the
values of Fp using Eq. (A.3), and the increments of the deviatoric and volumetric plastic
equivalent strains using Eqs. (49, 50) respectively as

∆εd =

√
2

3
dev (∆Ep) : dev (∆Ep) , and (A.16)

∆εv = tr (∆Ep) . (A.17)

The local (internal) variables Z can be updated from their values at the previous time step
following 

εv = εvn + ∆εv ,

εm = εmn + ∆εm , and

εd = εdn + ∆εd .

(A.18)

Appendix A.3. Final step

The first Piola Kirchhoff stress P is eventually estimated using Eq. (26). However, the
computation of the logarithmic operator used for estimating the elastic logarithmic strain
Ee = ln

√
Ce potentially involves the following approximation

ln (A) = A− I− (A− I)2

2
+

(A− I)3

3
+ . . . , (A.19)

where A is an arbitrary second order tensor and I is the identity tensor, in which case,
instead of using Eq. (26), P is deduced using

P = Fe · (τ : L) · Fp−T , (A.20)

where

L =
∂ ln Ce

∂Ce

∣∣
Ce . (A.21)

The estimations of the material tangent operators ∂P
∂F

, ∂P
∂Z̄

, ∂Z
∂F

, ∂Z
∂Z̄

required for the finite
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element iterative procedure are detailed in Appendix D.

Appendix B. Matrix representation of a fourth order tensor

The matrix representation of a fourth order tensor B = ∂A
∂C

, where A and C are two
symmetric second order tensors, can be defined as

mat (B) =
∂vec (A)

∂vec (C)
(B.1)

=


B0000 B0011 B0022 B0001 +B0010 B0002 +B0020 B0012 +B0021

B1100 B1111 B1122 B1101 +B1110 B1102 +B1120 B1112 +B1121

B2200 B2211 B2222 B2201 +B2210 B2202 +B2220 B2212 +B2221

B0100 B0111 B0122 B0101 +B0110 B0102 +B0120 B0112 +B0121

B0200 B0211 B0222 B0201 +B0210 B0202 +B0220 B0212 +B0221

B1200 B1211 B1222 B1201 +B1210 B1202 +B1220 B1212 +B1221

 .

Appendix C. Derivatives of the residuals r0, r1 and r2

From the known forms of Φnl and σY, one has

∂r0

∂∆Ep
=

[
∂Φnl

∂σ
+

(
∂Φnl

∂Y

)T
∂Y

∂σ

]
:
∂σ

∂∆Ep
, (C.1)

∂r0

∂∆µ
= 0 , (C.2)

∂r0

∂∆εm

=
∂Φnl

∂σY

H , (C.3)

∂r1

∂∆Ep
= I −∆µ

[
∂Np

∂σ
+

(
∂Np

∂Y

)T
∂Y

∂σ

]
:
∂σ

∂∆Ep
, (C.4)

∂r1

∂∆µ
= −Np , (C.5)

∂r1

∂∆εm

= −∆µ
∂Np

∂σY

H , (C.6)

∂r2

∂∆Ep
=

1

σ0
Y

[(
∆Ep + σY∆εm

∂f

∂σ

)
:
∂σ

∂∆Ep
+ σ

]
, (C.7)

∂r2

∂∆µ
= 0 , and (C.8)

∂r2

∂∆εm

= − 1

σ0
Y

(1− f) (σY +H∆εm) , (C.9)

where H = ∂σY
∂εm

is the plastic hardening modulus of the matrix material.
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Appendix D. Material tangent operators

The material tangent operators ∂P
∂F

, ∂P
∂Z̄

, ∂Z
∂F

, and ∂Z
∂Z̄

required for the iterative procedure
of the finite element resolution must be estimated. With an arbitrary quantity •, one always
has

∂•
∂F

=
∂•
∂C

:
∂C

∂F
= 2F · ∂•

∂C
, (D.1)

∂•
∂C

= Fppr−1 · ∂•
∂Cepr

· Fppr−T , and (D.2)

∂•
∂Cepr

=
∂•

∂Eepr
:

1

2
Lpr , (D.3)

leading to

∂•
∂F

=
∂•

∂Eepr
:
[
Lpr[:2,4]

(
Fepr ⊗ Fppr−1

)]
, (D.4)

where [:i,j] is the double dot tensor operator considering the ith and jth indexes of the right
tensor. As a consequence, in order to estimate the derivatives with respect to F, the ones
with respect to Eepr need to be estimated.

Since the first Piola-Kirchhoff stress is estimated by Eq. (A.20), in order to evaluate ∂P
∂F

,
and ∂P

∂Z̄
, the terms ∂Fp

∂F
, ∂F

p

∂Z̄
, ∂τ
∂F

, and ∂τ
∂Z̄

need to be estimated, and the missing derivations
read

∂Fp−1

∂F
= −Fp−1 ·

(
∂Fp

∂F

)
[2·]Fp−1 , (D.5)

∂Fe

∂F
=

∂ (F · Fp−1)

∂F
= I[2·]Fp−1 + F · ∂Fp−1

∂F
, (D.6)

∂L

∂F
=

∂L

∂Ce
:
∂Ce

∂Fe
:
∂Fe

∂F
= H :

(
2FT

e ·
∂Fe

∂F

)
, (D.7)

∂Fp−1

∂Z̄k
= −Fp−1 · ∂Fp

∂Z̄k
· Fp−1 , (D.8)

∂Fe

∂Z̄k
=

∂ (F · Fp−1)

∂Z̄k
= F · ∂Fp−1

∂Z̄k
, and (D.9)

∂L

∂Z̄k
=

∂L

∂Ce
:
∂Ce

∂Fe
:
∂Fe

∂Z̄k
= H :

(
2FeT · ∂Fe

∂Z̄k

)
, (D.10)

where Iijkl = δikδjl and H = ∂L
∂Ce , and where [i·] is the dot tensor operator considering

the ith index of the left tensor. In order to evaluate ∂Fp

∂F
and ∂τ

∂F
, Eq. (D.4) is used. The

last missing terms are thus ∂Fp

∂Eepr ,
∂Fp

∂Z̄
, ∂τ
∂Eepr , and ∂τ

∂Z̄
. The consistency of Eq. (A.11) is

considered, leading to the following relation

ṙ = JẊ +
∂r

∂Eepr
: Ėepr +

∂r

∂Z̄
˙̄Z = 0 . (D.11)
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The last equation allows estimating

