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Abstract

The specificity of plant use by aphids is related to symbiont diversity of some aphid models. Aphis
craccivora Koch (Hemiptera: Aphididae, Aphidini) is a well-known aphid that feeds on species of
Fabaceae, but has also been recorded recently on Amaranthus species (Amaranthaceae) in Gabon
(Africa). Aphis craccivora strains used in this study were originally collected from crop Vigna unguicu-
lata L. Walp. (Fabaceae) from Togba in Benin (Africa) and Amaranthus hybridus L. from Libreville in
Gabon, for a comparative study of symbionts. Saliva composition, potentially including bacterial
proteins, also contributes to the phytotoxic effect of aphid attacks. Both, endosymbiont bacteria and
saliva protein diversity should be targeted to investigate the feeding behavior of aphids and to explain
plant—aphid interactions. Bacteria-targeted PCR was conducted on six symbionts in A. craccivora.
The obligate symbiont Buchnera aphidicola Munson et al. (Enterobacteriaceae) was identified in all
aphids collected. In comparison, the facultative symbiont Serratia symbiotica Moran et al. (Enter-
obacteriaceae) was only found in A. craccivora from Gabon, whereas Rickettsia sp. (Rickettsiaceae)
was only found in aphids from Benin. Using nano-LC-MS/MS (liquid chromatography-tandem
mass spectrometry), some proteins were only found in solid or soluble saliva, whereas others origi-
nated from S. symbiotica. Two of the identified proteins are involved in plant—pathogen interactions:
calmodulin and elongation factor Tu. This information on endosymbionts and related salivary pro-
teomes from A. craccivora in Gabon helps improve our understanding of aphid—plant interactions.

Introduction

polyphagous, with a clear preference for Fabaceae species
(Stoetzel & Miller, 2001). Aphids cause damage by remov-

Vigna unguiculata L. Walp. (cowpea) (Fabaceae) and
Amaranthus hybridus L. (amaranth, smooth pigweed)
(Amaranthaceae) are considered as indigenous vegetables
in urban agriculture in Africa. Crops of these two species
provide the most important sources of leafy vegetable in
the continent; however, some communities also grow
cowpeas to use their seeds or as fodder (Shackleton et al.,
2009). Both plant species are subject to pest pressure, par-
ticularly from aphids. Aphis craccivora Koch (Hemiptera:
Aphididae, Aphidini) is one of the most important pests in
vegetable crops in tropical Africa (Singh & Allen, 1979;
Jackai & Daoust, 1986). This cosmopolitan pest is
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ing plant sap, which weakens aerial parts (leaves, pods,
seeds, and others). Plant growth is stunted, leading to dis-
tortion and necrosis of leaves, followed by premature defo-
liation and death of seedlings. All steps result in yield
losses. Aphis craccivora is a vector of 51 plant viruses (Chan
et al., 1991). The most important viruses are Groundnut
rosette virus (GRV), Subterranean clover stunt virus
(SCSV), Bean common mosaic virus (BCMV), and Cucum-
ber mosaic virus (CMV) — these viruses causes economic
damage to vegetables (Borowiak-Sobkowiak et al., 2017).
In Africa, Cowpea aphid-borne mosaic virus (CABMV) and
Blackeye cowpea mosaic virus (BICMV) are essential in
cowpea (Agunbiade et al,, 2013), and Amaranthus mosaic
virus (AMV) is important in amaranth (Kareem et al., 2011).

Hemipteran insects use their stylet-shaped mouthparts
to pierce the plants and suck phloem (Powell et al., 2006;
Fereres & Moreno, 2009), with pests having the ability to
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modulate the defensive responses of plants (Hogenhout &
Bos, 2011). For instance, while feeding, aphids inject two
types of saliva into host plant tissues: solid and soluble
(Miles, 1959). Both types of saliva function in aphid—plant
interactions, and have a major impact on plant defense
and physiology (Miles, 1999; Will et al., 2007, 2009; Mutti
et al., 2008). There has been an increase in the number of
studies focusing on the composition of aphid saliva since
the paper by Miles (1999). As a result, we now know the
salivary proteins of 12 aphid species; however, many pro-
teins of other species have yet to be identified.

