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Abstract

Environmental scientists often face situations where: (i) stimulus-response relationships are

non-linear; (ii) data are rare or imprecise; (iii) facts are uncertain and stimulus-responses

relationships are questionable.

In this paper, we focus on the first two points. A powerful and easy-to-use statistical method,

the Metropolis-Hastings algorithm, allows the quantification of the uncertainty attached to

any model response. This stochastic simulation technique is able to reproduce the statistical

joint distribution of the whole parameter set of any model. The Metropolis-Hastings

algorithm is described and illustrated on a typical environmental model: the biochemical

oxygen demand (BOD). The aim is to provide a helpful guideline for further, and ultimately

more complex, models. As a first illustration, the MH-method is also applied to a simple

regression example to demonstrate to the practitioner the ability of the algorithm to produce

valid results.

Key words: Parameter uncertainty, Markov Chain Monte Carlo sampling, Bayesian

inference, Non linear modelling, BOD, Metropolis-Hastings algorithm
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Résumé

Les données environnementales ont le plus souvent trois caractéristiques: (I) les relations

entre stimuli et réponses sont non linéaires; (ii) les données sont rares ou imprécises; (iii) les

faits sont incertains et les relations stimuli-réponse sont mal établies.

Dans cet article, nous nous sommes concentrés sur les deux premiers points. L'algorithme de

Metropolis-Hastings (MH) est une méthode efficace et simple à utiliser qui permet de

quantifier l'incertitude de la variable de réponse pour une grande variété de modèles. Il s'agit

d'une technique de simulation stochastique capable de reproduire la distribution jointe de

l'ensemble des paramètres d'un modèle. L'algorithme MH est décrit et illustré à l'aide d'un

modèle courant en environnement, celui de la demande biochimique en oxygène (DBO). Le

lecteur trouvera une description pratique de l'algorithme sur un cas simple (mais non linéaire)

lui permettant d'envisager sereinement une application à des modèles plus complexes. Dans

un premier temps, une application à un cas de régression linéaire simple permet de se rendre

compte de la conformité des résultats avec ceux obtenus par les méthodes statistiques

classiques.

Mots-clés: Incertitude autour de la valeur d'un paramètre, Méthodes de Monte-Carlo par

chaînes de Markov, Inférence Bayésienne, Modèles non-linéaires, Demande Biologique en

Oxygène (DBO), Algorithme de Metropolis-Hastings.

1. Introduction

Environmental quantitative problems can be categorised according to two main aspects:

the knowledge before experimentation (model) and the experimental results (or data). Cases

with many data points and a high level of knowledge can be dealt with using classical

statistics. Situations with many data points but a low level of knowledge require exploratory

data analysis. Cases with few data and a high level of knowledge present important

difficulties. These difficulties are further increased when only few facts are known about the

phenomenon. The Bayesian approach allows these last two cases to be handled.



3

In many cases in environmental science, experiments provide only a small amount of

data with a large variability. In addition, the stimulus-response relationships are non-linear in

most cases (Kuczera (1983); Van Straten and Keesman (1991))

Due to their ease of use, linear models are often broadly applied by scientists, whatever

the behaviour expressed by the environmental system. It may be known that a non-linear

model would fit better but as specific statistical tools remain relatively undeveloped, linear

modelling is still applied. In linear regression, the slope and intercept parameters have well

described interpretations and the procedures to obtain the parameter or prediction probability

distributions are well known. This is not the case for almost all non-linear models that often

lead to intractable mathematical expression or high-level numerical analysis beyond the

scope of most environmental science practitioners. In addition, conventional tests for non

linear modelling generally rely on asymptotic properties: such tests are consequently

appropriate only when large samples of data are available.

To illustrate the use of non-linear modelling, we consider data from Marske and

Polkovski (1972) concerning the biochemical oxygen demand (BOD) against time, using a

non-linear model based on an exponential decay with a fixed rate constant.

BOD measurement is a useful assessment of the quality of wastewaters and is one of

the main criterion for public health national institutes (Kiely (1997)). The BOD of wastewater

is the amount of oxygen necessary for micro-organisms to decompose the carbonaceous

materials that are subject to microbial decomposition (oxidation of nitrogen compounds is

neglected). The BOD value usually reported is the amount of oxygen consumed in milligrams

per litre of water or wastewater over a period of five days at 20 °C under laboratory

conditions. The BOD test is more completely described in Kiely (1997), p.304). The data

from Marske and Polkovski (1972) concern a six-day BOD test on a stream water sample.

The data are averaged values of two analyses per day (Tab. 1 and Fig. 1).



4

{ Table 1 & Figure 1}

Assuming the rate of decomposition of organic matter is proportional to the amount of

organic matter available, the BOD against time tends to an asymptotic value called the

ultimate BOD, and the following non-linear regression model is often used:

( ) ( )[ ] { }11,9,7,5,4,3,2,1,exp1 20 ∈+⋅−−= ttKBODtBOD tu ε (1.1)

where ( )tBOD  is the biochemical oxygen demand at time t, εt stands for independent normal

errors with constant variance σ 2 , BODu  is the ultimate BOD, K20 denotes the constant rate of

the organic matter decomposition ( { }11,9,7,5,4,3,2,1∈t ), at 20°C.

