Of (hyper)graphs and functions of binary variables: Old and recent results

Yves Crama

HEC Management School, University of Liège, Belgium

Grenoble, September 2019

Outline

(1) Joint work with Frédéric
(2) Nonlinear 0-1 optimization
(3) Standard linearization
(4) Quadratization
(5) Conclusions

At Rutgers University

- Both at Rutgers University, RUTCOR
- Frédéric's PhD degree: 1989

At Rutgers University

People

Faculty and Membership Graduate Students

Alumnl
Staff
Visitors

RUTCOR Alumni

1. Yves Crama

Recognition of Solution of Structured Discrete Optimization Problems Adviser: Peter L. Hammer - October 1987
Current affiliation: Universilty of Liege, Belgiurn
Yves.CramaBulg.ac.be
2. Shi-Hui Lu

Essays on Global Optimization-Theory and Agorithms
Adviser: Pierre Hansen - October 1989
Current affiliation: Sun Microsystem, San Jose, CA
shilhuilubyahoo.com
3. Frederic Maffray

Structural Aspects of perfect Graphs
Adviser: Peter L. Hammer - October 1989
Current affiliation: Laboratoire Leibniz-IMAG, Grenoble, France

At Rutgers University

- Both at Rutgers University, RUTCOR
- Frédéric's PhD degree: 1989
- Advisor: Peter L. Hammer
- Interest in combinatorial structures and functions of 0-1 variables:
P.L. Hammer, F. Maffray. Completely separable graphs. Discrete Applied Mathematics 27 (1990), 85-99.
P.L. Hammer, F. Maffray, M. Queyranne. Cut-threshold graphs. Discrete Applied Mathematics 30 (1991), 163-179.
C. Benzaken, Y. Crama, P. Duchet, P.L. Hammer, F. Maffray. More characterizations of triangulated and cotriangulated graphs. Journal of Graph Theory 14 (1990), 413-422.

Graph-parameter functions

- $G=(V, E)$ is perfect if, for all $S \subseteq V: \alpha(G[S])=\theta(G[S])$ (stability number of $G[S]=$ clique cover number of $G[S]$).
- Idea: look at the function $\alpha_{G}: 2^{V} \mapsto \mathbb{R}: S \rightarrow \alpha(G[S])$.
- Similarly for θ_{G}. (G is perfect if $\alpha_{G}=\theta_{G}$, viewed as functions.)
- Identify 2^{V} with $\{0,1\}^{n}(n=|V|)$: then α_{G} is a real-valued function of 0-1 variables (pseudo-Boolean function):

$$
\alpha_{G}\left(x_{1}, \ldots, x_{n}\right)=\alpha(G[S]), \quad S \text { is indexed by }\left(x_{1}, \ldots, x_{n}\right) .
$$

- α_{G} has a unique representation as a multilinear polynomial in 0-1 variables.
- What does this polynomial look like??

Graph-parameter functions

Some examples:

- If $G=K_{n}$, then $\alpha_{G}=\theta_{G}=1-\left(1-x_{1}\right)\left(1-x_{2}\right) \ldots\left(1-x_{n}\right)$
- If $G=2 K_{2}$, then $\alpha_{G}=\theta_{G}=x_{1}+x_{2}+x_{3}+x_{4}-x_{1} x_{3}-x_{2} x_{4}$
- If $G=P_{4}$, then
$\alpha_{G}=\theta_{G}=x_{1}+x_{2}+x_{3}+x_{4}-x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{4}+x_{1} x_{2} x_{3}+x_{2} x_{3} x_{4}-x_{1} x_{2} x_{3} x_{4}$
- If $G=C_{4}$, then $\alpha_{G}=\theta_{G}=x_{1}+x_{2}+x_{3}+x_{4}-x_{1} x_{2}-x_{2} x_{3}-x_{3} x_{4}-$ $x_{1} x_{4}+x_{1} x_{2} x_{3}+x_{1} x_{2} x_{4}+x_{1} x_{3} x_{4}+x_{2} x_{3} x_{4}-2 x_{1} x_{2} x_{3} x_{4}$

Theorem (BCDHM 1990)

The polynomial expression of the stability function of G has all its coefficients equal to $0,-1$, or +1 if and only if G is triangulated. Moreover, when this is the case, the coefficients alternate in sign between odd and even degree terms.

Extensions?

- Nice, but anecdotic result?
- Generalization: the hypergraph $H=\{123,124,34\}$ has $\alpha_{H}=x_{1}+x_{2}+x_{3}+x_{4}-x_{3} x_{4}-x_{1} x_{2} x_{3}-x_{1} x_{2} x_{4}+x_{1} x_{2} x_{3} x_{4}$.
- Anything special about it? What hypergraphs have all coefficients equal to $0,-1$, or +1 ?

