A stable and flexible TCP-friendly congestion
control protocol for layered multicast
transmission

Ibtissam El Khayat and Guy Leduc

Research Unit in Networking
University of Liege
Institut Montefiore - B28 - Sart Tilman
Liege 4000 - Belgique

Abstract. We propose an improvement of our RLS (Receiver-driven
Layered multicast with Synchronization points) protocol, called CIFL
for “Coding-Independent Fair Layered mulaticast”, along two axes. In
CIFL, each receiver of a layered multicast transmission will try and find
the adequate number of layers to subscribe to, so that the associated
throughput is fair towards TCP and stable in steady-state. The first
improvement is that CIFL is not specific to any coding scheme. It can
work as well with an exponentially distributed set of layers (where the
throughput of each layer i equals the sum of the throughputs of all layers
below i), or with layers of equal throughputs, or any other scheme. The
second improvement is the excellent stability of the protocol which avoids
useless join attempts by learning from its unsuccessful previous attempts
in the same (or better) network conditions. Moreover, the protocol tries
and reaches its ideal TCP-friendly as soon as possible by computing
its target throughput in a clever way when an incipient congestion is
confirmed.

1 Introduction

Contrary to the current compression standards (e.g. JPEG, MPEG-x,
H.26x), wavelet-based compression techniques (e.g. JPEG 2000) allow
for flexible and highly scalable (in resolution, time and quality) formats.
Although inter-frame wavelet video coding is still an open research area,
it will enable very scalable video transmission where the data stream
can be split into several hierarchical layers whose bit contents (and thus
throughputs) can be defined in a very flexible manner. Therefore, we
believe that any congestion control protocol dedicated to video trans-
mission to an heterogenous set of receivers should be independent from
the relative and absolute throughputs of each layer. It should behave as
well with an exponentially distributed set of layers (where the through-
put of each layer ¢ equals the sum of the throughputs of all layers below
i), or with layers of equal throughputs, or any other scheme.

A multicast congestion control protocol has to allow all receivers to reach
their optimal level as quickly as possible. By optimal, we mean a fair

2

Ibtissam El Khayat and Guy Leduc

share of the available bandwidth. We consider intra-session fairness (i.e.
among receivers of the same session) and inter-session fairness (i.e. to-
wards other sessions of the protocol or towards TCP connections).

A receiver-driven layered multicast (RLM) approach to solve the hetero-
geneity problem was first proposed by Mccanne in [8]. In RLM, every
layer represents an IP multicast group and subscription to a layer im-
plies subscription to all the lower layers. The receiver adds and drops
layers according to the network state. This receiver-driven approach is
probably the most elegant way to solve the multicast problem. It was
later used in RLC [13], MLDA [12] and PLM [4]. The main concern of
RLM was the intra-session fairness. To achieve it, a coordination mech-
anism between receivers has been designed. RLM was not designed to
be TCP-friendly (i.e. fair towards TCP), nor to guarantee inter-session
fairness. RLC was designed to be fair towards TCP connections whose
round trip time (RTT) was close to one second, but not in general. RLC
and MLDA support some form of inter-session fairness, in the sense that
two competing RLC (MLDA) sessions will get the same number of layers
in steady-state, which means that both sessions get the same throughput
only in cases where the two sessions have partitioned their layers so that
they have the same throughputs in all layers. This cannot be the case in
general.

In an earlier work, we have proposed a protocol, called RLS [3], that
provides intra-session and inter-session fairness guarantees. For example,
for a large range of RTTs, the ratio of throughputs between RLS and
TCP remains in the interval [%, 3], which is excellent compared to RLM
and RLC. However, we noted that RLS, though stable, still performed
too many unsuccessful join experiments. Moreover, RLS was designed to
work with exponentially distributed layers only. In this paper, we propose
a better protocol, called CIFL, which improves RLS along the following
lines:

— We make no hypothesis on the throughputs of the layers, they can
have any value.

— The receivers reach the optimal level quickly.

— The stability is better, because the receivers learn from their past
failures to join some layers under some conditions. This makes the
received throughput very smooth, and improves fairness too.

