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Au cours de leur vie, les appareils d'éclairage routier (ou luminaires) sont soumis à des excitations environnementales induites par le 
trafic et le vent.  Les phénomènes de fatigue engendrés par les vibrations ambiantes de longue durée sont la cause principale des 
ruptures dans les luminaires montés sur poteau.  Les fabricants d'appareils d'éclairage routier sont concernés au plus haut point par 
les tests de vibration de leurs prototypes afin de déterminer s'ils peuvent supporter, sans être endommagés, l'environnement vibratoire 
auquel ils sont soumis durant leur vie.  Jusqu'à présent, les tests de qualification sont réalisés selon différentes normes qui ne sont pas 
spécifiques aux appareils d'éclairage routier.  Ces normes n'ont pas la même sévérité de sorte que le choix de l'une plutôt qu'une autre 
n'est pas bien défini.   
L'objectif de la recherche présentée ici est de proposer une nouvelle méthode pour quantifier la sévérité de différents environnements 
vibratoires.  Pour cela, différents critères de sévérité sont d'abord définis : ils sont basés sur le spectre de robustesse, le spectre de 
dommage par fatigue et le spectre d'énergie dissipée.  Grâce à ces critères, la sévérité de différentes normes comme IEC 68-2-6, 
ANSI C 136-31, … peut être estimée et comparée.  Afin de choisir le critère le plus approprié, l'identification et la connaissance des 
processus de rupture sont de première importance.  Comme illustration, la méthode est appliquée au cas simple d'une poutre excitée 
par la base.  Les tests de vibration sont réalisés au moyen d'un excitateur électrodynamique dans le but de valider l'approche 
théorique.   
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The objective of the paper is to present a methodology to quantify the severity of vibration environments.  The first step 
consists in reviewing the possible standards used for the vibration testing of luminaires such as the International 
Electrotechnical Commission IEC 68-2-6 and the American National Standard for Roadway Lighting ANSI C 136-31.   
 
The second step deals with the definition of severity criteria built on a base excited one degree of freedom reference 
system : maximax response spectrum, fatigue damage spectrum or dissipative damage spectrum.  To choose the most 
appropriate criterion, the identification and knowledge of failure processes are of prime importance.  The generalisation 
of fatigue damage spectrum computation to multi-degree-of-freedom systems is also presented.  The methodology uses 
the stress time response provided by a finite element model to compute damage using a cycle counting method 
(rainflow).   
 
Finally, the methodology is validated on the example of a clamped beam submitted to vibration testing on an electro-
dynamic shaker.  Stress measurements are obtained by means of strain gauges and the damage is also computed using 
the rainflow method.   
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During their lifetime, street lighting devices are subject to environmental excitations induced by the traffic and the wind.  
Fatigue effects due to ambient vibrations of long duration are the main cause of structural failures in outdoor pole 
mounted luminaires.   
 
Street lighting manufacturers are very much concerned with vibration testing of luminaire prototypes in order to 
determine if they can support the vibration environment expected during their lifetime without being damaged [1].  Up 
to now, qualification tests are performed according to different standards which are not specific to street lighting 
devices.  These standards do not have the same severity so that the choice of one standard rather than another is not 
obvious.   
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This standard describes a testing method applicable to components, equipment and other articles which, during 
transportation or in service, may be subjected to conditions involving vibration of a harmonic pattern, generated 
primarily by rotating, pulsating or oscillating forces, such as occur in ships, aircraft, land vehicles, rotorcraft and space 
applications or are caused by machinery and seismic phenomena [2].  It consists basically of submitting a specimen to 
sinusoidal vibration over a given frequency range or at discrete frequencies for a given period of time.  The object of the 
standard is to provide a standard procedure to determine the ability of components, equipment and other articles to 
withstand specified severities of sinusoidal vibration.  It is emphasised that vibration testing always demands a certain 
degree of engineering judgement, and both the supplier and purchaser should be fully aware of this fact.  The main part 
of this standard deals primarily with the methods of controlling the test at specified points, and gives, in detail, the 
testing procedure.  The requirements for the vibration motion, choice of severities including frequency ranges, 
amplitudes and endurance times are also specified; these severities representing a rationalised series of parameters.  The 
relevant specification writer is expected to choose the testing procedure and values appropriate to the specimen and its 
use.  Today, one can find some data and indications in previous proposals.   
 