Definitions

Pseudo-Boolean functions

A pseudo-Boolean function is a mapping $f:\{0,1\}^{n} \rightarrow \mathbb{R}$, that is, a real-valued function of $0-1$ variables.

Multilinear polynomials

Every pseudo-Boolean function can be represented - in a unique way - as a multilinear polynomial in its variables, of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

where $\mathcal{S}=\left\{S \in 2^{[n]}\left|a_{S} \neq 0,|S| \geq 2\right\}\right.$.
Example:
$f=4-9 x_{1}-5 x_{2}-2 x_{3}+13 x_{1} x_{2}+13 x_{1} x_{3}+6 x_{2} x_{3} x_{4}-13 x_{1} x_{2} x_{3} x_{4}$

Co-occurrence hypergraph

Co-occurrence hypergraph

When

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$H_{f}=([n], \mathcal{S})$ is the co-occurrence hypergraph associated with f.

Example:

If $f=4-9 x_{1}-5 x_{2}-2 x_{3}+13 x_{1} x_{2}+13 x_{1} x_{3}+6 x_{2} x_{3} x_{4}-13 x_{1} x_{2} x_{3} x_{4}$, then $\mathcal{S}=\{12,13,234,1234\}$.

Multilinear optimization in binary variables

We are frequently interested in:
(MOB) $\min _{x \in\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}$

- Multilinear optimization is NP-hard, even if f is quadratic
- Approaches:
- Direct resolution methods
- Linearization: extensive literature in integer programming.
- Quadratization: more recent approach.

Multilinear optimization in binary variables

We are frequently interested in:
(MOB) $\min _{x \in\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}$

- Multilinear optimization is NP-hard, even if f is quadratic
- Approaches:
- Direct resolution methods
- Linearization: extensive literature in integer programming.
- Quadratization: more recent approach.

Standard linearization (SL)

$$
\text { (MOB) } \min _{x \in\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

1. Substitute monomials

$$
\begin{array}{lr}
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i} & \\
\text { s.t. } y_{S}=\prod_{k \in S} x_{k}, & \forall S \in \mathcal{S} \\
y_{S} \in\{0,1\}, & \forall S \in \mathcal{S} \\
x_{k} \in\{0,1\} & \forall k=1, \ldots, n
\end{array}
$$

Standard linearization (SL)

$$
\text { (MOB) } \min _{x \in\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

1. Substitute monomials

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

2. Linearize constraints

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$$
\text { s.t. } y_{S}=\prod_{k \in S} x_{k},
$$

$$
\forall S \in \mathcal{S}
$$

$$
\text { s.t. } y_{S} \leq x_{k},
$$

$$
\forall k \in S, \forall S \in \mathcal{S}
$$

$$
y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
\begin{aligned}
& y_{S} \in\{0,1\} \\
& x_{k} \in\{0,1\}
\end{aligned}
$$

$$
\forall k=1, \ldots, n
$$

$$
y_{s} \in\{0,1\}
$$

$$
\forall S \in \mathcal{S}
$$

$$
x_{k} \in\{0,1\} \quad \forall k=1, \ldots, n
$$

Standard linearization (SL)

$$
\text { (MOB) } \min _{x \in\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i},
$$

1. Substitute monomials

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$$
\text { s.t. } y_{S}=\prod_{k \in S} x_{k}
$$

3. Linear relaxation

$$
\min \sum_{S \in \mathcal{S}} a_{S} y_{S}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$$
\forall k \in S, \forall S \in \mathcal{S}
$$

$$
y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1), \quad \forall S \in \mathcal{S}
$$

$$
0 \leq y_{s} \leq 1
$$

$$
\forall S \in \mathcal{S}
$$

$$
0 \leq x_{k} \leq 1 \quad \forall k=1, \ldots, n
$$

$$
\forall S \in \mathcal{S} \quad \text { s.t. } y_{S} \leq x_{k}
$$

$$
\begin{aligned}
& y_{S} \in\{0,1\} \\
& x_{k} \in\{0,1\}
\end{aligned}
$$

$$
\begin{array}{r}
\forall S \in \mathcal{S} \\
\forall k=1, \ldots, n
\end{array}
$$

Linear relaxation

A natural question: does the standard linearization polytope

$$
P_{S L}=\left\{(x, y) \in[0,1]^{n+|\mathcal{S}|} \mid y_{S} \leq x_{k} \forall k \in S, y_{S} \geq \sum_{k \in S} x_{k}-(|S|-1) \forall S \in \mathcal{S}\right\}
$$

have fractional vertices?

- For a function containing a single nonlinear monomial: No.
- For two or more nonlinear terms, Yes! $P_{S L}$ is in general very weak!!!
- So, when is $P_{S L}$ integral?