Aphids are also classified according to the type of dam-
age that they cause to plants. For instance, phytotoxic and
non-phytotoxic aphids are distinguished as they act
directly and indirectly, respectively, on plant tissues by
altering plant defenses or other physiological parameters
(Miles, 1999; Goggin, 2007; Will et al., 2009). Nicholson
et al. (2012) suggested that aphid—plant interactions are
regulated by general proteins fed by aphids. Some aphid
species, like Acyrthosiphon pisum Harris and Myzus persi-
cae Sulzer, do not induce direct or immediate phytotoxic
effects on plants (Nicholson & Puterka, 2014). The salivary
proteins of these non-phytotoxic aphids mainly serve to
destabilize general plant defense responses (Miles, 1999;
Cherqui & Tjallingii, 2000; Tjallingii, 2006; Will et al.,
2009). In contrast, during feeding, phytotoxic aphids
secrete proteins that strongly interact with the plant by
inducing rapid changes to the shape and composition of
plant organs, leading to stronger symptoms of aphid
occurrence (Burd, 2002). Based on our personal observa-
tions, some damage to amaranth is related to A. craccivora
phytotoxicity. Schizaphis graminum Rondani and Diu-
raphis noxia Kurdjumov are phytotoxic aphids that are
also pests of wheat and other cereals that cause major eco-
nomic damage (Nicholson et al., 2012; Nicholson &
Puterka, 2014).

Almost all aphids contain the obligate endosymbiont
Buchnera aphidicola Munson et al. (Enterobacteriaceae),
whereas facultative endosymbionts are also found in some
aphids. Buchnera provides the host with essential amino
acids that are lacking in the host diet. This kind of symbio-
sis is obligate, with both partners being mutualistically
dependent on the other (Oliver et al., 2010; Simon et al.,
2011). Facultative symbionts have been extensively studied
in the pea aphid A. pisum (Simon et al., 2003). This aphid
hosts at least eight species of facultative symbionts, which
often vary in frequency between locations and host plants.
Most aphid clones are infected with one or more faculta-
tive symbionts (Enterobacteriaceae), including Hamil-
tonella defensa Moran et al., Regiella insecticola Moran
et al., Serratia symbiotica Moran et al., Spiroplasma sp.,
Rickettsia sp., and Rickettsiella sp. (Enterobacteriaceae)
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(Simon et al., 2011). Other aphid species are also infected
with similar bacterial symbionts; however, the diversity of
symbionts varies across aphid species. For instance, large
symbiont diversity was detected in Sitobion avenae (Fabri-
cius) (Yu et al., 2013). Six facultative symbionts have been
detected in the polyphagous and cosmopolitan aphid
A. craccivora, and were correlated with host plant use
(Brady et al., 2014). In particular, Regiella and Hamil-
tonella symbionts were only found in aphids collected
from alfalfa (Medicago sativa L). In comparison, Rickettsia,
Spiroplasma, Arsenophonus, and Serratia symbionts were
associated with aphids feeding on two or more host plants.
Aphid symbiont identities are associated with degree of
host plant specificity. Finally, facultative symbionts modify
aphid dietary breadth (Wagner et al., 2015).

This study aimed to investigate two aspects of aphid—
plant interactions in relation to microbiome patterns: (1)
identification of the endosymbiont diversity in A. crac-
civora clones, and (2) identification of the protein compo-
sition of soluble and solid saliva of this aphid in relation to
symbiont patterns. Complementary biological and ‘omics’
approaches were developed. Our results are expected to
provide novel insights on plant-aphid—microbiome inter-
actions and adaptive mechanisms.

Materials and methods

Rearing of aphids and plants

Aphis craccivora was originally collected from crop (1)
V. unguiculata during May 2015 from Togba in Benin
(6°26'58.46"N, 2°20'50.24"E) and (2) A. hybridus during
August 2015 from Libreville in Gabon (0°24'39"N,
9°29'26"E) and kept in micro centrifuge tubes in 70%
ethanol. Aphis craccivora collected from A. hybridus since
August 2013 in Libreville (0°27'30.46"N, 9°25'6.30"E) was
reared on amaranth plants (A. hybridus) at 24 £ 1 °C,
60-70% r.h., and L16:D8 photoperiod. Myzus persicae and
A. fabae clones were collected from beans in a crop field in
Gembloux (Belgium) and reared on V. fabae beans under
similar conditions, but at a lower temperature
(22 £ 1 °C) in dedicated environmental chambers in the
laboratory (Functional & Evolutionary Entomology, Gem-
bloux Agro-bio Tech, University of Liege). The aphids
were reared on plants grown in loamy soil (VP113BIO;
Greenyard Horticulture, Ghent, Belgium) and were placed
in 45 x 45 x 45 cm cages with 96 x 26 mesh (Bug-
Dorm; MegaView Science, Taichung, Taiwan).

