
Agile Methods Knowledge Representation for
Systematic Practices Adoption

Soreangsey Kiv1, Samedi Heng2 Manuel Kolp1, and Yves Wautelet3

1 LouRIM-CEMIS, UCLouvain, Louvain-La-Neuve, Belgium
{soreangsey.kiv, manuel.kolp}@uclouvain.be
2 HEC Liège, Université de Liège, Liège, Belgium

samedi.heng@uliege.be
3 KULeuven, Leuven, Belgium
yves.wautelet@kuleuven.be

Abstract. The popularity of agile methods is constantly increasing. In-
formation and feedback on how these frameworks were adopted can easily
be found in academia and industrial knowledge bases. Such a collective
experience allowed the development of many approaches in the aim of
simplifying the adoption process and maximizing the chances of success.
These approaches provide practitioners with guidelines to help them find
the practice that suits their team best. Nonetheless, these approaches are
not systematic and practitioners need to go through a long process. For
instance, they need to identify the important situational factors that can
have a positive/negative effect on the agile practice adoption. Available
experiences thus require lots of effort to be discovered. This research
proposes an agile methods knowledge representation using an ontology
so that the knowledge and experience on agile adoption reported in lit-
erature may be reusable and systematic. Based on this model, added
knowledge and inference rules, practitioners will systematically be able
to decide which practice to select and adopt, i.e, for a given goal, prac-
titioners can retrieve which practices to achieve; from a situation, teams
can tell what can be harmful and what can be useful for adopting a
practice or what problems they may encounter; etc.

Keywords: Agile Methods, Agile Practices, Ontology, Knowledge Rep-
resentation, Real Case Study.

1 Introduction

Agile methods have been increasingly adopted by the software development in-
dustry (and others) due to their flexible features that allow to better handle
the changes in requirements, to improve team’s productivity and align to the
business needs. As no method can be a one-size-fits-all, software development
teams adopt agile methods differently, i.e., depending on their specific problems,
resources, goals or expectations [4]. Many empirical studies of agile methods
adoption have been published every year. The result from the Systematic Liter-
ature Review (SLR) in [5] points out that, in the methodological aspects used

2 S.Kiv et al.

on agile methods tailoring research, 66.1% of their selected papers were empiri-
cal research. A simple search, also, in SpringerLink for “Daily Meeting” to this
day, allows finding 1186 articles with 173 in the software engineering sub disci-
pline. Some research papers describe their proper experience in deploying agile
in their own organization, while some others discuss it based on empirical evi-
dences collected from multiple cases. Those papers aim to share knowledge such
as problems encountered, lessons learned, solutions found, etc., so that others
can learn how to choose the right practices and avoid failures.

These experiences are extremely important and useful, yet time-consuming
to collect and classify. Let us imagine that a development team aims to achieve
a particular goal. How would they know which practices would help them to?
In addition to “goal” to achieve, several variables have to be considered such as
situation, project, budget, etc. which can also constrain the selection of a prac-
tice. Since the development process is complex and requires lots of effort, many
teams decide recklessly to adopt specific agile methods or practices which are
popular without considering any context-specific factors resulting in numerous
agile adoption failures in the end [10].

To make the knowledge and experiences of the previous empirical studies eas-
ily accessible, [8] introduces a structured repository of Agile Method Fragments
(AMF). This knowledge repository has been gathered through a systematic re-
view of empirical studies on agile methods. For each AMF, the repository entry
states the objectives the AMF aims to contribute to, and a set of requisites
needed for its success. On top of that repository, the same authors also pro-
posed a framework for evaluating the suitability of candidate method fragments
prior to their adoption in software projects [9]. By linking (with contribution
links such as help/harm) the situational factors to the requisite, practitioners
can find out whether or not they have the chance to succeed with that practice
adoption. Even though the repository and the framework can help practitioners
to save much effort in understanding agile practices and their suitability, it is
yet inefficient and not systematic enough. In order to use this framework, prac-
titioners are expected to know what the situational factors affect the adoption.
In addition, they have to figure out by themselves what parts are considered as
helpful or harmful to the requisites and practices.

We argue that a better and efficient solution would be a system which can
list out goals achieved by a practice, problems that may be encountered from
a given situation and what the team needs to do to solve/avoid problems etc.
The answers given by the system to these questions must be generated from
the previous experiences of agile practitioners. This paper proposes using an
“Ontology” to represent and store all these knowledge items of agile methods
or practices adoption, reported in literature. Our goal is to make the existing
experience reusable in a systematic manner.