Some 26 years ago, introduction of vibration tests in the IEC 60598 standard [3] (Luminaires - General requirements 
and tests) has been discussed by IEC Experts Working Group LUMEX.  This resulted  in a project with two options : a 
first procedure aligning with IEC 68-2-6, reproducible and therefore suitable for possible introduction in a standard and 
a second procedure making use of a specific testing equipment like a shaking machine, simple but less reproducible than 
the first procedure.  At the Brussels meeting (1977) of IEC-Technical Committee N°. 34 (lamps and related equipment)-
Sub-committee 34D (luminaires), it was decided to keep the proposal at the Secretariat stage for information only.   
 
In the above options, the first proposal suggested that :  
 
��in view of the difficulties of rigorously defining resonance, an endurance test should be made by sweeping over a 

sinusoidal frequency range (a random vibration test is considered unnecessarily sophisticated for the luminaires 
covered by the specification); 

��definitions and values for the various parameters should be taken from IEC Publication 68-2-6; 
��short and rigid mounting piece should be used such that no resonance of this mounting piece (without luminaire) 

should occur within 150 % of the maximum test frequency; 
��the control point should be as close as possible to the fixing point; 
��the sweep rate should be one octave per minute; 
��the test should be performed along each structural axis. 
 
In 1998, the introduction of a specific vibration test for rough service luminaires in the IEC standard 60598 was voted 
by the International Electrotechnical Commission.  It means specific requirements for luminaires used in rough 
environment situations such as engineering workshops, building sites and similar applications.   
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The vibration requirements are : 
 
��a test is made by sweeping over the sinusoidal frequency range [10-55-10] Hz; 
��the imposed displacement must be constant and equal to 0.35 mm; 
��the duration of the endurance test is 30 minutes; 
��the sweep rate is one octave per minute; 
��the test must be performed along the most onerous direction. 
 
Taking into account the different remarks mentioned in this paragraph, an example of test following IEC 68-2-6 
requirements is given in Table 1.   
 
������7KH�$PHULFDQ�1DWLRQDO�6WDQGDUG�IRU�5RDGZD\�/LJKWLQJ�$16,�&��������6WDQGDUG�
 
The USA ANSI C 136-31 new standard (2001) proposes that a requirement for a minimum vibration withstand 
capability be considered for luminaires for road and street lighting.  According to the proposal, there are factors that 
may cause externally induced vibration effects but which may not be adequately covered by the application of a static 
load test.  For this reason, a vibration test might serve as a more appropriate and suitable substitute.  This ANSI 
Standard will probably be included in the new CANENA Luminaire Standard that will harmonise Canadian, U.S. and 
Mexican  requirements.   
 
This new standard suggests that : 
 
��the fundamental resonant frequency must be determined for each of the three perpendicular planes and must be 

between 5 and 30 Hz; 
��the luminaire must be vibrated at or near his natural frequency; 
��the acceleration intensity measured at the luminaire centre of gravity must be 1.5 g for normal roadway applications 

and 3 g for bridge and overpass applications; 
��the lighting device must be capable of withstanding the described vibration for 100 000 cycles in each plane.   
 
Table 1 summarises the standards used for the vibration testing of luminaires.   
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Three basic criteria are available in the literature to quantify the severity of a vibration environment [4], [5] : 
 
��the maximax response spectrum, associated with the maximum relative displacement representative of the maximum 

stress in the equipment; 
��the fatigue damage spectrum, which is related to the deterioration of the material when submitted to repeated 

stresses; 
��the dissipative damage spectrum, based on the assumption that the energy dissipated by the equipment is correlated 

with the severity of the vibration environment.   
 
Since fatigue effects of long time ambient vibration are the leading cause of structural failures in outdoor pole mounted 
luminaires, the most representative criterion is the fatigue damage spectrum.   
 