∂X

∂Eepr
= −J−1 ∂r

∂Eepr
, and

∂X

∂Z̄
= −J−1 ∂r

∂Z̄
, (D.12)

where ∂r
∂Eepr and ∂r

∂Z̄
are given as

∂r

∂Eepr
=

 ∂r0
∂Eepr

∂vec(r1)
∂Eepr

∂r2
∂Eepr

 , and
∂r

∂Z̄
=

 ∂r0
∂Z̄

∂vec(r1)

∂Z̄
∂r2
∂Z̄

 . (D.13)

Once the explicit forms of Φnl (σ;σY,Y), Np (σ;σY,Y), σY (εm), and ∆Y
(
∆Z̄,σ

)
are

known, one can estimate ∂r
∂Eepr and ∂r

∂Z̄
from

∂r0

∂Eepr
=

[
∂Φnl

∂σ
+

(
∂Φnl

∂Y

)T
∂Y

∂σ

]
:
∂σ

∂Eepr
, (D.14)

∂r1

∂Eepr
= −∆µ

[
∂Np

∂σ
+

(
∂Np

∂Y

)T
∂Y

∂σ

]
:
∂σ

∂Eepr
, (D.15)

∂r2

∂Eepr
=

1

σ0
Y

(
∆Ep + σY∆εm

∂f

∂σ

)
:
∂σ

∂Eepr
, (D.16)

∂r0

∂Z̄
=

(
∂Φnl

∂Y

)T
∂Y

∂Z̄
, (D.17)

∂r1

∂Z̄
= −∆µ

(
∂Np

∂Y

)T
∂Y

∂Z̄
, and (D.18)

∂r2

∂Z̄
=

σY∆εm

σ0
Y

f

∂Z̄
. (D.19)

Using the estimation of ∂X
∂Eepr and ∂X

∂Z̄
from Eqs. (D.12), ∂∆Ep

∂Eepr ,
∂∆Ep

∂Z̄
, ∂∆εm
∂Eepr ,

∂∆εm
∂Z̄

are known
and Eqs. (A.1, A.4) thus lead to

∂τ

∂Eepr
=

∂τ pr

∂Eepr
− C :

∂∆Ep

∂Eepr
= C− C :

∂∆Ep

∂Eepr
, and (D.20)

∂τ

∂Z̄k
= −C :

∂∆Ep

∂Z̄k
. (D.21)

Because the operator exp used in Eq. (A.3) is, in general, approximated by

exp (A) = I + A +
A2

2!
+

A3

3!
+ . . . , (D.22)
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where A is an arbitrary second order tensor, Eq. (A.3) results in

∂Fp

∂Eepr
=

(
E :

∂∆Ep

∂Eepr

)
[2·]Fppr , and (D.23)

∂Fp

∂Z̄k
=

(
E :

∂∆Ep

∂Z̄k

)
[2·]Fppr , (D.24)

where E = ∂ exp ∆Ep

∂∆Ep .
Finally, the terms ∂Z

∂F
and ∂Z

∂Z̄
have to be computed. Since ∂Z

∂F
is deduced from ∂Z

∂Eepr using
Eq. (D.4), from the definition of the local variables following Eq. (51), one computes

∂Z

∂Eepr
=

[
∂∆εv
∂Eepr

∂∆εm
∂Eepr

∂∆εd
∂Eepr

]T
, and (D.25)

∂Z

∂Z̄
=

[
∂∆εv
∂Z̄

∂∆εm
∂Z̄

∂∆εd
∂Z̄

]T
, (D.26)

where, using Eqs. (A.16, A.17),

∂∆εv

∂•
= I :

∂∆Ep

∂•
, and

∂∆εd

∂•
=

2

3∆εd

dev (∆Ep) :
∂∆Ep

∂•
, (D.27)

in which • represents either Eepr or Z̄.

Appendix E. Smooth regularization of yield functions

Appendix E.1. Smooth MPS-based Thomason yield surface
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Figure E.30: Smooth MPS-based Thomason yield surface: (a) in π-plane (under a constant pressure) and
(b) in θ-plane (under a constant θ). The original model (75) is obtained with aT = 1 and n =∞.

With the use of the Thomason effective stress following Eq. (76), the MPS-based Thoma-
son yield surface (75) has singularities at p′ = 0 (under pure shear), at σeq = 0 (under
hydrostatic pressure), and at θ = π

3
(at the stress state σ1 = σ2 > σ3), see Fig. E.30. These
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corners are rounded in order to produce a smooth normal vector all along the yield surface
as follows:

• The corners at θ = π
3

are rounded by replacing θ in Eq. (76) by θT where

θT =
1

3
arccos [1 + aT (ω − 1)] , (E.1)

in which aT ∈ [0 1] is a user parameter. Therefore the Thomason effective stress (76)
is first modified as

σ̂T =
1

CTf

(
2

3
σeq cos θT + |p′|

)
. (E.2)

The influence of aT on the shape of the MPS-based Thomason yield surface is shown in
Fig. E.30(a). The original model described by Eq. (72) is recovered with aT = 1. The
Thomason model considered in the works of Benzerga et al. (2002); Besson (2009);
Benzerga and Leblond (2010); Pardoen and Hutchinson (2000, 2003); Pardoen (2006)
corresponds to aT = 0. The value of aT / 1 should be chosen in order to obtain a
smooth version close to the original one. In this work aT = 0.995 is used.

• The corners at p′ = 0 and at σeq = 0 are rounded using the methodology proposed by
Besson (2009). As a result, the Thomason effective stress described in Eq. (E.2) is
modified as

σ̂T =
1

CTf

(∣∣∣∣23σeq cos θT + p′
∣∣∣∣n +

∣∣∣∣23σeq cos θT − p′
∣∣∣∣n) 1

n

, (E.3)

where n is a user defined parameter. A value of n � 1 should be chosen in order to
get a smooth version close to the original one. The influence of n on the shape of the
MPS-based Thomason yield surface is shown in Fig. E.30(b). Clearly, a value n ≥ 20
allows remaining very close to the original model. In this work n = 50 is considered.

