Resource Trading Agents for Adaptive
Active Network Applications

Lidia Yamamoto — Guy Leduc

University of Liege

Research Unit in Networking

Institut Montefiore, B28

B—-4000 Liege, Belgium
yamamoto@run.montefiore .ulg.ac.be
leduc @montefiore .ulg.ac.be

ABSTRACT: Adaptive applications seem to be the only realistic answer to the increasing
diversity and decentralisation in networks. In order to accommodate fluctuations in
network conditions, adaptive applications need to obtain information about resource
availability. Using mobile agent technology applied to active networks, new models for
adaptive applications can be envisaged. In this article we review the state of the art in
agent and active network techniques for adaptive applications, and describe our work on
an agent model for trading resources inside an active network node. We apply the model to
the case of an audio mixing application. Our simulation results indicate that the model
allows the application to make efficient use of the available resources, and to share
resources according to user preferences.

RESUME: Les applications adaptatives semblent étre la seule réponse réaliste a la diversité
et a la décentralisation toujours croissante dans les réseaux. Afin de pouvoir s’adapter a
des fluctuations dans les conditions du réseau, les applications adaptatives ont besoin
d’information sur la disponibilité des ressources dans le réseau. En appliquant la
technologie des agents mobiles aux réseaux actifs, de nouveaux modeéles pour les
applications adaptatives peuvent étre envisagés. Dans cet article nous révisons 1’état de
I’art des techniques basées sur les agents et les réseaux actifs pour les applications
adaptatives, et nous décrivons notre modeéle basé sur des agents pour échanger des
ressources dans un noeud actif. Nous avons appliqué le modéle a une application de
mixage audio. Nos résultats de simulations indiquent que le modéle permet a I’application
de faire un usage efficace des ressources, et de partager les ressources selon les
préférences des utilisateurs.

KEY WORDS: active network, mobile agent, resource management

MOTS—CLES: réseaux actif, agent mobile, gestion de ressources

Network and Information Systems Journal. Volume 3 — No. X/2000, pages X to X



2 Network and Information Systems Journal. Volume 3 — No. X/2000

1. Introduction

In the context of an increasingly decentralised and heterogeneous network such
as the Internet today, it is very difficult for the applications to know how much
quality they can really expect. A lot of research effort has been dedicated to
techniques to offer QoS guarantees, but these techniques are only effective when
deployed in all the nodes concerned by a communication, or at least in all the
nodes where resource shortage may occur. However, it is very difficult to achieve
global agreements such that these techniques can be deployed. They are feasible in
a private enterprise network, ISP or isolated operator, but not at the global scale.
Therefore the only realistic answer seems to be to rely on applications that are able
to adapt to a wide range of network conditions in a dynamic way, and in particular
to the amount of resources available when these resources cannot be reserved in
advance.

An adaptive application must be able to make optimal use of the available
resources, and be able to adapt itself to fluctuations in resource availability. But
this kind of application faces the difficulty to obtain enough information about the
network conditions, due to the Internet black—box model.

Clearly the use of more intelligent network elements in the network can allow
applications to obtain the feedback they need to perform the adaptation functions
more easily. Recently router support has been considered to assist adaptive
applications to achieve better performance. But then the same question arises, how
to add new functionality inside the network nodes without going through a long
standardisation process and without having to face the difficulties of global scale
deployment.

Mobile agents and active networks can become useful tools to help in the
adaptation process, since it becomes possible to inject customised computations at
optimal points in the network, and the deployment problem can be easily solved
using dynamic code mobility. In the long run this can lead to self—configurable,
auto—adaptive network elements that are intelligent enough to "learn" the protocols
they need to use at a given moment, according to the devices available, services
offered, operator policies, user demand, etc.

A special class of adaptation mechanisms is the so—called market—based
control [CLE 96], for which a considerable amount of research results are
available mainly in the agents field. It provides algorithms inspired by
optimisation and economy theories for distributed control of resource usage, with
many applications to computer and telecommunication networks. The benefit of
such mechanisms is two—fold: on one side, optimal resource sharing configurations
can be achieved in a decentralised way; on the other side, it becomes easier to
quantify heterogeneity in terms of resource availability, to offer the users the
opportunity to trade one type of resource for another.

However, relatively few results have been shown which directly apply such
artificial economy models to the specifics of active networks, with special
attention to highly adaptive applications. We address this issue in this article by
providing a simple model which allows the active applications to make decisions



Active Network Resource Trading Agents 3

about the amount of resources to use, according to the network conditions found in
the active nodes. Using such a model, an audio mixer is developed as an instance
of adaptive active network application, which is able to trade bandwidth for
memory according to the available prices of each resource.

The article is organised as follows: in Section 2 we review the state of the art in
agent and active network techniques for adaptive applications. Section 3 presents
our model to trade resources inside an active node. Section 4 applies the model to
the case of an audio mixing application. Section 5 shows simulation results for the
audio application, and Section 6 concludes the article.

2. Background

In this section we give a survey of the current research directions concerning
agent and active network techniques applied to adaptive applications. We start
with an overview of current techniques used in network and transport level
adaptation protocols, and then discuss the potential of mobile agents and active
networks for such applications, with a survey of current proposals in this area.
After that we review market—based control research applied to resource sharing in
computer and telecommunication networks. The use of such techniques in the
active network context is the focus of our work.

2.1 Adaptive Applications

Adaptive applications can tolerate fluctuations in resource availability, and are
necessary in a heterogeneous environment such as the Internet today, where
different network technologies and user terminals are interconnected together, and
over which a multitude of services coexist. In the case of multimedia applications,
a good survey can be found in [VAN 00].

The adaptation mechanisms can be implemented at several layers of the
protocol stack, ranging from pure application layer techniques to network level
protocols. For example, we can adapt to the available bandwidth using elastic
traffic that reduces the data rate generated in presence of network congestion.
Fluctuations in delay can be dealt with by using elastic buffers to adjust the play—
out time. To deal with CPU and memory bottlenecks, some interaction with the
operating system is necessary (see Section 5 of [VAN 00] for examples). Our focus
in this paper is on network and transport level mechanisms for adaptation. At this
level, the classical approaches are typically end—to—end based and adapt to the
available network bandwidth (congestion control). The best known example is the
TCP protocol, which adjusts its window size in response to the current level of
congestion. Since TCP is so widespread today, but does not support the emerging
multimedia applications, a lot of research is in progress in order to obtain TCP-
friendly protocols for real-time and streaming applications, for unicast as well as
multicast traffic [FLO 00] [KHA 00].



4 Network and Information Systems Journal. Volume 3 — No. X/2000

It is well known that classical end—to—end approaches often present drawbacks
such as annoying quality fluctuations, sub—optimal resource utilisation and
sharing, and slow convergence. Part of these problems come from the fact that the
applications try to adapt in a blind way, without having enough information about
the network conditions, since the Internet uses a black—box model, which hides all
information from the end hosts.