In the frequency range of interest [10-55] Hz, measurement results show that only the first mode shape of the luminaire 
is generally excited.  For this reason, the definition of severity criteria is based on the application of the vibration 
excitation to the base of a reference one-degree-of-freedom system.  The generalisation of fatigue damage spectrum 
computation to multi-degree-of-freedom systems is also presented.   
 
������5HIHUHQFH�2QH�GHJUHH�RI�IUHHGRP�6\VWHP�
 
The equation of movement of the reference system shown in Figure 1 is given by 
 

 x-  z  z   2  z 2
00 ����� =ω+ωε+  (1) 
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where x(t) describes the motion imposed to the base, z(t) the relative position of the mass, ε the damping ratio and ω0 
the natural pulsation of the system.  The mass m, stiffness k and damping c are the parameters of a modal model of the 
luminaire obtained either by finite element analysis or by experimental modal identification.   
 

 

)LJXUH�����5HIHUHQFH���GRI�PDVV�VSULQJ�GDPSHU�V\VWHP�
For a given vibration environment x(t), the maximal response Zmax of the relative displacement is a function of the 
natural frequency f0 of the system and of the damping ratio ε.  For a stress level σi, the corresponding damage di is 
defined by 

 
i

i
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n
d =  (2) 

where ni is the number of cycles of amplitude σi and Ni the maximum number of cycles before deterioration at the same 
stress level.  Ni is given by the classical Wöhler curves of the material, which in their central part, can be approximated 
by Basquin’s relationship : 

 bb
maxi,i A   N =σ  (3) 

where b and A are two material dependant parameters.  If one assumes a linear behaviour of the material, stress and 
relative displacement may be related by a coefficient K : 

� maxi,maxi, K Z  =σ � (4) 

According to Miner’s linear cumulative damage law and using equations (3) and (4), one obtains the total damage D 
corresponding to the reference 1-dof system in the form 

� ∑ ε




=

i
,0

b
maxi,i

b

)f( Zn 
A
K

  D � (5) 

The fatigue damage spectrum is the curve which represents the total damage D as a function of the natural frequency f0, 
for a given ε.  Consequently, the comparison between two vibration environment will be centred on the assumption that 
two environments have the same severity if they induce the same damage to the reference 1-dof system.   
 
The localisation in the structure of the maximal stress needs the use of a more elaborate finite element model or of an 
experimental model with strain gauges. 
 
For a sinusoidal excitation at discrete frequency (ANSI C 136-31 standard) or a logarithmic sine sweep excitation (IEC 
68-2-6 standard), the expected value of Zi,max may be easily calculated.   
 
��������6LQXVRLGDO�([FLWDWLRQ�DW�'LVFUHWH�)UHTXHQF\�
In the case of a sinusoidal excitation at discrete frequency, the excitation time history follows a relationship of the form 

� ) t(sin  X  (t) x max φ+ω= ���� � (6)�

where maxX��  is the constant peak amplitude, ω the excitation pulsation and φ the phase angle.   
 
Making the assumption of a permanent sinusoidal response, the maximal relative displacement is given by 
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The number of cycle of period T and frequency f corresponding to a test of duration tb can be written as 
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From equations (5), (7) and (8), the total damage D corresponding to the reference 1-dof system subject to a sinusoidal 
excitation at discrete frequency is finally rewritten as 
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In the case of a logarithmic sine sweep excitation, the excitation time history is generally made of several excitation 
levels which follow a relationship of the form 

� L  1 : i     )  t (t)(sin  X  (t) x maxi,i →φ+ω= ���� � (10)�

where max,iX��  is the constant peak amplitude of excitation level i, ω(t) the time dependant excitation pulsation and L the 

total number of excitation levels.   
 
Making the assumption of a sufficiently low sweep rate to consider for each excitation frequency a permanent response, 
the logarithmic sweep is defined by 
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where [f1,f2] and tb define respectively the frequency range and the duration to sweep this interval.   
From equations (5), (7) and (11), the total damage D corresponding to the reference 1-dof system subject to a sine sweep 
excitation is finally rewritten as 
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As previously mentioned, the localisation in the structure of the maximal stress is not possible with the simplified one-
degree-of-freedom model.  To this end, a more elaborated finite element model taking into account the geometry of the 
structure needs to be used.  Figure 2 summarises the different steps constituting the general methodology for the 
computation of fatigue damage.   
 