This paper is organized as follows. Section 2 presents the research protocol
we applied to achieve our research objective. Section 3 provides the detail of
our ontology creation as well as the final ontology model in the form of a UML
class diagram. Next, Section 4 provides the inference rules we have created for

Agile Methods Knowledge Representations 3

our ontology. The procedure of collecting case studies is described in Section
5. Section 6 provides an illustrative example of how to use our ontology when
adopting an agile practice in a systematic manner. Finally, we conclude, discuss
the limitations of and elaborate on future research directions of the paper in
Section 7.

2 Research Methodology

Figure 1 depicts the research protocol we applied. We started by building the
ontology which basically follows the methodology proposed in [17]. It consists of
seven steps: (1) Determining the domain and scope of the ontology, (2) Consider-
ing reusing existing ontologies, (3) Enumerating important terms in the ontology,
(4) Defining the classes and the class hierarchy, (5) Defining the properties of
classes slots, (6) Defining the facets of the slots, and (7) Creating instances. The
description of each step can be found in [17]. Due to limited space here, we
merged step 4, 5 and 6 in Figure 1. We, however, followed those three steps to
create our ontology.

Since we need data from real case studies to build an evidence-based ontology
for agile methods adoption, the process for collecting real case studies is also
included into our research protocol. These case studies allow us to enumerate
extra concepts and relationships and it also serves as data input for knowledge
creation. The process of building our ontology is iterative and incremental [17].
It means that each case study from data collection was fed into the model for
revising and refining the model. We repeated steps 3 to 7 until obtaining a
consistent model which fits well with a representative amount of selected case
studies (see Section 3). Two additional steps follow: Building Inference Rules
(see Section 4) and Validation Scenario (see Section 6). The former aims at
systematically discovering more relationships and the latter aims at providing a
feasibility study, as a validation case of our approach.

3 Building the Agile Methods Ontology Model

This section describes how our ontology was built. As mentioned earlier, we
started with determining the domain and scope of our ontology. We then discuss
about existing ontologies, followed by how we enumerated terms to build our
model. Next, we present our ontology model in the form of a UML class diagram.
Finally, we describe how to insert the knowledge into the model.

3.1 Determining the Domain and Scope of the Ontology

The scope of the ontology presented here is limited to concepts, relationships and
knowledge extracted from experience reported in research papers about adopting
agile methods or practice for software development project. We aim at demon-
strating the advantages of using the ontology for helping agile practitioners in

4 S.Kiv et al.

Enumerate important
terms from case

studies

Define the classes,
properties and facets

of the slots

Create instances
Data extraction

Case studies
selection

Case studies
search

Build inference
rules

Feasibility study

Consider reusing
existing ontologies

Determine the domain and
scope of the ontology

Ontology with
Inference Rules

is consistent?
Real Case Studies

Kiv et al. (2018)
Esfahan et al. (2010)

yes

No

Fig. 1. Research protocol.

selecting and adopting agile practices in a systematic manner. Our preliminary
study focuses on using the ontology to represent the knowledge and answer the
following questions:

– Q1: What objectives/goals can be achieved by an agile practice?

– Q2: What agile values and principles can be achieved by adopting a practice?

– Q3: What activities are part of a practice and need to be performed by the
team?

– Q4: What are the requisites to successfully adopt a practice?

– Q5: What can be harmful when adopting a practice?

– Q6: What can be useful when adopting a practice?

– Q7: What kind of problems may a team encounter?

– Q8: What can be the solutions to a problem?

– Q9: What roles or responsibility distribution are needed for each practice?

– Q10: What are the artifacts required for a practice?

Before building the ontology, we also considered reusing existing ones which
can be found in specific libraries such as COLORE [6], DAML [2] and Protégé
[3]. However, as mentioned, none of them is related to agile practices selection
or adoption. We thus needed to build the model from scratch.

Agile Methods Knowledge Representations 5

3.2 Enumeration of Important Terms

Three main resources help us to enumerate important terms in the ontology:
(1) the repository proposed in [8], (2) the influence of the agile manifesto over
agile practice selection studied in [13], and (3) the real case studies collected in
research community (see Section 5).