Recently some router support has been considered to assist adaptive
applications to achieve better performance, e.g. [GOP 00]. However, how to have
such schemes widely accepted and deployed is still a question mark.

We believe that code mobility as provided by mobile agents and active
networks is the only generic solution to allow adaptive software to be
incrementally deployed and evolve through usage experience. In Section 2.2 we
give a brief introduction to the active network concepts used throughout the article,
and in Section 2.3 we discuss the relationship between mobile agents and active
networks. In Section 2.4 we review the current research efforts towards adaptation
protocols that can benefit from code mobility.

2.2 Active Networks

Active networks (AN) allow the network managers or users to program the
network nodes according to their needs, offering a great amount of flexibility. The
nodes of an active network [TEN 97] are capable not only of forwarding packets as
usual but also of loading and executing mobile code. The code can be transported
out—of—band, within specialised signalling channels (programmable networks) or
in—band, within special packets called "capsules" (active networks). Capsules
might contain the code itself (such as in [HIC 99]) or a reference to it, such that it
can be downloaded when the first capsule containing the reference arrives at a
given node (such as in [WET 98]).

If the distinction between active and programmable networks seemed at some
point in time clear [TEN 97] [CHE 98], the tendency today seems to be towards an
integration of the two concepts [ALE 99], since both are forms of achieving open
programmability in networks [CAM 99], and special flavours in between or
combining both approaches are also possible [ALE 99] [HJA 00]. In this paper we
focus on the capsule model in order to be more generic and avoid programmability
restrictions.

There are basically two AN architectural lines, derived from the two original
communities on out—of-band and in—band programmability. The first one is the
IEEE P1520 reference model [DEN 99], which offers a set of standard interfaces to
program IP routers, ATM switches and other network devices. The P1520 model is
the first standardisation effort towards open network programming interfaces, and
is likely to be one of the first AN interfaces to become commercially available.

The second architectural line is the framework for an active node architecture
[CAL 99] which is being proposed within the DARPA AN research community. It
includes a supporting operating system (the NodeOS), one or more execution



Active Network Resource Trading Agents 5

environments (EE), and the active applications (AA). These components are
outlined in Figure 1. The NodeOS is responsible for managing local resources such
as CPU processing time, link bandwidth and memory storage. On top of the
NodeOS, a number of EEs can be installed. On top of each EE, various AAs can be
dynamically loaded and executed. The EE is responsible for controlling the access
from the AAs to local resources, and limiting resource usage depending on
specified policies.

‘\ EE 1 EE 1 /‘m
Res.mna. Res.mna.
Resources Resources
1 1
= 4z
NodeOS API
NodeOS
Resource manager
Resources

Figure 1. Main components of the DARPA AN architecture.

The NodeOS plays a crucial role in providing access to local node resources, as
well as information about resource availability. A NodeOS API is currently being
defined [PET 00]. At the moment this API treats four types of resources:
computation, memory, communication, and persistent storage. The communication
resource is handled through the channel abstraction, which when ready should
include QoS support, as well as access to link information such as bandwidth,
queue length, and other properties and statistics.

2.3 Mobile Agents and Active Networks

Mobile agents are autonomous pieces of mobile code that travel through the
network acting on behalf of their owners. There is a vast amount of literature on
the subject, applied to several areas such as manufacturing, e—commerce, network
management [HAY 99a] [PAP 00].

The intersection between mobile agent technology and active network
technology is the use of mobile code. The capsules of an active network can be



6  Network and Information Systems Journal. Volume 3 — No. X/2000

seen as subclasses of mobile agents, specialised for network—related operations.
The similarity between active networking and mobile agent concepts is briefly
discussed in [HAY 99b] [BRE 99].

Actually, we can consider that the pioneer AN platform actually came from a
mobile agent framework: the M@ platform [TSC 93]. M@ is based on the concept
of messengers as mobile computational entities that are able to perform any
network service. In [TSC 93] it is shown that any protocol based on the classical
PDU paradigm — which is the case of basically all the network protocols in
operation so far — can be implemented using the messengers paradigm. On the
other hand, it is also pointed out that not all the protocols that can be implemented
with messengers can be implemented using simple PDUs. The typical case is the
one of protocols that are able to evolve their own code on the fly. The author
called such protocols "genetic protocols" but admitted to be unable to come up
with concrete examples where such protocols would really be necessary in
practice. Since then, the search for such protocols still persist in the AN and
mobile agent worlds [BOL 00].

If conceptually the border line between mobile agents and AN capsules or
messengers is blur, in practice many differences subsist between the two
approaches. Mobile agents concentrate mainly on application—level or network
management duties, and can typically accomplish much more complex tasks, with
richer functionality, than what is generally allowed to capsules or even to out—of-
band active code. Moreover, while capsules can be designed to be autonomous and
mobile, downloadable modules for programmable networking are typically like
plug—ins, and have no autonomy nor mobility once they are installed at the target
network element. The architectures for mobile agent platforms and active network
platforms differ in the kind of support for code mobility that is offered. Mobile
agent platforms tend to concentrate on application level or network value added
services, while active network platforms are optimised for transport rather than
processing of information.

It is interesting to note that the simplicity of AN platforms compared to agent
platforms may enlarge their applicability beyond the network domain they were
initially designed for. An example of that can be found in [RUM 00], where the
concept of "active network calls" is introduced, which uses AN capsules to support
distributed computations. The authors report that efficiency was the reason for the
choice of AN capsules instead of mobile agents.

On the other hand, mobile agents can also be used as enabling platform for
active networks as pointed out in [BRE 99] [SUG 99]. In this case, instead of the
usual plug—ins, it is possible to benefit from full mobile agent functionality in an
AN environment.

Finally, it is important to remember that both mobile agent and AN
technologies face the same challenges which are mainly security, performance,
resource management and interoperability.



Active Network Resource Trading Agents 7

2.4 Resource Management

One of the main difficulties encountered in classical adaptation approaches is
how to obtain the required information about resource availability, mainly when
this information is hidden in a black box network and has to be inferred using only
some indirect indications that are observed at the end systems. Using code
mobility as provided by mobile agents and active networks, new models for
adaptive applications could be envisaged, which can benefit from the possibility to
send capsules or agents to certain elements inside the network. These agents can be
in charge of collecting information about network conditions, without having to
rely on indirect indications or on heavy signalling protocols. Indeed, the idea of
sending small pieces of code directly to where the data needs to be treated, instead
of exchanging a large amount of data, is one of the main motivations of mobile
agent technology, and it can also be applied to mobile code in the case of active
networks.