The paper is organized as follows. We first remind some basic concepts
in section 2. We explain the principles of CIFL in section 3, and show
its simulated performance results in section 4.

2 Basic concepts

2.1 TCP-Friendly

TCP is the most widespread traffic in the internet and any new conges-
tion controlled protocol has to be designed to be TCP-friendly, which
means that it gets an average share of the bandwidth (approximately)
equal to the average share TCP would get in the same conditions. As
TCP is unicast and we are considering multicast protocols, the definition
should be refined as follows. A multicast protocol is TCP-friendly if each
receiver gets an average share of the bandwidth equal to the average

CIFL

share a TCP connection, between that source and that receiver, would
get.

In Best-effort networks, there is no reason to favour video transmission
over TCP given the importance of the latter. In Integrated Services net-
works where receivers can reserve some (minimum) bandwidth for the
video stream, one could let receivers get more bandwidth provided that
this extra share is fairly allocated. In Differentiated Services networks
where video stream can be aggregated with others and may, not be in
the same class as TCP flows, inter-sessions fairness will be achieved if all
video flows adopt the same definition of fairness (and TCP-friendliness
may be a good candidate for that). So in all cases, TCP friendliness
seems a good requirement to fulfill.

The throughput of TCP (in bps) in steady-state, when the loss ratio is
below 16%, is roughly given by the following formula [6]:

Bioy ~ —25_ with € = \/g =1,22 (1)
JPRTT 2

where s is the packet size (in bits), RTT is the mean round trip time (in

sec) and p the packet loss ratio. A more precise formula that takes TCP

timers into account can be found in [9)].

The TCP cycle is the average delay between two packet losses in steady-

state. So we have one packet loss per cycle, which can be formulated
S

as:
-2 2
Bi.p.Cycle’ (2)

where s is the packet size in bits and Cycle the duration of the TCP
cycle as described above. From (1) and (2), we derive:

p

Bicp. RTT"

Cycle = s (3)

2.2 Coordination of receivers

It was pointed out in [8], that a multicast congestion control protocol
cannot be effective if the subset of receivers behind the same router act
without coordination. Indeed, if a receiver creates congestion on a link
by requesting a new layer, another receiver (receiving less layers) might
interpret its resulting losses as a consequence of its (too high) level of
subscription and may end up dropping its highest layer unnecessarily
(because this layer will continue to be received by other receivers). So
coordination is necessary, RLM has proposed to use announcement mes-
sages, and RLC to use synchronization points (SPs). SPs are special
packets in the data stream. Receivers can only join a new layer just after
receiving an SP. In RLC, each layer has its own SPs, and the receiver
can only join layer ¢ + 1, when it receives an SP in layer ¢. [10] shows
that the presence of SPs leads to a low redundancy and gives better fair-
ness. That is the reason why RLS and CIFL build their coordination of
receivers on the existence of SPs. The SPs will also contain information
about the number of layers and their respective throughputs.

3

4

Ibtissam El Khayat and Guy Leduc

3 The CIFL protocol

Our goal is to create a layered multicast congestion control protocol
which is:

1. TCP-friendly.

2. Stable: as few unsuccessful join experiments as possible.

3. Generic: independent from the throughput of each layer. To achieve
that CIFL will estimate the ideal throughput, and will join, or leave,
one or several layers at once to reach a throughput which is close to
the computed target, based on estimations of the RTT and the loss
ratio.

4. Careful before adding layers at SPs, but quick at removing layers
when an incipient congestion is confirmed. This is to be compared
with the Additive Increase Multiplicative Decrease (AIMD) scheme
of TCP.

3.1 Estimation of the Round Trip Time

Each receiver has to estimate its RTT to the source. The classical scheme
is to ping the sender from time to time, e.g. each time the receiver joins or
leave a layer, or more frequently. However, for large sessions, the sender
can be flooded by ping requests. If routers are active, a solution based on
[1] can be used, but we are looking for a solution that does not involve
routers. If the sender knows the number r of receivers and the number
p of ping requests it can process between two SPs, it can provide these
numbers in the SPs.