We must admit that the repository proposed by [8] has inspired us in creating
this ontology model. In their repository, each agile method fragment is linked to
the objectives/goals it aims to contribute to and a set of requisites needed for
its success. Then, the suitability of each fragment is linked to the situation of
the team. For example, based on their repository, the goal of conducting “Daily
Meeting” is to improve “Quality of Communication” and to conduct “Daily
Meeting” successfully, it requires an “effective meeting”. An “effective meeting”
is suitable for the team that has a “highly available Scrum Master”. Even though
[8] does not give any clear definition of the concept “agile method fragment”,
based on our understanding from data in their repository, the authors refer this
concept to “agile practice”. Therefore, we use the term “practice” in our research.
From these, we gathered some terms, which will then become classes, including:
practice, goal, requisite and situation.

In [13] shows the importance of agile manifesto, i.e., agile values and princi-
ples, in adopting agile methods, and in [12] explains its relationship with prac-
tices. Understanding the agile manifesto allows us to know why we want to adopt
an agile practice. In other words, adopting a practice can achieve the goals of
adopting agile methods defined in the agile manifesto. For instance, to achieve
the principle “The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation”, “Daily Meeting”
is a suitable practice. In addition, by knowing what agile value and principle a
team can achieve, they can measure their level of agility. Thus, we added value,
and principle to the model.

Practice, goal, requisite, situation, value, and principle are the starting
terms of our ontology creation. Then, to be able to answer to the questions in
Section 3.1, we refined our model based on the result from the case studies.
Activity, problem, solution, role and artifact are thus the extra classes we
added to store the extracted information. To differentiate each case study, we
added another class Team and linked to goal, practice, situation, problem,
activity and solution.

3.3 Class and Relationship

After enumerating all the terms and incremental refinement, we built the ontol-
ogy model with Protégé 4. The final model is illustrated as a UML class diagram
in Figure 2. We describe the main concepts and relationships as follows:

– Value: refers to the agile values as defined in the agile manifesto. Based on
[12], agile value is contributed by the principle;

4 https://protege.stanford.edu/

6 S.Kiv et al.

– Principle: refers to the agile principle as defined in the agile manifesto and
it contributes to agile value;

– Goal: is the objective that belongs to a team in adopting agile methods. A
goal can be achieved by conducting agile practices and achieving this goal
can contribute to the agile principle or another goal;

– Practice: refers to an agile practice. It is adopted by the team, is composed
of activities and allows the team to achieve the goal. Conducting a practice
may require a requisite and it can also encounter a problem;

– Team: refers to a software project team that has a specific situation and
goal. They adopt agile practice and perform activities as part of a practice.
While conducting an agile practice, a team may encounter a problem and,
as a result, may propose a solution;

– Situation: is the state that belongs to a team which can affect practice
adoption as it can help or harm the requisite of a practice. In our case, only
the situations listed in [5] are taken into account. They are Project type,
business goals, complexity, team size, technology knowledge, user availability,
requirements stability, organization size, culture, team distribution, manage-
ment support, degree of innovation, previous projects, maturity level, domain
knowledge, project budget, communication and type of contract ;

– Activity: is performed by a team as part of the practice. For instance, “15
minutes meeting every morning” is a part of the “Daily Meeting”. Performing
an activity can cause a problem, help or harm a requisite and it may also
require a role or artifact;

– Requisite: is the condition which is particularly required by a practice in
order to successfully adopt it. For instance, conducting a “Daily Meeting”
requires “ease of communication” and “everyone’s participation”. The requi-
site can be helped or harmed by team situation or activity. It can also require
a role, artifact or other requisites;

– Problem: is the problem faced by team and practice while adopting a prac-
tice. For instance, one of the problems faced by a team described in [20]
when adopting “Daily Meeting” was “starting promptness as the meetings
did not start on time”. Problem can be caused by a situation, activity or
other problem. Some problems can be solved by the solution;

– Solution: is the solution proposed by team in order to solve the problem. It
may require a role or artifact;

– Role: is the role required by or responsible for an activity, solution or req-
uisite;

– Artifact: it is the artifact required by an activity, solution or requisite.

The relationships described above are only those made between classes which
were manually built. In the ontology, we can discover more of them from rea-
soning using inference rules. They are listed in Table 2 (Section 4).