Detection of symbiotic bacteria in aphids

Five aphids from the three species and clones from each
location were used (with five replicates) for DNA extrac-
tion following the protocol of Sunnucks & Hales (1996).
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Myzus persicae and A. fabae were used to compare sym-
biont composition with A. craccivora, because the three
aphids are amaranth pests. Diagnostic polymerase chain
reactions (PCR) were conducted using species-specific pri-
mers (Table 1) to detect endosymbiotic bacteria. Each fac-
ultative symbiont (Arsenophonus, Hamiltonella, Regiella,
Rickettsia, Serratia, and Spiroplasma) was screened for, as
they are the most common facultative bacteria associated
with aphids (Oliver et al., 2010). For each specific primer,
specific symbiont was used as positive control and also a
negative control was used without DNA template.

To detect Buchnera, the PCR mix consisted of 5 pl buf-
fer (products from Promega, Madison, WI, USA), 1 ul
dNTP, 1 pl of each primer (10 uM), 2 pl DNA, 0.5 pl tag
polymerase (0.4 U), and water to form a final volume of
25 pl. The mixture was subjected to 5 min of initial DNA
denaturation at 94 °C, followed by 30 cycles consisting of
30 s denaturation at 94 °C, 30 s annealing at 58 °C, and
90 s of elongation at 72 °C (Peccoud et al., 2014). For the
other endosymbionts, the PCR mixture consisted of 2.5 pl
buffer, 0.5 ul ANTP, 0.5 pl of each primer (10 pM), 2 pl
DNA, and 0.25 pl of taq polymerase (0.4 U) to form a
final volume of 25 pl. The mixture was subjected to 90 s
of initial DNA denaturation at 94 °C, followed by 30 cycles
consisting of 30 s denaturation at 94 °C, 30 s annealing at
a specific temperature related to the targeted symbiont
(Table 1), and 75 s of elongation at 72 °C. Amplification
was repeated in at least five replicates. After electrophoresis
on 1% agarose gel, amplicons were visualized using a pro-
tocol for loading GeneRuler 100 bp Plus DNA Ladder
#SMO0321 under UV light. After DNA was extracted from
agarose gels using a PCR Clean-up Gel kit (Macherey-

Nagel, Diiren, Germany; Anonymous, 2014), the samples
were sent for sequencing to Germany (GATC Biotech,
Konstanz). The sequence of each sample was matched
using the NCBI blastn database (https://blast.ncbi.nlm.
nih.gov). Sequences with >96% identity and query cover
were kept.

Saliva collection and concentration

Saliva was collected from ca. 50 000 aphids of A. crac-
civora from Gabon (reared in the laboratory). Diet of 15%
sucrose (wt/vol) was prepared under aseptic conditions
with Milli-Q water, filtered through 0.45-pum filters (Milli-
pore, Billerica, MA, USA), and sealed between two layers
of stretched Parafilm (SERVA Electrophoresis, Heidelberg,
Germany) on the bottoms of 27-mm-diameter cylinders
(PVC tube); microbial filtered Parafilm sheets were used
to avoid bacterial and fungal contamination (Vander-
moten et al., 2014). One hundred aphids (fourth instars
or apterae adults) were gently removed from plants
(A. hybridus) using a fine brush and were placed on white
paper, cleaned of debris before placing them in the PVC
tube (20 tubes per set-up, 500 tubes totally). These aphids
were kept in a feeding chamber for 48 h at a constant
20 = 1 °C. This method was previously described by
Cherqui & Tjallingii (2000) and Harmel et al. (2008). Sal-
iva was collected from fluid diets (liquid fraction). The sol-
uble fraction was placed between two membranes of
Parafilm. The sheath materials (solid fraction) were col-
lected after washing membranes with a water solution of
1% triton. All soluble and solid saliva were managed sepa-
rately. The samples were concentrated by centrifugation
(15 000 g) for 10 min at 4 °C. The saliva extracts (solid