Knowing these values, receivers can ping the sender with probability 2.
We do not require that ping requests be immediately followed by a ping
response from the sender. To achieve that, we implement a scheme similar
to RTCP [11]. Suppose a receiver sends a ping request at time Rs which
is received by the sender at time S,. The sender stamps the ping request
at its arrival, and when it is able to send a ping response, say at Ss, it
stamps the response with that time value. If the sender is quick, S5 will
be (almost) equal to S,, but in any case the time spent at the sender can
be computed as Ss — S,. At R, the receiver will get the ping response
and perform the following operations:

Rec_Send = (1 — g)Rec-Send + g(S» — Rs)
Send_Rec = (1 — g)Send_Rec + g(R, — Ss)
RTT = Rec_Send + Send_Rec

If all the data packets are timestamped, the receiver can continously
estimate the Send_Rec value by using all the packets it receives. Between
two pings, the Rec_Send can change without being noticed though, which
requires that pings are not too distant from each other. This is also useful
to compensate clock drift.

CIFL 5

3.2 The join

Synchronization points. As said before, we use the SPs to co-
ordinate the receivers. Contrary to RLC, SPs are only present in the
first (base) layer and not in all of them. When a SP is received and if
the decision to join is not taken, the receiver remains deaf to congestion
during a deaf period Tj. This is necessary because this congestion can
be induced by another receiver that has used that SP to get more layers.
In practice the distance between SPs is at least 4 seconds. This distance
is enough to be greater than any common deaf period (see next section).
However, to avoid all kinds of synchronizations, the distance between
SPs is randomized. It will vary between 4 and 16 seconds.

Increase of the throughput. The receiver tries and estimates the
bandwidth TCP would get in a similar situation. To do so, it will use
formula (1) which requires to know its loss ratio. But the latter has a
meaning only when it is computed over a duration close to a TCP cycle.
Indeed, remember that formula (1) is only valid in steady-state. So, the
receiver will refrain from using an SP to get more layers if it did not
stay at least one TCP cycle at the current level. When it is the case, the
receiver computes the bandwidth it can get as follows:

Cs

Bpert = ————.
RTT\/P.ycie

with P.ycie the loss ratio computed over the last TCP cycle (see formula
(3)). If there were no loss, the throughput can be doubled. That is smi-
lar to TCP which would have doubled its window after a cycle. When
the receiver has computed its optimal bandwidth, it joins the suitable
number of layers to get the closest possible to the computed through-
put. To do so, it is necessary that the SPs contain information about the
throughputs of all the layers.

Stabilization. When the receiver has no good estimation of its RTT,
e.g. because there is a large number of receivers and the pings are done
less frequently, the estimated bandwidth can be overestimated. In this
case, the receiver would join layers that it would leave soon after. These
unsuccessful join experiments can be avoided if the receiver can learn
something from past failures. To this end, the CIFL receiver will record
the network state' as it was just before any unsuccessful join experiment.
To do this, every receiver maintains a square matrix QD with one row
(and one column) per layer. Each element QD; ; of the matrix represents
the minimum queuing delay the receiver has ever monitored before any
unsuccessful join experiment from level i to level j.

When a receiver at level current wants to join level target, it checks
its matrix to see if it has already failed to join any layer below target

! The network state is measured by the mean queuing delay computed over an equiv-
alent TCP cycle

6

Ibtissam El Khayat and Guy Leduc

with a queuing delay that was below the current queuing delay. It can
be computed as follows:

tested = current + 1
while (tested <= target &&

current_queuing_delay < QD(current,tested))

{ join

incr tested }
When the receiver has reached a stable level and is subjected to very few
(or no) losses, it basically spends its time computing estimations of the
RTT, the queuing delay and the loss rate, refraining from joining at SPs.