Parameters of interest for the assessment of water quality are ( )5BOD , BODu  and K20,

and it may be useful to know the credible intervals for these parameters. For instance, an

urban wastewater directive defines that ( )5BOD  of discharged urban water should not be

over 25 mg/L (directive 91/271/EEC). How can the risk of exceeding this limit be evaluated?

For a second example, given that the BOD rate coefficient K20 should not exceed 0.10 in a

river, what is the probability that a studied river is not dramatically polluted? These questions

may be answered by the application of the Metropolis-Hastings algorithm (MH-algorithm).

Although simple, this statistical model cannot be solved analytically. It exemplifies the

numerical integration problems that non-linear regression models lead to. As a result,

researchers have looked for other mathematical tools, e.g. neural networks for which Monte

Carlo based estimation techniques also apply (Chen et al. (1990)).

New interest in many older algorithms, based on simulation rather than numerical

approximations, has arisen from the development and increased accessibility of powerful

computer systems. The MH algorithm is a Monte Carlo Markov Chain method, designed to

simulate any target probability distribution (Metropolis et al. (1953); Hastings (1970)).
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Recently, a number of reference books have been written on MCMC-methods (Gamerman

(1997); Robert (1996); Gelman et al. (1995); Tanner (1992)) and two methods are often

described: the Gibbs sampler and the MH-algorithm.

The Gibbs sampler (Geman and Geman (1984), see also Casella and Georges (1992)

for a review) is often presented for academic purposes as a special case of the MH-algorithm

(Gelman et al. (1995), p. 328). It involves sampling from several conditional distributions

(equal to the number of parameters in a given model), all of which should be available in an

explicit form for stochastic simulation. This, therefore, is a major drawback in the use of the

Gibbs algorithm. Normally, neither the posterior joint distribution nor the conditional

distributions of the parameters from an environmental model can be derived explicitly, unless

by ad hoc formulation of model structure and prior density. For an intermediate case, Ritter

and Tanner (1992) have proposed a hybrid algorithm between the Gibbs sampler and the

MH-algorithm.

On the contrary, the MH-algorithm is entirely general with no such restrictions. As will be

described in this paper, this approach is indeed so generally applicable and easy to use that

the only limitation to the class of candidate models for a given data set now appears to be the

modeller’s imagination.

Gelman, Carlin et al. (1995) and Brooks (1998) give thorough discussions of Markov chain

sampling algorithms. Gilks et al. (1996) present many examples of Markov chain

applications. Gelman, Carlin et al. (1995) illustrate the MH-algorithm applied to the

coagulation time of blood drawn from animals randomly allocated to four different diets.

Credible intervals were deduced for seven parameters. Tanner (1992) used a simple genetic

linkage model and provided a one-parameter distribution simulation.

However, the bibliography about applications of MH-algorithm to model estimation in

the domain of environmental sciences is quite poor. An incursion into the domain of rainfall-
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runoff modelling can be found in Kuczera and Parent (1998). In this paper, we focus on a

case study of physical -especially environmental - model parameters. The BOD example

presents all the aspects of variability and uncertainty that may be encountered in the

environmental sciences and that can be easily quantified by MH techniques.

The MH-algorithm is particularly well suited for parameter estimation in a Bayesian

approach (DeFinetti (1937); Lindley (1972)). It can simulate almost any joint posterior

distribution of model parameters, when the likelihood function of the vector of parameters, a

prior distribution and the data set are known. The algorithm explores the parameter definition

domain, using a specific exploration strategy. At each step, it accepts or rejects the proposed

values, according to a specific rule. The algorithm appears to be a homogeneous and positive

Markov chain that converges under mild conditions to the desired limiting posterior

distribution, namely the posterior distribution of the parameter set.

2. Presentation of the Objective

2.1. Components of Any Model and Notation

A model is in fact a three stage intellectual construction:

1. hypotheses on the relationships between stimuli and response described in terms

of mathematical equations,

2. ideas about the model parameter values that a skilled practitioner or an

experienced researcher may already have in mind before any data is obtained,

3. error term. The last term represents non reducible uncertainties due to

measurement errors, etc.
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The first stage includes reducible uncertainties that influence the unobservable variables

– i.e. parameters – introduced by the hypotheses. The art of modelling is the choice of

realistic hypotheses. Note that, in the first part, hypotheses reduce uncertainty as far as

possible, by enforcing a model structure that is kept throughout the process of modelling.

Let us denote  = (θ1, θ2…θk) as the (multi-dimensional) parameter of any model

where θ1, θ2 and θk are the components of the parameter. The components are real numbers.

For example, in the BOD model, the parameter is a vector of 3=k  elements, i.e.

 ( )σ,, 20KBODu= . We ask the readers, particularly those unfamiliar with statistical

formulations, to keep in mind the analogy between the theoretical explanation and the

meaning in terms of the BOD model.

2.2. Bayesian vs. Classical Approach

The debate between classical and Bayesian approach is well illustrated by the way in

which the two approaches interpret the nature of parameters.

In classical statistics, parameters are regarded as fixed and deterministic, but

unknown. A 95 percent confidence interval means that taking n samples would give n

confidence intervals and that 95 percent of these would contain the true value of the

parameter.

According to the Bayesian point of view, parameters are uncertain and do not have

any fixed “ real”  and “ true”  value. Possible parameter values may, of course, be suggested,

and conditional lines of reasoning can be explored with the help of models. In the Bayesian

setting, probability distributions are the mathematical tool used to encode both the

uncertainty associated with non-observable quantities, and to express the natural variability of

the observable variables. In this context, credible intervals refer only to the data at hand and
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do not involve any imaginary infinite repetition of sample drawing. A 95 percent credible

interval simply means that the probability that the parameter belongs to the credible interval

is 95 percent, i.e. the odds of betting that the parameter may take a value within the interval

are 95 to 5.