Class hierarchy: One of the decisions to make during modeling is when
to introduce a new class or when to represent the distinction through different
property values [17]. For instance, there are seventeen different types of Situa-
tion; in line with [17], since each type has a different effect to the Requisite,

Agile Methods Knowledge Representations 7

Fig. 2. An evidence-based ontology for agile methods adoption.

8 S.Kiv et al.

we thus create a subclass for each of them in our ontology model. To simplify
the representation, we excluded these 17 sub-classes from Figure 2.

Property: There are two types of property: data property and object prop-
erty. Data property links individuals–i.e., instances and data values. Object prop-
erty links individuals and individuals. Both links are built in the form of “Do-
main - data/object property - Range”. For instance, the link “Practice - Name -
String” means that, data property Name has Practice as domain and String as
range. Another example, “Practice - Achieve - Goal” has Practice as the domain
and Goal as the range of object property Achieve.

Every class in our model has only two data properties–i.e., Name and De-
scription. They are the only common things to describe each class by agile prac-
titioners. Their type is String. The domain and range of each object Property
were built based on their relationships as in Figure 2.

3.4 Instances Creation

In this section, we explain how data extracted from real case studies were in-
serted into our ontology. For illustration, we take a partial data extracted from
a selected paper ([20] in the references at the end of the paper). The paper is
about a case study of a software development project having three distributed
teams – two are located in Norway and the other one is located in Asia. All
teams have used Scrum with all the recommended practices for more than two
years. Based on their experience, having distributed team causes some problems
while conducting “Daily Meeting”, such as starting promptness and information
distribution.

To insert knowledge into the ontology we need to (1) analyze the description
to know what should be created as individuals and in which class, (2) create
individuals, and after that (3) connect the individuals by adding the data and
object property to each individual. Table 1 shows the individuals and links we
created for this case.

Table 1. An instance creation based on a case study.

Class name: Object Class name:
Individual Property Individual

Team:team1 Have Situation:Distributed team
Team:team1 Have Situation:2 years agile experience
Team:team1 Adopt Practice:Daily meeting
Team:team1 Encounter Problem:Starting promptness
Team:team1 Encounter Problem:Information distribution
Practice:Daily meeting Encounter Problem:Starting promptness
Practice:Daily meeting Encounter Problem:Information distribution
Situation:Distributed team Cause Problem:Starting promptness
Situation:Distributed team Cause Problem:Information distribution

Agile Methods Knowledge Representations 9

4 Building Inference Rules

Inference is one of the techniques to improve the quality of data integration by
discovering new relationships, automatically analyzing the content of the data,
or managing knowledge [1]. A simple example of the inference can be: If a taxi
driver must be an adult; so if someone is a taxi driver then she/he must be an
adult. Another simple example related to agile practice can be: if a team adopts
a practice and that practice achieves a goal, we can infer that the team achieves
that goal.

It is possible to build any relationship directly in the ontology but this will
only weight down and complicate the model. Also, without the inference rule, we
cannot discover any relationship between instances more than what we manually
insert. That is not the efficient way of using knowledge. Therefore, if a relation-
ship can be discovered by reasoning, we use the inference rule. Table 2 lists all
the inference rules we have built in our ontology to discover more relationships
in order to answer the questions in Section 3.1.

Similarly to ontology creation, there are different ways in writing inference
rule. For instance, “If a problem is caused by an activity and that activity is part
of a practice → that practice encounters that problem” can be written as “If a
practice is composed of an activity and that activity causes a problem → that
practice encounters that problem”. However no repetitive inference rule should
allow answering the same question.

5 Case Studies Data Collection

Following the procedure of ontology creation, we need to repetitively create the
model and feed the data to see whether or not it can represent the knowledge
we want to use in the future. Actually, there is no way to validate the model
because new case studies keep coming in and the model can always be improved
over time. The best we can do in this paper is to feed a good amount of case
studies and try to answer our predefined questions.

We decided to take ten different case studies. For diversity, we took two
cases for each of the five most commonly used agile practices based on the 12th

VersionOne agile survey. They are Daily stand-up, Sprint/iteration planning,
Retrospectives, Sprint/iteration review, and Short iterations and release planning.

To collect the documents that report about applying a specific agile practice
in real projects, we basically followed the steps for conducting SLR described in
[13]. We briefly describe those steps hereafter:

– Keyword: Even though we only took two cases for each practice, we tried to
retrieve all the papers related to each practice adoption to check and select
the best two. Keywords are thus the name of each practice, which are “daily
standup”, “sprint planning OR iteration planning”, “retrospectives”, “sprint
review OR iteration review”, “short iterations” and “release planning”.