Two important parts can be emphasised : 
 
��the finite element analysis; 
��the cycle counting process. 
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The starting point of the methodology is the finite element modelling of the structure.  A dynamic analysis solves the 
following homogeneous equation system 

 0 xx =+.0 ��  (13) 

providing the modal parameters : natural frequencies f0
F.E. and mode shapes 4F.E..  0 and . are respectively the mass 

and stiffness matrices.  The vector x represents, in structural axes, the displacement associated with each degree of 
freedom of the finite element model.  A comparison of the computed modal parameters with the ones identified by an 
experimental modal analysis allows to verify the quality of the modelling and to update it if necessary.  The 
experimental modal analysis is also necessary to estimate the modal damping ratios.   
 

 

)LJXUH�����*HQHUDO�PHWKRGRORJ\�IRU�WKH�FRPSXWDWLRQ�RI�IDWLJXH�GDPDJH�
The linear vibrations of a base excited structure are governed by the differential equation system given by 

 px x x =++ .&0 ���  (14) 

where & is the damping matrix and p a vector which represents the structural forces acting on each degree of freedom of 
the interface.  The supposed elastic linear behaviour of the structure easily allows to solve the problem in the frequency 
domain providing as response the maximal stress observed in one element during one cycle at the excitation frequency f.   
 
The last step of the finite element analysis consists in generating the stress time history from the results obtained in the 
frequency domain.  Making the assumption that an harmonic excitation induces an harmonic response, the expression of 
the stress time history can be written as 

 ft)cos(2 )f()t( max πσ=σ  (15) 

In the case of a logarithmic sine sweep excitation, equation (15) is associated with equation (11) to relate the frequency 
history to the time.   
 
Once the stress time history is known, the damage is computed by a cycle counting process. 
 
��������&\FOH�&RXQWLQJ�3URFHVV�
In equation (3), describing Basquin’ s relationship, it is suppose that the specimen is subject to a sinusoidal alternated 
load of constant amplitude which induces a stress σi,max showing the same characteristics.  Experimental observations 
have shown that when a positive static stress σm is added to the sinusoidal alternated stress σi,max, the lifetime of the 
specimen decreases.  The opposite effect is observed when a compressive mean stress is applied.  Such a phenomenon is 
taken into account by a Haigh diagram [6] like the one shown in Figure 3.  For a given lifetime N, the admissible 
alternated stress σi,max is expressed according to the mean stress σm.   
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The Haigh diagram allows to transform each mean non-zero stress cycle σm of amplitude σi,max into a mean zero stress 
cycle of amplitude σa.  For example, the cycle (σm, σi,max) represented by point B is equivalent from a lifetime point of 
view to the cycle (0, σa) represented by point A.   
 

 

)LJXUH�����([DPSOH�RI�D�+DLJK�GLDJUDP�
Knowing that the Haigh diagram is made of two linear parts intersecting at point C (σu-σa/2, σa/2), where σu is the 
failure limit of the material, it is possible to express σa in terms of σm, σi,max and σu as 
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Equation (3) can be rewritten as 
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This procedure is equivalent to modifying the Wöhler curve for each mean non-zero stress cycle : the decrease in 
lifetime induced by a positive static stress is represented by a lowering of the initial Wöhler curve.   
 
Considering the Haigh diagram at the endurance limit, a second procedure consists in directly writing the modified 
endurance limit σe according to σm, σu and the endurance limit for a mean zero stress cycle σe

0 to obtain 
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In this case, the modified Wöhler curve is 
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In order to decompose the stress time history provided by the finite element analysis into elementary cycles of known 
amplitude and average, the use of a cycle counting process is necessary.  As shown in Figure 4, the rainflow method 
implemented uses four successive points of the stress time history to identify one cycle which in the stress-strain plane 
corresponds to a closed hysteresis loop [6], [7], [8].   
 