We will adhere to the Bayesian paradigm in this paper. Firstly, the classical definition

may be confusing: in evidence, many scientists and several handbooks do provide a definition

of the classical confidence interval close to the Bayesian credible one (Lecoutre (1997)).

Secondly, it appears strange to require n samples to be considered, when only one is known

or even exists.

2.3. Prior and Posterior Distribution of a Parameter

In the Bayesian approach, the uncertainty associated with a parameter  is represented

by a probability distribution. The uncertainty always refers to a state of knowledge, which

should be mentioned by a conditioning argument in the probability distribution of the

parameter. We will denote by H  the modeller’s background state of information, which

encompasses all hypotheses and existing knowledge before collecting data. The parameter

probability density function ( )HP  associates a degree of belief to each possible value of the

parameter . As with any probability density function, this function is positive and the hyper-

volume under the curve equals one. The marginal probabilities are the well-known univariate

distributions of each component of the vector .

The prior distribution ( )HP  of =(θ1, θ2…θn) takes into account our physical

interpretation of each parameter before gathering any experimental data. This prior

knowledge may be encoded probabilistically by various methods: Berger (1985) describes 10

various ways to elicit priors. He discerns location parameters from scale parameters and

explains how to give them non-informative priors.  Vague knowledge about location



9

parameters should be associated with a uniform prior distribution, but with a given scale

parameter σ , it should lead to a 1−σ -shape prior distribution. A non-informative prior

distribution gives no preference for any vector in the parameter definition domain. However,

it can be noted that a non-informative prior gives information on the parameter limit values

(fig. 2a).

{ Figure 2}

The posterior distribution of  = (θ1, θ2…θn) describes our probabilistic judgement of

plausible values for , taking into account the experiment (the data set y ) and the prior

knowledge (likelihood of the model ( )HP ,y  and parameter prior distribution ( )HP ,y ). It

is therefore written as ( )HP ,y . Bayes (1763) formula works as an information processor

that updates the prior density function ( )HP  into the posterior ( )HP ,y :

( ) ( ) ( )
( ) ( )∫ ⋅⋅

⋅
=

θ

y

y
y

dHPHP

HPHP
HP

,

,
, (2.1)

Bayesian statisticians interpret this theorem as a relevant mechanism to provide a

rational solution of how to learn from the data y  about the quantity of interest .

Under mild technical conditions, the posterior distribution function is generally

”sharper”  than the prior one (Gelman, Carlin et al. (1995)), which is intuitively appealing

since one expects the posterior probabilistic statement of belief about  to be more “precise

than”  the prior one (fig. 2b).

The predictive posterior distribution reads:

( ) ( ) ( )yzyz dHPHPHP ⋅⋅= ∫ ,,,
θ

(2.2)

This reflects how the chances of obtaining further data z  from the same phenomenon

can vary with reference to the initial state of information H  and the collected data y , once
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possible variations of the parameter  have been “ integrated” . An example of the use of

predictive distributions for validating a model of daily precipitations can be found in

Chaouche and Parent (1999).

2.4. Objective

In the Bayesian setting, the only problem is the evaluation of the posterior joint

distribution of the parameter ( )dθθθ ...,, 21 , once experiment results are given and prior

knowledge is assessed (fig. 3). This can be theoretically achieved by evaluating Bayes

formula . In very specific cases, the so-called conjugate situation, prior and posterior

functions belong to the same family of functions (see for instance, Robert (1992) for a

general theory of conjugation for the exponential family, or Box and Cox (1973) for practical

application to normal models). In such cases, the prior is simply revised into the posterior by

updating the coefficients characterising the conjugate class of probability distributions.

Unfortunately, apart from these mathematically convenient situations, solving equation (2.2)

is problematic due to the evaluation of the integral in the denominator (remember that  can

be multidimensional) and the integration  required for the predictive density function may be

numerically infeasible. For a long time, the evaluation of integrals has limited Bayesian

inference to rather unrealistic ad hoc student book examples.

{ Figure 3}

These computational difficulties may now be overcome using the Metropolis-Hastings

algorithm. In other words, Bayesian inference in practice – i.e. getting the parameter posterior

distribution – can be performed without difficulty for any non-linear model and any prior

distribution.

3. Description of the Metropolis-Hastings Algorithm
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Any student in statistics knows that a positive homogeneous Markov chain converges

to a limiting probability distribution. In practice, this means that if one looks at the values

generated by a given Markov chain sufficiently far from the simulation origin, the

successively generated values will be distributed with stable frequencies stemming from a

fixed probability distribution. Such a series will behave as a pseudo sample of this limiting

probability distribution and any statistical quantity of interest such as the density function and

the various moments can be evaluated from the generated pseudo sample.

 The MH-algorithm solves the inverse problem: i.e. how to design a Markov chain that

converges to a given probability distribution, for instance ( )HP ,y⋅ . The idea is to generate

pseudo-samples of size N, with N large, ( ) ( ) ( ) ( ) ( )( )Ni210 ,...,...,,,,  with a Markov chain

converging to the limiting distribution ( )HP ,y . Note that, for practical purposes, a Markov

chain can be viewed as nothing more than a computer program (with a random function call)

applied in a loop that gives ( )i  as output for the ith iteration, and uses this as the only input

for iteration i+1 to produce ( )1i+  and so on. This chain is homogeneous if the program in the

loop does not change as the iterations proceed. The chain is positive if any value belonging to

the domain of variation of  can always be reached at random in the next loops, whatever the

starting values may be.