10 S.Kiv et al.

Table 2. Inference rules for answering questions in Section 3.1.

Question Inference Rules

Q1 R1: If a practice is composed of an activity and that activity achieves
a goal → that practice achieves that goal.

Q2 R2: If a practice achieves a goal and that goal contributes to a principle
→ that practice achieves that principle.
R3: If a practice achieves a principle and that principle contributes to
a value → that practice achieves that value.

Q2 Can be discovered with direct relationship.
Q4 R4: If a practice requires a requisite and that requisite is helped by

another requisite/situation/activity → that practice requires all of that
requisite/situation/activity.

Q5 R5: If a situation/activity harms a requisite and that requisite is re-
quired by a practice → that situation/activity harms that practice.
R6: If a team has a situation and that situation harms the requisite →
that team harms that requisite.
R7: If a team performs an activity and that activity harms the requisite
→ that team harms that requisite.

Q6 R8: If a situation/activity helps a requisite and that requisite is required
by a practice → that situation/activity helps that practice.
R9: If a team has a situation and that situation helps the requisite →
that team helps that requisite.
R10: If a team performs an activity and that activity helps a requisite
→ that team helps that requisite.

Q7 R11: If a practice is composed of an activity and that activity causes a
problem → that practice encounters that problem.
R12: If a team performs an activity and that activity causes a problem
→ that team encounters that problem.
R13: If a team has a situation and that situation causes a problem →
that team encounters that problem.
R14: If a team encounters a problem 1 that causes another problem 2
→ that team encounters the problem 2.

Q8 Can be discovered with direct relationship.
Q9 R15: If a person is responsible for an activity → that person is required

for that activity.
Q9&Q10 R16: If a practice is composed of an activity and that activity requires

a role → that practice requires that role.
R17: If a team performs an activity and that activity requires a
role/artifact → that team requires that role/artifact.

– Search Engines: We took the formal data from well-known digital libraries
in the field of software engineering: IEEEXplore, ScienceDirect, ACM Digital
library and SpringerLink. We set the publication years to between 2000 and
2018, the field to Software Engineering, and the search terms matching title
of the paper, keywords or abstract.

– Selection Criteria: With a big list of papers related to each practice, we did
an abstract screening then a full-text screening with the following criteria:

Agile Methods Knowledge Representations 11

• Empirical study or research study with case study validation related to
agile methods or agile practices usage or adoption;

• Paper that has a significant discussion related to the keyword practice.
As the result, it must describe the usage experience and/or the lesson
learned and/or the problem and/or the challenge and/or the solution to
the problem;

• Paper with a good description of team situations and goal.

– Data Extraction: We extracted data based on the questions defined in
Section 3.1. Basically, we tried as much as we could to extract the following
information from each paper: goal, activity, requisite, situation, prob-
lem, solution, role and artifact.

While many of them meet the criteria, we decided to choose the two most
descriptive cases, the ones which can answer best the questions in Section 3.1.
They are Stray, V.G. et al. (2013) [20] and Moe, N.B. & Aurum, A. (2008) [15]
for Daily meeting, Berteig, M. (2008) and Ochodek, M. & Kopczyńska (2018)
for Short iteration, Gregorio, D.D. (2012) [11] and Moe, N.B., et al. (2012) [16]
for Sprint planning, Maham , M. (2008) [14] and Paasivaar, M. & Lasseniu, C.
(2016) [18] for Sprint retrospective, and Santos, R. (2011) [19] and Eloranta,
V.P. (2016) [7] for Sprint review.

6 Feasibility Study

Once the ontology model was built, and knowledge and inference rules added,
the model is ready to be used. In this section, we provide an illustrative example
of how to use our ontology when adopting an agile practice in a systematic
manner.

As an illustrative scenario, consider an agile software development team
which is assigned to develop a mobile application. The team has the follow-
ing situation: (1) Some of team members are new and others have an extensive
experience with mobile application development. (2) The team is working in two
locations and only one team has direct access to their clients. (3) All of them
are neophytes to distributed development. (4) Some of them are new to agile
methods and others have been developping some projects with Scrum for a few
years. The team decides to use Scrum. The Scrum Master understands that bad
communication can cause some problems in adopting “Daily Meeting”. There-
fore, his goal is to make communication effective. He is wondering if there are
reports or documents discussing about the problems related to communication
encountered by a distributed team when adopting “Daily Meeting”. What are
their solutions for addressing these problems? Such information is very useful for
the Scrum Master and may inspire him to adopt “Daily Meeting” successfully.

