
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Damage Localisation Using Principal Component Analysis of 
Distributed Sensor Array 

 
Pascal De Boe(1), Jean-Claude Golinval(2) 

 
LTAS – Vibrations et Identification des Structures, 

Université de  Liège 
Chemin des chevreuils, 1, Bât. B52 

B-4000 Liège, Belgium. 
Phone : +32 4 366 48 53   Fax : +32 4 366 48 56 

(1) pdeboe@ulg.ac.be, (2) jc.golinval@ulg.ac.be 
 



 
 
 
 
 
 
 
 
 
 
 
 
 

ABSTRACT 

 The spatial information given by the distributed sensors (e.g., 
piezoelectric laminates) can be used to forecast structural damage on 
localised critical spot. It is well known that a localised structural damage with 
relative small amplitude does not affect significantly the modal response of 
the structure, at least at low frequencies. Nevertheless, a local de-
lamination or electrode deterioration at the distributed sensor level will show 
significant changes on the response of the sensor by modifying its apparent 
electromechanical coupling. Assuming that the number of sensors is greater 
than the number of involved structural modes, a local structural damage, 
with relative small amplitude, will only affect a particular distributed sensor 
without affecting significantly the response of the others. By applying a 
principal component analysis (PCA) on the sensor time responses, it is 
possible to see that any change of one particular sensor electromechanical 
coupling factor will affect the subspace generated by the complete sensor 
response set. The subspace generated with the damaged structure can 
then be compared with the subspace of an initial state in order to diagnose 
damage or not. 

INTRODUCTION 

 This paper investigates the problem of structural health monitoring by 
means of distributed piezoelectric sensors. These last ones are very well 
convenient for applications on plate like structures. The success of 
piezoelectric materials comes from their relative low-cost and lightweight 
properties  and from the fact that piezoelectric laminas can  be used  as well 
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in actuator mode as in sensor mode (Lee [1]). Most of the damage detection 
methods, with piezoelectric lamina sensors, are based on the impedance 
structural health monitoring. The basic principle is to track the high 
frequency electrical point impedance of a piezoelectric material bounded 
onto a structure (Kabeya et al. [2]). However, this technique presents some 
difficulties to locate damages, needs high frequency (typically > 50 kHz) 
data acquisition system and, in general, has to be applied on demand. 
 Fatigue cracks resulting from permanent vibrations due to, e.g., seismic 
excitations, can lead to a severe reduction of the structural integrity. It is 
then useful to have an on-line monitoring system in order to warn an 
operator of the structural damages. A preventive maintenance phase could 
then be initiated before the cracks achieve a critical damage level. The 
problem is not an easy task. Indeed, it is well known that a localised 
structural damage with relative small amplitude does not affect significantly 
the modal response of the structure, at least at low frequencies (Friswell 
and Penny [3]). For example, if a cantilever beam contains a crack, the first 
bending mode will look very much like the first mode of the undamaged 
structure. Model-based techniques are then very difficult to be implemented 
to detect a low damage level. 
 Compared to classical accelerometer sensors, piezoelectric laminas have 
the advantage to cover an appreciable surface. A strategically positioned 
lamina, at a zone with high probabilities of failure, has then the ability to 
'catch' damages: a local de-lamination (or an electrode deterioration) at the 
sensor level will then show significant changes on the response of the 
sensor by modifying its apparent electromechanical coupling. Assuming that 
the number of sensors is greater than the number of involved structural 
modes, a local damage, with relative small amplitude, will only affect a 
sensor without affecting significantly the response of the others. By applying 
a Principal Component Analysis (PCA) on the sensor time responses, any 
change of one particular sensor electromechanical coupling factor will then 
affect the subspace generated by the complete sensor response set. 
 While the control and chemical engineering communities have considered 
the PCA for the sensor validation problem, it had not caught the attention of 
structural dynamics community until recently. Principal Component Analysis, 
also know as Karhunen-Loeve decomposition and Proper Orthogonal 
Decomposition (POD), is emerging for the parameter identification of non-
linear mechanical systems (Lenaerts et al. [4]). By inspecting subspace 
angles, Friswell and Inman [5] have studied the problem of sensor validation 
for smart structures. This paper will present an on-line, low amplitude 
damage detection technique by using PCA of piezoelectric lamina 
responses. This method does not require the knowledge of neither the 
structural excitations nor a structural model. The damage detection and 
localisation technique is illustrated on a plate instrumented by several piezo-
laminates and excited by external loads. 
 



