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1 Abstract 
 
 Few works have been performed in the field of 
experimental modal analysis by means of 
piezoelectric distributed elements. Piezoelectric 
laminates, initially intended for the monitoring and 
the control of smart structures, could also be 
dedicated to the experimental modal identification of 
an open-loop structure. A pole-residue development 
of the open-loop piezo-structure shows that 
conventional algorithms and a piezoelectric pseudo-
collocated actuator/sensor may be used to estimate 
the mechanical modal parameters. 
 When an initial mathematical model of the 
structure is available, the 'best' excitation position is 
determined by checking the H2 norm of the transfer 
function of the fully observed system. The same 
methodology can be applied for the selection of the 
monitoring locations. In most cases, experimental 
testing with the selected sensors set, gives 
acceptable information to identify target modes. 
These data, coupled with electrical sensing at the 
piezoelectric element level, can then be used to 
perform the modal analysis of the piezo-structure. 
 A light clamped-free plate instrumented with 
piezo-laminates is used to illustrate this 
experimental approach. 

2 The dynamic analysis of piezo-
structures 

2.1 Modal analysis of a conventional structure 

 The resolution of the eigenvalues problem of a 
conventional linear structure : 
( 1 ) M x D x K x f⋅ + ⋅ + ⋅ =  

yields to n pairs of complex conjugate eigenvalues : 
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associated with n complex eigenvectors 
[ ]Φ = φ φ φ1 2 … n , where ω i  is the ith natural 

frequency of the conservative structure and ζ i  is the 
corresponding damping coefficient (see Géradin and 
Rixen [4]). For a force fl  applied at the spatial 
position l  and for a response xk  measured at the 

spatial position k , the frequency response function 
(FRF) is expressed by : 
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where m i  is the modal mass associated with the ith 
mode φ i . 

2.2 Modal analysis of a piezo-structure 

 In the case of a structure instrumented with a 
piezoelectric sensor/actuator, electromechanical 
relationships are added to the previous system ( 1 ) 
to represent contributions of the electrical degrees of 
freedom linked to the piezoelectric actuator and 
sensor (Saunders et al. [3]) : 
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The first equation is commonly called the actuator 
equation and the second, the sensor equation. The 
actuator equation exhibits the force generated by the 
piezoelectric actuator through the electromechanical 
coupling actuator matrix Θ a  and the electrical 
potential va  applied between the electrodes of the 
element. On the other hand, the sensor equation 
shows the relationship existing between the 
mechanical degrees of freedom x  and the electrical 
charges q  or potentials vs  through the 
electromechanical coupling matrix Θ sT and the 
capacitance C p  of sensor. 
 In the case of a force applied on a structure 
instrumented by a piezoelectric sensor, and by 
forcing the electrode potentials to zero with a short-
circuit (e.g. : physically, by means of a perfect 
charge amplifier), we can write : 
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From ( 3 ), it can be found that : 
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This equation is very important because it states that 
the determination of the electromechanical coupling 



matrix Θ s  is theoretically possible by means of an 
experimental modal analysis and an adequate set of 
measurements. Extraction of the modes, eigen-
frequencies, modal damping and modal masses 
could be performed with conventional modal 
analysis algorithms applied on experimental 
structural FR F s. Note that correct estimation of 
modes needs measurement at a driving point, i.e. 
where excitation and response are measured at the 
same position and in the same direction (see Ewins 
[1] and Maia, Silva et al. [2]). 

2.3 Structural modal analysis using piezoelectric 
distributed transducers 

 Let us consider the case where no direct 
mechanical force is applied on the system but only 
consider the effect of a piezoelectric actuator. 
Comparing ( 1 ) to ( 4 ), it is easy to understand the 
substitution of fl  for Θa

av⋅  in ( 3 ) : 
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which links the structural displacements to a voltage 
applied to the piezoelectric actuator. It is clear that 
the poles of this system are identical to ( 1 ). 
Nevertheless, in the case of a modal analysis, the 
residue estimation is not direct. One way to 
overcome this problem is to use costly technologies 
as a sensori-actuator or, more easily, a pseudo-
collocated actuator / sensor. This last technique is 
very well adapted in the case of plate-type structures 
by simply fixing piezo-laminates on each sides of 
the tested plate. 

3 Excitation and measurement point 
selection for experimental modal analysis 
 The selection of the optimal positions of 
excitation and sensing is not a simple task. Without 
any criteria, engineer judgement and various trials 
are needed to obtain an acceptable set of data in 
order to perform a correct identification of modes in 
the frequency range of interest. This procedure is 
time-consuming and not very effective. The problem 
of actuator and sensor placement have been already 
investigated in literature. Kammer [5] proposes the 
selection of the best signal to noise ratio position. In 
Gawronski [6], the procedure is based on the 
monitoring of the observability and controllability 
Grammians to choose optimal excitation and sensor 
locations. This paper addresses the problem of 
punctual actuator and sensor placements; location 
strategies for distributed actuators and sensors will 
be presented in the near future. 