Actually many adaptation mechanisms come from the world of mobile agents.
In [JUN 00] an adaptive QoS scheme for MPEG client—server video applications is
described. It is based on intelligent agents that reserve network bandwidth and
local CPU cycles, and adjust the video stream appropriately. Many agent—based
adaptation schemes use artificial market mechanisms [CLE 96]. In [YAM 96] a
market model to allocate QoS is applied to a conferencing tool targeted at casual
meetings where sudden variations in bandwidth availability require an adaptive
QoS control strategy. In [TSC 97] an open resource allocation scheme based on
market models is applied to the case of memory allocation for mobile code. [GIB
99] describes a market—based mechanism to set up circuit switching paths with
resource reservation. In [BRE 00] the problem of budget planning for mobile
agents is addressed, such that they can successfully complete their tasks given their
limited budget constraints.

In the domain of end—to—end congestion control in networks, optimisation
schemes (see [LOW 99] for an overview) are receiving a lot of attention recently.
The algorithms derived from such studies also use a price measure to indicate the
level of congestion, and utility functions to quantify users’ share of bandwidth.
They are therefore closely related to artificial economy systems, but they are
restricted to the specific case where bandwidth is the only scarce resource.

Active networks can more easily benefit from the various adaptation
mechanisms described, when compared to classical networks, since their code can
be dynamically deployed. However, most of the current AN architectures still offer
little support for such mechanisms to be implemented in a straightforward manner.
For example, ANTS capsules carry a resource limit field that is decremented for
the consumption of resources [WET 98]. When it reaches zero the capsule is
discarded. However, no mechanisms are specified to manage this field, or to
quantify the amount to be decremented.

This situation is rapidly changing though. Recently, [ANA 00] presented a very
promising market—based resource management infrastructure for active networks.



8  Network and Information Systems Journal. Volume 3 — No. X/2000

It includes a distributed trust—-management system which ensures that the market—
based policies can be properly enforced in a scalable way.

Another step towards market—based models for AN is the cost model proposed
in [NAJ 00], which expresses the trade—off between different types of resources in
a quantitative way. However, the recursive approach adopted makes its use more
appropriate in the context of reservation—based applications, instead of highly
adaptive ones.

A crucial issue for resource management in active networks is the support for
incremental deployment. The success of active networks, protocols and services
will depend on their ability to complement and interoperate with existing networks
in a transparent way, such that active nodes and active functionality can be
incrementally deployed. In a hybrid network where only a few nodes might be
active, it is important to be able to estimate the resource availability outside an
active node. In [SIV 00] an equivalent link abstraction is proposed as part of the
Protean architecture. Using this abstraction, it is possible to consider a set of non—
active nodes as a single link from the point of view of the active nodes involved.
Such a virtual link presents changing properties which must be discovered in real—
time, such as average rate, delay and packet loss probability. The use of this type
of abstraction in the context of artificial market models, as well as its extension to
multi—access links, to the case of asymmetric and/or changing routes, etc., are still
open issues.

3. Resource Trading Model

In previous work [YAM 00a] we proposed a model for trading resources inside
an active node, and applied it to an audio application. This paper is an extended,
corrected and updated version of that work. The model was derived from our
earlier work on a layered multicast protocol [YAM 00b], therefore it is not a mere
abstract proposal but is motivated by concrete application needs.

Our model aims at offering a generic communication abstraction between
active network agents, such that different adaptive applications and different
resource management policies can be implemented. We are mainly concerned with
adaptation to available resources when resources cannot be reserved in advance,
either because the router itself does not support reservations, or because the
network is heterogeneous and some of the routers along the path offer no QoS
support.

In the model, two types of agents communicate to seek an equilibrium. Each
agent tries to optimise its own benefits: on one side resource manager agents have
the goal of maximising resource usage while maintaining a good performance
level. On the other side, user agents try to obtain a better quality/price relation for
the resources consumed, and to efficiently manage their own budgets avoiding
waste. Both types of agents are implemented as AAs with different privileges, and
they communicate such that the resource managers can "sell" resources to the user
agents at a price that varies as a function of the demand for the resource.



Active Network Resource Trading Agents 9

A currency is introduced into the system to allow for trading of different
resource types. This is the basic requirement for artificial economy models such as
[BRE 00] [FER 96] [TSC 97] to develop in active nodes, and is also an essential
feedback parameter for most algorithms based on optimisation (e.g. [LOW 99]).

The idea is to enable auto—configurable applications and resource managers,
such that the code from both types of agents can be dynamically loaded, in order to
make them evolve to adapt to new conditions. Figure 2 shows the model as it
could be implemented over the DARPA AN architecture. The main
implementation difficulty at the moment seems to be the definition of interfaces to
local information concerning resource availability, which need to be exported to
the active applications. In this matter, we can learn from the mobile agents field in
order to model the interactions between resource manager agents and user agents.
Software agent communication paradigms such as Agent Communication
Languages can be helpful, but still need to be specialised to the AN context.

‘/ Secure communication
\‘ EE1 EE2

Dynamic
res.mng.

comm. w| Static res.mng. Static res.mng. A
Resources Resources

Dynamic — —

res.mng. < L J b

NodeOS API
NodeOS

users Resource manager netw.admin.
Resources

Figure 2. Resource managers and active applications. Hypothetic placement over
the DARPA AN architecture

Such a model is per se not entirely new, and is in fact a mere simplification of
existing artificial economy models which have been mainly applied to the agents
domain. For example, the scheme in [GIB 99] is similar to ours, although more
complex. The main difference with respect to our model is that we try to adapt it to
the specifics of adaptive applications over active networks (no resource
reservations), in which reaction time is critical, therefore precluding the use of
complex transactions.



10  Network and Information Systems Journal. Volume 3 — No. X/2000

The AN market—based infrastructure proposed in [ANA 00] allows the trading
of resources between producing agents and consuming agents, which can be
mediated by service broker agents. The currency used takes the form of a resource
access right. This architecture also bears many similarities with our model. The
main difference is that we focus on AAs that can trade resources, while [ANA 00]
focuses on the underlying architecture and security mechanisms to support such
AAs. Our research efforts are therefore complementary, and we plan to implement
our ideas over the platform developed by [ANA 00].

3.1 Resource Manager Agents

Resource managers export resource prices which are a function of the resource
utilisation. The utilisation is related to the load, and to the demand for a resource.
The function or algorithm used to calculate prices can be shaped to implement
desired policies, such as to achieve high utilisation, but also to offer good quality
to the users. Resource managers may contain dynamic and/or static code. Some
lower level functions which are especially time—critical might be implemented
using static code (or even in hardware) while the mobile part would be used to
implement more complex policies and to select from a set of pre—existent lower
level functions. It is necessary to have the possibility to use dynamic code in order
to be able to improve strategies, that is, make them evolve over time, in an active
network. Here is one of the places where the alliance between AN and mobile
agents can become a must: resource managers can be deployed using mobile
agents that are sent by the network manager in order to install new policies.
Classical mobile agents for network management can be used for this purpose.

