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Abstract—This paper presents a statistical model used to forecast fog in the Meuse Valley in Belgium. The
method is a bootstrap discriminant analysis using eight predictors: river surface temperature, air pressure,
air temperature at two elevations, wind speed and relative humidity at the same two locations. These data
are measured from November 1989 to April 1990. Tests are done to determine the number of resampling
nieeded for this data set and the optimum projection delay for prediction from the meteorological data. The
best results are obtained for the prediction at 0700k UT using meteorological data at 0400h UT. The
reliability of the model is given by a probability «=0.16 of clear weather forecasting when it is foggy and a
probability #=0.26 of fog forecasting when there is clear weather. These results are finally checked on 27
new observations in November 1990: the § foggy days are perfectly predicted and 24% of the clear days are
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badly predicted.
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1. INTRODUCTION

The nuisances caused by fog are numerous. Among
-these we shall mention the air and road traffic per-
turbations. Especially in the Meuse Valley (Belgium)
every year fog causes serious road accidents.

For a few decades a lot of research work has been
carried out to increase visibility' by means of forced
evaporation {Appelman and Coons, 1970) or artificial
precipitation (Silverman and Kunkel, 1970) of drop-
lets. It is generally agreed that the best resuits have
been obtained with supercooled fogs (Serpolay, 1961)
which are uncommen in the Meuse Valley (Boreux,
1988).

Another approach to reduce accident risks is to
forecast fog formation a few hours before its appear-
ance, As a matter of fact a method enabling its short-
term forecasting would obviously be of valuable as-
sistance to road as well as air traffic supervisozs. So far
no reliable method of forecasting fog a few hours in
advance has been developed and tested with success.

Indeed the saturation of an air mass in contact with
the ground is far more difficult to understand than the
saturation of an air mass higher up in altitude. In
addition to the usual factors air saturation is also
influenced by landscape and nature of the terraim,
vegetation and the presence or absence of a stream.
Human activities can also play a leading part in fog
formation by increasing the content of condensation
nuclei (Boreux and Serpolay, 1990) and the water
vapor in the atmosphere (Gorbinet and Serpolay,
1985). We can see that man-ground-atmosphere in-
teractions considerably increase the complexity of the

standard problem of air mass saturation-condens-
ation, which extremely complicates any attempt at
short-term fog forecasting by means of a semi-empir-
ical model. :

Consequently we have chosen to develop a statist-
ical short-term fog forecasting model.

As fog occurrence is a discontinuous variable that
meteorologists fry to expldin from continuous
meteorological variables, the appropriate technique is
the discriminant analysis which has been used for the
snow-slide forecasting (Der Megreditchian et al,
1975} and in meteorology (Murphy and Katz, 1985},

Since bootstrapping, introduced in statistic analysis
by Efron (1979), is particularly efficient in determining
the forecasting performance, it has been adapted to
discriminant analysis.

2 DATA

Every 30 min a certain number of meteorological
readings were taken in the Meuse Valley (altitude
z=82 m) and over the surrounding plateau {altitude
z=200 m})

for the screen air temperature T3
for air humidity Uz
for the temperature of the soil surface T

for the average speed and associated wind direction
7% and D,

for the maximum speed and associated wind direction
V% and DI
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Two more parameters also interact in fog forecast-

ing: the river surface temperature T, and atmospheric

pressure P,. As their measurement is not automatic,
they are unfortunately not available at the same {re-
quency as the previouns ones. Consequently we have
been obliged to estimate them as being constant over
24 and 12 h periods, respectively.

As for observations on the dependent variable with
regard to fog duration we do not have any automatic
visibility measuring device and therefore generally do
not know what time fog occurs because it is usually
{during autumn and winter) a nocturnal phenomenon.
Omn the other hand, the time when fog clears can be
established with relative accuracy.

All variables make up the primary variables.