DYNAMICS OF PIEZO-STRUCTURES 

 In the case of a structure instrumented with piezoelectric sensor/actuator, 
electromechanical relationships are added to the dynamics of the system to 
represent the contributions of the electrical degrees of freedom linked to the 
piezoelectric actuator and sensor (Saunders et al. [6]): 
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 The first equation is commonly called the actuator equation and the 
second, the sensor one. The actuator equation exhibits the force generated 
by the piezoelectric actuator through the electromechanical coupling 
actuator matrix aΘ  and the electrical potential av  applied between the 
electrodes of the element. The sensor equation shows the relationship 
existing between the mechanical degrees of freedom x  and the electrical 
charges q  or potentials sv  through the electromechanical coupling matrix 

TsΘ and the capacitance pC  of the sensor. Only the portion of the lamina that 
is covered by the surface electrodes will affect the sensor response. When 
an external force f  acts on the structure, the induced lamina signal depends 
on the electrical conditions applied at the electrode level: 
 
• Case 1: open-circuit ( 0=q ) 
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The corrective stiffness term Ts
p

s C Θ⋅⋅Θ −1  is usually neglected when the 
partition of piezoelectric elements is small compared to the structure. This 
assumption implies that the structural dynamics is not modified by the 
piezoelectric effect. 
 
• Case 2: short-circuit ( 0=sv ) 
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In this case, the capacitance of the sensor is eliminated from the output 
measurement by means of an appropriate analog circuitry (e.g., a charge 
amplifier). 
 
 If we assume a proportional damping and that the structure has no rigid 
body modes, we obtain easily the spectral development of the static 
flexibility matrix (Géradin et al. [8]): 
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Taking into account (4), for a limited frequency bandwidth ( nm ωωω …1+<< ), 
the modal expansion of a sensor / actuator transfer function can be split 
between the contribution of the low frequency modes ( mi ≤ ) which respond 
dynamically, and the high frequency modes, also called the residual modes, 
which respond statically: 

 ( ) ( ) ( )
( ) ( ) ( ) ( )

∑∑
=

−

= ⋅
⋅Φ⋅Φ⋅

−⋅⋅+
⋅⋅⋅⋅+−⋅

⋅Φ⋅Φ⋅
≅

m

i ii

T
ii

m

i iiii

T
ii ASAKS
j

ASH
1

2
1

1
22 2 ωμωωζωωμ

ω  (5) 

with ( )ωH  is the transfer function between sensor and actuator, 
  iΦ  is the ith structural mode, 
  i

t
ii M Φ⋅⋅Φ=μ  is the modal mass associated to ith mode, 

  iω  is the ith frequency of resonance, 
  iζ  is the critical damping associated to ith mode, 
  S  is the influence vector of the sensor, depending of the sensor type 
(see table I), 
 

TABLE I. INFLUENCE SENSOR VECTOR 
 Influence vector S  

Displacement at ddl k  

)010(
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Piezo – charge amplifier TsΘ  
Piezo – voltmeter Ts

pC Θ⋅− −1  

 
  A  is the influence vector of the actuator, depending of the actuator 
type (see table II). 
 

TABLE II. INFLUENCE ACTUATOR VECTOR 
 Influence vector A  

Force applied at ddl l  
T

thl
)010(

 

Piezo aΘ−  

THEORY OF PRINCIPAL COMPONENT ANALYSIS 

 The summation given in (5) shows that, for limited frequency bandwidth 
(e.g., by means of anti-aliasing filters required for data sampling), the 
piezoelectric sensor responses are constrained to lay in a subspace 
generated by the lower structural modes and the residue of higher 
frequency modes: 
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where rΦ  is the global residue of the higher frequency modes. 
 
