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SUMMARY:  This paper presents an application of ARMAV models in the fields of system 
identification and damage detection. It is shown how to estimate the modal parameters as well 
as their uncertainties only on the basis of output measurements, simply assuming that the 
excitation is a zero-mean stationary Gaussian white noise. The uncertainties estimation can be 
used for damage detection. Knowing the modal parameters and their uncertainties, it is 
possible to assess whether changes of modal parameters are caused by e.g. a damage or 
simply by estimation inaccuracies. The identification and damage detection method is 
illustrated on the “Steel-Quake” benchmark proposed in the framework of COST Action F3 
“Structural Dynamics”. This structure is used at the Joint Research Centre in Ispra (Italy) to 
test steel buildings performance during earthquakes. The obtained results indicate the 
effectiveness of the method in estimating modal characteristics and their uncertainties. 
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INTRODUCTION 
 
ARMAV models have been applied for the analysis of linear and time invariant systems under 
ambient excitation. These models only use time series obtained from the output signal of the 
system. The technique can be used directly to analyse data obtained from the free response or 
from the forced response due to uncorrelated random excitation [1]. The identification method 
known as the Prediction Error Method allows to find the model parameters in a non-linear, 
iterative way (Gauss-Newton algorithm) [2]. The method also incorporates model order 
selection via Akaike’s Final Prediction Error and Akaike’s Information Theoretic Criteria 
and structural mode distinction and extraction by use of stability plots. Finally, the model may 
be validated by examination of statistical tests on the prediction errors. Besides estimating the 
ARMAV model parameters, the method can also provide an estimate of the covariance matrix 
of these parameters. On the basis of this covariance matrix, it is then possible to estimate the 
uncertainties on the modal parameters [3]. The determination of these uncertainties is very 
relevant for structural monitoring based on vibration measurements. In this way, if the 
uncertainties of the estimated modal parameters can be computed, it becomes possible to 
establish a probabilistic confidence in the existence of a damage. 
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ARMAV MODELLING OF AMBIENT EXCITED SYSTEMS 
 
Vibrating structures 
 
The dynamic behaviour of an ambient excited multi-DOF’s linear system can be represented 
in the state space by the usual form :  
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where M, C and K are the mass, damping and stiffness matrices respectively. f(t) represents 
the ambient excitation vector and x(t) the displacement vector. 
 
The poles of the system are the eigenvalues of the matrix F. For low damped structures, the 
poles are described by pairs of complex conjugated values : 
 
 fredom) of degrees of(number ..,21       ,     -1  j  2 ,d ,rininiir =±−= ζωωζμ  (3) 
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ARMAV (Auto Regressive Moving Average Vector) model 
 
For multivariate time series, described by a m-dimensional vector x[n], the parametric 
ARMAV(p,q) model is described by the following matrix equation [1] : 
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x[n] is the observed vibration vector at discrete time tn = n Δt (Δt = sampling interval) and 
u[n] is a zero-mean stationary white noise process. ak and bk are (m, m) matrices of AR 
(Auto-Regressive) and MA (Moving-Average) coefficients. The AR part describes the system 
dynamics while the MA part is related to the external noise as well as to the white noise 
excitation. 
 
In the state space, the ARMAV model can be expressed in the form : 
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The dimension of vector ][n−x  is (p.m, 1) and a is a (p.m, p.m) matrix containing the different 

coefficients of the auto-regressive part of model. W[n] includes the MA terms. The ARMAV 
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model (4) can be applied to data obtained from the free response or from the forced response 
due to uncorrelated random signals [1]. 
 
Considering the covariance principle, it may be shown that an ARMAV(2s, 2s-1) model is the 
identical discrete model of a m-variate continuous system with d degrees of freedom, the 
number of channels m being equal to d/s [4], [5], [6]. If sampled response is affected by 
measurement noise, the adequate model changes in general to an ARMAV(2s, 2s) model [7]. 
 
Modal parameter estimation 
 
Considering equation (3) and the analogy between equations (1) and (5), the modal 
parameters of the system can be extracted from the eigenvalues τr of the AR matrix a as in [1] 
: 
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The mode-shape vectors can also be deduced from the eigenvectors of matrix a. 
 
The number of discrete time ARMAV model eigenvalues is in general larger or different from 
the number of eigenvalues corresponding to system (1). Therefore, only a subset of the 
discrete eigenvalues will represent structural modes. The distinction between physical and 
non-physical modes is performed by use of stability diagrams for increasing AR model order. 
 
