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SUMMARY: This paper reports the procedure followed by the "LTAS-Vibrations et
Identi�cation des Structures" research group to generate a low order �nite element (F.E.)
model of the GARTEUR SM-AG19 structure proposed as benchmark in the framework
of the European COST Action F3 in structural dynamics. The model is made of beam
elements, local inertia and rigid body elements. First, the correlation of the experimental
data with the results of the F.E. model shows di�erent levels of discrepancies. To perform
local error detection, the size of the measured mode shape vectors is �rst expanded to
the size of the F.E. eigenvectors. Model error localisation is based on the computation of
residual strain energy due to errors in the constitutive equations. Updating parameters are
then selected using eigenvalue sensitivity and local error analyses. The error localisation
procedure is followed by the updating process in order to improve the accuracy of the
FE models. The quality of the results is assessed in terms of accuracy of the response
prediction to structural modi�cations.
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INTRODUCTION

The GARTEUR1 SM-AG19 structure was proposed as benchmark for model updating
methods in the framework of the European COST2 Action F3 in structural dynamics.
Experimental data were provided by the University of Manchester (UK) and by DLR
(German Aerospace Establishment in Göttingen, Germany) [5]. New measurements on
the original GARTEUR testbed and on a modi�ed structure were also provided to the
COST F3 participants by the Imperial College of Science, Technology and Medicine in
London (UK) and by the University of Wales Swansea (UK). The benchmark consists �rst
to generate and to update a F.E. model in the active frequency range from 0 to 65 Hz.
Afterwards, the updated model is used :

(1) to predict the eigenfrequencies and modes beyond the active frequency range;
(2) to predict frequency response functions obtained from other loading conditions;
(3) to predict modal data and/or FRF's of a modi�ed structure.
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Only the works related to items 1 and 3 are reported in this paper.

The local error detection method presented hereafter is formulated from the application
of variational principles commonly used for structural analysis by the F.E. method. When
performing vibration measurements and modal analysis, one obtains displacement �elds
(i.e. experimental eigenvectors) to which can be associated "experimental" stress �elds.
However, these �elds of "experimental" stresses that are deduced from the expansion
of the measured eigenvectors and the �elds of analytical strains can be considered as
independent �elds in the sense that they do not a priori verify the constitutive equations.
The use of a general variational principle allows to release constraints between these two
�elds. Thus the variation on the independent �elds restores the criterion to be minimised
in order to perform a physically-based expansion technique of experimental eigenvectors.

MODEL ERROR LOCALISATION IN STRUCTURAL DYNAMICS

Let us consider a structure and its associated �nite element (F.E.) model and let us
denote by u the analytical (calculated) displacement vector and by v the experimental
displacement vector corresponding to the same resonance frequency. As only a subset of
the analytical co-ordinates are measured, only partition v2 = v of the experimental vector
v is known.

As vectors u and v result from two di�erent sources, they are �rst assumed to be inde-
pendent �elds. For the purpose of " test / F.E. model results " reconciliation, a general
Hamilton's principle [3] can be stated in the form of a variational problem operating on
the �eld variables of the continuous system. It has been shown in [1] that if vectors u and
v a priori verify the following equations :

a priori conditions

8><
>:
K u� !2 M v = 0 (a)

v2 = v (b)
(1)

then the natural conditions of the Fraeijs de Veubeke's two-�eld principle are :

natural conditions

8><
>:
K (u� v) = 0 (a)

u2 = v (b)
(2)

where ! denotes the experimental frequency andM;K are the mass and sti�ness matrices
of the model.

The a priori conditions Eqn 1 require that the analytical/experimental displacement vec-
tors satisfy the structural equilibrium equation and that the partition v2 of the expanded
vector matches the measured co-ordinates. The �rst natural condition Eqn 2-(a) restores
the compatibility condition (i.e. v = u) as it requires that the force vector associated with
the experimental displacement vector v becomes equal to the force vector associated with
the analytical displacement vector u. The second natural condition Eqn 2-(b) takes care
of the best possible enforcement of the measured degrees of freedom by the corresponding
components of the analytical mode shape vector.