Co-occurrence hypergraph

Recall: co-occurrence hypergraph

When

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}
$$

$H_{f}=([n], \mathcal{S})$ is the co-occurrence hypergraph associated with f.

Definition: Berge cycles

For a hypergraph $H=(V, \mathcal{S})$, a Berge cycle of length p is a sequence

$$
\left(i_{1}, S_{1}, i_{2}, S_{2}, \ldots, i_{p}, S_{p}, i_{1}\right)
$$

where
(1) $i_{1}, i_{2}, \ldots, i_{p}$ are pairwise distinct vertices of V,
(2) $S_{1}, S_{2}, \ldots, S_{p}$ are pairwise distinct edges of \mathcal{S},
(3) $i_{j}, i_{j+1} \in S_{j}$ for $j=1, \ldots p-1$, and $i_{1}, i_{p} \in S_{p}$.

Perfect standard linearization

(E. Rodríguez-Heck, Ch. Buchheim, Y. Crama, 2016)

$P_{S L}$ is integral if and only if H_{f} has no Berge cycles.

Proof:

\Leftarrow If H_{f} is Berge-acyclic then the constraint matrix of $P_{S L}$ is balanced, a property that guarantees integrality.
\Rightarrow If H_{f} has a cycle, then construct an objective function that reaches its optimum at a fractional vertex of $P_{S L}$.

Perfect standard linearization

(E. Rodríguez-Heck, Ch. Buchheim, Y. Crama, 2016)
$P_{S L}$ is integral if and only if H_{f} has no Berge cycles.

- Generalizes a result of Padberg (1989) for quadratic functions.
- Closely related to a result of Crama $(1988,1993)$ for an "irredundant" relaxation of $P_{S L}$.
- Independently obtained by Del Pia and Khajavirad (2016).

Multilinear optimization in binary variables

(MOB) $\min _{x \in\{0,1\}^{n}} \sum_{S \in \mathcal{S}} a_{S} \prod_{k \in S} x_{k}+\sum_{i=1}^{n} a_{i} x_{i}$

- Multilinear optimization is NP-hard, even if f is quadratic.
- Approaches:
- Direct resolution methods
- Linearization: extensive literature in integer programming.
- Quadratization: more recent approach.
- Idea: can we reduce MOB to the (unconstrained) quadratic case rather than to the (constrained) linear case?
- Yes, in many ways!

Quadratization

Observations

- Say $g(x, y),(x, y) \in\{0,1\}^{n+m}$, is a quadratic function.
- Then, for all $x \in\{0,1\}^{n}$,

$$
f(x):=\min \left\{g(x, y) \mid y \in\{0,1\}^{m}\right\}
$$

is a pseudo-Boolean function.

- $f(x)$ may be quadratic, or not.
- $\min \left\{f(x) \mid x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y) \mid(x, y) \in\{0,1\}^{n+m}\right\}$.
- Conversely...

Quadratization

Quadratization

The quadratic function $g(x, y),(x, y) \in\{0,1\}^{n+m}$ is an m-quadratization of the pseudo-Boolean function $f(x), x \in\{0,1\}^{n}$, if

$$
f(x)=\min \left\{g(x, y) \mid y \in\{0,1\}^{m}\right\} \quad \text { for all } x \in\{0,1\}^{n} .
$$

The y-variables are called auxiliary variables.

- $\min \left\{f(x) \mid x \in\{0,1\}^{n}\right\}=\min \left\{g(x, y) \mid(x, y) \in\{0,1\}^{n+m}\right\}$.
- Does every function f have a quadratization?

Existence

Existence of quadratizations (Rosenberg 1975)

Given the multilinear expression of a pseudo-Boolean function $f(x), x \in\{0,1\}^{n}$, one can find in polynomial time a quadratization $g(x, y)$ of $f(x)$.

- Idea: in each term $\prod_{i \in A} x_{i}$ of f, with $\{1,2\} \subseteq A$, replace the product $x_{1} x_{2}$ by a new variable y;
- Introduce a penalty term to force $y=x_{1} x_{2}$ in every minimizer of the transformed expression;
- $t(x, y)=\left(\prod_{i \in A \backslash\{1,2\}} x_{i}\right) y+M\left(x_{1} x_{2}-2 x_{1} y-2 x_{2} y+3 y\right)$.
- Potential drawbacks: introduces many auxiliary variables, big M.

Questions arising...

- Many quadratization procedures proposed in recent years. Which ones are "best"? Small number of variables, of positive terms, good properties with respect to persistencies, submodularity?
- Easier question: What if f is a single monomial?
- How many variables are needed in a quadratization?
- etc.

Refs: Boros and Gruber (2011); Buchheim and Rinaldi (2007); Fix, Gruber, Boros and Zabih (2011): Freedman and Drineas (2005); Ishikawa (2011); Kolmogorov and Zabih (2004); Ramalingam et al. (2011); Rosenberg (1975); Rother et al. (2009); Živný, Cohen and Jeavons (2009); etc.