Resource managers are implemented as AAs injected by the network provider,
which are executed with network administrator’s privileges. There is one class of
resource manager for each type of resource concerned. The most relevant classes
are: link managers, CPU managers, and memory managers. We will give some
more attention to link managers, since they play a crucial role in network
congestion control.

Link manager agents also allow abstractions to be made which enable the user
applications to adapt to a wide variety of environments in a transparent way. By
exporting prices instead of the link internal state information directly, it is possible
to hide the specific details of link characteristics while at the same time offering a
proper congestion indication to adaptive applications. For example, the price
function for a classical point—to—point link would be different from that of a
multiple access link, where the local interface load is not a good indication of the
actual link utilisation.

An important feature of the link manager price abstraction is that it allows the
active applications to deal with non-active nodes in a transparent way. For
example, a link manager that implements the equivalent link abstraction [SIV 00]
could export a price which would be a function of the estimated average rate,
average delay and packet loss probability, which are changing properties in the
case of an Internet virtual link. As discussed earlier, this type of abstraction is



Active Network Resource Trading Agents 11

crucial for the success of active networks, since the deployment of active nodes
will depend on their ability to complement and interwork with existing
technologies.

A lot of research is still to be done on how to adjust prices in artificial agent—
based economies. An interesting analysis can be found in [MIZ 99]. For this
paper, however, this will not be our focus. We will rather concentrate on the user
side, assuming that the resource manager agents in the active nodes are able to
implement suitable pricing algorithms.

3.2 Capsules as Reactive User Agents

The second type of agents in the model are the active packets themselves,
modelled as simple reactive mobile agents. Actually capsules can be regarded as a
specialised subclass of mobile agents. They travel to network nodes where they
decide when to continue or stop the trip (e.g. stop due to congestion), when to fork
new capsules (e.g. in a multicast branch), and which amount of resources to use at
each node in order to complete their (generally simplified) tasks.

Capsules have the properties of autonomy and mobility, but need to be simple
enough to be executed at the network layer, where performance is often critical.
They need to take fast decisions using little data and reasoning, therefore they
must be extremely reactive. They can therefore be classified in the reactive agents
category. This does not exclude from the model the possibility of using more
intelligent mobile agents, jointly with capsules. However, in this paper we focus
only on capsules.

Capsules generally represent the user interests, with the goal of attaining the
best possible quality at the lowest possible cost. This means that a capsule must be
able to make rational decisions on how to spend its limited budget, after consulting
resource manager agents for information about the prices of the various resources
needed.

Capsules carry a budget that allows them to afford resources in the active
nodes, as the resource limit field in ANTS [WET 98]. It looks like a TTL (Time—
To-Live) field which is decremented by a number of units for the consumption of
a certain amount of resources. When it reaches zero the capsule is discarded. As
explained in [WET 98], the budget field must be protected such that the capsules
themselves cannot modify it. Again, since capsules are reactive agents, the
transactions must be kept simple enough. Instead of the auction mechanisms
frequently used by agents [CLE 96], the capsules will most of the time either
accept or refuse to pay a given price. Refusing might imply that the capsule simply
disappears from the system, because it does not have enough budget to proceed its
journey to its destination. Again, we do not preclude the usage of more complex
mechanisms implemented by intelligent mobile agents. These agents can also
have access to the resource manager interfaces, therefore they can also benefit
from the model, however they are not our focus as pointed out earlier in this
section.



12 Network and Information Systems Journal. Volume 3 — No. X/2000

At the end systems (hosts) conventional programs or intelligent agents can be
used to spawn capsules. Since these hosts can dedicate significant amount of
resources to information processing, sophisticated strategies can be used to decide
which capsules to spawn and when, and how much of the total user’s income can
be assigned to each capsule (planning). These tasks are then not delegated to the
capsules themselves, but can be delegated to more generic mobile agents such as
the ones described in [BRE 00].

Here we face the problem of how the budget should be distributed between
capsules for one user, and among different users, and also of how to make
purchase decisions according to budget constraints. This can be done with the help
of utility functions, which quantify the level of user satisfaction for receiving a
certain amount of a good, or more generally a combination of goods (market
basket) [PIN 98].

According to economics, a typical behaviour of a rational consumer agent is to
try to maximise its utility subject to the budget constraints given by its limited
income.

For an example where only two goods are involved, the user optimisation
problem is then typically expressed as:

Maximise U(x,y)
subject to: P X+tp,y =1

where U(x,y) is the utility function, x and y are the quantities of two goods in
their respective units, p; is the price per unit of x, p, is the price per unit of y, and /
is the user’s income.

Such a maximisation process will lead to an equilibrium if the utility function
satisfies some properties such as being strictly concave increasing, i.e. the increase
in satisfaction is smaller the more items of one good are consumed. The increase in
satisfaction that a user obtains from consuming one more item of a given good is
called the marginal utility. Within the rational consumer assumption, the marginal
utility is a decreasing function of the number of items of a given good. This is
called the diminishing marginal utility assumption, and it is directly related to the
demand function of a given user for a given good. It means that the more one has
from something, the less it is willing to pay to obtain more of it.

A typical utility function is the Cobb—Douglas utility function, given by:
U(xy) = a-log(x)+(1—a)log(y)

where 0<a<1 is a constant which represents the importance the user
assigns to x with respect to y.

Applying the method of Lagrange multipliers, the solution of the user
optimisation problem with the Cobb—Douglas utility function is given by [PIN 98]:



Active Network Resource Trading Agents 13
a-l
x(p)=— 1
Y [1]

v(p,) = “‘p—““ [2]

The functions x(p.) and y(p,) are the demand functions for goods x and y given
their current prices per unit p, and p, respectively. With demand functions shaped
like these, it is possible to chose the quantity of a given resource to consume in
order to maximise user satisfaction, given the current price for the resource and the
agent’s income. Since the price information for each type of resource is available
in the active nodes, it is possible for an agent to calculate the amount of resources
it can consume at each node, given only an upper bound on the budget per hop it
has planned to spend. In the case of capsules, the planning decisions to calculate
this upper bound could be performed either at the hosts or by more intelligent
mobile agents that would be sent to the active nodes less frequently than capsules.
The techniques for such planning are out of scope of this article, and the interested
reader can refer to [BRE 00] for more information.

The same reasoning can be easily generalised to an arbitrary number of
resources [FER 96]. However, for the purpose of our study this will be sufficient,
since we will restrict ourselves to link and memory resources.