With the same Protégé Tool only requires four simple steps in order to get
the answers. (1) Creating a new individual to represent development team, (2)
connecting their team individual with the existing individuals which match the
team’s situation and goal, (3) executing the reasoning to get all the individuals

12 S.Kiv et al.

Table 3. Relationship in ontology format for Feasibility Scenario.

Class name: Object Class name:
Individual Property Individual

Team:TestTeam Have Situation:Distributed team
Team:TestTeam Have Situation:2 years agile experience
Team:TestTeam Have Situation:No agile experience
Team:TestTeam Have Situation:User hardly available
Team:TestTeam Have Situation:No domain knowledge
Team:TestTeam Have Situation:Experience in technology knowledge
Team:TestTeam Have Situation:Virtual communication
Team:TestTeam Have Goal:Quality of Communication
Team:TestTeam Adopt Practice:Daily meeting

linked to the team, (4) using query to get more answers to the question described
in Section 3.1.

With the above scenario, we created individual “Team:TestTeam” to repre-
sent the development team. Then, we linked TestTeam to different individuals
based on the team’s situation and goal as in Table 3.

Next, we started the reasoner to discover more individuals linked to the
TestTeam. At once, all the inference rules in Table 2 were executed. Among
these 17 rules, R6, R7, R9, R10, R12, R13, R17 are related to the Team. That
is why, from the individual TestTeam, the Scrum Master can have the answers
related to problems that his team may encounter and to the situation of the team
that helps and harms the requisite of the “Daily Meeting”. Figure 3 exposes the
result from the reasoning. As expected, the TestTeam may encounter multiple
problems since its situations are harmful for the requisite as well as the “Daily
Meeting”.

Since Solution is not linked to the Team, in order to get answers, it requires
to run a query. In our case, we used SPARSQL. The query and result shown in
Figure 4 are the solutions to the problem that the TestTeam may encounter. As
an example, two solutions may address the problem “Information distribution”.
They are “Rotate scrum master role among the team members” and “Pass a
token”. More answers for the ten predefined questions in Section 3.1 can be
found at https://goo.gl/sSBAZo.

7 Conclusion and Future Work

In this paper, we presented the creation and uses of an ontology to support
knowledge representation aiming at recycling agile adoption experience. It has
been built on the basis of knowledge extracted from empirical evidence reported
in existing literature. Seventeen inference rules have been added to systematically
discover more relationships among concepts in our ontology.

Through knowledge representation, practitioners using it dispose of a tool
to systematically and effectively support their own agile adoption. By using

Agile Methods Knowledge Representations 13

C
as

e
cr

e
at

io
n

in
fo

rm
at

io
n

R
es

u
lt

 a
ft

er
 t

h
e

re
as

o
n

in
g
 P

ro
c
es

s Problems may encounter

for TestTeam

Fig. 3. Case Result: Problems encountered by team.

Fig. 4. Case Result: Proposed solution.

14 S.Kiv et al.

Protégé, in just four simple steps, they can systematically answer common ques-
tions related to the selection and adoption of a particular agile practice. Exam-
ples include determining what goal can be achieved by adopting a practice; what
can be harmful and what can be useful for adopting a practice into a particular
situation; what problem may be encountered and what does the team need to
do to solve/avoid that problem, etc. To get answers, agile practitioners simply
need to select the existing situations in the model that match their own. In ad-
dition, as the answers are generated from previous experiences, they would be
very helpful and pragmatic.

The main limitation at this stage of this research concerns the handling of
conflict situations. For instance, the feasibility scenario allows team members to
be neophyte or expert in agile methods. In this case, our model cannot make a
conclusion for such a mixed situation. It can only tell what is helpful and what is
harmful about each situation independently. Another limitation concerns the fact
that some of the answers cannot be generated by the reasoning – i.e, the model
cannot provide what situations are considered as harmful if agile practitioners
choose to adopt a specific practice. It will list all the problems caused by the
situation regardless of the practice adopted by the agile practitioners. Getting
such answer requires using a query too complex for agile practitioners in learning.
Finally, the included knowledge is still limited; with only ten case studies, there
are situations which the model cannot answer.