The ful�lment of the natural conditions Eqn 2 according to the a priori conditions Eqn 1
results in minimising the following norms

k K (u� v)k and k u2 � v k (3)



The problem of " test / F.E. model results " reconciliation may be rewritten in terms of
the following constrained optimisation problem :

min
u

(u � v)T K (u� v) + � (u2 � v)T KR (u2 � v)

subject to K u = !2 M v

(4)

where � is a weighting coe�cient that may be interpreted as a parameter of con�dence in
the measured data and KR is the reduced sti�ness matrix at the measured co-ordinates.

The objective function in Eqn 4 may be interpreted as the search for the minimum of the
residual strain energy between the analytical and the experimental modes.

If the experimental modes are assumed to be a linear combination of the analytical modes
of the initial F.E. model, the solution of the expansion problem de�ned by Eqn 4 is
straightforward and is known as the Minimisation of Errors on Constitutive Equations
(MECE) ([1], [2]). Di�erent methods for the expansion of the measured mode shapes to
the full set of degrees of freedom of the model are studied in details in reference [2]. It has
been shown in [2] that the System Equivalent Reduction Expansion Process (SEREP) [4]
may be regarded as a simpli�ed MECE solution.

MECE-based Error Localisation

Error localisation methods aim to detect the elements in the F.E. model that are respon-
sible for the discrepancy between analytical results and experimental data. Such methods
can be used both for model updating and for failure detection on actual structures. The
quality of the localisation depends strongly on the quality of the expansion process.

The MECE error localisation indicator consists in evaluating the residual energy associ-
ated with each mode shape vector at a local level (element-by-element or substructure-
by-substructure) i.e.

Es
(k) =

�
us(k) � vs(k)

�T
Ks

�
us(k) � vs(k)

�
(5)

where subscript (k) refers to the kth mode shape vector and s denotes the sth element or
substructure.

APPLICATION TO THE GARTEUR SM-AG19 STRUCTURE

The model error localisation procedure described above was applied to the example of the
GARTEUR SM-AG19 structure proposed by M. Link (University of Kassel, Germany) as
benchmark in the framework of the European COST F3 Action in structural dynamics.
A detailed description of the proposed benchmark is available in reference [5]. Some
preliminary results are presented here using the new test data provided by M. Friswell
(University of Wales Swansea, UK).

The beam F.E. model

The F.E. model of the GARTEUR SM-AG19 structure shown in Fig. 1-(b) was generated
using the commercial �nite element code SAMCEF [6]. It consists of 62 beam elements
with 468 degrees of freedom. The modelling assumptions are :



- the fuselage, the wings, the tail and the drums are modelled using Euler-Bernoulli
beam elements;

- the additional masses at the tips of the drums are modelled using concentrated
masses and inertia;

- rigid body elements are used to reproduce the exact location of the sensors;
- the connections between the fuselage and the wings and between the fuselage and the

tail are modelled using beam elements for which equivalent area moments of inertia
were roughly estimated to take into account the sti�ening e�ect of the junctions.

(a) Location of the 24 accelerometers (b) The beam F.E. model

468 d.o.f.

62 beam elements

2 concentrated inertia

15 rigid body elements

Total mass : 43.217 kg

Fig. 1: The GARTEUR SM-AG19 structure

Table 1: Location of the elements in the model

Element n� Location in the model
1 - 6 Fuselage
7 - 17 Right wing
18 Connection element on the right wing
19 Connection element on the left wing

20 - 30 Left wing
31 - 33 Horizontal tailplane (right side)
34 Connection element on the horizontal tailplane (right side)
35 Connection element on the horizontal tailplane (left side)

36 - 38 Horizontal tailplane (left side)
39 - 41 Vertical tail
42 Connection element on the vertical tail
43 Fuselage/tail connection element
44 Fuselage/wings connection element

45 - 52 Right drum
53 Connection element between the right drum and the wing

54 - 61 Left drum
62 Connection element between the left drum and the wing

The degree of correlation between the predicted results from the initial F.E. model and
the experimental data is given in Fig. 4-(a) in terms of the Modal Assurance Criterion
(MAC) matrix and in Table 3-(a) in terms of resonance frequency deviations. In Table 3,
the average MAC value and the average frequency deviation are de�ned as follows :

MAC =
9X

i=1

MACi

9
and

jdf j

f
= 100

9X
i=1

jfi � f
exp
i j

9 f
exp
i

(6)



An inversion is observed in the pairing of modes n� 5 and 6 and modes n� 9 and 10 between
the analytical and the experimental results (Fig. 4-(a)). The deviations between the initial
F.E. model results and the experimental results can be assigned to the modelling of joints
and interconnections which remains a di�cult task. As most of the model uncertainties lies
in the modelling of the joints (wings/fuselage, tail/fuselage, horizontal/vertical tails), the
area moments of inertia of the connecting beam elements were �rst chosen as parameters
for a pre-updating of the model (parameters n� 9, 10, 12-14, 17-22 in Table 2). To enhance
the quality of the initial F.E. model i.e. to pair all the modes in the frequency range of
interest, a �rst correction was performed using only this �rst set of parameters.