Appendix E.2. Smooth MSS-based yield surface

With the use of the shear effective stress in Eq. (85), the MSS-based yield condition
(84) has singularities at θ = 0 and θ = π

3
respectively corresponding to ω = 1 and ω = −1.

These singularities are removed by replacing θ in Eq. (85) by θS where

θS =
1

3
arccos (aSω) , (E.4)

in which aS ∈ [0 1] is a user defined parameter. As a result, the shear effective stress (85) is
modified as follows

σ̂S =
σeq

CSf

(
sin θS

2
+

√
3 cos θS

2

)
. (E.5)
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Figure E.31: Smooth MSS-based yield surface in π-plane (under a constant pressure).

The influence of aS on the shape of the MSS-based yield surface is shown in Fig. E.31. The
unsmoothed model described by Eq. (72) is recovered with aS = 1. The value of aS / 1
should be chosen in order to obtain a smooth version close to the original one. In this work
aS = 0.995 is used.

Appendix F. Derivatives of yield surface and plastic flow normal

Appendix F.1. Some useful tensorial derivatives

For an arbitrary tensor σ, whose three invariants are

p′ =
tr (σ)

3
, σeq =

√
3

2
dev (σ) : dev (σ) , and J3 = det dev (σ) , (F.1)

one always has

∂p′

∂σ
=

I

3
, (F.2)

∂σeq

∂σ
=

3dev (σ)

2σeq

, (F.3)

∂J3

∂σ
= dev (σ) · dev (σ)−

2σ2
eq

9
I , (F.4)

∂2σeq

∂σ ⊗ ∂σ
=

3Idev

2σeq

− 3dev (σ)

2σ2
eq

⊗ ∂σeq

∂σ
, and (F.5)

∂2J3

∂σ ⊗ ∂σ
= Idev[2·]dev (σ) + dev (σ) · Idev − 2

3
I⊗ dev (σ) . (F.6)

61



Appendix F.2. GTN yield function

The derivatives of the GTN yield function following Eq. (53) with respect to σ, σY, and
Y are given as follows

∂ΦG

∂σ
=

1

σY

∂σ̂G

∂u

∂u

∂σ
, (F.7)

∂ΦG

∂σY

= − σ̂G

σ2
Y

+
1

σY

∂σ̂G

∂u

∂u

∂σY

, and (F.8)

∂ΦG

∂Y
=

[
1
σY

(
∂σ̂G
∂f

+ ∂σ̂G
∂u

∂u
∂f

)
0 0 0

]
, (F.9)

where, following Eq. (54), σ̂G can be rewritten as

σ̂G =

√
u

1− q1f
, with u = σ2

eq + 2σ2
Yfq1

[
cosh

(
3

2
q2
p′

σY

)
− 1

]
, (F.10)

and

∂σ̂G

∂u
=

1

2
√
u (1− q1f)

, (F.11)

∂u

∂σ
= 3dev (σ) + σYfq1q2 sinh

(
3

2
q2
p′

σY

)
I , (F.12)

∂u

∂σY

= 4σYfq1

[
cosh

(
3

2
q2
p′

σY

)
− 1

]
− 3p′fq1q2 sinh

(
3

2
q2
p′

σY

)
, (F.13)

∂σ̂G

∂f
=

q1

√
u

(1− q1f)2 , and (F.14)

∂u

∂f
= 2σ2

Yq1

[
cosh

(
3

2
q2
p′

σY

)
− 1

]
. (F.15)

Appendix F.3. GTN plastic normal

The plastic normal following Eq. (55) can be rewritten as

Np
G =

∂σ̂G

∂u

∂u

∂σ
. (F.16)

Its derivatives with respect to σ, σY, and Y are given as follows

∂Np
G

∂σ
=

∂2σ̂G

∂u2

∂u

∂σ
⊗ ∂u

∂σ
+
∂σ̂G

∂u

∂2u

∂σ ⊗ ∂σ
, (F.17)

∂Np
G

∂σY

=
∂2σ̂G

∂u2

∂u

∂σY

∂u

∂σ
+
∂σ̂G

∂u

∂2u

∂σ∂σY

, and (F.18)

∂Np
G

∂Y
=

[
∂Np

G

∂f
0 0 0

]
. (F.19)
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Using Eqs. (F.11, F.15), Eqs. (F.16 - F.19) are completed by

∂2σ̂G

∂u2
= − 1

4u
√
u (1− q1f)

, (F.20)

∂2u

∂σ ⊗ ∂σ
= 3Idev +

fq1q
2
2

2
cosh

(
3

2
q2
p′

σY

)
I⊗ I , (F.21)

∂2u

∂σ∂σY

=

[
fq1q2 sinh

(
3

2
q2
p′

σY

)
− 3

2
fq1q

2
2

p′

σY

cosh

(
3

2
q2
p′

σY

)]
I , (F.22)

∂2σ̂G

∂u∂f
=

q1

2
√
u (1− q1f)2 , (F.23)

∂2u

∂σ∂f
= σYq1q2 sinh

(
3

2
q2
p′

σY

)
I , and (F.24)

∂Np
G

∂f
=

(
∂2σ̂G

∂u∂f
+
∂2σ̂G

∂u2

∂u

∂f

)
∂u

∂σ
+
∂σ̂G

∂u

∂2u

∂σ∂f
. (F.25)

Appendix F.4. MPS-based Thomason yield function

The smoothed version of the Thomason effective stress σ̂T described in Eq. (E.3) is
considered in the MPS-based Thomason yield function (75). For the sake of simplicity, Eq.
(E.3) can be rewritten as