For addressing the limitation, we plan to add more knowledge into our on-
tology in the near future. Within the SLR process, we selected in total more
than 100 case studies for the five most commonly used practices. We hope to
improve our model by adding not only these knowledge but also additional in-
ference rules. Moreover, we also plan to build a user friendly Computer-Aided
Software Engineering (CASE) Tool available for agile practitioners for using and
encoding knowledge themselves so that the knowledge base would be increased.
Finally, a real experimentation with agile software development teams will be
conducted to get their feedback on the usefulness of our approach.

References

1. Inference. https://www.w3.org/standards/semanticweb/inference
2. Daml ontology library (2004), http://www.daml.org/ontologies
3. Protege ontology library (2018), https://protegewiki.stanford.edu/wiki/Protege

Ontology Library
4. Abbas, N., Gravell, A.M., Wills, G.B.: Using factor analysis to generate clusters

of agile practices (a guide for agile process improvement). In: AGILE Conference,
2010. pp. 11–20. IEEE (2010)

5. Campanelli, A.S., Parreiras, F.S.: Agile methods tailoring–a systematic literature
review. Journal of Systems and Software 110, 85–100 (2015)

6. COLORE: Semantic technologies library, http://stl.mie.utoronto.ca/colore
7. Eloranta, V.P., Koskimies, K., Mikkonen, T.: Exploring scrumbutan empirical

study of scrum anti-patterns. Information and Software Technology 74, 194–203
(2016)

Agile Methods Knowledge Representations 15

8. Esfahani, H.C., Yu, E.: A repository of agile method fragments. In: International
Conference on Software Process. pp. 163–174. Springer (2010)

9. Esfahani, H.C., Yu, E., Cabot, J.: Situational evaluation of method fragments: An
evidence-based goal-oriented approach. In: International Conference on Advanced
Information Systems Engineering. pp. 424–438. Springer (2010)

10. Fitzgerald, B., Russo, N., O’Kane, T.: An empirical study of system development
method tailoring in practice. ECIS 2000 Proceedings p. 4 (2000)

11. Gregorio, D.D.: How the business analyst supports and encourages collaboration on
agile projects. In: Systems Conference (SysCon), 2012 IEEE International. pp. 1–4.
IEEE (2012)

12. Kiv, S., Heng, S., Kolp, M., Wautelet, Y.: An intentional perspective on partial
agile adoption. In: Proceedings of the 12th International Conference on Software
Technologies - Volume 1: ICSOFT,. pp. 116–127. INSTICC, SciTePress (2017)

13. Kiv, S., Heng, S., Kolp, M., Wautelet, Y.: Agile manifesto and practices selection
for tailoring software development: A systematic literature review. In: Interna-
tional Conference on Product-Focused Software Process Improvement. pp. 12–30.
Springer (2018)

14. Maham, M.: Planning and facilitating release retrospectives. In: Agile 2008 Con-
ference. pp. 176–180. IEEE (2008)

15. Moe, N.B., Aurum, A.: Understanding decision-making in agile software develop-
ment: a case-study. In: Software Engineering and Advanced Applications, 2008.
SEAA’08. 34th Euromicro Conference. pp. 216–223. IEEE (2008)

16. Moe, N.B., Aurum, A., Dyb̊a, T.: Challenges of shared decision-making: A multiple
case study of agile software development. Information and Software Technology
54(8), 853–865 (2012)

17. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your
first ontology (2001)

18. Paasivaara, M., Lassenius, C.: Scaling scrum in a large globally distributed orga-
nization: a case study. In: Global Software Engineering (ICGSE), 2016 IEEE 11th
International Conference on. pp. 74–83. IEEE (2016)

19. Santos, R., Flentge, F., Begin, M.E., Navarro, V.: Agile technical management of
industrial contracts: Scrum development of ground segment software at the euro-
pean space agency. In: International Conference on Agile Software Development.
pp. 290–305. Springer (2011)

20. Stray, V.G., Lindsjorn, Y., Sjoberg, D.I.: Obstacles to efficient daily meetings in
agile development projects: A case study. In: Empirical Software Engineering and
Measurement, 2013 ACM/IEEE International Symposium on. pp. 95–102. IEEE
(2013)