Localisation of Errors in the F.E. Model

The results of the error localisation procedure based on the MECE method are shown in
Fig. 2 for the pre-updated model. In this particular example, only the modes that corre-
late well between the model and the measured data were used for expansion. Dominant
modelling errors are identi�ed on the wings and on the vertical tail as shown in Fig. 2.
An asymmetry between the right and the left wings is observed mainly for modes n� 3, 4,
5 and 7.

20 40 60
0

500

1000

1500

2000

20 40 60
0

100

200

20 40 60
0

50

100

150

20 40 60
0

100

200

300

20 40 60
0

100

200

300

400

20 40 60
0

1000

2000

3000

20 40 60
0

100

200

20 40 60
0

20

40

60

20 40 60
0

500

1000

1500

mode n� 1 mode n� 2 mode n� 3

mode n� 4 mode n� 5 mode n� 6

mode n� 7 mode n� 8 mode n� 9

(abscissa : element number referenced in Table 1.)

Fig. 2: Distribution of the strain residual energy



Selection of Updating Parameters

The parameterisation of the F.E. model is given by

M =M0 +
npX
j=1

pj
@Mj

@pj
(7)

and

K = K0 +
npX
j=1

pj
@Kj

@pj
(8)

where Mj , Kj are the mass and sti�ness matrices of the jth element substructure and
the coe�cients pj ; (j = 1; : : : ; np) are the relative variations on physical parameters such
as Young's modulus, area moments of inertia of the beams, mass density, etc.

The eigenvalue sensitivities are directly calculated from

@!2
i

@pj
=
uT(i) (K� � !2

i M
�) u(i)

uT(i) M u(i)
(9)

with

K� =
@K

@pj
and M� =

@M

@pj
(10)

where !i and u(i) denote the ith eigenvalue and eigenvector of the F.E. model. Note that
the sensitivities shown in Fig. 3 are normalised by dividing Eqn 9 by !2

i .

A set of 22 parameters were investigated in the sensitivity analysis for the 9 elastic modes
in the active frequency range. From the results of Fig. 3 and from the localisation
of residual strain energy (Fig. 2), a second set of local design parameters was chosen.
Only seven parameters with high sensitivity values and relative independence were �nally
retained (parameters n� 3-8 and 15 of Table 2).

Model Updating

The updating procedure was performed within the task manager and optimisation pro-
gram BOSS-QUATTRO [6]. The objective function to be minimised is de�ned as follows :

1

2

 
10X
i=1

(1 �MACi)

10
+

10X
i=1

1

10

jfi � f
exp
i j

f
exp
i

!
(11)

whereMACi refers to the paired MAC value corresponding to the ith experimental mode.

As the resonance frequency associated with mode n� 10 is very close to the active frequency
range, it was decided to perform the model updating using the �rst ten modes to avoid
pairing problems.

The optimisation solver follows the Method of Diagonal Quadratic Approximation (MDQA)
in which the Hessians of the sequential quadratic problems are approximated by diagonal
matrices. This method is known to be often a good compromise between the convergence
order and the computational cost.

The MAC matrix between the analytical and the experimental modes of the updated F.E.
model is shown in Fig. 4-(b) and the corresponding resonance frequency deviations are
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Fig. 3: Eigenvalue sensitivity analysis

listed in Table 3. Note that the largest deviation (of 5.13 %) is observed for the �rst
mode despite an excellent value of the corresponding MAC (0.9799). This deviation may
be assigned to the lack of accuracy in the de�nition of the additional masses on the wing
tips and of the viscoelastic layer. In this work, the additional masses were assumed to
be known exactly and were not chosen as updating parameters. Table 3 and Fig. 4 show
that the considered model is not suitable to well predict modal data beyond the active
frequency range i.e. for modes n� 11 to 14.