We describe now the definition of a jump from a given value ( )i  to a candidate

parameter value  and the rules leading to the acceptance or the rejection of .

3.1. MH jump specification

Let us suppose that the algorithm has just generated ( )i  after iteration i. At iteration

stage i+1, a candidate parameter value ψ  is sampled from a fixed symmetric multivariate
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jump probability distribution ( )( )iJ . The jump distribution ( )( )i⋅J  may depend on ( )i

and is used to explore the surroundings of ( )i . Many versions of the algorithm have been

developed using various jump distributions, as will be discussed below. In general, it is

required that J(. .) be symmetric, i.e. ( )( ) ( )( )ii JJ =  in order that the transition

( )i → shall be given the same probability as the reverse transition ( )i→ .

3.2. Acceptance-Rejection rule

The candidate value  for the next term is or is not added to the chain according to the

following acceptance-rejection rule:

•  Generate a [0,1]-uniform random value r

•  Compute the ratio q as:

( )( ) ( )
( )( )HP

HP
q

,

,
,

y

y
i

i =

Note that, since the denominator of Bayes formula  giving ( )HP ,y  and ( )( )HP ,yi  is

fortunately the same normalising constant, it does not need to be computed, since

( )( ),iq  can be directly evaluated as

( )( ) ( ) ( )
( )( ) ( )( )HPHP

HPHP
q

ii

i

y

y
,

⋅

⋅
=

,

,

•  If ( )( ) rq ≥i ,  then jump to , that is set ( )1i =+ . However if ( )( ) rq <i , , then

remain at the former position, which means that the algorithm output is ( ) ( )i1i =+ .

( )1i+ is then used to start the next loop of the algorithm in the exploration step and so on.

However counter-intuitive it may seem, it can be shown that this stochastic algorithm

converges to the stationary distribution, ( )( )HP ,yi . Due to the so-called ergodic property,



13

this convergence occurs for any symmetric exploration function, providing it does not

prevent the Markov chain from becoming homogeneous and positive. Proofs are given in

Gelman et al. (1995) or in Brooks (1998).

The random feature in the acceptance-rejection rule is the key point of the MH-

algorithm: if  is a posteriori more likely than ( )i , it will always be accepted since

( )( )i ,q  will then be greater than 1 and r is always less than 1. However, in the opposite

case, the algorithm can leave the regions of high posterior probability where it mostly

gravitates, and jump to regions of lower posterior probability. This way, the algorithm

browses randomly the whole  domain of θ looking for potential local second order modes of

( )HP ,y .

3.3. Exploration options

Independent Walk Algorithm (IW mode)

{ Figure 4}

Each candidate  is drawn according to the prior distribution (fig 4a). The fixed

symmetric multivariate jump probability distribution  ( )( )iJ  is therefore

( )( ) ( )HPJ i = . The candidate values are accepted or refused according to the decision

rule. This is the simplest procedure to obtain a convergent Markov Chain, but it can be

dramatically slow.

Random Walk Algorithm (RW mode)

Each candidate  is drawn around the last term of the chain without any preference

concerning the direction (fig. 4b). Let k  represent the number of parameters in a given model,
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kI , a kk ×  diagonal matrix with diagonal terms equal to 1 and s an adaptive scaling factor

used to maintain an acceptable jump. The chosen jump function ( )( )iJ  is a hyper-spherical

multinormal probability distribution ( )( ) ( )( )k
ii I⋅=⋅ sNJ , . The distribution is centred on

( )i , the last term of the chain, so probability decreases with the span of exploration. The

distribution is non correlated, so every direction of movement has the same probability. This

version of the algorithm can be very slow.

Forced Walk Algorithm (FW mode)

Each candidate  is drawn around the last term of the chain with a directional

preference (fig. 4c). The chosen jump function ( )( )iJ  is a multivariate normal probability

distribution ( )( ) ( )( )Vii ⋅=⋅ sNJ , . The exploration distribution is centred on ( )i , the last

term of the chain but its variance V⋅s is defined from the observed covariance matrix of the

chain. Candidates will, therefore, be generated in the averaged directions of former terms of

the chain.

Although theoretical results have been demonstrated for a homogeneous Markov chain,

in practice the algorithm is tuned periodically after a series of sub-runs to increase the speed

of convergence. This can be obtained by periodically updating the variance V of the jump

distribution according to the previous results, therefore adapting to “successful”  search

directions. Changing the scaling factor s can be interpreted as adjusting the average length of

exploration.

Tuning in this manner can also be found in other random search techniques, such as

simulated annealing. Here, adjustment of the “ temperature”  coefficient governs the global

"agitation" of the algorithm in order to explore adequately the neighbourhoods of successive

iterations.
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This last version of the algorithm is more efficient but the chain tends to slow down and

to stay around local optimum when posterior parameter distributions are very sharp. Further

developments have been proposed to shake the chain and browse other regions of the

definition domain of the parameters (Robert, 1996)

3.4. Implementation issues

How to modify the strength of a jump?