σ̂T =
G

CTf

, (F.26)

where

G (Z) = Z
1
n , Z (V1, V2) = V

n
2

1 + V
n
2

2 , V1 = (p′ + s)2 , V2 = (−p′ + s)2 , (F.27)

s = 2
3
σeqF , F (ω) = cos θT , θT = 1

3
arccos (1− aT + aTω) ,

and ω is given by Eq. (57).
The derivatives of the MPS-based Thomason yield function following Eq. (75) with

respect to σ, σY, and Y are given as follows

∂ΦT

∂σ
=

1

σYCTf

(
∂G

∂p′
∂p′

∂σ
+
∂G

∂s

∂s

∂σeq

∂σeq

∂σ
+
∂G

∂s

∂s

∂J3

∂J3

∂σ

)
, (F.28)

∂ΦT

∂σY

= − σ̂T

σ2
Y

, and (F.29)

∂ΦT

∂Y
= − σ̂T

σYCTf

[
0 ∂CTf

∂χ
∂CTf

∂W
0
]
, (F.30)
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where σ̂T is given by Eq. (F.26) and

∂CTf

∂χ
= −2χ

[
h

(
1− χ
Wχ

)2

+ g

√
1

χ

]
(F.31)

+
(
1− χ2

) [
− 2h

W 2

(
1

χ
− 1

)
1

χ2
− g

2χ
√
χ

]
, and

∂CTf

∂W
=

(
1− χ2

) [
−2h

W

(
1− χ
Wχ

)2
]
.

Using Eqs. (F.2 - F.6, F.27), Eq. (F.28) is completed by

∂s

∂σeq

=
2

3

(
F + σeqF

′ ∂ω

∂σeq

)
,
∂s

∂J3

=
2

3
σeqF

′ ∂ω

∂J3

, and (F.32)

∂G

∂Ui
= G′

2∑
k=1

∂Z

∂Vk

∂Vk
∂Ui

for Ui = p′ or s , (F.33)

where

F ′ = − (sin θT ) θ′T , θ
′
T =

−aT

3
√

1− (1− aT + aTω)2
, (F.34)

∂ω

∂σeq

= −81

2

J3

σeq
4
,
∂ω

∂J3

=
27

2

1

σeq
3
,

G′ =
1

n
Z

1
n
−1 ,

∂Z

∂Vi
=
n

2
V

n
2
−1

i ,
∂V1

∂p′
= 2 (p′ + s) ,

∂V1

∂s
= 2 (p′ + s) ,

∂V2

∂p′
= 2 (p′ − s) , and

∂V2

∂s
= 2 (−p′ + s) .

Appendix F.5. MPS-based Thomason plastic normal

The MPS-based Thomason plastic normal Np
T following Eq. (77) reads

Np
T = σY

∂ΦT

∂σ
=
∂σ̂T

∂σ
=

1

CTf

(
∂G

∂p′
∂p′

∂σ
+
∂G

∂s

∂s

∂σeq

∂σeq

∂σ
+
∂G

∂s

∂s

∂J3

∂J3

∂σ

)
, (F.35)
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where ∂ΦT

∂σ
is given by Eq. (F.28). The derivatives of Np

T with respect to σ, σY, and Y are
given as follows

∂Np
T

∂σ
=

1

CTf

[
∂2G

∂p′2
∂p′

∂σ
+

∂2G

∂σeq∂p′
∂σeq

∂σ
+

∂2G

∂J3∂p′
∂J3

∂σ

]
⊗ ∂p′

∂σ
(F.36)

+
1

CTf

[
∂2G

∂p′∂σeq

∂p′

∂σ
+

∂2G

∂σeq
2

∂σeq

∂σ
+

∂2G

∂J3∂σeq

∂J3

∂σ

]
⊗ ∂σeq

∂σ

+
1

CTf

[
∂2G

∂p′∂J3

∂p′

∂σ
+

∂2G

∂σeq∂J3

∂σeq

∂σ
+
∂2G

∂J2
3

∂J3

∂σ

]
⊗ ∂J3

∂σ

+
1

CTf

∂G

∂σeq

∂2σeq

∂σ ⊗ ∂σ
+

1

CTf

∂G

∂J3

∂2J3

∂σ ⊗ ∂σ
,

∂Np
T

∂σY

= 0 , and (F.37)

∂Np
T

∂Y
= −Np

T

CTf

[
0 ∂CTf

∂χ
∂CTf

∂W
0
]
, (F.38)

where

∂2G

∂p′∂σeq

=
∂2G

∂σeq∂p′
=

∂2G

∂p′∂s

∂s

∂σeq

, (F.39)

∂2G

∂p′∂J3

=
∂2G

∂J3∂p′
=

∂2G

∂p′∂s

∂s

∂J3

, (F.40)

∂2G

∂σeq∂J3

=
∂2G

∂J3∂σeq

=
∂2G

∂s2

∂s

∂σeq

∂s

∂J3

+
∂G

∂s

∂2s

∂σeq∂J3

, (F.41)

∂2G

∂σeq
2

=
∂2G

∂s2

∂s

∂σeq

∂s

∂σeq

+
∂G

∂s

∂2s

∂σeq
2
, (F.42)

∂2G

∂J2
3

=
∂2G

∂s2

∂s

∂J3

∂s

∂J3

+
∂G

∂s

∂2s

∂J2
3

. (F.43)

65



Using Eqs. (F.2 - F.6, F.34), Eqs. (F.39 - F.43) are completed by

∂2s

∂σeq
2

=
2

3

(
2F ′

∂ω

∂σeq

+ σeqF
′′ ∂ω

∂σeq

∂ω

∂σeq

+ σeqF
′ ∂

2ω

∂σeq
2

)
, (F.44)

∂2s

∂σeq∂J3

=
∂2s

∂J3∂σeq

=
2

3

(
F ′
∂ω

∂J3

+ σeqF
′′ ∂ω

∂σeq

∂ω

∂J3

+ σeqF
′ ∂2ω

∂σeq∂J3

)
, (F.45)

∂2s

∂J2
3

=
2

3
σeq

(
F ′′

∂ω

∂J3

∂ω

∂J3

+ F ′
∂2ω

∂J2
3

)
, and (F.46)