3.3 The leave

If the decision to join layers can be done at (not so frequent) SPs and
after a cycle has elapsed at the current level, the decision to abandon
layers when congestion appears should be taken more quickly. So, when
the receiver detects a potential incipient congestion by a packet loss, it
will start monitoring the loss ratio Pr,, over a short interval (denoted
Ty,), and then the receiver will compute the number of layers it decides
to abandon. We will discuss the value of T, later, but we know it has
to be short, say very few RTTs to fix ideas. The problem is that Tp, is
in general short compared to a TCP cycle, which makes it impossible to
use equation [6] to compute a new (lower) target throughput. In order
to propose another formula to compute that throughput, we will require
that, when the suitable number of layers are abandoned, the receiver
will not join any layer before a minimum amount of time (denoted T)
has elapsed. Clearly, T, should be larger than an equivalent TCP cycle,
as before any join experiment, and should end at an SP. However, the
distance between SPs being random, the future occurrences of SPs are
unknown. In the calculation however, we will consider that all SPs are
equally spaced out of 10 sec, which is the average spacing between SPs.

To derive our formula, we define

— T is the monitoring period starting at a probable incipient conges-
tion detected by a packet loss in steady-state (or induced by a join
experiment of the receiver).

— T, (c for compensation) is the minimal period during which the
receiver will have to stay at its new level before joining any layer. It
is computed as described above.

— Bcurrent is the current throughput, which will remain so during Ty,

— Btiarget is the unknown throughput the receiver will request after
leaving some layers, and will keep during at least 7.

To compute Biarger, we require that CIFL should get a TCP-friendly
throughput over the T, + T¢ interval.

Figure 1 shows the parameters we use, and illustrates also that T, finishes
at an SP arriving after the expiration of the cycle.

Let a = %, the mean throughput of the receiver is:
arge

TchurTSnt + Ttharget _ Tma + Tc
Tm + Tc - a(Tm + Tc)

E:

Bcurrent

CIFL

time

B paketios
l:l Normal packet received

e

Fig. 1. A monitoring period followed by its compensation period

We suppose that there is no loss during T, which means that the loss
ratio p over T}, + T, is:

_ packets lost during (Tm +Te) packets lost during T,
" packets sent during (T + T) " packets sent during (T + T¢)

Whereas: packets sent during (T, + T.) = (T + T:)B

and: packets lost during T,, = Pr,, Tm Beurrent = Pr,, Tm.ME

alm+Te
. . . _ aT,

A 51mple.replacement g1ve.s. p=Pr, m,.

TCP, which has a loss ratio equal to p, receives in average:

sC
RTT,/Pr, —2Tm

aTm+Te

Btcp =

If we equate both throughputs, i.e. B = Bicp, we derive that:

Pr, TnT-

(T +T2)? grts —— = T Prn

current

Recapitulation. When the receiver detects an incipient congestion,
or just after joining a layer, it monitors the loss ratio during T}, and then
computes a.

— If it is greater than 1 % the receiver leaves the suitable number of
layers to get a throughput close to %. Then the receiver ignores
losses during the deaf period T};, which is necessary to let the network
reach its new state and monitor it. Initially, the deaf period is equal
to 1RTT, but it is updated each time a layer is added or removed as
follows. Knowing timegrop, the time at which layers were abandoned,
and timeqst, the reception time of the last packet belonging to one
of the dropped layers, the receiver makes an exponential smoothing
of Ty with the new value “timejqst — timedrop” -

— Else, it does nothing as it treats the losses as resulting from a small
transient congestion.

Such a scheme would not be easily adapted to TCP itself because TCP
may not receive enough segments during an RTT (when its window is
small) to compute o accurately.

Note also that if a receiver is in a leave evaluation when an SP is received,
and a deaf period is started, the leave evaluation is cancelled. Otherwise,
the receiver may be falsely confused by a transient congestion due to a
join experiment by another receiver.

2 The development we have made is meaningless if « is less than 1.

8

Ibtissam El Khayat and Guy Leduc

The T, value. In this section, we briefly discuss the choice of Tj,.

We know that:
Tchurrent + Ttharget

Tm+T. ’
Btarget
Bicp
Biarget <K Biep the receiver at the end of T, will normally increase its
bandwidth to reach Bi.,. To avoid this oscillation, we need Biarget ~ Biep.

As T, and « are fixed,

Btcp =

So, when T, increases, Biarget decreases and decreases too. If

Biarget = Biep implies T, — 0
So Ty, has to be short. However, as TCP takes decisions at every RTT,
if the CIFL receiver evaluates its loss ratio over a duration shorter than

RTT, it will get a bad estimation. For this reason, T}, has been fixed to
1RTT.