The choice of the best modification method is made by checking all available options

against mathematically well-known problems. Gelman et al. (1995) based their answer by

running the MH-algorithm with a multivariate normal model including from 1 to 50

parameters. They concluded that the main criterion to define a suitable value for the jump

strength is the observed acceptance rate computed after a given number of iterations. Thus, a

high acceptance rate means that candidates resulted from too small jumps around a main

distribution mode, and would lead to an overestimation around this mode. On the contrary, a

low observed acceptance rate implies too large jump values as if the algorithm was in “a bog

without seeing the relief” . Gelman et al. (1995) show that the initial jump strength must be

24.

d
 with d equal to the number of parameters in the model. After a given number of

iterations, the jump strength may be modified in order to constrain the observed acceptance

rate to stay between 0.23 (d>5) and 0.44 (d=1).

How to assess the Markov chain convergence rate?

The rate of convergence to ( )y,HP ⋅  is still under research. For the time being, only

empirical answers can be given when judging how long the algorithm should run to

sufficiently approximate the limiting distribution. K parallel sequences of the algorithm with
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different possible starting points can be launched. After a sufficient number of iterations, the

K sequences should stem from the same ( )y,HP ⋅  limiting distribution. One can then test that

the K sub-samples belong statistically to the same population by various parametric and non-

parametric tests. Gelman, Carlin et al. (1995) describe one such test based on the R statistic

which compares the variability of generated parameters within and across the K sequences.

Is there any limiting distribution that the MH-algorithm can reach?

Another important issue is often overlooked; namely that the existence of the limiting

distribution ( )y,HP ⋅  should be mathematically proved.  The algorithm can be run when the

posterior is improper (due to a non-integrable combination of likelihood and improper prior),

and may even "generate" samples with good-looking bell shaped histograms!  However, the

results would be spurious. This problem may be avoided by using priors with a finite domain

for .

3.5. MCMC and MH Software

The first author has developed a Fortran routine of the FW mode algorithm with

convergence rate assessment and jump strength updating, initially designed for use in paleo-

ecology (Guiot & al., 2000), but applicable to any model.  A program in Matlab for the FW

mode algorithm was used to check that the well known linear regression results belongs to

the credible regions obtained by the MH-method. Both pieces of software operate in a two-

stage process. Firstly, the user has to parameterise the algorithm according to the model,

which, unfortunately, requires programming knowledge. Secondly, the modified program

must be compiled and run. The linear regression example was run on the Matlab program,

and the BOD example ran on the Fortran program.
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Non-programming level software is available elsewhere. Carlin and Louis (1996),

p.327) propose a useful “software guide”  detailing the main software related to Bayesian

methods in general and, in particular, MCMC methods. Most of this software is free and

available electronically via the World Wide Web. They emphasise a product named BUGS –

Bayesian inference Using Gibbs Sampling – developed at the MRC Biostatistics Unit at the

University of Cambridge, and initially described by Gilks et al. (1992). Dedicated primarily

to Gibbs sampling, a recent version includes a Metropolis-within-Gibbs option for multi-

modal distributions sampling (see Section 1). Several platform versions are available on the

universal resource location (URL) http://www.mrc-bsu.cam.ac.uk. The Microsoft Windows

95/NT version allows statistical models to be constructed simply by drawing graphs,

eliminating traditional computer syntax altogether.

4.Applications

We now apply the MH-algorithm to two examples.

The first example presents simulated data from a linear model for which the routine

statistical analysis is performed and the posterior distributions are explicit. Our aim here is

mainly to reassure the practitioner by demonstrating that the MH procedure will exhibit the

same well known results.

The second example is based on a BOD non-linear model for which the statistical

analysis was previously considered as intractable from both the classical and the bayesian

perspective (at least by environmentalists with a standard background in statistics). Our

objective for this example is to illustrate that a Bayesian analysis of many environmental

models can nowadays be carried out without the slightest numerical difficulty.

4.1. MH algorithm on a linear example
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Consider the following model (simple linear regression of y with respect to x)

εθθ +⋅+= xy 21  where ε  is drawn from a normal distribution with mean 0 and standard

deviation θ 3

Parameters θ θ θ1 2 3, and  represent respectively the intercept, the slope and the error standard

deviation around the regression line. Using the parameter values ( )1,2,0 321 === θθθ , the

10 data were simulated using the normal random generator of the MATLAB statistical

toolbox (table 2).

Regression coefficient estimation (by maximum likelihood) gives the following

observed values: 788.01 −=θ  and  143.22 =θ  (fig. 5). These values will be compared to

their position in the resulting MH algorithm marginal distributions.

{ Figure 5}

The theoretical distributions of each parameter are also computed for comparison.  Box and

Tiao. (1973) proved that, when a so-called non-informative prior is elicited for the prior

parameter distribution, the following results hold for the posterior distributions:

Let � , � , �θ θ θ1 2 3 be the usual least squares estimates for ( , , )θ θ θ1 2 3 , obtained as follows:
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{ Figure 6}

•  Unconditional on the knowledge of ( , )θ θ1 2  the posterior distribution of θ3 is such that

the variable ( )
2

3

3̂210 









−=

θ
θ

z  is a chi-square random variable with (10-2) degrees of

freedom. Figure (6a) plots the posterior distribution of θ3 , both theoretical (based on a
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change of variable from the distribution of z)  and as obtained by 1000 runs of MH

algorithm (after a burn-in sequence of 9000 runs that were discarded)

•  Conditional on the knowledge of θ3, ( , )θ θ1 2  has a bivariate normal distribution centred

on ( � , � )θ θ1 2  with a variance covariance matrix: ( ) 1

3

−
XX Tθ . Unconditional on the

knowledge of θ3, ( , )θ θ1 2  has a Student distribution centred on ( � , � )θ θ1 2  with a scale

parameter of: ( ) 1

3̂

−
XX Tθ  and 8 degrees of freedom. Figures (6b) and (6c) describe the

Student marginal distributions for θ1 and θ 2 both with their analytical expression and by

drawing histograms from the MH pseudo-sample.