Prediction of Modal Data of Modi�ed Structures

Two structural modi�cations are considered here, namely a mass added to the tail (mod-
i�cation n� 1) and a mass added to the wing tips (modi�cation n� 2). The natural
frequencies of the structure with these modi�cations show signi�cant changes. For the
�rst modi�cation, the mode order has changed and interactions between some modes have
appeared. The prediction of the modal data of the GARTEUR structure with each of
its modi�cations and using the updated model is reported in terms of natural frequency
deviations in Table 4 and in terms of MAC values in Fig. 5. The predicted results using
the updated F.E. model are found to be in good agreement with the experimental data.



Table 2: List of parameters

N� Parameter Correction Location Element
(%) n�

1 � 0 density of the wings 7 - 18
Fuselage 1-6
2 IXX 0 torsional area moment of inertia

Right wing 7-17
3 IXX 10.5 bending area moment of inertia about x-axis
4 IY Y 28.3 torsional area moment of inertia
5 IZZ 5.5 bending area moment of inertia about z-axis

Left wing 20-30
6 IXX 1 bending area moment of inertia about x-axis
7 IY Y 25.8 torsional area moment of inertia
8 IZZ 4.2 bending area moment of inertia about z-axis

Connection element on the right wing 18
9 IXX 0 bending area moment of inertia about x-axis
10 IY Y 0 torsional area moment of inertia
11 IZZ 100 bending area moment of inertia about z-axis
Connection element on the left wing 19
12 IXX 0 bending area moment of inertia about x-axis
13 IY Y 0 torsional area moment of inertia
14 IZZ 30.8 bending area moment of inertia about z-axis
Vertical tail 39 - 41
15 IXX 0.2 bending area moment of inertia about x-axis
16 IZZ 42.1 torsional area moment of inertia
Connection element on the vertical tail 42
17 IXX 11.1 bending area moment of inertia about x-axis
18 IZZ 0.1 torsional area moment of inertia
Connection elements on the horizontal tailplane 34 - 35
19 IXX 0.1 bending area moment of inertia about x-axis
20 IY Y 0 torsional area moment of inertia
Fuselage/wings connection element 44
21 IZZ 78.8 torsional area moment of inertia
Fuselage/tail connection element 43
22 IZZ 0.1 torsional area moment of inertia

CONCLUSION

This paper has reported preliminary results obtained on the GARTEUR SM-AG19 struc-
ture proposed as benchmark in the framework of COST Action F3 in structural dynamics.
A F.E. beam model of very low order was generated to represent experimental data in the
active frequency range from 0 to 65 Hz. It was shown that this model was able to predict
structural modi�cations but was not convenient to reproduce modal data with accuracy in
the passive frequency range (beyond 65 Hz). In order to improve the model, the objective
function used for model updating should be extended to the full set of modes and new
updating parameters should probably be chosen (tip masses, densities, etc). Further work
will consider a higher order model using shell elements.



Table 3: Resonance frequency deviations

(a) Initial model
Mode Exp. F.E. MAC jdf=f j

n� Hz Hz %
1 6.5480 5.9080 0.9798 -9.7740
2 16.6100 15.9400 0.9542 -4.0337
3 34.8800 31.4100 0.6878 -9.9484
4 35.3600 31.4500 0.6952 -11.0577
5 36.7100 35.4300 0.7991 -3.4868
6 50.0900 47.8400 0.9662 -4.4919
7 50.7200 46.4700 0.9548 -8.3793
8 56.4400 57.0200 0.9921 1.0276
9 65.1400 61.9800 0.8843 -4.8511

0.8793 6.3389

10 69.6400 59.7300 0.9709 -14.2303
11 105.5000 96.4100 0.9838 -8.6161
12 134.3000 96.4100 0.7755 -28.2130
13 134.7000 122.7000 0.7946 -8.9087
14 139.3000 200.5000 0.0191 43.9340

(b) Updated model
Mode Exp. F.E. MAC jdf=f j

n� Hz Hz %
1 6.5480 6.2120 0.9799 -5.1313
2 16.6100 16.6100 0.9558 0
3 34.8800 34.9900 0.9634 0.3154
4 35.3600 35.3100 0.9482 -0.1414
5 36.7100 36.3600 0.9413 -0.9534
6 50.0900 50.2900 0.9662 0.3993
7 50.7200 50.6900 0.9467 -0.0591
8 56.4400 57.7000 0.9889 2.2325
9 65.1400 64.5300 0.9069 -0.9364