The decomposition of the stress time history is performed in several steps : 
 
��the signal is reduced into a sequence of local maxima and minima; 
��the first four successive points σ1, σ2, σ3, σ4 are examined and three lengths are computed : ∆σ1=|σ2-σ1|, ∆σ2=|σ3-σ2|, 

∆σ3=|σ4-σ3|; 
��if ∆σ2≤∆σ1 and ∆σ2≤∆σ3, the rainflow cycle defined by the couple (σ2, σ3) is identified : its amplitude is defined by 

σi,max=|σ3-σ2|/2 and its mean value by σm=|σ3+σ2|/2;  (σ2, σ3) is eliminated from the signal and σ1 linked to σ4; 
��otherwise, the rank of the four points is incremented of one unity and the previous test is applied; 
��the process is repeated up to the last point of the sequence of local maxima and minima. 
 
After completion of these different steps, several non-extracted points remain.  They make up the residue constituted by 
an increasing and after decreasing signal.  The maximum and minimum of the initial sequence are included in the 
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residue forming the most important length observed in the sequence.  The contribution of the residue to the damage may 
therefore not be neglected.  That is why the residue must also be broken down into elementary cycles.  To this end, a 
new sequence is built up on two residues one after the other.  New cycles are then extracted applying the counting 
process.   
 

 

)LJXUH�����'HILQLWLRQ�RI�D�UDLQIORZ�F\FOH�
Practically, only a discrete number of amplitude classes is taken into account.  Each rainflow cycle (σk, σl) is stocked in 
a rainflow matrix R.  The damage computation from the rainflow matrix R is easily performed using equations (2) and 
(16), (17) or (18), (19).   
 
 

�����$33/,&$7,21�(;$03/(�
�
The developed methodology is illustrated on the simple case of a base excited beam supporting, as shown in Figure 5, a 
concentrated mass at its free end (Ma=4.77 kg, r=0.04 m).  The structure is made up of steel (A=886 MPa, b=7, σu=415 
Mpa, σe

0=128 Mpa, Young modulus E=205 103 Mpa, density ρ=7850 kg/m3) and four different lengths are considered 
(L=0.575, 0.510, 0.475 and 0.445 m).  The section of the beam is rectangular (bs=0.08 m, hs=0.015 m).   
 
Equation (4) has shown that the methodology based on the reference one-degree-of-freedom system requires the 
knowledge of the coefficient K relating the stress to the relative displacement.  To this end, an analytical approach has 
been used to compute K.   
 
The general methodology centred on a finite element analysis is applied to a 3D volumic model of the beam.  Vibration 
testing performed on an electro-dynamic shaker allows to validate the theoretical approaches.  Stress measurements are 
obtained by means of strain gauges and the damage is computed using the rainflow counting process. 
 

      

)LJXUH�����([SHULPHQWDO�WHVW�FDVH�PRXQWHG�RQ�DQ�HOHFWUR�G\QDPLF�VKDNHU�
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The developed theory requiring a response computation has highlighted that both methodologies are subject to the same 
important unknown i.e., the damping ratio ε.  In order to estimate this modal parameter, an experimental modal analysis 
has been first performed.   
������0RGDO�3DUDPHWHU�,GHQWLILFDWLRQ�
 
The modal parameters are identified using the Frequency Response Functions (FRF) measured during the different tests.  
The magnitude of such a function computed between the fixing point and the free end of the beam is shown in Figure 6.  
 

 

)LJXUH�����)5)�PHDVXUHG�GXULQJ�WKH�WHVW�IROORZLQJ�,(&��������VWDQGDUG�
It clearly appears that in the frequency range of interest [10-55] Hz, the behaviour of the structure may be approximated 
by a one-degree-of-freedom system (the peak represents the first bending mode shape of the beam).  Based on this 
assumption, the damping ratio is given by 
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and the results are summarised in Table 2.  The modal tests reveal that both the frequencies and damping ratios are 
subject to the amplitude level.  Such a phenomenon is a characteristic of non-linear structures.  The most plausible 
explanation is to admit that clamping is not perfect : its properties vary with the severity of the test.  The identified 
damping ratios will nevertheless be used in the different damage computation methodologies.   
 