For fog forecasting two primary variables have
been disregarded when two others have been com-
bined to form a secondary variable:

e we cxcluded the temperature of the soil surface
which is closely connected with the air temperature
and the wind direction which is always badly de-
fined when the air is very stable (i.e wind speed =0},
that is to say during periods that are favorable to
fog formation;

¢ over a 30 min period the wind speed changes and
its maximum power (¥, ) can be very different from
its average value (). As the dynamics of fluid flow
around aerosol particles are important in fog
formation and fog dispersion we make a combina-
tion between these values which we will call “wind
speed’ calculated as follows: WS=In{aV,+ ¥V, +7y
+1)

As confirmed by Fig. 1 the wind is clearly respons-
ible for fog only when its speed remains at very low
values; after a certain threshold (here 0.7 ms™!) there
is no possibility of fog formation. The relationship
between fog and wind speed is not linear and is

e

AR HUMIDITY (%)

L3

R T
WIND SPEED x 18 my/s
Fig. 1. Distribution of the foggy days {triangle} and clear
days (srnall suns) as a function of the wind speed at 200 m
elevation (in hm per half an hour or in ms™! multiplied by

18) and as a function of the air relative humidity (in %). The
wind speed axis is in logarithmic scale.

consequently better represented by a log-transform
which emphasizes low speeds. The natural logarithm
of speeds added to 1 is used to avoid zero arguments.

Finally eight explanatory variables have been re-
tained: TW=T,, PRES=P,, T82=T% Wssl=
W82, RH32=UB2, T200=T200, WS200= W52,
RH200=U22", '

.\

3. METHOD

Fog forecasting is a problem of two-group discrimination.
The first group is defined by the occurrence of fog and the
second one by the occurrence of clear weather. The dis-
criminant analysis (due to Fisher, 1936) enables one to
classify observations characterized by a set of meteorological
variables called also predictors. The n observations on the p
predictors give the data matrix X=(x;} with i=1 to n and
j=1ltop N

In fact we want to test the hypothesis of fog against the
alternative hypothesis of clear weather. This requires one to
compute a function to help make a decision. In factorial
discriminant analysis this function is defined as a linear
combination of the predictors. For any given observation
(among the n observations which are available for the ana-
lysis) of the p predictors, we have;

U= i #(% =%, W
=1

where X; is the mean of the predictor j computed on n
observations.
The computation of the coefficients u, is based

e on the maximization of the distance between the gravity
centers of the two groups, say (%,,,%,; ... %,) and
(%31, X33 ... X3,) where X, ; and X,; are, respectively, the
mean of the predictor j computed on the 1’ observations
from class 1 and the n—n’ observations in class 2, and

e the minimization of the inertia of each group (groups as
dense as possible).

We define T as the total covariance matrix between the p
predictors (then calculated on the n observationsyand casa

vector of p elements ¢; proportional to the distance between

the two gravity centers:

&=/ (n—n")n? (£~ %)), @
where n’ is the number of fog observations. It can be demon-
strated that vector w={uy,...,n,) is given by {see for

instance Lebart er al. (1982), Murphy and Katz (1985) or
Dagnelie (1974)}:

n=T"l¢ (3

The discriminant power D or the Mahalanobis distance
measures the capability of the m predictors to separate the
two groups:

D=cT te - (4)

An observation i will be classified in group 1 if U,>0. We
may refine the technique to ensure that the disceiminant
function forecasts most cases of fog occurrence because the
risk is at its greatest when a fog is not predicted and to define
& threshold § to ensure that at least 95% of the actual fog
observations are in group 1. A fog forecast will be expressed
for observation i if U;> 5. This can be compared to the first
type error « in the hypothesis testing theory: « =Prob (Fog|
Clear)=15%. The proportion of clear observations predicted
as fog can be compared to the second type error f==Prob
{Clear{Fog). It is expected to be higher than 5%, but it is
related to a less important risk than .




Fog forecasting methad in a valley

Figure 1 illustrates the method. It shows the distribution
of foggy days and clear days accordmg to wind speed in
Loyers (z=200m) and air humidity in the Meuse Valley
{z=82m). The criterion of 95% of accurate fog prediction
means that the limit between the two groups should be set as
shown in the ﬁgure one fog occurrence appears among the
23 observations in group 2. The error 'z is then about 5%.
The consequence is that in 31 cases out of 94 in group 1 the
weather turns out to be clear. The error 8 is then about 33%,
which reflect the existence of atmospheric conditions poten-
tially favorable to fog formation in cases where the con-

densation nuclei are not sufficient to trigger the fog. If the

two-dimensional representation is enlarged to eight dimen-
sions f can be decreased.