∂2G

∂Ui∂Uj
= G′′

2∑
k=1

∂Z

∂Vk

∂Vk
∂Ui

2∑
m=1

∂Z

∂Vm

∂Vm
∂Uj

(F.47)

+G′
2∑

k=1

∂2Z

∂V 2
k

∂Vk
∂Ui

∂Vk
∂Uj

+G′
2∑

k=1

∂Z

∂Vk

∂2Vk
∂Ui∂Uj

for Ui = p′ or s ,

where

F ′′ = − (cos θT ) θ′2T − (sin θT ) θ′′T , (F.48)

θ′′T = θ′T
aT (1− aT + aTω)

1− (1− aT + aTω)2 ,

∂2ω

∂σeq
2

=
324J3

2σeq
5
,

∂2ω

∂σeq∂J3

=
∂2ω

∂J3∂σeq

= − 81

2σeq
4
,
∂2ω

∂J2
3

= 0 ,

G′′ =
1

n

(
1

n
− 1

)
Z

1
n
−2 ,

∂2Z

∂V 2
k

=
n

2

(n
2
− 1
)
V

n
2
−2

k ,

∂V 2
1

∂p′∂p′
=

∂V 2
1

∂p′∂s
=

∂V 2
1

∂s∂p′
=

∂V 2
1

∂s∂s
= 2 , and

∂V 2
2

∂p′∂p′
= − ∂V 2

2

∂p′∂s
= − ∂V 2

2

∂s∂p′
=

∂V 2
2

∂s∂s
= 2 .

Appendix F.6. MSS-based yield function

The smoothed version of the MSS-based yield function (84) is obtained using the shear
effective stress following Eq. (E.5). For the sake of simplicity, Eq. (E.5) can be rewritten as

σ̂S =
σeq

CSf

P (ω) , (F.49)

where

P (ω) =
sin θS

2
+

√
3 cos θS

2
, θS =

1

3
arccos (aSω) , (F.50)
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and ω is given by Eq. (57). The derivatives of the MSS-based yield function (84) with
respect to σ, σY, and Y, are given as follows

∂ΦS

∂σ
=

1

σY

(
∂σ̂S

∂σeq

∂σeq

∂σ
+
∂σ̂S

∂J3

∂J3

∂σ

)
, (F.51)

∂ΦS

∂σY

= − σ̂S

σ2
Y

, and (F.52)

∂ΦS

∂Y
=

σ̂S

σYCSf

[
0 2ξχ 0 0

]
, (F.53)

where

∂σ̂S

∂σeq

=
1

CSf

(
P + σeqP

′ ∂ω

∂σeq

)
,
∂σ̂S

∂J3

=
σeq

CSf

P ′
∂ω

∂J3

, (F.54)

P ′ =

(
cos θS

2
−
√

3 sin θS
2

)
θ′S , and θ′S =

−aS

3
√

1− (aSω)2
,

in combination with Eqs. (F.2 - F.6, F.34, F.49, F.50).

Appendix F.7. MSS-based yield plastic normal

The MSS-based plastic normal Np
S following Eq. (86) reads

Np
S = σY

∂ΦS

∂σ
=
∂σ̂S

∂σ
=

∂σ̂S

∂σeq

∂σeq

∂σ
+
∂σ̂S

∂J3

∂J3

∂σ
, (F.55)

where ∂ΦS

∂σ
is given in Eq. (F.51). The derivatives of Np

S with respect to σ, σY, and Y are
given as follows

∂Np
S

∂σ
=

[
∂2σ̂S

∂σeq
2

∂σeq

∂σ
+

∂2σ̂S

∂J3∂σeq

∂J3

∂σ

]
⊗ ∂σeq

∂σ
(F.56)

+

[
∂2σ̂S

∂σeq∂J3

∂σeq

∂σ
+
∂2σ̂S

∂J2
3

∂J3

∂σ

]
⊗ ∂J3

∂σ

+
∂σ̂S

∂σeq

∂2σeq

∂σ ⊗ ∂σ
+
∂σ̂S

∂J3

∂2J3

∂σ ⊗ ∂σ
,

∂Np
S

∂σY

= 0 , and (F.57)

∂Np
S

∂Y
=

Np
S

CSf

[
0 2ξχ 0 0

]
, (F.58)
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where

∂2σ̂S

∂σeq
2

=
1

CSf

[
2P ′

∂ω

∂σeq

+ σeqP
′′
(
∂ω

∂σeq

)2

+ σeqP
′ ∂2ω

∂σeq∂σeq

]
, (F.59)

∂2σ̂S

∂σeq∂J3

=
∂2σ̂S

∂J3∂σeq

=
1

CSf

(
P ′
∂ω

∂J3

+ σeqP
′′ ∂ω

∂J3

∂ω

∂σeq

+ σeqP
′ ∂2ω

∂σeq∂J3

)
, (F.60)

∂2σ̂S

∂J2
3

=
σeq

CSf

[
P ′′
(
∂ω

∂J3

)2

+ P ′
∂2ω

∂J3∂J3

]
, (F.61)

P ′′ =

(
− sin θS

2
−
√

3 cos θS
2

)
θ′2S + (F.62)(

cos θS
2
−
√

3 sin θS
2

)
θ′′S , and

θ′′S = θ′S
a2
Sω

1− (aSω)2 , (F.63)

in combination with Eqs. (F.2 - F.6, F.34, F.48, F.50, F.54).