 $16,�&��������
�URDGZD\�� ,(&��������

L [m] f0 [Hz] ε [%] f0 [Hz] ε [%] 

0.575 17.1 0.37 16.9 1.24 

0.510 20.2 0.79 20.0 1.40 

0.475 22.5 0.69 21.9 2.29 

0.445 24.8 1.26 24.1 3.42 

7DEOH�����5HVXOWV�RI�WKH�PRGDO�SDUDPHWHU�LGHQWLILFDWLRQ�
 
������5HIHUHQFH�2QH�GHJUHH�RI�IUHHGRP�6\VWHP�
 
The first step consists in finding the analytical expression of coefficient K in the particular case of a beam with a mass at 
its free end.  At the clamping, the maximal stress is given by 
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where I is the inertia of the section and M the torque at the clamping which can be expressed in terms of the beam 
deflection v(x) as 
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 I EM =  (22) 

The deflection is a function varying along the beam with the parameter x [9] and is maximal at the free end where it is 
equal to the relative displacement Z 
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Note that the function of x in brackets is the first bending mode shape of the beam.  Finally, from equations (21), (22) 
and (23), the analytical expression of coefficient K becomes 
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showing that for given material and section, K only depends on the length of the beam which can be related to the first 
natural frequency [9] by 

� 0
I E 3

L MaL h b  24.0
2
0

34
ss =

ω
−+ρ � (25)�

The evolution of coefficient K with the natural frequency of the structure is shown in Figure 7 and given in Table 3 for 
the four considered lenghts of the beam.   
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L [m] f0 [Hz] K [N/m3] 

0.575 17.4 1.32E10 

0.510 21.1 1.62E10 

0.475 23.7 1.87E10 

0.445 26.2 2.04E10 

7DEOH�����5HVXOWV�RI�WKH�DQDO\WLFDO�DSSURDFK�
 

The difference in natural frequencies between Table 2 and Table 3 is due to the simplifying assumptions of the 
analytical model : 
 
��the mass Ma is concentrated at the end of the beam but it is not really true for the experimental test-case (r=0.04 m); 
��perfect clamping is considered. 
 
������*HQHUDO�0HWKRGRORJ\�
 
The properties of the finite element model used for the damage computation are the following : 
 
��the model is made up of 3D volumic shell elements; 
��the mass Ma is concentrated at its centre of gravity; 
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��the clamping is modelled by spring elements; 
��the model is updated on the first natural frequency. 
 
Figure 8 shows the 3D volumic finite element model of the beam and the strain energy density map associated with the 
first bending mode shape.  Such an iso-strain map highlights the critical areas (i.e., the clamping in the case of the 
present structure) where strain gauges should be placed to measure the maximal stress.   
For this reason, the finite element model is a precious aid to the positioning of strain gauges.   
 

        
� �D�� �E��

)LJXUH������D���'�YROXPLF�ILQLWH�HOHPHQW�PRGHO����E��6WUDLQ�HQHUJ\�GHQVLW\��� k l �PRGH�VKDSH��
A view of the experimental set-up is given by Figure 9.  The natural frequencies of the updated model are summarised in 
Table 4.   
 

  

)LJXUH�����6WUDLQ�JDJH�SRVLWLRQHG�DW�WKH�FODPSLQJ�
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L [m] f0 [Hz] f0 [Hz] 

0.575 17.0 17.0 

0.510 20.0 20.0 

0.475 22.5 21.9 

0.445 24.8 24.0 

7DEOH�����1DWXUDO�IUHTXHQFLHV�RI�WKH��'�)�(��PRGHO�
 
������5HVXOWV�FRPSDULVRQ�
 
The fatigue damage spectra resulting from the different computation methodologies and standards used for the vibration 
testing of luminaires are compared in Figure 10. 
 