Table 1 Primers and PCR cycling conditions used to detect the secondary symbionts of aphids

Expected  Annealing
Target Primer product temperature
Target gene name Primer sequence (5'-3') size (bases)  (°C) References
Buchnera 16S 16SA1 AGAGTTTGATCMTGGCTCAG ~270 58 Fukatsu & Nikoh (1998)
Buch270R  TGCCTTGGTAGGCTATTACTC Peccoud et al. (2014)
Arsenophonus 23S Ars23sF CGTTTGATGAATTCATAGTCAAA ~550 60 Thao & Baumann (2004)
Ars23sR GGTCCTCCAGTTAGTGTTACCCAAC Thao & Baumann (2004)
Hamiltonella  16S HamlF TGAGTAAAGTCTGGAATCTGG ~700 55 Chiel et al. (2007)
HamlR AGTTCAAGACCGCAACCTC Chiel et al. (2007)
Regiella 16S UI1279F CGAACGTAAGCGAACCTCAT ~700 58 Russell et al. (2003)
35R CCTTCATCGCCTCTGACTGC Russell & Moran (2005)
Rickettsia 16S 16SA1 AGAGTTTGATCMTGGCTCAG ~200 60 Fukatsu & Nikoh (1998)
Rickl6sR ~ CATCCATCAGCGATAAATCTTTC Fukatsu (2001)
Serratia 16S R1279F CGAGAGCAAGCGGACCTCAC ~700 56 Russell et al. (2003)
35R CCTTCATCGCCTCTGACTGC Russell & Moran (2005)
Spiroplasma 16S 16SA1 AGAGTTTGATCMTGGCTCAG ~350 55 Fukatsu & Nikoh (1998)
TKSSspF AAGCCTGATGGAGCAATGC ~100 62 Toju & Fukatsu (2011)
TKSSspR  TAGCCGTGGCTTTCTGGTAA Fukatsu & Nikoh (2000)
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and soluble) were treated with a two-dimensional clean-
up kit, according to the manufacturer’s instructions. The
extracts were subsequently resuspended in trypsin (Roche,
porcine, proteomics grade) for further digestion. Proteins
were quantified using the RCDC (reducing agent and
detergent compatible) quantification kit from Bio-Rad.

Protein identification

Peptide separation was performed on a nano-UPLC
(nanoAcquity; Waters, Bremen, Germany)-ESI-Q-Orbi-
trap (Q Exactive; Thermo, Bremen, Germany) in positive
ion mode. Each sample (10 pig) was resuspended in
50 mM ammonium bicarbonate and then reduced
(DTT), alkylated (iodoacetamide), and digested using
trypsin (protein concentration 0.5 mg ml™'). For each
sample, a quantity of 3.5 g digested protein was purified
on a Ziptip C18, and then dried and resuspended in
100 mM ammonium formiate (pH 10) at 0.333 pg pl~ .
A volume of 9 pl per sample, corresponding to 3 pg of
digested proteins, was injected on the nano 2D UPLC-
Orbitrap mass spectrometer (MS) system. An internal
standard sample ‘MPDSMIX’ (Waters) containing four
digested proteins was spiked in each sample, at a quantity
of 150 fmoles of ADH digest per injection.

The liquid chromatography method was a 2D LC with
three steps of 180 min. The three steps were performed on
the column at high pH, with increasing percentages of ace-
tonitrile and the peptides eluted from the column at high
pH being loaded after dilution on the low pH column.
Each step consisted of a gradient of 5 min from 99% of A
(A = water and 0.1% formic acid, B = acetonitrile) to
93% of A, followed by a gradient of 135 min from 93 to
65% of A. The MS acquired one full spectrum, from which
the 12 most intense peaks were selected (singly charged
precursors were excluded). Then, a full MS2 spectrum of
each of these 12 compounds was completed. The parame-
ters for MS spectrum acquisition were: mass range from
400 to 1 750 m/z, resolution of 70 000, AGC target of le6,
and maximum injection time of 200 ms. The parameters
for MS2 spectrum acquisition were: isolation window of
1.6 m/z, collision energy (NCE) of 25, resolution of
17 500, AGC target of le5, and maximum injection time of
50 ms.