Another important characteristic of the Cobb—Douglas function is that it allows
us to easily quantify the preferences of different consumers towards one good. For
example, given two user agents u; and u, with the same income I, if agent u; has
the weight a, on its utility function for good x, and agent u, has weight

a,=n-a; for the same good, we have:

a, -l
xl(PY):l_
P,
a,-l n-a -l
x(p)=——=—"—=nx/(p)
P, P,

Thus for a given price p, we have:

azzn-al:mz:n-xl

It means that if we know that agent u, values resource x twice as much as agent
u;, then when faced with the same price, u, will get twice as much of x as u;. This



14 Network and Information Systems Journal. Volume 3 — No. X/2000

is an interesting tool for computer network applications, since it provides a
quantitative way to provide service differentiation according to the preferences of
users. This capability is already known from literature, e.g. [LOW 99] [FER 96].
For example, when trading bandwidth for memory storage, a time—constrained
application such as an audio—conference will certainly prefer bandwidth to storage
if prices are the same, while a bulk transfer application would probably prefer to
store as much information as possible when the links are congested, in order to
avoid losses and retransmissions.

In real world economies it is difficult to quantify utilities, but in artificial
economies this might be less difficult. Without having to relate artificial currencies
to real ones, we could imagine that the maximum budget per unit of time is
controlled by a policy server from the network provider that the user is subscribed
to, in order to guarantee that users will employ such budget rationally and prevent
malicious users from grabbing most of the resources by marking all their capsules
with a high budget. This can be compared to the IETF diffserv policies. However,
in diffserv only a few predefined classes of service are available, while with such
artificial economies, a whole range of classes could appear (and eventually die
out), defined by their particular utility characteristics.

4. Congestion Control for a Concast Audio Mixer

We illustrate the use of the trading model through a congestion control scheme
for a many—to—one (concast) service. The concast example shows capsules that
trade bandwidth for memory when there is congestion.

The term "concast" has been defined in [CAL 00] as a many—to—one service, in
opposition to multicast (one—to—many). Figure 3 illustrates this concept. While
multicast copies information from one source to many destinations, concast merges
information from several sources to one destination. A concast service can be used,
for instance, to aggregate feedback in a reliable multicast service, to transmit
reception statistics in a multimedia session, to merge information coming from
several sources in an auction or tele—voting application, or to combine several
real-time streams into one, e.g. to perform audio mixing from several audio
sources.

The concast service is faced with the feedback implosion problem, that is,
multiple simultaneous sources might congest the path to the single destination, if
no congestion control is performed. This problem is aggravated by the fact that
many concast flows are used as signalling to support a more robust protocol such
as the aggregation of NACK feedback messages for a reliable multicast protocol.
Flow control for such signalling messages is often neglected or oversimplified,
since the signalling traffic is assumed to be kept small enough when compared to
the data traffic. This might lead to poor performance when there is congestion in
such a signalling path. We argue that for future sophisticated active services
congestion control will be equally important on the signalling and data paths, since
the distinction between both tends to become naturally blurred as we approach new



Active Network Resource Trading Agents 15

network service composition frameworks which are not simply stack—based as the
classical OSI model.

For the purpose of this study, we focus on the case of an audio mixing
application. However, the same ideas are applicable to any application making use
of the concast service, differing only in the way that packets are combined (merge
semantics).

R St
copy merge
S —>ORe RO <@ s

O R, Os

Figure 3. Multicast (a) versus Concast (b) service abstractions

In our audio mixing application, several sources generate audio streams in a
session. The streams are collected at a single node, which can either record them,
play them back or redistribute them to a multicast group. If the receiving node
collects all the data and mixes it locally, it might end up with the implosion
problem. It is possible to perform mixing operations at every active node, so that
the receiver gets a single stream already mixed. However this might cost too much
processing and/or memory space in the active routers, so it might become too
expensive. Also note that mixing streams delays them, since it is necessary to wait
until a minimum number of packets arrive in order to sum up their audio payloads.

The mixing operation is a physical sum of audio samples. Therefore the
resulting audio payload has the same number of bytes as each of the original
payloads. We assume that there is a maximum amount of signals that can be
added up without saturation. Another assumption is that a constant bit rate codec is
used, with no silence suppression, such that the signals are generated at a constant
rate from the beginning to the end of the session. This initial rate will be altered
along the path, as capsules are mixed according to the network conditions.

Note that the mixing operation requires a list of addresses, in order to identify
the list of sources already mixed. One might argue that such a list might also
occupy bandwidth, since the packet size has to increase in order to accommodate
it. But if an estimation of the group size is available, a fixed—size bitstream can be
used to hold the list of sources. Adding or removing a source becomes as simple as



16  Network and Information Systems Journal. Volume 3 — No. X/2000

setting or resetting a bit in the bitstream. The intersection and union operations can
also be implemented as AND and OR binary operations respectively.

We propose to trade bandwidth for processing and memory space to achieve a
compromise solution which uses resources efficiently and therefore is able to
control congestion. The idea is that when there is congestion at an outgoing
interface, the consequently high bandwidth prices will push the users to save
bandwidth by performing mixing of data. When the congestion clears up, the users
can again benefit from the available bandwidth to avoid the extra delays imposed
by the mixing operation.

When a capsule arrives at a node, the first thing it does is to check whether
another payload coming from the same source is already buffered. In this case, the
arriving capsule cannot mix its payload to the buffered one, which carries earlier
samples. Note that this check is in fact an intersection operation to check whether
one of the sources mixed in the current capsule is already buffered. If that is the
case, the arriving capsule immediately dispatches the buffered payload by creating
a new data capsule and injecting it into the local execution environment. This
procedure also prevents misordering of packets. As a consequence, at most one
packet payload per session is buffered in an active node. We assume that all
payloads have the same size.

After that, the capsule can take a decision to either proceed, buffer its payload
(for mixing), or discard itself. This decision depends on the budget it carries, and
on the prices of the memory and link resources it needs. A number of alternative
decision strategies can be envisaged:

Null strategy: Corresponds to the trivial case when no congestion control is
performed. In this case the capsule always goes intact to the outgoing interface.

First strategy: If there are other audio payloads from the same group waiting
in the memory buffer, it adds its own payload to the buffered one and adds its list
of sources to the list of sources already buffered (union operation). Then it
terminates execution. If no other audio payloads from the same group are buffered
yet, it decides for the cheapest resource: if the price of memory (to buffer the
payload for future mixing) is currently lower than the transmission price for the
capsule, then it decides to buffer itself; otherwise it decides to move on to the next
hop.

Second strategy: The arriving capsule mixes its own data with the buffered
one (if existent), then it chooses the cheapest resource, either memory or
bandwidth.

The difference between the first strategy and the second strategy is that the first
strategy always decides for storage when another payload from the same session is
already buffered, while the second strategy always chooses the cheapest resource,
independent on the fact that another payload is already buffered or not.

Although the first and second strategies are very naive, they already give quite
reasonable results as we will see below. However, their behaviour is sub—optimal
and they do not take into account the different preferences for resources.