3.1 State-space modal representation 

 To apply the theory of controllability and 
observability, which has been developed in the 
theory of control, it is convenient to express the 

generalised (multi-excitations and outputs) system 
nodal representation ( 1 ) in the form : 
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where y  is defined as the output vector and depends 
linearly of the structural displacements and velocity. 
Defining the state variables as the modal 
displacement and velocities : 
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the modal state-space form : 
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is defined by the following triplet : 
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where Ω = diag n( , , )ω ω ω1 2 …  is the spectral matrix 
associated with the ( )n n m×  modal matrix 

[ ]Φ = φ φ φ1 2 … nm
. The modal mass, damping 

(assuming proportional damping for convenience) 
and stiffness diagonalized matrix are obtained by the 
modal projection on K , D , M  : 
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In the same way, the modal input, displacement and 
velocity output matrices are introduced by : 
( 13 ) B M B C C C Cm m

T
mx x mx x= = =−1

0 0 0. . , . , .Φ Φ Φ  

3.2 Controllability and observability 

 In classical control theory (see Kwakernaak 
and Sivan [7]), controllability and observability 
matrices are checked. As clearly explained in 
Gawronski [6], these criteria, although simple, are 
not at all efficient : 
• the level of controllability or observability is not 

quantified; but these criteria give an answer in 
term of yes or no. 

• The computation of these matrices is prohibitive 
in case of system with realistic size. 

These two drawbacks bring us to prefer expressing 
the system properties in term of Grammians. The 
controllability and observability Grammians are 
defined as follows : 
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The controllability Grammian reflects the ability of 
a perturbation f  to perturb the state of the system. 
The observality Grammian reflects the ability of a 
state X  to affect the output y  of a system. In the 



case of a time invariant system, the stationary 
solutions of ( 14 ) are given by the Lyapunov 
equations : 

( 15 ) 
A W W A B B

A W W A C C

c c
T T

T
o o

T

⋅ + ⋅ + ⋅ =

⋅ + ⋅ + ⋅ =

0

0
 

3.3 Transfer function norm and placement 
strategy 

The transfer function of a system, expressed in 
the state-space form, is given by : 
( 16 ) ( ) ( )G C j I A Bω ω= ⋅ ⋅ ⋅ − ⋅

−1  

For flexible systems in the modal state 
representation, the H 2  norm can be expressed in 
terms of the norms of the modes. This modal 
decomposition affords then a visibility on each 
modal contributions. The transfer function of the ith  
mode is expressed by : 
( 17 ) ( ) ( )G C j I A Bi mi mi miω ω= ⋅ ⋅ ⋅ − ⋅

−1  

By ( 17 ) and since the Grammians are diagonally 
dominant in the modal state-space representation, 
the H 2  norm of the complete system is estimated by 
the rms sum of the modal norms : 

( 18 ) G G i
i

nm

2 2

2

1
≅

=
∑  

Equation ( 18 ) is the base for actuator and sensor 
placement strategy. 

The procedure starts with the selection of the 
best actuator position. Assuming that all degrees of 
freedom are monitored, we compute the placement 
index σ 2ki  that evaluates the importance of the kth 
actuator at the ith mode on the global transfer 
function H 2  norm : 
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which clearly shows the ability of the kth actuator 
position to affect the ith mode. Once the actuator 
positions are selected ( B 0  optimised), the same 
procedure can be repeated by constructing a sensor  
placement indice matrix, helping the selection of the 
best sensor positions. 

4 Experimental set-up 
 A 0.16 x 0.08 x 0.001 m clamped-free stainless 
steel plate, fitted with one commercial piezoelectric 
laminate on each face will be studied to illustrate the 
method. These two 0.0508 x 0.0254 x 0.0004 m 
piezoelectric (PZT) laminates are placed in a 
pseudo-collocated configuration, near the clamped 
side of the plate (see figure 1). 

 

Figure 1 : Experimental set-up 

4.1 Finite element model 

 In order to determine the optimal locations of 
sensors and actuator (e.g. : an impact hammer), the 
tested structure was first modelled with the finite 
element (F.E.) technique. 
 The first five computed modes of the tested 
structure are presented in figure 2 (note the meshing 
and the thickness / length ratio). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

(a)  27.9 hz 
(b)  134.3 hz 
(c)  165.8 hz 
(d)  442.7 hz 
(e)  473.2 hz 

Figure 2 : Finite element modes 

4.2 Optimal actuator and sensor location 

 Once a model is available and modes targeted, 
the procedure described in §3.3 is used to find the 
more efficient position to impact the structure. 
Figure 3 shows a graphical representation of the 
actuator placement indices for the 5 first modes. 

 

Figure 3 : Actuator placement indices  



As expected, controllability of actuator position is 
best at the two corners, located at the opposite of the 
clamping side. Direction of excitation is of course 
perpendicular to the plate. 
 Once the excitation point is selected, the sensor 
placement indice matrix is also constructed for the 
selection of the best sensor positions. As for the 
excitation selection, the best sensor positions are 
given at the plate corner. 

4.3 Impact hammer test 

 Due to the light weight of the structure, non-
contact measurement technique, by means of a 
LASER vibrometer, has been preferred. Figure 4 
shows the comparison between the identified 
experimental modes (from a circle fitting algorithm) 
and the F.E. modes by means of the extensively used 
Modal Assurance Criterion (MAC) which is defined 
as follows : 
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where subscript X  is applied for experimental mode 
and subscript A  is applied for modes extracted from 
a model. The M AC  always lies between 0 (no 
correlation between modes) and 1 (modes are 
perfectly correlated).  
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Figure 4 : FE / hammer MAC 

 Results show a very good correlation except for 
the last mode. 

4.4 Piezolaminate actuator test 

 The technique, presented in §2.3 has been 
tested on the same structure. A burst-chirp signal 
[ 5 - 500 hz ] was applied to the upper piezolaminate 
element. Figure 5 presents the obtained M A C  : 
except for mode 4, all the modes have a very good 
correlation. 
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Figure 5 : FE / piezolaminate MAC 

5. Conclusion 
 This paper has demonstrated the feasibility of 
the experimental modal identification by means of 
integrated piezoelectric laminates. Results are 
improved by using tools to find the optimal location 
of distributed piezoelectric elements. 
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