Data analysis

The MS/MS spectra were performed using the software
Proteome Discoverer v.1.4 and the search engine Sequest
HT on the FASTA NCBI non-redundant with parameters
set for Insecta (TaxID50557). Results of these BLASTS
were treated with: (1) MEGAN 6 (Huson et al., 2016), to
clustered proteins in functional groups with KEGG path-
way, and (2) proteins who have the individual score of
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low-scoring peptides were not taken into account in the
hit score. The significance threshold (o) used was 0.05,
testing the null hypothesis that an observed match is a ran-
dom event. Results were processed first by accepting all
proteins with at least three peptides scoring above 15. Sub-
sequently, all redundant queries and corresponding pep-
tides were eliminated. Taxonomic affiliation was assigned
according to sequence identity results.

Results

Bacterial proteins

The primary symbiont B. aphidicola was identified from all
the samples, whereas two facultative symbionts, Serratia
and Rickettsia, were also detected by diagnostic PCR
(Table 2). Six facultative symbionts were examined in this
study. Serratia was present in A. craccivora from Gabon and
in M. persicae. Rickettsia was found in A. craccivora from
Benin. No secondary symbionts were identified in A. fabae.

Aphis craccivora salivary proteins
A KEGG analysis of peptides (Figure 1) showed the differ-
ent pathways of A. craccivora salivary proteins. Five of
them are common to the two types of saliva. The most rep-
resented group was the carbohydrate metabolism pathway,
some proteins are unclassified (no functional identifica-
tion). Two pathways were found solely in solid saliva
(energy metabolism and metabolism of other amino acids).
Lipid metabolism was identified only in the soluble saliva.
Another proteomic approach by NCBI database was
developed to characterize the composition of the saliva in
A. craccivora (Table 3). The most common enzymes to
both types of saliva were glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), ribosomal protein, enolase,
and tubulin. Some of the identified proteins were associ-
ated with bacterial organisms. ATP synthase subunit
alpha, phosphopyruvate hydratase, and peroxiredoxin
have originated from Serratia sp., whereas multispecies
cold shock protein associated with enterobacteriaceae was
extracted from the solid saliva of A. craccivora. Other pro-
teins common to the two types of saliva were also associ-
ated with Serratia sp. (elongation factor G, GAPDH), one
was associated with Enterobacteriaceae (30 S ribosomal
protein S1). A large number of identified proteins were
related to general functions.

Discussion

Bacterial proteins in aphids

Our cowpea aphid clones only supported a small diversity
of facultative symbionts. Only one facultative symbiont,
Rickettsia, was found in A. craccivora from Benin (Brady
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Table 2 Aphids examined in this study and the diversity of their symbionts

Accession Query score
Locality Host plant Aphid Symbiont number (%) Identity (%)
Benin Vigna unigulata  Aphis Buchnera aphidicola (A. craccivora) — ]X629767.1 98 98
(Togba) (cowpea) craccivora clone 969 16S ribosomal RNA gene
Rickettsia endosymbiont of A. KF362029.1 100 99
craccivora haplotype 2 16S
ribosomal RNA gene
Gabon Amaranthus A. craccivora B. aphidicola (A. craccivora) ]X629768.1 96 96
(Libreville) hybridus clone 880 16S ribosomal RNA
(amaranth) gene
Serratia symbiotica SCt-VLC FR904230.1 99 97
genomic scaffold 01
Gabon A. hybridus A. craccivora B. aphidicola (A. craccivora) EF614236.1 99 99
(Libreville) 16S ribosomal RNA gene
S. symbiotica SCt-VLC genomic FR904230.1 100 98
scaffold 01
Belgium Vicia fabae Myzus persicae  B. aphidicola (M. persicae) KM577346.1 99 98
(Gembloux) (fava bean) clone SP-GPA-Buch 16S
ribosomal RNA gene
M. persicae S. marcescens strain SADAAB_25 KX908027.1 96 95
16S ribosomal RNA gene
A. fabae B. aphidicola (A. fabae fabae) KT175936.1 100 99

clone AFFBNS2 16S ribosomal
RNA gene

et al., 2014). This symbiont has also been found in other
aphid species, including A. pisum (Chen et al., 1996;
Simon et al., 2011). It might be an obligate symbiont with
B. aphidicola (Manzano-Marin & Latorre, 2014). More
generally, Serratia has been reported to enhance the heat
tolerance of aphids (Chen et al., 2000; Montllor et al.,
2002; Russell & Moran, 2006). Thus, A. craccivora infected
with Serratia might give aphids a fitness advantage, espe-
cially under higher temperatures, which occur when

Cellular processes EJ:I

Metabolism of other amino acids |

Unclassified [——

aphids occupy amaranth under hot African climatic
conditions.