Active Network Resource Trading Agents 17

Third strategy: It first mixes its own data with the buffered one (if existent),
as in the second strategy. It obtains a new payload that combines samples from n
sources (n is known from the list of source addresses). It also knows N, the
maximum number of sources that can be mixed together without saturation. Then
it calculates the amounts of link and memory resources according to equations [1]
(for link) and [2] (for memory), where the a parameter is also carried in the
capsule, and expresses its preferences for link resources with respect to memory. It
then tries to keep the resources in the proportions obtained, as follows:

X
If > ; then store, else move on.

Where x is the demand for link resources according to equation [1], and y is the
demand for memory resources according to equation [2].

Since we have:

x__ 9P
y (l-a)p,

the decision is independent on the capsule’s budget /. The a parameter will
play a role in the proportion of link resources used with respect to memory
resources. The higher a, the higher the amount of link resources used, and
therefore less capsules will be mixed together, for given memory and link prices.

Note that in all cases, capsules that run out of budget are automatically
discarded by the resource managers, thus there is no need to explicitly indicate this
operation.

5. Simulations

The audio mixing AA has been simulated with the help of an AN module that
we developed for the NS simulator [NS 00]. This module implements a simplified
AN architecture consisting of a NodeOS, an EE, and some resource managers. The
simulated EE executes capsules written in TCL language.

The topology for the simulations is shown in Figure 4. It consists of n sessions
of m sources and one receiver each. The sessions traverse a bottleneck (link L), so
that the capsules in active node N must decide to mix or to proceed intact to the
receiver node, according to the prices of link or memory resources available from
the resource managers.



18 Network and Information Systems Journal. Volume 3 — No. X/2000

R1
;@gm
\=

O R

Figure 4. Topology used in the simulations

The price function used is based on the one in [TSC 97]:

price = 1000+, ot 1000
1.01 — load

This function is a practical implementation of a convex increasing function that
would go to infinite as the load approaches 100\%. It forces the price to rise
sharply as we approach high loads, which discourages applications from using a
resource when its load is too high. This gives the applications a clear indication of
the "dangerous zone" to avoid, while at the same time encouraging a relatively
high utilisation.

In the case of the memory manager, the load is given by the ratio between the
average number of memory units occupied, and the total number of memory units
available to user capsules (which is of course assumed to be much smaller than the
actual amount of memory available). The average is calculated using an
exponential weighted moving average (EWMA [FLO 93]).

For the link manager, the load is given by the average queue occupancy ratio at
the outgoing link interface. This average ratio is obtaining by calculating the
average queue length as an EWMA, and then dividing by the maximum queue
size. The resulting congestion indication is a bit similar to RED, except that here
the binary feedback is replaced by an explicit price indication to the arriving
capsules. Note that the actual usage of bandwidth is not taken into account in the



Active Network Resource Trading Agents 19

price function, if it does not cause queues to build up. This is therefore a very
simplified version of a link manager, but it already serves the purpose of
controlling congestion.

We first run an example where 2 sessions are active. There are 5 sources per

session, each sending an audio stream of 100kbps to a single receiver, resulting in
a total of 1Mbps of traffic arriving at N. The capacity of link L is set to 500kbps.

Rate (bps)

Rate (bps)

Rate (bps)

500000
450000
400000
350000
300000

250000 f;

200000
150000
100000

50000

500000
450000
400000
350000
300000
250000
200000
150000
100000

50000
0

500000
450000
400000
350000
300000
250000
200000
150000
100000

50000
0

60

10

20

30 40
Time (s)

50

60

Rate (bps)

Rate (bps)

Rate (bps)

500000
450000
400000
350000
300000

250000
200000 i

150000
100000
50000

500000
450000
400000
350000
300000
250000
200000

150000 f

100000

50000
0

500000
450000
400000
350000
300000
250000

200000 f
150000 f

100000

50000
0

10

20 30 40 50 60
Time (s)

Figure 5. Evolution of rates in time for 2 sessions, as perceived by their respective
receivers. Left: first session (receiver r;). Right: second session (receiver r;). Top:
no congestion control. Middle: first strategy. Bottom: second strategy



20  Network and Information Systems Journal. Volume 3 — No. X/2000

Figure 5 (top) shows what happens in the trivial case when no congestion
control is used. In this case, link overflow occurs at L, and half of the packets are
dropped. The remaining packets receive an unequal share of the bottleneck link as
we can see in the figure.

Figure 5 (middle) shows what happens when the first strategy is used. First we
can notice that the two sessions (left and right) get approximately the same share
of the bottleneck. Additionally, no packet losses were observed during the
simulation. However, the link is underutilised. This can be explained by the fact
that this strategy always favours memory when there is already an item in memory.

The second strategy is a bit more clever (Figure 5, bottom). It always chooses
the cheapest resource, either memory or bandwidth. Therefore it is able to grab any
bandwidth when it becomes available. Here again, no packet losses occur.
However, with this strategy it is not possible to specify different weights for each

resource.

400000 ‘ T — 400000 ‘ I
a=0.5: ; a=0.5: ;
350000 | ideal 350000 | ideal
< 800000 < 800000 |
o o
= 250000 s < 250000 L
@ TP ° [k
© ©
T 200000 T 200000 |
150000 | 150000 f
100000 ‘ ‘ ‘ ‘ ‘ 100000 ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)
200000 500000 ‘ ‘
L) =0.75: f(2) ——
a=0.25: jgeq| 450000 | A
180000 400000
2 160000 | ‘2 350000
s : s
P ; o 300000
F 140000 & 250000
120000 200000
150000 |
100000 : ‘ : : ‘ 100000 : ‘ : : ‘
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time (s) Time (s)

Figure 6. Evolution of rates in time for 2 sessions using the third strategy. Top: a;
= a, = 0.5 for link resources. Bottom: a; = 0.25, a, = 0.75




Active Network Resource Trading Agents 21

Now let us look at the third strategy, which allows us to specify utility weights
through the a parameter. Figure 6 (top) shows its behaviour when the weights of
the two sessions are the same. We see that this strategy is able to share the
bandwidth efficiently. It also leads to more stable rates when compared to the
previous strategies. The same happens when the weights are different (bottom side
of Figure 6), but in this case each session receives link resources in proportion to
its respective weight, expressed by the a parameter value.

Until this point only the rates have been shown, since our main goal is to
achieve congestion control. Table 1 shows average memory and link parameters
taken over the complete duration of the simulations shown in figures 5 and 6. The
null strategy (Str.0, no congestion control) occupies most of the link resources and
causes the link price to rise, since the link queue is most of the time full. Strategy 1
reduces link utilisation by using memory for mixing, however it does that in an
inefficient way when compared to strategy 2, which is able to use more bandwidth
while decreasing both link buffer occupancy and memory utilisation. The result is
a decrease in link and memory prices.

Strategy 3, when a,=a; (Str.3a in Table 1), improves further by keeping the
average link queue occupancy at a very low level, in spite of a high bandwidth
utilisation. This can be explained by the fact that this strategy tries to find an
optimum balance between the usage of memory (which delays packets) and the
usage of link resources. It therefore waits for the good moment to send a packet
over the link, the moment when link prices are favourable (which in our case
corresponds to low queue occupancy).