Appendix G. Convexity of the maximum principal stress and of the maximum
shear stress in the stress space

Let n1,n2,n3 be the eigenvectors respectively associated to the three ordered eigenvalues
given in Eq. (71) of the stress tensor σ. One has the orthogonal properties

ni · nj =

{
1 if i = j

0 if i 6= j
. (G.1)

The eigenvalue σ1 relates to its eigenvector n1 by the equality

σ · n1 = σ1n1 . (G.2)

Applying the time derivative, the last equation yields

σ̇ · n1 + σ · ṅ1 = σ̇1n1 + σ1ṅ1 . (G.3)

Performimg the inner product of Eq. (G.3) with n1 and using n1 ·σ = σ ·n1 = σ1n1 (because
σ is symmetric) yield

n1 · σ̇ · n1 = σ̇1 , (G.4)
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leading to

∂σ1

∂σ
= n1 ⊗ n1 . (G.5)

Performing the inner product of Eq. (G.3) with n2 and n3 and using the orthonormal
properties between eigenvectors, one successively has{

n2 · σ̇ · n1 + n2 · σ · ṅ1 = σ1ṅ1 · n2 , and

n3 · σ̇ · n1 + n3 · σ · ṅ1 = σ1ṅ1 · n3 .
(G.6)

Using ni · σ = σ · ni = σini for i = 2, 3, Eqs. (G.6) can be rewritten as{
n2 · σ̇ · n1 = (σ1 − σ2) ṅ1 · n2 , and

n3 · σ̇ · n1 = (σ1 − σ3) ṅ1 · n3 .
(G.7)

Since the three eigenvectors form an orthonormal basis with n1 ·n1 = 1 and ṅ1 ·n1 = 0, one
has

ṅ1 = ṅ1 · n1n1 + ṅ1 · n2n2 + ṅ1 · n3n3 = ṅ1 · n2n2 + ṅ1 · n3n3 , (G.8)

or, using Eq. (G.7),

ṅ1 =

[
n2 ⊗ n2 ⊗ n1

σ1 − σ2

+
n3 ⊗ n3 ⊗ n1

σ1 − σ3

]
: σ̇ . (G.9)

Combining Eqs. (G.5, G.9), one has

∂2σ1

∂σ ⊗ ∂σ
= 2

[
sym (n1 ⊗ n2)⊗ sym (n1 ⊗ n2)

σ1 − σ2

+
sym (n1 ⊗ n3)⊗ sym (n1 ⊗ n3)

σ1 − σ3

]
, (G.10)

where sym (•) = 0.5
(
•+ •T

)
for • being an arbitrary second order tensor. Considering an

arbitrary symmetrical tensor β, one always has

β :
∂2σ1

∂σ ⊗ ∂σ
: β = 2

[
(n1 · β · n2)2

σ1 − σ2

+
(n1 · β · n3)2

σ1 − σ3

]
≥ 0 , (G.11)

which implies ∂σ1
∂σ⊗∂σ is positive semi-definite. As a result, σ1 is a convex function.

The maximum shear stress is given by

τmax =
σ1 − σ3

2
. (G.12)
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Using the same procedure as to obtain Eq. (G.10), one has

∂σ3

∂σ ⊗ ∂σ
= −2

[
sym (n3 ⊗ n2)⊗ sym (n3 ⊗ n2)

σ2 − σ3

+
sym (n3 ⊗ n1)⊗ sym (n3 ⊗ n1)

σ1 − σ3

]
, (G.13)

which is a negative semi-definite fourth order tensor. The Hessian of τmax, i.e.

∂2τmax
∂σ ⊗ ∂σ

=
1

2

(
∂2σ1

∂σ ⊗ ∂σ
− ∂2σ3

∂σ ⊗ ∂σ

)
, (G.14)

is thus positive semi-definite. As a result, τmax is a convex function.

Appendix H. Void evolution

Appendix H.1. Void evolution during growth phase

Evolution laws (66) must be integrated in the time interval [tn , tn+1]. With respect to the

values at the previous time step Yn =
[
fn χn W n λn

]T
, the values Y =

[
f χ W λ

]T
at time t are estimated as follows:

• The first equation of the system (66) can be approximated in the explicit form

∆f = (1− fn −∆f) ∆ε̄v + An∆ε̄m + kωφηφω (fn + ∆f) ∆ε̄d , (H.1)

where ∆f = f − fn. The last equation leads to

f = fn + ∆f = fn +
u

v
, (H.2)

where

u = (1− fn) ∆ε̄v + An∆ε̄m + kωφηφωfn∆ε̄d , and (H.3)

v = 1 + ∆ε̄v − kωφηφω∆ε̄d . (H.4)

• The value of W remains constant: W = Wn = W0.

• The value of λ is given by

λ = λn exp (κ∆ε̄d) . (H.5)

• The value of χ follows Eq. (62) as

χ =

(
3fλ

2W0

) 1
3

= χn

(
fλ

fnλn

) 1
3

. (H.6)
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Finally, the derivatives of the porosity f are first estimated as follows:

∂f

∂σ
=

(
1

v

∂u

∂η
− ∆f

v

∂v

∂η

)(
∂η

∂p′
∂p′

∂σ
+

∂η

∂σeq

∂σeq

∂σ

)
(H.7)

+

(
1

v

∂u

∂ω
− ∆f

v

∂v

∂ω

)(
∂ω

∂σeq

∂σeq

∂σ
+
∂ω

∂J3

∂J3

∂σ

)
,

∂f

∂ε̄v

=
1

v

∂u

∂ε̄v

− ∆f

v

∂v

∂ε̄v

, (H.8)

∂f

∂ε̄m

=
1

v

∂u

∂ε̄m

, and (H.9)

∂f

∂ε̄d

=
1

v

∂u

∂ε̄d

− ∆f

v

∂v

∂ε̄d

, (H.10)

where

∂u

∂η
= kωfnφ

′
ηφω∆ε̄d ,

∂v

∂η
= −kωφ′ηφω∆ε̄d , (H.11)

∂u

∂ω
= kωfnφηφ

′
ω∆ε̄d ,

∂v

∂ω
= −kωφηφ′ω∆ε̄d , (H.12)

φ′η = −φη
η

η2
s

, φ′ω = −2ω ,
∂ω

∂σeq

= − 3ω

σeq

,
∂ω

∂J3

=
ω

J3

, (H.13)

∂η

∂p′
=

1

σeq

,
∂η

∂σeq

= − η

σeq

, (H.14)

∂u

∂ε̄v

= (1− fn) ,
∂v

∂ε̄v

= 1 ,
∂u

∂ε̄m

= An +
∂An
∂ε̄m

∆ε̄m ,

∂u

∂ε̄d

= kωφηφωfn ,
∂v

∂ε̄d

= −kωφηφω , (H.15)

and ∂p′

∂σ
, ∂σeq

∂σ
, and ∂J3

∂σ
are given by Eqs. (F.2 - F.4). The derivatives of λ follows

∂λ

∂σ
= 0 ,

∂λ

∂ε̄v

= 0 ,
∂λ

∂ε̄m

= 0 , and
∂λ

∂ε̄d

= κλ . (H.16)