$VWHODE����������������������������������������������������������1���� ���

 

)LJXUH������6WDQGDUGV�VHYHULW\�DQG�FRPSDULVRQ�RI�GDPDJH�FRPSXWDWLRQ�
PHWKRGV�

 
 
 

/HJHQG�
 

IEC 68-2-6 standard 
GDVKHG�OLQH : 1dof/Kanalytic method 
EODFN�FLUFOHV : general method 
EROG�FLUFOHV : measurement results 

 
ANSI C 136-31 standard (1.5 g) 
VROLG�OLQH�: 1dof/Kanalytic method 
EODFN�VTXDUHV�: general method 
EROG�VTXDUHV�: measurement results 

 
 

The curves correspond to the reference one-degree-of-freedom system with the analytic computation of K.  For a same 
standard, each curve represents the fatigue damage spectrum for a given damping ratio constant in the frequency range 
[10-55] Hz.  It appears that the severity of the IEC 68-2-6 standard is function of the damping ratio which is not the case 
with the ANSI C 136-31 standard for small damping ratio (ε < 10 %).  In the last case, the shaker control being 
performed at the centre of gravity of the structure, the ANSI C 136-31 standard will remain independent of the damping 
ratio until the base displacement may be considered small in comparison with the displacement at the centre of gravity.  
In the other case, the shaker control being performed at the fixing point, the response at the centre of gravity is 
conditioned by the damping ratio.   
 
The circles and squares represent the results of computation and measurements for the four considered lenghts of the 
beam.  The same remarks can be formulated about the effect of the damping ratio on standards severity.   
 
The comparison of measurement results with the computation results shows that the computation is conservative.  The 
difference in stress belongs to the interval [4-20] %.  The correlation between measurements and computations is better 
for the sine sweep excitation than for the sinusoidal excitation at the natural frequency.  Several sources of error can be 
pointed out : 
 
��One drawback of the developed methodologies is the dependence of the computed response on the damping ratio.  A 

precise identification of the damping ratio is then of prime importance but, unfortunately, it is well-known that this 
task is very difficult to perform.   

 
Stress measurements have been performed on the 0.575 length beam subject to a sinusoidal excitation of 0.5 g 
measured at the clamping.  The estimated modal parameters are f0 = 17.1 Hz and ε = 1.34 %.  Different discrete 
excitation frequencies have been experimented : 25.2, 20.1 and 17.7 Hz.  For the same damping ratio and excitation 
frequencies, computations have been made with the general methodology.  The results are shown in Figure 11.  
When the excitation frequency is far away from the natural frequency, the error in stress between measurements and 
computations at location 1 (close to the clamping) is only 4 %.  If the excitation frequency is brought closer to the 
natural frequency, the error becomes 21 % and is maximum at f0.  Close to the natural frequency, the identification of 
the damping ratio is of prime importance.   
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��Figure 11 also highlights that the effect of stress gradients in critical areas can be important.  The error in stress 

between measurements and computations at location 2 (10 cm away from the clamping) varies from 2 % (away from 
the natural frequency) to 11 % (close to the natural frequency).  Between locations 1 and 2, the error in stress is 
divided by 2.  A better accuracy between stress computations and measurements is obtained at locations where stress 
gradients are weak.   

 
��Sinusoidal excitations at natural frequency are difficult to perform in practice.  If the natural frequency is not 

identified with sufficient accuracy or slight changes occur during the test, the test severity may be completely 
different.   

 
��The considered clamping model is very simple. 
 

�����&21&/86,216�
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The developed methodologies are based on the fatigue damage spectrum criterion.  The choice of this criterion among 
others has been imposed by the identification and knowledge of failure processes.  The ability to know and compare the 
severity of the standards used in the vibration testing of street lighting devices is of prime importance for the luminaire 
manufacturer.   
 
Before being applied to a real luminaire, the different methods have been tested on the simple case of a base excited 
beam supporting a mass at its free end.  The results obtained by measurement and computation have shown that the one-
degree-of-freedom system methodology is a good approach to predict the damage spectrum behaviour of a structure 
subject, for example, to a sinusoidal excitation (damping ratio effect, excitation frequency effect).  If a more accurate 
damage computation is needed, a more elaborate finite element model is to be taken into account.  When the excitation 
is away from the natural frequency, a very good correlation between strain gauge measurements and model is obtained.  
Unfortunately, most of the time the first natural frequency of the device is included in the excitation frequency range 
imposed by standards.  In this case, the effect of the damping ratio is of primary importance and the error on the stress 
prediction may be high.   
 
Other sources of error are the gauge positioning, the boundary conditions modelling, the difficulty to perform exactly a 
vibration test at the natural frequency (ANSI C 136-31), … 
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