Co-infection with two symbionts at once has been pre-
viously detected in cowpea aphids. Brady et al. (2014) sug-
gested that some A. craccivora symbionts are associated
with particular host plants. For instance, Regiella and
Hamiltonella are strongly correlated with A. craccivora
feeding on alfalfa in certain geographical areas. Brady &
White (2013) found that populations of A. craccivora on

0 Solid saliva
@ Soluble saliva

Organismal systems

Lipid metabolism 5

Energy metabolism [

Carbohydrate metabolism

Genetic information processing D:I

Environmental information processing ;'
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Figure 1 Distribution of identified salivary proteins of Aphis craccivora over functional groups based on Megan6 (KEGG analysis).
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Robinia pseudoacacia L. (locust) contained a high abun-
dance of Arsenophonus. Arsenophonus promotes specializa-
tion on locusts instead of alfalfa.

Coeur d’Acier et al. (2007) showed evidence of genetic
differentiation in aphid races associated with host plants.
The genome evolution of aphid species might propagate
the diversity of symbionts in aphids across host plants.
Polyphagous insects exhibit genetic differentiation in host
races that are specialized on herbaceous legumes (Simon
et al.,, 2003; Peccoud et al., 2009). As found for A. pisum,
our study showed different lineages of A. craccivora to be
associated with different host plants and different strains
of facultative symbionts (Brady et al.,, 2014). However,
additional studies are required to determine how plants—
aphids—endosymbionts interact, along with identifying the
role of Arsenophonus in aphids.

Aphis craccivora salivary proteins and functions

Protein metabolism is prevalent in solid saliva, more
peptides are related to carbohydrate and energy meta-
bolism. Lipase protein detected in A. craccivora soluble
saliva breaks down lipids and fatty acids may function
as virulence factors to promote aphid colonization
(van Bel & Will, 2016). Aphid-secreted lipases may
also trigger plant jasmonic acid-induced defense
responses as in a grasshopper (Chaudhary et al., 2015).
Vitellogenin protein in this study is assimilated to
lipase protein, as in female ticks where it occurs only
after mating and feeding (Donohue et al., 2008). Chiti-
nase in aphids plays an important role in penetrating
insect cuticles to improve the insecticidal activity of
fungal isolates such as Beauveria bassiana SFB-205 in
Aphis gossypii Glover (Kim et al., 2010).

Oxidoreductase is an enzyme that facilitates electron
transfer, is involved in sugar metabolism, and potentially
detoxifies plant defense compounds (Miles & Oertli,
1993). Three separate glucose dehydrogenases and two tre-
halases were identified in the saliva of A. craccivora. Glu-
cose dehydrogenase was previously detected in the saliva
of A. pisum (Carolan et al., 2009, 2011; Vandermoten
et al., 2014) and M. persicae (Harmel et al., 2008; Vander-
moten et al., 2014). Trehalase and glucose dehydrogenase
have been found in the saliva of D. noxia. The action of
these two enzymes affects the defensive responses of plants
to aphids (Nicholson et al., 2012).

Calmodulin is an essential protein that is present in all
organisms, and is responsible for the regulation of a variety
of target enzymes (O’Neil & DeGrado, 1990). Apolipo-
phorin is important for lipoprotein metabolism and lipid
transport. Vandermoten et al. (2014) has been detected in
the salivary proteomes of M. persicae and A. pisum. This
lipid-binding protein might interfere with signaling
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defense responses of plants. A lipoprotein lipase was also
identified in the soluble saliva of A. craccivora.