This important fact suggests that the subspace covered by the structural 
responses is independent of the history of the excitation, at least for 
broadband frequency spectrum. 

Computation of the Principal Component Subspace using SVD 

 In fact, it is not necessary to identify the dynamic modes if we are able to 
compare the response subspaces between the initial and damaged states. 
The singular value decomposition (SVD), which is related to the PCA, is a 
powerfully useful and straightforward approach to compute a modal metrics 
of test data. This paper assumes that the number of sensor M  is greater 
than the number of involved structural modes 1+m  in order to assure a 
redundancy of data (e.g., 2+≥ mM ). Let )(tq  denote a discrete block time-
history, where q  is a vector containing the b  sampled responses of the M  
piezoelectric sensors (generally, Mb >> ): 
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the SVD of the block data Q  gives: 

 TVUQ Σ=  (8) 

U  is an orthonormal matrix ( MxM ) where the columns lay a geometrical 
subspace generated by the sensors. Each columns of U  are associated with 
the time factors V  ( NxN ), and with singular values sorted in descending 
order, given by the main diagonal of Σ  ( Mxb ). The singular values of Q  can 
be interpreted as the energy associated with the principal components of U ; 
this means that the structure will react mainly to the directions of the 
principal components associated with the highest energies. If we are only 
interested in the subspace of the responses, it will be computationally more 
efficient to calculate the SVD of: 

 TT UUQQ 2Σ=  (9) 

 Theoretically, only the first 1+m  eigenvalues of Q  are non-zeros. 
Nevertheless, we know that test data contains redundant, linearly 
dependent information and also noise. Sensor noise in the test data will 
place constraints on the conditioning which are much more stringent than 
encountered in purely analytical problems. Hopefully, since noise has much 
lower energy than the structural modes, its effect will be easily detected and 
discarded from the principal component subspace. In practice, components 
of U  associated with eigenvalues presenting an order of magnitude much 
lower than others has to be discarded of the principal component base. 



Angles between Subspaces 

 One way to compare subspace is to use the concept of angle between 
two subspaces. In three dimensions, it is easy to visualise the angle 
between one vector and one plane or between two planes (see figure 1). 
This method is then able to quantify the spatial coherence between two 
time-history blocks of an oscillating system. 
 
 

 θ 

 
 

Figure 1. 3-D geometrical interpretation of the concept of angle between subspaces 
 
 

Golub et al. [7] describe the concept and the computation of angle between 
subspaces. Let MxpA ℜ∈  and ( )qpB Mxq ≥ℜ∈  each with linearly independent 
columns, there will be q  principal angles between the subspaces spanned 
by A  and B . These principal angles are computed by first applying a QR 
factorisation on A  and B , the columns of AQ  and BQ  will then define 
orthonormal bases of A  and B  respectively: 
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The singular values of B
T
AQQ  compute the q  cosines of the principal angles 

iθ  between A  and B : 
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The largest angle quantifies then how the subspaces A  and B  are globally 
different. 

Detection of the damaged sensor 

 As already mentioned in the introduction, [5] gives the general principle 
for the detection of a damaged sensor by considering the subspace of the 
response compared to the subspace generated by the lower modes 
(assumed known with accuracy) of the structure. The idea of this paper is to 
rather compare response subspaces between initial and current states. 



 The problem is reduced to identify which sensor set affects the sensor 
subspace. Sensors are then split into two groups: those assumed damaged 
and those assumed undamaged. By remembering that small damages do 
not affect significantly the structural dynamics but affect directly the 
response of the involved sensor, the undamaged sensor subspace will not 
exhibit appreciable differences between initial and damaged states. Of 
course, we do not know which sensors are damaged and, therefore, each 
potential subset of sensors should be tested. Practically, the identification of 
one damaged sensor is performed by measuring the maximum subspace 
angle between the pre- and post-damaged states and by successively 
taking out each lamina from the sensor set; the maximum subspace angle 
will be minimum when the damaged lamina is discarded from the working 
sensor subset. 