Outline

Focus of our recent work:

- lower and upper bounds on size of quadratizations
- the case of symmetric functions
M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratization of symmetric pseudo-Boolean functions, Discrete Applied Mathematics 203 (2016) 1-12.
M. Anthony, E. Boros, Y. Crama and M. Gruber, Quadratic reformulations of nonlinear binary optimization problems Mathematical Programming 162 (2017) 115-144.
E. Boros, Y. Crama and E. Rodrìguez-Heck, Compact quadratizations for pseudo-Boolean functions, Working paper, 2018.

General question

- How many auxiliary variables are needed in general?
- Upper bound based on termwise quadratizations:

Observation

Every term of the form $a \prod_{i=1}^{n} x_{i}$ can be quadratized using $n-2$ auxiliary variables (Rosenberg 1975), and even $\left\lfloor\frac{n-1}{2}\right\rfloor$ auxiliary variables (Ishikawa 2011).

So:

Ishikawa (2011)

For every n-variable pBf, one can find in polynomial time a quadratization involving $\left\lfloor\frac{n-1}{2}\right\rfloor 2^{n}$ auxiliary variables.

- Best known bound, until recently.

Upper bound

- Upper bound based on termwise quadratizations:

Ishikawa (2011)

For every n-variable pBf, one can find in polynomial time a quadratization involving at most $\left\lfloor\frac{n-1}{2}\right\rfloor 2^{n}$ auxiliary variables.

- We prove:

Theorem: upper bound (Math. Prog. (2017))

For every n-variable pBf, one can find in polynomial time a quadratization involving at most $O\left(2^{n / 2}\right)$ auxiliary variables.

Pairwise cover

Based on a construction using small pairwise covers:

Pairwise cover

A hypergraph \mathcal{H} is a pairwise cover of $\{1, \ldots, n\}$ if, for every $S \subseteq\{1, \ldots, n\}$ with $|S| \geq 3$, there are sets $A, B \in \mathcal{H}$ such that $|A|<|S|,|B|<|S|$ and $A \cup B=S$.

We can prove:
Theorem: From pairwise cover to quadratization
If there exists a pairwise cover of $\{1, \ldots, n\}$ of size m, then every pseudo-Boolean function has an m-quadratization.

- Idea of the proof: write $\prod_{i \in S} x_{i}=\left(\prod_{j \in A} x_{j}\right)\left(\prod_{k \in B} x_{k}\right)$; substitute y_{A} for $\prod_{j \in A} x_{j}$ and y_{B} for $\prod_{k \in B} x_{k}$;
- Introduce a penalty term to force the correct values of y_{A} and y_{B} in every minimizer of the transformed expression.

Pairwise covers

Thus:

Theorem: From pairwise cover to quadratization

If there exists a pairwise cover of $\{1, \ldots, n\}$ of size m, then every pseudo-Boolean function has an m-quadratization.

- But... there are pairwise covers with size $O\left(2^{n / 2}\right)$.
- Pairwise covers are (almost) identical to so-called 2-bases investigated by Erdös, Füredi and Katona (2006), Frein, Lévêque and Sebö (2008), Ellis and Sudakov (2011).
- $\mathcal{P}($ even $)=$ all subsets of even integers in $\{1, \ldots, n\}$.
- $\mathcal{P}($ odd $)=$ all subsets of odd integers in $\{1, \ldots, n\}$.
- $\mathcal{H}=\mathcal{P}($ even $) \cup \mathcal{P}($ odd $)$ is a "small" pairwise cover with size $O\left(2^{n / 2}\right)$.

Lower bound

- Any good lower bound on the number of auxiliary variables?

Theorem: lower bound (Math. Prog. (2017))

There are pseudo-Boolean functions of n variables for which every quadratization must involve at least $\Omega\left(2^{n / 2}\right)$ auxiliary variables.

- This lower bound matches the $O\left(2^{n / 2}\right)$ upper bound.
- Non constructive proof based on dimensionality argument: if too few auxiliary variables, then we cannot generate the whole vector space of pseudo-Boolean functions.

Conclusions

- Many fruitful connections between functions of Boolean variables, graphs and hypergraphs.
- Many intriguing questions and conjectures.
- See also

BOOLEAN FUNCTIONS

Theory, Algorithms, and Applications
Yves CRAMA and Peter L. HAMMER
Cambridge University Press, 2011

BOOLEAN FUNCTIONS

Yves Crama and Peter L. Hammer
710 pages
with contributions by C. Benzaken, E. Boros, N. Brauner, M.C. Golumbic, V. Gurvich,
L. Hellerstein, T. Ibaraki, A. Kogan,
K. Makino, B. Simeone