Aphis craccivora salivary proteins and bacterial origin

The results indicate that some protein belongs to aphid
endosymbionts. The protein chaperonin GroEl is detected
in aphid saliva (Vandermoten et al., 2014), and is particu-
larly abundant in the solid saliva of Macrosiphum euphor-
biae (Thomas) (Chaudhary et al., 2014) and in the
obligate endosymbiont B. aphidicola. Yet, this endosym-
biont is only found inside aphids. Of note, chaperonin
GrokFl is secreted into the saliva of aphids and activates
plant defenses. When GroEL is absent in plants, the fertil-
ity of aphids is reduced (Chaudhary et al., 2014; Elzinga
et al., 2014). Some proteins that were identified in A. crac-
civora saliva might contribute to plant-aphid interactions.
Indeed, elongation factor Tu (EF-Tu) and the bacterial
cold shock protein induce defensive responses to environ-
mental stresses in many plant species (Zipfel et al., 2006).
EF-Tu is the most abundant bacterial protein in Brassi-
caceae (Kunze et al., 2004) and has also been detected in
aphid honeydew (Sabri et al., 2013). Peroxiredoxin was
identified in A. pisum and Megoura viciae Buckton. This
protein belongs to the peroxidase family, providing pro-
tection against oxidative stress. Peroxiredoxin was rarely
found in aphid saliva (Vandermoten et al., 2014), whereas
peroxidase was identified in the saliva of S. avenae (Rao
et al., 2013).

Aphid salivary proteins previously identified

Some of the proteins isolated in our study were detected in
earlier studies. A carbonic anhydrase was found in three
aphid species, including M. persicae feeding on celery
(Giordanengo et al., 2010), the cereal pest S. avenae (Rao
et al,, 2013), and S. graminum (Nicholson & Puterka,
2014). This protein might regulate the pH of plant tissue
and the phloem (Rao et al., 2013). One uncharacterized
protein (LOC100159632 isoform X1) was also identified
by Vandermoten et al. (2014). Another protein, C002,
facilities aphid infestation, and is present in the salivary
glands of A. pisum. This protein allows aphids to feed con-
tinuously on plants (Mutti et al., 2008). When this protein
is suppressed, the fecundity of M. persicae is significantly
reduced (Pitino et al., 2011). C002 in M. persicae and
A. pisum has essential functions in aphid—plant interac-
tions (Mutti et al., 2008).

In conclusion, this study was the first to investigate the
diversity of endosymbionts and saliva proteomes in
A. craccivora from Gabon reared on amaranth. This study
identified the symbionts of A. craccivora after rearing it on
A. hybridus. The proteomic results showed that proteins
in the two types of saliva of A. craccivora are diversified in
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Table 3. Continued

NCBI

Protein

Peptides

E value

MW

Accession

Organism

identification

67 2.24E+01" YLELITRY, ITEVPTR®

gi[357619265

Papilio polytes

WASH complex subunit

strumpellin

DNVVIYEGELESLR?, GPVATVLVR®
QIENLIGQGK®, NNLNAFAESLK"

97828  4.80E-03"

gil498978463
gil239799135
gil239793648

C. capitata
A. pisum

Translation initiation factor IF-2

ACYPI000294

1.20E-04°
21000 2.10E-03°

19337

LSEDIIK®, YVLDADK®, SFELTNDYVK®,

A. pisum

ACYPI005249

YIADDPDKYSVDLNALYK®, KFETIVLEHLPK"

ELGTNDVCSDTIR®®, MLAFIAR®"

24589  3.60E-07"

2i|359801951

A. glycines

CO02

3.40E-07°

AMSIMNSFVNDIFER?, TVTAMDVVYALK®, VFLENVIR™,

1.60E-03"
2.50E-08"

21231

gi[190631520

Drosophila

GF20391

ISGLIYEETR*®, DNIQGITKPAIR®, LLLPGELAK*®

ananassae

2Soluble saliva.
Solid saliva.

Previously reported by: Wandermoten et al. (2014); *Carolan et al. (2011); *Nicholson et al. (2012); *Carolan et al. (2009); °Rao et al. (2013); 6Cherqui & Tjallingii (2000); "Harmel et al.

(2008).
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the aphid and in some of the endosymbiotic bacteria. Ser-
ratia proteins were present in both types of saliva. Fifteen
percent of the proteins detected in aphid saliva was of bac-
terial origin. This result confirmed that bacteria contribute
to plant-aphid interactions, influencing the adaptive
capacity of aphids and plant responses to aphid feeding.
Several proteins from aphids were identified, which inter-
act with plant defense mechanisms. Some proteins of sym-
biotic bacteria were also identified in aphid saliva. It is
important to resolve how these bacterial proteins affect the
metabolism of the host plant. Thus, future studies should
focus on determining the functional role of aphids and
associated bacterial proteins found in saliva on plant—in-
sect interactions.
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