

Enzymatic Modifications of Sugars in Supercritical CO₂

A.Favrelle, ^a A.Brognaux,^b A.Debuigne,^a M.Deleu,^c K.Nott,^b J.-P.Wathelet,^b C.Blecker,^d M.Paquot,^c C.Jérôme.^a

Audrey,Favrelle@ulg.ac.be, ^a University of Liege, Sart-Tilman, Bat B6a, B-4000 Liege ^{b.c. d} Gembloux Agricultural University, B-5030 Gembloux

Beyond a specific temperature and pressure (the critical point), CO₂ becomes a supercritical fluid, a state that is neither a gas nor a liquid, but has properties of both. Supercritical CO2 (Sc-CO2) has many advantages (environmentally friendlier and safer, non-flammable...) and constitutes an interesting alternative to the organic solvents.¹ Since there are many examples in literature of carbohydrates esterification catalyzed by lipases in organic medium,²⁻⁴ few reports describe the enzymatic synthesis of sugars in Sc-CO₂.⁵⁻⁹ So the aim of this work is to develop the synthesis of sugars esters catalyzed by lipases in Sc-CO₂.

Fig 1. Pressure-temperature phase diagram for CO₂

different times and several cycles. The same lipase preparations, recovered from the reactor after depressurization, were used as catalysts for esterification reactions of D-Mannose with myristic acid in tert-BuOH at 60°C and atmospheric pressure. For comparison the same esterification reaction was also catalyzed by non-incubated lipase (untreated). (vi = initial reaction rate)

Conversion at 48h 2.0 at 48h 2,0 Activity is preserved after several (41,5 1,0 1,0 50 40 1,5 vi(g/L/h) cycles of 1,0 sion (%) pressurization/depressurization 30 0.5 20 10 Low effect on initial reaction rate Conve 0.0 and conversion 0,0 0 untreated 30min 30min + 30min + untreated 2h 2x2h 3x2h 2x1h 4x1h Cycles (with stirring) Cycles (without stirring)

Conclusions

Effect of cycles of pressurization/depressurization

This preliminary study allowed us to assess the influence of various parameters such as solubility of acids in Sc-CO₂ and effect of Sc-CO₂ on D-Mannose and CALB. The enzymatic synthesis of sugar esters in Sc-CO₂ seems to be a promising approach but other factors still need to be evaluated (influence of water in medium, pressure, temperature...) in order to favour esterification reaction in such media.

References

¹ P.Degn et al., Biotechnology Letters, 1999, 21, 275-280
² J.Yu et al., Catalysis Communications, 2008, 9, 1369-1374
³ S.Sabeder et al., Journal of Food Engineering, 2005, 36, 391-398
⁴ M.Ferrer et al., Journal of Supercritical Fluids, 2009, 48, 36-40
⁶ M.Habulin et al., Journal of Supercritical Fluids, 2008, 45, 338-345
⁷ S.Sabeder et al., 2007, 2001, 2001, 2012, 2014

- ⁷S.Sabeder et al., CI&CEQ, **2006**, 12, 147-151
- ⁸ S.Sabeder et al., Industrial and Engineering Chemistry Research, 2005, 44, 9631-9635 9 C.Tsitsimpiko
 - ⁷ C.Tsitsimpikou et al., Journal of Chemical Technology and Biotechnology, **1998**, <u>71</u>, 309-314

Acknowledgments: «Superzym» project is supported by the French Community of Belgium under the scientific « Concerted Research Actions – ARC » program

Biotrans 2009 - Switzerland