Column Str.3b in Table 1 shows the average resource parameters when a;=a.,
corresponding to the situation illustrated at the bottom side of Figure 6. There are
no significant changes in the parameters at node N, with respect to Str.3a, but the
prices are higher, which is an unexpected result, as we would expect the two
sessions to concentrate each one on its respective preferred resource, making the
load equally distributed. We are still investigating the reason for this discrepancy.

Parameter (average) Str.0 Str.1 Str.2 Str.3a Str.3b

memory utilisation (%) 0 7.18 5.14 498 5.33
bandwidth utilisation (%) 9991 84.54 98.18 98.93 96.37
link queue occupancy (%) 93.58 5.83 497 1.61 2.98
memory price ($) 0 37.71 26.57 25.62 27.37
link price ($) 2914.6 32.35 27.71 10.17 17.22

Table 1. Memory and link usage parameters for different strategies



22 Network and Information Systems Journal. Volume 3 — No. X/2000

In order to have a better insight on the mixing procedure, we now look at the
number of audio sources carried by each capsule that arrives at its destination.
Table 2 shows the percentage of packets that arrived at both receivers, over the
total number of packets sent, which is the mix of a given number of sources. The
first row ("0 (lost)") represents lost packets. The second row (one source)
represents the percentage of packets that arrive intact from the source. The third
row (two sources) represents packets that mix samples from two different sources,
and so on for the rest of the rows. The columns represent the strategies used. For
the null strategy, roughly half of the packets are lost, and the remaining packets
arrive intact (no mixing). Strategy 1 is an all-or—nothing strategy: two thirds of the
arriving packets contain data from only one source, while one third contains data
from all the sources for a given session. The second strategy distributes the mixing
effort more evenly.

# sources | Str.0 Str.1 Str.2 Str.3a Str.3b(rl) |Str.3b(r2)

0 (lost) 49.61 0 0 0 0 0
1 50.39 66.22 39.87 1.54 0.05 60.86
2 0 0.02 33.53 96.16 048 39.14
3 0 0 15.80 2.30 1.93 0
4 0 043 6.26 0 97.54 0
5 0 33.34 4.53 0 0 0

Table 2. Average percentage of packets carrying the sum of samples from a given
number of sources

As for the third strategy, column Str.3a of Table 2 shows the results when
a;=a,, corresponding to the simulation result shown at the top side of Figure 6.
Columns Str.3b(rl) and Str.3b(r2) show the results for receivers r; and r;
respectively, when a;=a, (Figure 6, bottom). We can see that when a,=a,, most of
the packets arrive at the receivers containing samples from two sources mixed
together, while for a; =0.25 (r;), most of the packets contain samples from four
sources, and for a,=0.75 (r,), more than one third of the arriving packets contain a
mix of only two sources, and the rest only one source (no mixing). This shows that
strategy 3 tries to stabilise at a target mixing level, which is characterised by the a
parameter. The lowest the a parameter value is for a given session, the highest the
mixing level which is achieved.



Active Network Resource Trading Agents 23

140 | ' ' 2=0.25 —x— 1 140 | ' ' 2=0.25 —xeer 1
a=0.5 —— a=0.5 ——

120 a=0.75 * 1 120 a=0.75 *
& 100 | e e‘g
8 80t 5
2 3

60 g
5 A 5

40 + =

20| . )(

0 = L
1 2 3 4 5
Number of sessions Number of sessions

Figure 7. Average link and memory prices when varying the number of sessions in
parallel

Finally, we vary the number of sessions in parallel using the third strategy, in
three separate runs: during the first run all sessions have a=0.25, during the
second, a=0.5, and the third, a=0.75. The total average prices for memory and link
buffer occupancy are depicted in Figure 7. We can see that the @ parameter has a
clear influence on the link prices, that increase with a for a given number of
sessions, as expected. However it has little influence on the memory prices. This
can probably be explained by the fact that, although the application avoids using
the memory during a too long period due to delay constraints, at any time each
session has at most one packet stored in memory. In the simulations shown,
memory does not become a bottleneck, therefore the small impact on prices.

6. Conclusions and future work

We have presented a survey of current research on agent and active network
techniques applied to adaptive applications, with special attention to optimisation
and market—based approaches. We have also described a model for trading
resources inside an active network node, which draws many elements from agent
technology. We have applied the model to a concast audio mixing application
which trades off link resources against memory in the presence of bottleneck links.
The concast application is able to take congestion control decisions locally at each
active node, such that no closed loop feedback between source and destination is
needed. Using simulations, we studied three different strategies to make a decision
on the amount of resources to use: two naive strategies based on the cheapest
price, and a strategy that makes use of utility function weights. The results indicate
that the first two strategies are already able to make improvements over the case
when no congestion control is used, but they use resources inefficiently. The third
strategy gives better results, achieving a stable and efficient sharing of resources.



24 Network and Information Systems Journal. Volume 3 — No. X/2000

We have several research directions to pursue: the most immediate one is to
perform more complex simulations involving multiple node and link types,
resource manager types, active and non—active nodes, different user strategies, etc.
An implementation over a real active networking platform is also envisaged for the
near future. We also plan to investigate the issues of dynamic resource manager
upgrade with the help of mobile agents. The precise communication abstractions
among the various kinds of agents need further attention too.

7. Acknowledgements

This work has been carried out within the TINTIN project funded by the
Walloon region in the framework of the programme "Du numérique au
multimédia".

8. References

[ALE 99] D. S. ArLexanper, J. M. Smira, "The Architecture of ALIEN", LNCS 1653,
Proceedings of IWAN’99, Berlin, Germany, June/July 1999, p. 1-12.

[ANA 00] K. G. Anacgnostakis ET AL., "Scalable Resource Control in Active Networks",
LNCS 1942, Proceedings of IWAN 2000, Tokyo, Japan, October 2000, p.343-357.

[BOL 00] L. Boront, D. C.MarmNescu, "Agent surgery: The case for mutable agents",
Proceedings of the Third Workshop on Bio-Inspired Solutions to Parallel Processing
Problems (BioSP3), Cancun, Mexico, May 2000.

[BRE 00] J. BrepiN Er AL., "A Game-Theoretic Formulation of Multi—-Agent Resource
Allocation", Proceedings of the 2000 International Conference on Autonomous Agents,
Barcelona, Spain, June 2000.

[BRE 99] M. BreucsT ET AL., "Grasshopper — An Agent Platform for Mobile Agent—Based
Services in Fixed and Mobile Telecommunications Environments", In [HAY 99a],
Chapter 14, p. 326-357.

[CAL 99] K. L. CaLvert (ED) ET AL., "Architectural Framework for Active Networks",
(DARPA) AN Working Group, draft version 1.0, July 1999, work in progress.