 

MODEL PARAMETER ESTIMATION 
 
Let us note by θ the model parameters to be determined i.e. 
 
 T]   ...      ...     [ qb 2b 1b pa2a1a=θ  (8) 
 
All systems are in principle stochastic, which means that the output x[n] at time tn cannot be 
determined exactly from data available at time tn-1. Let us define ]1,-|[ˆ θnnx , the predicted 
response at time tn based on parameters θ and on the available data for t ≤ tn-1 [2] : 
 

 ][ = ],1|[ˆ T nnn ϕθθ−x  (9) 
 
where ϕ[n] is the regression vector defined as 
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Thus the model parameters θ are selected so that the prediction error defined as 
 
  ]1,-|[ˆ- ][   ]|[ θθε nnnn xx=  (11) 
 
becomes as small as possible. For this purpose, the quadratic criterion function )(VN θ  that 
measures the “size” of   ]|[ θε n is formed : 
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The estimate

Ν
ˆ θ based on N samples is then defined by minimisation of the criterion function  
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where “arg min” means “the minimising argument of the function”. This way of estimating 
θ is called the Prediction Error Identification Method (PEM) [2]. The predictor (9) is non-
linear, since the prediction errors themselves depend on the parameters θ. So the function 

)(VN θ  cannot be minimised by analytical methods. This implies that an iterative numerical 
minimisation of the function )(VN θ  has to be applied. If (i)θ represents the v-dimensional 
column vector of model parameters at iteration (i) , the iterative method is represented by : 
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where f (i) is a search direction based on information about )(VN θ  acquired at previous 
iterations, and (i)

Να  is a positive value determined so that an appropriate decrease in the value 
of )(VN θ  is obtained. Here, the Gauss-Newton Method [2] is chosen where f (i) is defined as 
 

 [ ] )ˆ(  )ˆ(  (i)
Ν

1- (i)
ΝN

(i)

N
θθ VHf ′−=  (15) 

 

The Hessian matrix )ˆ( (i)
ΝN θH  and the gradient of the criterion function )ˆ( (i)

ΝN θV′  are defined 

as  
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is the gradient of the predictor (9), i.e. the derivative of (9) with respect to each of the 
ARMAV model parameters. The step size (i)

Να  is chosen so that )ˆ(V 1)(i
ΝN

+θ  < )ˆ(V (i)
ΝN

θ . 
 
The Hessian matrix (16) may be singular or close to singular. This is the case, for example, if 
the model is over-parameterised or the data not informative enough. Then some numerical 
problems may arise in (15). One common way to overcome this problem is the Levenberg-
Marquardt procedure which consists to use the following approximation of the Hessian 
matrix [2] : 
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To start the iterative procedure, a first estimation of Νθ̂  is needed. For this reason, a high-
order ARV model is first applied to the response x[n]. The prediction error ε[n] of this model 
is then used as external input in an ARX (Auto-Regressive eXtra-input) model. The estimated 
parameters of this model becomes then the initial estimate [1], [2]. 
 
 

MODEL ORDER DETERMINATION AND MODEL VALIDATION 
 
Model order determination 
 
The identification strategy consists of successive fittings of ARMAV models. ARMAV 
models of different orders are subsequently examined, and a final candidate model is selected. 
Model comparison and selection is based upon Akaike’s Final Prediction Error (FPE) and 
Akaike’s Information Theoretic Criteria (AIC) [7]. According to this principle, the order of an 
ARMAV model is selected to be the integer which minimises the criteria 
 

 v
v
v  2 + ))(log(V N=AIC                    
/N-1
/N+1 )(V=FPE NN θθ  (19) 

 
where N is the number of samples and v is the total number of estimated parameters. These 
criteria include a penalty for badness of fit and for too high order models. 
 
Model validation 
 
Model validation is the final step of the system identification. There are many different ways 
to check the validity of the ARMAV model. Here, statistical tests of the prediction errors are 
examined. If the estimated model contains the true system then the prediction errors should be 
a white noise sequence. This can be investigated by plotting the correlation functions of these 
errors [2], [7]. 
 