Visual inspection shows a close agreement between the theoretical results and those

obtained from the MH algorithm and that observed regression coefficient for ( )788.01 −θ  and

( )143.22θ  are modal values.

4.2.  MH Algorithm on BOD example

As stated above, the statistical analysis of this environmental problem was previously

considered as intractable from both a classical and the Bayesian perspective. We start the

analysis by distinguishing the prior knowledge from the posterior knowledge. The prior

knowledge is what is known before an experiment: primarily, the definition of a model to

describe the BOD versus time measurements. It also includes the physical interpretation of

the model parameters. The data collected from a particular site improve this knowledge –

particularly the knowledge related to that site. We try to illustrate how the prior degree of

belief is integrated by the MH-algorithm to produce posterior knowledge.
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4.2.1. The BOD model and the environmental context

As previously established (see Section 1), the BOD against time measurements are

usually described by the following model:

( ) ( )[ ] tu tKBODtBOD ε+⋅−−= 20exp1

where ( )tBOD  is the biochemical oxygen demand at time t. εt stands for independent normal

errors with constant variance, BODu  is the ultimate BOD, K20 denotes the constant rate of the

organic matter decomposition ( { }11.9.7.5.4.3.2.1∈t , at 20°C), and σ  stems from the natural

experimental variability when collecting the data.

Note that, by introducing the variable ( )tBODr  as the remaining BOD over time, and a

starting value ( )tBODu  there is an equivalent expression of the model as a continuous first

order reaction :

( ) ( )tBODKt
dt

dBOD
r

r ⋅−= 20

where ( ) ( ) ( )tBODtBODtBOD ur −=  and ( ) ur BODtBOD == 0 .

We hope that the last remark demonstrates the wide range of applications covered by

this kind of model. It has already been used on the same data in some statistical handbooks.

Berthouex and Brown (1994) looked for an optimal experiment design as a compromise

between the number of measurements and the size of the credible region for the parameters.

Bates and Watts (1988) studied BOD data and several other data sets related to non-linear

regression modelling, and built credible regions according to the different approximation

methods. Ritter and Tanner (1992) and Tanner (1992) illustrate an improved Gibbs sampler

on the BOD data. However, they intentionally take non realistic prior distributions for uBOD
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and K20 so that the conditional distributions needed for the Gibbs sampler are available in

closed form.

In this section, we take the point of view of a practitioner, and describe how to obtain a

proper joint posterior distribution for uBOD , K20  and σ .

The main water quality assessment indicators are ( )5BOD  but also uBOD  and K20.

BODu  and K20 are parameters of the model. ( )5BOD  is not a model parameter but is a less

expensive way to quantify the BOD level of a given water sample. The range of ( )5BOD  and

BODu  values is from 0 to 5 mg/L in rivers. K20 lies between 0.05 and 0.40 day-1.

4.2.2. Building a posterior distribution

We first define prior distributions and the likelihood function for each of the three

parameters.

Informative or non-informative prior distributions:

The choice between an informative and a non-informative prior is dependant upon what

is known about the distributions of uBOD , K20  and σ .

Uniform pr ior  distr ibution for  uBOD  between 0 and 5. There is no prior preference

for any values between 0 and 5. We specify a non-informative distribution, that is to say, a

uniform distribution for BODu , this parameter appearing as a location parameter:

( ) 1α=HBODP u (4.1)

Uniform pr ior  distr ibution for  K20 between 0.05 and 0.40. The same reasoning lead

to the same type of prior :

( ) 220 α=HKP (4.2)
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Non informative pr ior  distr ibution for  σ . The prior distribution for the scale

parameter σ  has to be 1−σ -shaped (Berger (1985)). So, we consider:

( )
σ
ασ 3=HP (4.3)

From equations ,  and , a non informative prior distribution is obtained for

( )σ,, 20KBODu= :

( )
σ
ααασ 3

2120,, ⋅⋅=HKBODP u (4.4)

We need only to remember for  next steps that:

( )
σ

σ 1
,, 20 ∝HKBODP u (4.5)

Likelihood function of the model :

Let us denote:

{ } ( ) ( )( )tKBODtBODt uest ⋅−⋅=∈∀ 20exp1,11,9,7,5,4,3,2,1

the prediction associated with time t . The model can be expressed as:

{ }
( ) ( )( )

( ) ( )
( )î





←
+=

⋅−⋅=
∈

σε
ε

,0

exp1

11,9,7,5,4,3,2,1
20

N

tBODtBOD

tKBODtBOD

t

t

test

uest

or

{ } ( ) ( )( )
( ) ( )( )î




←
⋅−⋅=

∈
σ,

exp1
11,9,7,5,4,3,2,1 20

tBODNtBOD

tKBODtBOD
t

est

uest

According to BOD Ku , 20 and σ  values, a wide range of models are possible. For this

reason, we need a quantitative criterion to evaluate the quality of each model. Our model
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quality criterion is based logically on the ability of the models to fit observed values