The derivatives of χ can be estimated from Eq. (H.6) as

∂χ

∂σ
=

χ

3f

∂f

∂σ
,
∂χ

∂ε̄v

=
χ

3f

∂f

∂ε̄v

,
∂χ

∂ε̄m

=
χ

3f

∂f

∂ε̄m

, and
∂χ

∂ε̄d

=
χ

3f

∂f

∂ε̄d

+
χ

3λ

∂λ

∂ε̄d

. (H.17)
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Appendix H.2. Void evolution during internal necking phase

Evolution laws (79) must be integrated in the time interval [tn , tn+1]. The two first
equations of the system (79) can be rewritten by

χ̇
χ

= 3
4

λ
χW

(
3

2χ2 − 1
)

˙̄εd ,

Ẇ
W

= 3
4

λ
χW

(
3− 3

2χ2

)
˙̄εd .

(H.18)

Defining Z = χW , one has

Ż =
3

2
λ ˙̄εd . (H.19)

Using the third equation of the system (79), this last equation can be rewritten as

Ż =
3

2κ
λ̇ . (H.20)

The first equation of the system (H.18) leads to

2χ

3− 2χ2
χ̇ =

3

4

λ

Z
˙̄εd =

1

2

Ż

Z
. (H.21)

With respect to the values at the previous time step Yn =
[
fn χn W n λn

]T
, the

values Y =
[
f χ W λ

]T
at time t are estimated as follows:

• The value of λ using Eq. (H.5):

λ = λn exp (κ∆ε̄d) . (H.22)

• The value of Z using Eq. (H.20):

Z = Zn +
3

2κ
(λ− λn) , (H.23)

where Zn = χnWn.

• The value of χ can be estimated from Eq. (H.21) by integrating from tn to t, leading
to

χ =

√
3

2
− Zn

Z

(
3

2
− χ2

n

)
. (H.24)

• The value of W : W = Z
χ

.

• The value of f using Eq. (40).
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Finally, the derivatives ∂Y
∂σ

= 0, ∂Y
∂ε̄v

= 0, ∂Y
∂ε̄m

= 0, and ∂Y
∂ε̄d

are obtained as

∂χ

∂ε̄d

=
3

4

λ

W

(
3

2χ2
− 1

)
, (H.25)

∂W

∂ε̄d

=
9

4

λ

χ

(
1− 1

2χ2

)
, (H.26)

∂λ

∂ε̄d

= κλ , and (H.27)

∂f

∂ε̄d

= f

(
3

χ

∂χ

∂ε̄d

+
1

W

∂W

∂ε̄d

− 1

λ

∂λ

∂ε̄d

)
. (H.28)

Appendix H.3. Void evolution during shear driven coalescence phase

Evolution laws (88) must be integrated in the time interval [tn , tn+1]. Only the second
equation of the system (88) will be used leading to

f = fn , (H.29)

χ = χn +Kχ∆ε̄d , (H.30)

W = Wn , and (H.31)

λ =
χ3W

3γf
. (H.32)

Finally, the derivatives of Y read ∂Y
∂σ

= 0, ∂Y
∂ε̄v

= 0, ∂Y
∂ε̄m

= 0, and ∂Y
∂ε̄d

is obtained as follows

∂f

∂ε̄d

= 0 , (H.33)

∂χ

∂ε̄d

= Kχ , (H.34)

∂W

∂ε̄d

= 0 , and (H.35)

∂λ

∂ε̄d

=
χ2W

γf
Kχ . (H.36)

Appendix I. Numerical implementation of the nonlocal multi-surface model

The numerical implementation of the nonlocal multi-surface model follows the general
framework described in Appendix A. Since the explicit forms of the yield surface Φnl and
of the associative flow normal Np exist, the derivatives of Φnl and of Np with respect to σ,
σY, and Y, can be obtained in a closed form as detailed in Appendix F. The void evolution
laws following Eqs. (66, 79, 88) are integrated during the time step [tn tn+1] as detailed
in Appendix H. The procedure to integrate the nonlocal multi-surface model is given in
Algorithm 1.

73



Algorithm 1 Predictor-corrector scheme of the constitutive behavior during the time step
[tn tn+1].

Input: Fn+1, Z̄n+1, Yn, Fp
n, and Zn.

Output: Pn+1, Zn+1, Fp
n+1, Yn+1, ∂Pn+1

∂Fn+1
, ∂Pn+1

∂Z̄n+1
, ∂Zn+1

∂Fn+1
, and ∂Zn+1

∂Z̄n+1
.

(1) Elastic predictor (see Section Appendix A.1): one has Fp
n+1 = Fp

n, Zn+1 = Zn,
τn+1 evaluated using Eq. (A.1), and Yn+1 evaluated using Eq. (A.2) depending on
the active damage mechanism as described in Appendix H.

(2) Check the onset of plasticity with the yield function Φe defined in Eq. (90):
if Φe ≤ 0 then go to (4); end

(3) Plastic corrector (see Section Appendix A.2):

(i) initialize ∆Ep = 0, ∆µ = 0, and ∆εm = 0;
(ii) estimate τn+1, σn+1, and σYn+1 using Eqs. (A.4, A.5, A.6) respectively;

(iii) estimate Yn+1 using Eq. (A.7) depending on the active damage mechanism as
described in Appendix H;

(iv) estimate r following Eq. (A.11);
(v) check convergence: if ‖r‖ < tolerance(10−6 − 10−10) then go to (4); end
(vi) update the unknowns:

(a) estimate the Jacobian following Eq. (A.15);
(b) update ∆Ep, ∆µ, and ∆εm using Eq. (A.14);
(c) update Zn+1 using Eqs. (A.18);
(d) go to (ii).