NUMERICAL EXAMPLE 

 The method for damage detection, presented in this paper, has been 
applied on a numerical example. The main structure consists of an 0.16 x 
0.08 x 0.001 m stainless steel plate, fixed in 3 points (see figure 2(a)) and 
fitted with 9 PZT-lamina sensors (0.003 x 0.002 x 0.000254 m), assumed 
connected to charge amplifiers.  The  tested structure is modelled  using the 
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Figure 2. Structural finite element model (a) with damage details (b) 
 
 
finite element technique. The model uses conventional 3-D isoparametric 
solid elements, improved by adding incompatible second order shape 
functions associated to node-less degrees of freedom. This technique has 
been introduced by Bathe and Wilson [9] and applied to piezoelectric 
structure by Tzou and Tseng [10]. The structure presents 5 modes in the 
band of frequencies [0-600 Hz] (see table 3). Modal damping of 0.5% is 

F1 

F2 
S9 



included. Randomly distributed noise with amplitude of 1% of the maximum 
responses is added to each sensor. Responses are sampled in 1024 
equally spaced time within a frequency band of [0-600 Hz]. 
 
 

TABLE III. STRUCTURAL RESONANCE FREQUENCIES 
Undamaged 1/12 damaged 3/12 damaged 

137.7 Hz 137.6 Hz 136.8 Hz 

171.0 Hz 170.7 Hz 169.9 Hz 

465.9 Hz 464.7 Hz 461.8 Hz 

478.8 Hz 478.7 Hz 478.5 Hz 

582.1 Hz 581.8 Hz 581.0 Hz 

 
 
 Figure 3(a) compares, at 5 blocks of data, the lamina response subspace 
angles corresponding to two different white-noise excitations, the structure 
being excited at one point labelled F1 on figure 2. This confirms that the 
subspace covered by the structural responses is independent of the history 
of the excitations. The response subspaces between a white-noise random 
excitation and an impact excitation at F2 (figures 4(a) and 4(b) respectively) 
are also compared in figure 3(b). The time-dependent decreasing 
correlation between subspaces is explained by the increasing influence of 
noise along with the time. 
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Figure 3. Influence of excitation positions (a) and excitation shapes on subspace angles (b) 
 
 
 A local de-lamination on sensor 9 (see details in figure 2(b)) has been 
introduced for two damage levels: delaminated / healthy sensor surface 
ratio of 1/12 and 3/12. Non-linear effects associated with damage are 
neglected. Table 3 gives the first structural resonance frequencies between 
the different damage levels and shows that delaminations have a negligible 
influence in terms of modal data. Figures 5(a) and 5(b) present the 



identification of the damaged lamina, by measuring the subspace angles 
between the pre- and post-damaged states and by testing each potential 
subsets of working sensors. In these two figures, it appears that subspace 
angle is minimum when sensor 9 is discarded from the working sensor 
subset. 
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Figure 4. Piezo lamina responses, structure subject to white noise (a) and impact (b) 
excitations 
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Figure 5. Subspace angle comparisons between initial and damage states: 1/12 (a) and 
3/12 (b) of damage on sensor 9 

CONCLUSIONS 

 This paper outlines the use of piezoelectric laminas as sensor for the 
localisation of low amplitude structural damages. This method does not 
require the knowledge of neither the structural excitations nor a structural 
model. A strategically positioned lamina, at a zone with high probability of 
failure, has the ability to 'catch' damages: a local de-lamination (or an 
electrode deterioration) at the sensor level will then show significant 
changes on the sensor response. Using the concept of angle between 
subspaces, the problem is reduced to identify which sensor set affects the 

* * 



subspace covered by the sensor responses. Sensors are then split into two 
groups: those assumed damaged and those assumed undamaged, each 
potential subset of sensors being tested. 
 This method gives good results and is able to detect very small damages 
such as a local de-lamination that would not be detected using methods 
based on modal data changes. Moreover, this method presents a quiet 
cheap computational cost and, therefore, seems adapted for the monitoring 
of structures with, e.g. a large number of embedded sensors. Nevertheless, 
it is important to point out that the thermal sensitivity of piezoelectric laminas 
could be a major drawback if thermal compensation is not applied. 
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