( )( ) { }11,9,7,5,4,3,2,1, ∈ttBODt . This is what we call the likelihood function. The likelihood function

for a non-linear regression model is the probability distribution function of a normal random

variable :

{ } ( )( ) ( ) ( )( )










 −
−=∈∀

σπσ
σ

2
exp

2

1
,,,,11,9,7,5,4,3,2,1

2

20

tBODtBOD
HKBODtBODPt est

u

If we assume independence between observations, the likelihood function becomes:

( ) ( )( ) ( )( )∏=
t

uu HKBODtBODPHKBODBODBODP ,,,,,,11,...1 2020 σσ (4.6)

Note the presence of the classical square sum of errors around the regression curve in

the likelihood function expression. Logically, the likelihood of the model will increase when

the sum of squares of errors will decrease for any given positive value of σ .

Posterior joint distribution of the parameters:

The posterior joint distribution is known up to a factor, as it is expressed in Bayes’

formula as a product of the former quantities expressed in  and  :

( ) ( )( ) ( ) ( )( ) ( )σσσ ,,,,,11,...,1,11,...,1,, 202020 KBODPHKBODBODBODPHBODBODKBODP uuu ⋅∝
The purpose of the MH-algorithm is to accept or reject successiveBOD Ku , 20 and σ  values

according to the posterior joint distribution evaluation.

Let us denote ( ) ( ) ( ) ( )( )iii
u KBOD σ,, 20=i  as the vector of parameter after i iterations and

( ) ( ) ( )( )ccc
u KBOD σ,, 20=  a candidate vector. The algorithm described in a former section is

applied with an acceptance/rejection rule based on:

( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )HKBODP

HKBODP
q

iii
u

ccc
u

,,,

,,,
,

20

20

y

yi

σ
σ

=
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4.2.3. MH-algorithm in action

The MH-algorithm initialises five independent Markov chains with random values

taken from the prior thresholds (Table 3). It runs 2,500 times in RW mode and 11,500 times

in FW mode before reaching convergence in the last 1,000 iterations.  Convergence is tested

by simultaneously launching five independent sequences. The acceptance rate for the last

1,000 iterations equals .31 and is not far from the value recommended by Gelman et al (1995)

(0.36 when d is 3)

Figure 7 traces the five sequences of values for each parameter along 13,001 iterations.

{ Figure 7}

From iteration 1 to 2500, the five chains are in a RW mode. The chains browse the

whole definition space with no evidence of convergence. From iteration 2,501 to 13,001, the

five chains are in a FW mode. Each chain evolves in a main direction indicated by the

averaged direction of the previous values. The leading direction is updated every 60

iterations. This part of the chart is characterised by two phases:

- from iteration 2,501 to 6,500, a phase of transition with important changes resulting from

several direction updates;

- from iteration 6,500 to the end of sequences, a phase of relative stabilisation around

optimal values.

From the last 1000 iterations, 1 in 10 are saved so 100 MC terms are retained from each

sequence. Finally, the posterior distribution simulation is based on the 500 last iterations from

each sequence.

4.2.4. Posterior marginal distributions

{ Figure 8}
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The algorithm gives 500 observed vectors ( )σ,, 20KBODu . From this, posterior

marginal distributions are easily computed by taking into account the whole range of values

for each parameter (figure 8).

90-percent credible intervals for BOD Ku , 20 and σ  are built from the posterior marginal

distributions, giving the following results:

( ) [ ]774.2,315.2=uBODI , ( ) [ ]235.0,165.020 =KI , ( ) [ ]119.0,046.0=σI .

A first interpretation of these results is that the sampled river is highly polluted

( 12.020 >K , Krenkel and Novotny (1980)).

4.2.5. Predicted values distributions

{ Figure 9}

For any given value of t  and for each of the 500 resulting vectors ( )σ,, 20KBODu  the

prediction formula can be applied in the following way:

(i) compute ( ) ( )( )tKBODtBOD uest ⋅−⋅= 20exp1

(ii) sample a centered normal random value with  σ  standard deviation

(iii) add the two terms

This gives 500 values of ( )tBOD  for one given value of t . This was carried out for

{ }11,9,7,5,4,3,2,1∈t and corresponding histograms were built. A further histogram was added

for t=20 as a forecast (fig. 9). For the available observations, one can easily observe the

agreement  between the distribution and the observed values of y.

90-percent credible intervals have been  built for BOD(5) and BOD(20):

( )( ) [ ]7232.1,4248.15 =BODI  and ( )( ) [ ]6894.2,2461.220 =BODI . Consequently, ( )5BOD  is
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almost certainly over 1mg/L, which is a common threshold for clean water. ( )20BOD

credibility interval leads to the same diagnosis. A more interesting discussion is on the

comparison of ( )uBODI  with ( )( )20BODI  and with every credible interval of t>20, e.g.

( )( )1000BODI :

( )( ) [ ]

( )( ) [ ]
( ) [ ]774.2,315.2

816.2,279.21000

...

689.2,246.220

=
=

=

uBODI

BODI

BODI

As BODu  represents the “ultimate BOD”, ( )( )tBODI become closer and closer to

( )uBODI  as t tends to plus infinity. Further, uBOD  is unaffected by the uncertainty in 20K .