 

ESTIMATION OF MODAL PARAMETER UNCERTAINTIES 
 
It can be established that the PEM method is an asymptotic unbiased and efficient method for 
Gaussian distributed prediction errors. Let us define )ˆ( NθP  as the model parameter 

covariance matrix of the difference between the true parameters 0θ  and estimated parameters 

Νθ̂  as N tends to infinity. The covariance matrix of unbiased estimate Νθ̂  is evaluated, as in 
[2], [7], from 
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where the sampled covariance matrix of the prediction errors is given by 
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Considering the auto-regressive part of estimated covariance matrix, it is possible to 
determine modal parameter uncertainties [3]. 
 

THE “STEEL-QUAKE” EXAMPLE 
 
The method has been validated using experimental data proposed as benchmark in the 
framework of the European COST Action F3 “Structural Dynamics”. The “Steel-Quake” 
structure is used at the Joint Research Centre in Ispra (Italy) to test the performance of steel 
buildings during earthquakes [8]. The different tests performed correspond to the baseline 
undamaged and damaged states of the building. 
 
Description and testing of the structure 
 
The structure corresponds to a two-floor frame as depicted in Fig. 1. The main dimensions are 
8 m × (4×2) m × 3 m. In the background, it can be observed the reaction wall which supports 
the 4 pistons (not present in the picture) used to deform the structure (on each side, on each 
stage) and to induce damage in the x-direction. Note that braces have been added in the plane 
parallel to the wall to reduce risk of collapse in that direction. 
 
Four excitation points were tested using impact hammer. Their locations are shown in Fig. 2 
(points A(x), A(y), B(-z), C(-z); x, y and z indicating the three directions). Eight to ten 
hammer impacts were recorded for each test. The sensor configuration is the same for all the 
four tests (Fig. 2). The sampling frequency was 128 Hz and for each channel 3200 data points 
were captured. 
 

 
    

Fig. 1 : View of the Steel-Quake structure. Fig. 2 : Sensor and excitation configuration. 
 
Structural identification 
 
Pre-processing 
The analysis is concentrated on the frequencies below 25 Hz. Therefore a filter with a cut-off 
frequency of 32 Hz was applied and the data were 2 times decimated resulting in a new 
sampling rate of 64 Hz and 1600 points per channel. 
Model order selection and structural mode distinction 

Reaction wall
A

B 

C 
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z 

y
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The first step of the identification procedure is the determination of the ARMAV model order. 
The FPE and AIC criteria lead, for each excitation, to 15-dimensional ARMAV(4,4) 
candidate models. These models are characterised by an over-determination of the number of 
poles (the number of model poles is higher than the number of structural poles). The 
distinction between  structural and spurious modes is performed by use of stability diagrams. 
As an example, the vibration data obtained from the “A(x) excitation” are considered 
hereafter. Fig. 3.a illustrates the evolution of the FPE criterion applied to different models 
while the stabilisation diagram is plotted in Fig. 3.b. The sum of the spectra of the 15 
measured responses is also plotted in order to observe the localisation of stable modes. The 
stability of the mode-shape vectors may also be evaluated by computation of the Modal 
Assurance Criterion (MAC) between estimated mode-shapes obtained from two successive 
models. The chosen stabilisation criteria are 1% for frequencies, 5% for damping ratios and 
1% for MAC values. 
 

ARMAV(2,1) ARMAV(2,2) ARMAV(4,3) ARMAV(4,4) ARMAV(6,5)
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Fig. 3 : a) FPE criterion and b) stability diagram applied to the “A(x) excitation” data. 

 
Model validation 
In order to validate the model, the prediction errors are checked. If the ARMAV(4,4) model is 
adequate, it can be assumed that the true system is contained in the estimated model so that 
the prediction errors should be a white noise sequence. This is investigated by plotting the 
correlation functions of these errors with their confidence intervals [2]. Fig. 4 gives the result 
for one channel in the case of data obtained from the “A(x) excitation”. It indicates that the 
auto-correlation function remains, for the most part, within the confidence interval, except at 
zero lag. Therefore, the prediction error is close to white noise. The same conclusion has been 
found for all channels, and therefore the model may be considered as validated. 
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Identification 
The identification procedure is applied for each excitation point and repeated for every 
hammer impact. The mean values and uncertainties for modal parameters are listed in Table 1 
and the identified mode-shape vectors of the undamaged structure are shown in Fig. 5. 
 

Table 1 : Estimated eigenfrequencies (f) and damping ratios (ζ) with their uncertainties. 
 