0.9553 1.1299

10 69.6400 70.3100 0.9702 0.9621
11 105.5000 97.8400 0.9850 -7.2607
12 134.3000 97.8400 0.7765 -27.1482
13 134.7000 124.1000 0.7718 -7.8693
14 139.3000 228.3000 0.3963 63.8909

6.548 16.61 34.88 35.36 36.71 50.09 50.72 56.44 65.14 69.64 105.5 134.3 134.7 139.3 145.9 155.8
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Fig. 4: MAC matrices between the analytical and experimental modes

REFERENCES

[1] Collignon P., Golinval J.C., "Finite Element Model Updating and Failure Detection
based on Constitutive Equation Errors ", 2nd International Conference in Structural
Dynamics Modelling : Test, Analysis, Correlation & Updating, Proceedings of the
DTA/NAFEMS Conference held in Lake Windermere, Cumbria, UK, 3-5 July 1996,
pp. 307-317.

[2] Pascual R., "Model Based Structural Damage Assessment Using Vibration Measure-
ments ", Ph. D. Thesis, University of Liège, Belgium, 1999.

[3] Fraeijs de Veubeke, "Displacement and EquilibriumModels in Finite Element Method
", Stress Analysis, Ed. Zienkiewicz, John Wiley, 1965, Chap 9.

[4] O'Callahan J., Avitabile P., "System Equivalent Reduction Expansion Process
(SEREP) ", Proceedings of the 7th IMAC, Las Vegas, Nevada, 1989, pp. 29-37.



Table 4: Resonance frequency deviations (Structural modi�cations)

(a) Modi�cation n� 1
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n� Hz Hz %
1 6.5410 6.2100 0.9963 -5.0604
2 13.9400 13.7500 0.9864 -1.3630
3 32.3600 30.5200 0.9729 -5.6860
4 35.0900 35.0800 0.7712 -0.0285
5 35.5200 35.4000 0.9914 -0.3378
6 38.1000 38.4600 0.9798 0.9449
7 48.6800 47.6300 0.8875 -2.1569
8 50.1700 50.3000 0.9876 0.2591
9 56.4600 57.8400 0.6586 2.4442

0.9146 2.0312

10 58.1600 57.0100 0.8460 -1.9773
11 78.5100 75.1600 0.9218 -4.2670

(b) Modi�cation n� 2
Mode Exp. F.E. MAC jdf=f j

n� Hz Hz %
1 6.3080 5.9380 0.4862 -5.8656
2 16.4300 16.4000 0.9308 -0.1826
3 27.2800 28.1400 0.9655 3.1525
4 35.3600 35.2800 0.9176 -0.2262
5 36.4600 36.1800 0.8870 -0.7680
6 48.9200 48.8700 0.9090 -0.1022
7 50.0100 50.0800 0.9551 0.1400
8 54.3400 55.5300 0.9736 2.1899
9 64.5400 63.6900 0.9127 -1.3170

0.8819 1.5493

10 69.5500 70.2900 0.9536 1.0640
11 105.1000 97.2100 0.8987 -7.5071
12 134.1000 124.0000 0.9445 -7.5317
13 144.3000 144.2000 0.9017 -0.0693
14 155.8000 155.9000 0.8813 0.0642

6.541 13.94 32.36 35.09 35.52 38.1 48.68 50.17 56.46 58.16 78.51

6.21 

13.75

30.52

35.08

35.4 

38.46

47.63

50.3 

57.01

57.84

75.16

Exp (Hz)

F
E

 (
H

z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

6.308 16.43 27.28 35.36 36.46 48.92 50.01 54.34 64.54 69.55 105.1 134.1 144.3 155.8

5.938

16.4 

28.14

35.28

36.18

48.87

50.08

55.53

63.69

70.29

97.21

124  

144.2

155.9

Exp (Hz)

F
E

 (
H

z)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Modi�cation 1 Modi�cation 2

Fig. 5: MAC matrices between the analytical and experimental modes of the modi�ed
structures

[5] Degener M, Hermes M., "Ground Vibration Test and Finite Element Analysis of the
GARTEUR SM-AG19 Testbed ", Deutsche Forschungsanstalt für Luft- und Raum-
fahrt e. V., Institut für Aeroelastik (23200), October 1996.

[6] SAMCEF v8.1-2 & BOSS-QUATTRO v2.1, cSamtech s.a.