Discriminant analysis can be completed when the dis-
criminant function is computed. However, the use of that
function in a probabilistic way is of prime importance in
prediction. This may be solved using stapdard statistics,
- using specified probability functions. The introduction of
bootstrapping by Efron (1979) enables us to be free from all
assumptions. The idea is to resample the original observa-
tions in a suitable way to construct pseudo data sets from
which the estimates ate performed. The variability of these
estimates from one pseudo data set to another is the key for
their reliability appremat:on

The resampling is done by random extraction with re-
placement. A pseudo data set contains as many observations
as the original one and consequently some observations are
present several times and others are not. In discriminant
analysis there are two ways of resampling the original data:
either to resample inside each group so that the size of each
group is fixed, or to resample in the whole data set 30 that the
size of each group cam vary. We have chosen the second
approach, which is less conservative. For each pseudo data
set we calibrate a discriminant analysis that is afterwards

applied to the remaining observations. The use of the obser- -

vations not randomly withdrawn provides the basis for an
independent verification of the reliability of the predictions.

For each kth rep[ication {from 1 to K) we extract »
observations distributed in nj, fog observations and n—nj

clear observations. The discriminant function is ngen by the -

VeCctor 0, =(uy,, . . . , i), the discriminant power is denoted
D,. The threshold Sk is defined so that 95% of fog observa-
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tions are well predicted. According to this discriminant
function and this threshold clear observations from the
pseudo data set assigned to the fog group are counted to
provide fp, (D meaning dependent sample). The observa-
tions not randomly extracted from the pseudo data set are
used to provide ey, and By (I means independent sample).
These last two probabilities give a truer prediction efficiency.

When the K classifications are done we compute the
means and the standard deviations of all these statistics over
the K replications. This gives the vectors i =(d,,4;, ..., 4}
and Suﬁ(Sul, Suz, ..., Suy), the mean discriminant power
D with its standard dev1atmrt SD, the mean threshold S with
its standard deviation S3. These average values are only used -
in the result interpretation while as for the fog forecasting it
is better to take each equation and set up K predictions
whose variability provide an appreciation of their reliability.

The error terms fg, o, and f; are the means of these terms
obtained from each replication.

4. RESULTS

The method is illustrated with the prediction of fog
at 0700h UT from meteorological data observed at
0400k UT from November 1989 to April 1990. Calcu-
lations are based on 117 observations including 23
foggy days (data processing has been made by the
program package PPPHALOQOS: Guiot, 1990).

Figure 2 shows the evolution of the probabilities
Bp, & and By when they are averaged from the first
replication to the first 500 ones. It clearly appears that
these parameters have a great variability in the first 50
replications. They reach an equilibrium value after
300 replications. The risk of an unpredicted fog tends
to 16% on the independent samples. This relative low
value is compensated by a risk greater than 30% for a
predicted fog when the weather has been clear 31%
on the dependent data and 34% on the independent
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Fig. 2. Evolution of the error probabilities fi, oy and B, as a function of the number
of replications. The error probability at step k is the mean computed on the first &
' pseudo data sets.
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ones), For the following analyses, we decided to use a
value of 300 for K. ‘
Short-range fog forecasts at 0700 UT are shown in
Fig. 3 for prediction periods varying from 0 to 6 . In
fact these limits tend to represent upper limits. If
meteorological data at 0400 h UT tell us that there
will be fog at 0700 h, that means that the fog will
appear between 0400h and 0700h (a period of less

than 3h}. We could interpose that sometimes fog is
previously formed at the time of fog prediction. This
possibility is unlikely because the time of fog forma-
tion is usually within 2 h preceding sunrise and 30 min -
after sunrise (Pilie et al, 1974). On the other hand
forecasting clear weather at 0400h UT, is truly 3h
predictions. The best forecast is obtained for a 3h
projection. On the one hand this time-lag is sufficient

[Foe FORECASTING IN MEUSE VALLEY (7H UT]]
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Fig. 3. Fog forecasting in Meuse Valley at 0700h UT for different steps.

Projection delay j means a forecasting of fog at 0700 h using meteorological |

data at 7—j h. The vertical bars represent the discriminant power D with £

the bootstrapped standard deviation. Pr(F|C) is the error probability f

computed on independent data (F is fog and € is clear) and Pr(C]F} is the
error probability a;.
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Fig. 4. The statistical short-term fog forecasting model applied on data in November

1990, The cross on the point of intersection between the axis ‘100" and the day

concerned shows the days when fog has been observed while the cross at the bottom

of the chart indicates clear days. The bar chart gives the corresponding probabilities
computed by the model.
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