On the contrary, for any finite t value, ( )tBOD depends on K20 as well as uBOD , so any

uncertainty about 20K  will result in an extra uncertainty about ( )tBOD . Consequently,

( )( )tBODI  will always be wider than ( )uBODI  and the credible region ( )( )1000BODI

entirely contains ( )uBODI .

The BOD example illustrates the extent to which MH-algorithm allows the

environmental scientist to define credible intervals for uBOD ,  K20 and σ , as well as any non

observed ( )tBOD  value. Credible intervals for observed ( )tBOD  values are performed and

compared with observed values to check that MH pseudo-sample has converged to the target

distribution. Several tools are now available to facilitate (jump and direction updates in a FW

mode of the algorithm) and to assess (CVG rate periodical calculations) the convergence.

Many other factors affect the BOD : temperature significantly affects the reaction rate

and also slightly influences the ultimate BOD ; extreme pH values in wastewaters may

interfere in the experimentation.... These factors and many others (Krenkel and Novotny,
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1980) could be integrated in a more complex BOD model. The MH-algorithm could be used

for this model, with no supplementary difficulties.

Finally, a useful feature is the ability to limit the influence of outliers on credible

intervals. Distributions with a relatively strong mode and short tails, e.g. Gaussian

distributions are particularly outlier-sensitive. Gelman, Carlin et al. (1995) suggest modelling

outliers in the error term by using long-tailed distributions such as the Student’s distribution.

5. Conclusion

In this paper, we have stressed the usefulness and tractability of the MH-algorithm for

statistical analysis of environmental models in the Bayesian context. It has been shown that

MH-algorithm can be easily implemented and overcome the technical difficulties often

associated with rare data, imprecise knowledge and non-linear effects. Of course, no

technique can ever overcome conceptual modelling complications and all results given in this

paper are subject to the basic constraints of scientific reasoning, i.e. the ability to design a

(realistic) model and the will to deliver quantified statements in addition to qualitative

judgements.

Based on this work, it should be possible to analyse other environmental models with

more parameters and systematically check the sensibility of the analysis to the prior – i.e.

how the part stemming from the environmentalist’s expertise may influence the conclusion of

the study. An interesting aspect of the MH algorithm is the easy generation of predictive

values, meaning that once the environmentalist has assembled a model, data and prior

knowledge, various conditional future scenarios can be obtained. Moreover, within the

Bayesian setting, inference and prediction are achieved without recourse to the usual

asymptotic approximations needed in conventional analysis of non-linear models.
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Table 1 : Biochemical Oxygen Demand vs. Time. Data from Marske & Polkovski (1972)

Table 2 : Artificial data simulated using the normal random generator of the MATLAB

statistical toolbox (see text for the model definition).

Table 3 : Initial values for the five independent Markov chains generated by MH algorithm in

the BOD data example. BODu is sampled from an uniform (0-5) distribution, K20 from an

uniform (0.05-0.40) and σ  from an uniform (0.001-1000).
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Figure 1 : Scatterplot of the BOD data and possible fittings by three different curves. These

curves are from the BOD model with varying parameter values.

Figure 2 : Prior and Posterior Joint Distribution of (θ1, θ2). a - Uniform two-dimensional prior

in [-20, 50] x [-2, 6] ; b - 80%, 90%, 95% and 99.9% Normal likelihood contours for (θ1, θ2)

labelled by approximate frequency coverage using the F statistic. From Tanner & al. 1993.

Figure 3 : MH-algorithm inputs and outputs using Bayesian approach and terminology.

Figure 4 : Independent, Random and Forced Walk Version of the algorithm. Algorithms are

ordered according to their efficiency in simulating the posterior joint distribution of (θ1, θ2).

Numbers indicate iteration rank and a particular (θ1, θ2) value ; some are circled (accepted),

others are struck through (rejected) ; a - Independent Walk Algorithm defines the Markov

Chain MC1 = (1, 2, 2, 2, 5, 5, 5, 8, 9) ; b - Random Walk Algorithm defines MC2 =

(1, 1, 3, 4, 4, 6, 7, 8, 9, 10, 11) ; c - MC3 = (1,..n, n+1, n+2, n+3, n+4, n+4, n+6), Forced

Walk Algorithm changes from Random Walk Algorithm after n iterations. Repetition means

that a jump has been rejected and that the MC stays in the same place.

Figure 5 : scatterplot of the data (xi, yi)i=1,10 and the line with equation

x2.143270.78800- y ⋅+=

Figure 6 : Theoretical and MH algorithm distributions for the three parameters involved. The

curves and the histograms show respectively  the theoretical and the MH algorithm

distributions.

Figure 7 : Five simultaneous Markov Chains simulating the three dimensional parameter

( )σ,, 20KBODu  ; Each graph plots the parameter component value against the iteration

number from 0 to 13,000. Arrows indicates the starting values of each chain as shown in table
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3. The windows show the part of each sequence where the algorithm converges to the

posterior distributions of uBOD , 20K  and σ .

Figure 8 : Marginal posterior distribution of uBOD , 20K  and σ . P5, P50 and P95 are

respectively the 5th
, 50th (or median) and 95th percentile of each distribution.

Figure 9 : y prediction for observed values xi ; dashed lines represent observed y values and

solid bars the distribution of y predictions. P5, P50 and P95 are respectively the 5th
, 50th (or

median) and 95th percentile of each distribution.