  Undamaged state Damaged state 

Mode-shape f (Hz) δf (Hz) ζ (%) δζ (%) f (Hz) δf (Hz) ζ (%) δζ (%) 

Bending 1X 3.128 0.006 0.128 0.063 2.680 0.008 0.863 0.312 
Bending 1Y 3.928 0.004 0.123 0.035 3.857 0.008 0.348 0.162 
Torsion 1 6.129 0.003 0.116 0.037 6.066 0.007 0.391 0.118 

Bending 2Y 9.687 0.005 0.092 0.036 9.517 0.009 0.192 0.075 
Bending 2X 10.819 0.004 0.093 0.025 9.902 0.010 0.381 0.113 

2nd slab bend. 1 12.271 0.016 0.494 0.109 10.693 0.011 0.343 0.108 
1st slab bend. 1 13.053 0.013 0.467 0.153 11.303 0.018 0.452 0.154 
2nd slab tors. 1 17.694 0.017 0.397 0.067 15.093 0.024 0.619 0.168 
1st slab tors. 1 19.037 0.027 0.417 0.170 16.195 0.019 0.841 0.209 

Torsion 2 21.415 0.018 1.09 0.301 18.827 0.021 0.122 0.056 

 
Bending YBending X

Z

YX

Slab torsion

Slab bendingTorsion

 
 

Fig. 5 : Identified mode-shapes and their uncertainties (δv) for the undamaged state 
(δv represents the mean on components of the mode-shape). 
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The Modal Assurance Criterion (MAC) was used to compare mode-shapes of the undamaged 
and damaged structure. The MAC values are represented in Fig. 6 along with the frequency 
shifts from the undamaged to the damaged state. 
  
From Table 1, it can observed that the uncertainties on the estimated natural frequencies are 
very small compared to the uncertainties on estimated damping ratios. The estimates of the 
damping ratios being not enough accurate, the estimates of frequencies are used for damage 
detection. The frequencies which present the most significant changes will be used as damage 
indicators. Fig. 6 suggests that the first and the last five frequencies can be used for damage 
detection. 
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Fig. 6 : Comparison of frequencies and mode-shapes in the undamaged and damaged states. 

 

In this particular example, the detected change of some natural frequencies is very significant 
and so, it is not difficult to find the presence of a damage. In order to illustrate the detection 
method using ARMAV models, let us analyse frequencies exhibiting small changes. The 
statistical approach for damage detection is based on confidence intervals obtained from the 
standard deviation of estimated natural frequencies to detect the damage [7]. It will be 
assumed that a damage has been detected if the confidence interval of the estimate frequency 
of a mode is non-overlapping with the 99% confidence interval of the frequency of the same 
mode in the undamaged state. The estimated natural frequencies of modes 2, 3 and 4 with 
their 99% confidence intervals are plotted in Fig. 7.  
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Fig. 7 : Estimated natural frequencies of modes 2, 3 and 4. The estimated  
99% confidence intervals are represented by dotted lines. 
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In Fig.7, it is seen that the confidence intervals of the three frequencies corresponding to 
modes 2, 3 and 4 in the damaged state do not overlap the undamaged state confidence 
intervals, so that damage can even be detected using these frequencies. In the case of 
overlapping confidence intervals, it should be possible to give a probability to the presence of 
damage. If frequencies are assumed to be independent distributed variables and that a 
negative change in frequency  indicates a damage caused by structural change, the probability 
of negative change in frequency can be estimated with the unit normal distribution function 
[9]. 
 

CONCLUSIONS 
 

In this paper, the application of ARMAV models in system identification and damage 
detection has been presented. The estimation of ARMAV model parameters has been carried 
out by the Prediction Error Method. The damage detection method is based on the evaluation 
of modal parameter uncertainties and on the use of statistical tools like confidence intervals 
and normal distribution of random variables. However, the present investigation is limited to 
damage detection; the problem of damage localisation was not examined. In the Prediction 
Error Method, the criterion function is minimised using non-linear optimisation. If the 
application involves many response channels, the iterative updating of the model parameters 
may require many computations and be time-consuming. Therefore, it will be interesting to 
investigate another multivariate time series model : the Stochastic Subspace System 
Identification Method which does not involved any non-linear computations. This method and 
the Subspace-Based Fault Detection Algorithm are developed in [10]. 
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