[CAL 00] K. CaLvert, "Toward an Active Internet", Active and Programmable Networks
Mini—conference, Networking 2000, Paris, France, May 2000.

[CAM 99] A. T. CawmpBELL, ET AL., "A Survey of Programmable Networks", ACM
SIGCOMM Computer Communication Review, April 1999, p.7-23.

[CHE 98] T. M. Cuen, A. W. Jackson, "Active and Programmable Networks", Guest
Editorial, IEEE Network, May/June 1998, p.10-11.

[CLE 96] S. H. CLearwater (Ep.), "Market—Based Control — A Paradigm for Distributed
Resource Allocation", World Scientific Press, 1996.

[DEN 99] S. Denazis T AL., "Designing Interfaces for Open Programmable Routers", LNCS
1653, Proceedings of IWAN’99, Berlin, Germany, June/July 1999, p. 13-24.



Active Network Resource Trading Agents 25

[FER 96] D. F. Fercuson, C. Nickoraou, J. Sarames, Y. Yeming,"Economic Models for
Allocating Resources in Computer Systems", in [CLE 96], Chapter 7, p.156-183.

[FLO 93] S. Frovyp, V. Jacosson, "Random Early Detection Gateways for Congestion
Avoidance", IEEE/ACM Transactions on Networking, August 1993.

[FLO 00] S. Froyp Er AL., "Equation—Based Congestion Control for Unicast Applications",
Proceedings of ACM SIGCOMM 2000, Stockholm, Sweden, August 2000.

[GIB 99] M.A. GiBney, NJ. Vrienp, J.M. Grirrras, "Market—Based Call Routing in
Telecommunication Networks Using Adaptive Pricing and Real Bidding", LNAI 1699,
Proceedings of the IATA’99 Workshop, Stockholm, Sweden, August 1999.

[GOP 00] R. GopraLakrIsHNAN ET AL., "A Simple Loss Differentiation Approach to Layered
Multicast", Proceedings of IEEE INFOCOM 2000, Tel-Aviv, Israel, March 2000.

[HAY 99a] A. L. G. Havzeipen, J. Bigiam (Ebs.), "Software Agents for Future
Communication Systems", Springer—Verlag, 1999.

[HAY 99b] A. L. G. HavzELDEN ET AL., "Future Communication Networks using Software
Agents", In [HAY 99a], Chapter 1, p.1-57.

[HIC 99] M. Hicks et aL., "PLANet: An Active Internetwork", Proceedings of IEEE
INFOCOM’99, New York, 1999.

[HJA 00] G. Hiaumrysson, "The Pronto Platform: A Flexible Toolkit for Programming
Networks using a Commodity Operating System", Proceedings of IEEE OPENARCH
2000, Tel-Aviv, Israel, March 2000, p. 98-107.

[JUN 00] K. Jun, L. Boront, D. Yau, D.C. Marmescu, "Intelligent QoS Support for an
Adaptive Video Service", To appear in the Proceedings of IRMA 2000.

[KHA 00] I. EL Knayar, G. Lepuc, "Contrdle de congestion pour la transmission multipoints
en couches", JDIR’2000, 4ie¢mes Journées Doctorales Informatique et Réseaux, Paris,
France, November 2000.

[LOW 99] S. Low, D.E. Lapsiey, "Optimization Flow Control, I: Basic Algorithm and
Convergence", IEEE/ACM Transactions on Networking, 1999.

[MIZ 99] H. Mizura, K. Steicurz, E. Lirov, "Effects of Price Signal Choices on Market
Stability", 4™ Workshop on Economics with Heterogenous Interacting Agents, Genoa,
June 1999.

[NAJ 00] K. Nasarr, A. Leon—Garcia, "A Novel Cost Model for Active Networks", Proc. of
Int. Conf. on Communication Technologies, World Computer Congress 2000.

[NS 00] UCB/LBNL/VINT Network Simulator — ns (version 2), URL http://www—
mash.cs.berkeley.edu/ns/

[PAP 00] T. Paparoannou, "On the Structuring of Distributed Systems: The Argument for
Mobility, PhD thesis, Loughborough University, February 2000.

[PET 00] L. Peterson (ep) ET AL., "NodeOS Interface Specification", (DARPA) AN NodeOS
Working Group, draft, January 2000, work in progress.

[PIN 98] R.S. Pnpyck, D.L. RuBINFELD, "Microeconomics”, 4% Edition, Prentice Hall
International Inc., 1998.



26 Network and Information Systems Journal. Volume 3 — No. X/2000

[RUM 00] R. Stamov, J. Dumont, "Distributed Computations by Active Network Calls",
LNCS 1942, Proceedings of IWAN 2000, Tokyo, Japan, October 2000, p.45-56.

[SIV 00] R. Sivakumar, S. Han, V. Buarcuavan,"A Scalable Architecture for Active
Networks", Proceedings of IEEE OPENARCH 2000, Tel-Aviv, Israel, March 2000.

[SUG 99] K. Sucauchr et AL., "Flexible Network Management Using Active Network
Framework", LNCS 1653, Proceedings of IWAN’99, Berlin, Germany, June/July 1999,
p. 241-248.

[TEN 97] D. L. TennenHouse ET AL., "A Survey of Active Network Research", IEEE
Communications Magazine, Vol. 35, No. 1, pp80-86. January 1997.

[TSC 93] C. TscuupiN, "On the Structuring of Computer Communications", PhD thesis,
University of Geneva, Switzerland, 1993.

[TSC 97] C. Tscuupiy, "Open Resource Allocation for Mobile Code", Proceedings of the
Mobile Agent’97 Workshop, Berlin, Germany, April 1997.

[VAN 00] B. VanpaLore ET AL., "A Survey of Application Layer Techniques for Adaptive
Streaming of Multimedia", to appear in the Journal of Real Time Systems, 2000.

[WET 98] D.J. WetHERALL, J. V. GutTag, D. L. TENNENHOUSE, "ANTS: A Toolkit for Building
and Dynamically Deploying Network Protocols", Proceedings of IEEE
OPENARCH’98, San Francisco, USA, April 1998.

[YAM 96] H. Yamaki, M.P. WeLLmaN, T. IsHiba, "A market—based approach to allocating
QoS for multimedia applications", Proceedings of ICMAS’96, Kyoto, Japan, December
1996.

[YAM 00a] L. Yamamoro, G. Lebuc, "An Agent—Inspired Active Network Resource Trading
Model Applied to Congestion Control", LNCS 1931, Proceedings of MATA 2000,
Paris, France, September 2000.

[YAM 00b] L. Yamamoro, G. Lepuc, "An Active Layered Multicast Adaptation Protocol",
LNCS 1942, Proceedings of IWAN 2000, Tokyo, Japan, October 2000, p.180-194.