(4) Final step (see Section Appendix A.3):

(i) estimate Pn+1 using Eq. (A.20);
(ii) estimate ∂Pn+1

∂Fn+1
, ∂Pn+1

∂Z̄n+1
, ∂Zn+1

∂Fn+1
, ∂Zn+1

∂Z̄n+1
as detailed in Appendix D.
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Appendix J. Path following technique for nonlinear finite element analyses

When dealing with problems involving material softening, the load drops fast under
strain localization and the convergence of a resolution method based on a prescribed force
or displacement cannot be guaranteed, and totally fails if snap-back occurs. In order to
improve the convergence and to handle the snap-back loading path which possibly occurs,
the arc-length path following technique (Riks, 1979, 1992; Geers, 1999) is used.

The weak form of the set of Eqs. (11, 32) completed by the boundary conditions (15, 33)
is obtained by using suitable weight functions defined in the 3+N dimensional space, where
N is the number of non-local variables (here N = 3). Considering a time step [tn tn+1], the
solution at time tn is known and the problem is solved at time tn+1. The weak form is stated
as finding

(
u, Z̄k, k = 1, ..., N

)
∈ [C0 (B0)]3+N such that∫

B0

δu ·P ·∇0 dV = 0 , and∫
B0

[
Z̄k − Zk −∇0 ·

(
Ck ·∇0Z̄k

)]
δZ̄k dV = 0 (J.1)

∀
(
δu, δZ̄k, k = 1, ..., N

)
kinematically admissible .

Applying the divergence theorem and using the boundary conditions, the weak form (J.1)
becomes ∫

B0

P : (δu⊗∇0) dV =

∫
∂NB0

T̄ · δu dA , and∫
B0

(
Z̄kδZ̄k + ∇0Z̄k ·Ck ·∇0δZ̄k − ZkδZ̄k

)
dV = 0 , (J.2)

with k = 1, ..., N .
The displacement field and non-local variables are then approximated in each element

Ωe
0 with the shape function matrix N, such that

u (Ωe
0) = N (Ωe

0) ue , (J.3)

Z̄k (Ωe
0) = N (Ωe

0) Φe
k , (J.4)

δu (Ωe
0) = N (Ωe

0) δue , and (J.5)

δZ̄k (Ωe
0) = N (Ωe

0) δΦe
k . (J.6)

The deformation gradient and the gradient of the non-local variables are directly deduced
as

F (Ωe
0) = B (Ωe

0) ue , and (J.7)

∇0Z̄k (Ωe
0) = B (Ωe

0) Φe
k , (J.8)

where B is the matrix of the gradients of shape function N. Using the finite element
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Algorithm 2 Implementation of the arc-length path following technique from the beginning
(t = t0) to the end of the applied loading (t = tend).

(1) Set initial condition:

(i) set n = 0 and t = t0;
(ii) initialize U0 = U (t0) and a0 = 0;

(iii) compute the external reference force Qext;
(iv) for integration point do

initialize F0 = F (t0), Z̄0 = Z̄ (t0), P0 = P (t0), Z0 = Z (t0), Y0 = Y (t0), and
Fp

0 = Fp (t0);
end

(2) Start from previous converged solution:

(i) set t = tn+1;
(ii) set Un+1 = Un and an+1 = an;

(3) Impose ∆sn+1 in Eq. (J.15);

(4) Apply boundary conditions;

(5) Check convergence of Eq. (J.15): if convergence then go to (11); end

(6) Evaluate constitutive behavior:
for integration point do
compute Fn+1, Z̄n+1, and ∇0Z̄n+1;
compute Pn+1, Zn+1, ∂Pn+1

∂Fn+1
, ∂Pn+1

∂Z̄n+1
, ∂Zn+1

∂Fn+1
, ∂Zn+1

∂Z̄n+1
using Algorithm 1;

end

(7) Assemble Fint in Eq. (J.15);

(8) Check convergence of Eq. (J.15): if convergence then go to (10); end

(9) Correct Un+1 and an+1:

(i) solve linearized form of Eq. (J.15);
(ii) go to (5);

(10) Check the onset of coalescence:
for integration point do
select the void shape evolution laws from conditions (96, 97);
end

(11) if t < tend then n = n+ 1 and go to (2); else go to (12); end

(12) Finish
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approximations (J.3-J.6), the weak form (J.2) is equivalent to the non-linear system of
equations

Fint − Fext = 0 , (J.9)

where the force vectors are given by

Fint =


Fint
u

FZ̄1

...
FZ̄N

 and Fext =


Fext
u

0
...
0

 , (J.10)

in which

Fint
u =

∫
B0

BTP dV , (J.11)

Fext
u =

∫
∂NB0

NT T̄0 dA , and (J.12)

FZ̄k
=

∫
B0

[(
NTN + BTCkB

)
Φk dV −NTZk

]
dV , (J.13)

with k = 1, ..., N .
With the use of the arc-length path following method (Riks, 1979, 1992; Geers, 1999),

Fext in Eq. (J.9) is parameterized as

Fext = aQext , (J.14)

where Qext is the reference external force vector and a is the load factor, which is considered
as an additional unknown of the problem. As a result, Eq. (J.9) results in the following
arc-length nonlinear equation

R (Un+1, an+1) =

[
Fint (Un+1)− an+1Q

ext

αu∆UT
n+1∆Un+1 + ∆a2

n+1 −∆s2
n+1

]
= 0 , (J.15)

where n+1 is the current time index, U is the unknown vector consisting of the displacement
unknowns ue and nonlocal unknowns Φe

k, ∆Un+1 = Un+1 −Un, Fint is the internal force
vector (J.10), ∆an+1 = an+1 − an, αu is the scaling factor, which is used because the units
of U and of a are different, and ∆s is the arc-length increment. The iterative solution of
Eq. (J.15) to find Un+1 and an+1 is detailed in the work of Nguyen and Noels (2014), and
sketched in Algorithm 2.

To avoid volumetric locking which possibly occurs for large plastic flow under low stress
triaxialities, high-order elements with reduced integration are considered. In the present
work, as only plane strain and axisymmetric problems are considered, six-node triangular
elements integrated with 3 Gauss points are used.
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