3.4 Start-up phase

We have explained how the CIFL receiver behaves in steady-state. How-
ever, this behaviour is unsuitable at the very beginning, because it tends
to mimic TCP in congestion avoidance, instead of a TCP in the slow-
start phase. Therefore, when TCP and CIFL start together, CIFL would
not get its fair share, or only after a much longer period.

In this section, we describe the start-up phase of CIFL. In this phase,
the receiver uses all the SPs to join new layers, so that it doubles its
throughput at every SP. For a set of exponentially distributed layers,
this would mean adding a layer (but only) at every SP. In other schemes,
the receiver may join several layers at once. This mimics the exponential
takeoff of TCP, which continues until the throughput of subscribed layers
is greater than the peak throughput actually received. Once this state
is reached, the receiver drops all layers above the maximum received
throughput and exits the start-up phase.

Moreover, this more aggressive phase is used to estimate the bottleneck
capacity by measuring the smallest delay between two received packets.
Knowing this bottleneck capacity, the receiver will not attempt to join
layers that would lead to a throughput above this value. This will reduce
the number of unsuccessful joins, compared to other protocols like [13],
8], [12].

If, later during the session, packets happen to transit through another
path with more bandwidth, or if the network is simply less congested,
the receiver will discover it, because it will continue to estimate the
bottleneck capacity as follows:

pktsize
t_recv; —t_recv;_1

estimate _bw; = mazx(estimate_bw;_1,)

On the other hand, if the traffic is routed to less provisioned or more
congested links, it is not a real problem, because this estimated bottle-
neck capacity will just become overestimated, and thus a bit less useful
to avoid unsuccessful join experiments.

3.5 Scalability

When the number of receivers is large, receivers will ping the source less
frequently, which means that the RTT estimation may be less accurate.

(a) 2 sources 2 receivers (b) 2 receivers and one
source

Fig. 2. Topologies

Note however, that the RTTs are still adjusted at every received packet
by using the timestamping approach, but regular resynchronizations are
also useful to compensate clock drift and delay variations on the return
path as explained in section 3.1.

Note also that a less accurate estimation of the RTT will simply lead to a
bandwidth target which is less TCP-Friendly (see formula (1)). Moreover,
some experiences performed over internet have shown us that during 1
hour the ratio between the longest RTT and the shortest one is rarely
greater than 2.

4 Simulations

For our simulations we use the network simulator NS ([7]). We will start
by showing that the receiver, once at its optimal level, does not make
unsuccessful join experiments. Then we will show that intra-session and
inter-session fairness are fulfilled, both towards TCP and towards other
CIFL sessions.

Receiver 1 — e
Receiver 2 ——

Levels

I

Time (sec) Time (sec)

Fig. 3. Two different CIFL receivers beginning at different times
4.1 Several receivers

In this section, we will show the importance of the deaf periods. To
this end, we use the topology of Figure 2(b). We see on Figure 3 that
when receiver R, starts, receiver R; has already reached its optimal
throughput. The newcomer will create congestion on the N1 —N» link and
Ry will be subjected to this congestion. Without deaf periods, receiver
Ry would react by leaving some layers. This decrease would be useless
because the layers it would leave would continue to transit through the
bottleneck. In section 4.4 of [3], we showed that without deaf periods
and when the delay to R; is larger than the delay to R2, Ri loses its
fair share. With deaf periods, receiver R; does not react to losses caused
by R>. We can see by the same occasion that the receivers reach quickly
their optimal level thanks to the quick start-up phase. They also find
that they cannot go over the bottleneck capacity. They leave some layers
and maintain the optimal throughput until the end of the simulation.

10 Ibtissam El Khayat and Guy Leduc

1.2e+06 1.2e+06

TcP CIFi
CIFL e TCl
1e+06 = 1e+06

L
[

800000

800000

600000 600000

Throughput (bps)
Throughput (bps)

400000 400000 ! / & I
200000 200000 | F-p- -1 y L
o o L
0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800
Time (sec) Time (sec)
(a) Short RTT (b) Long RTT (bw)

Fig. 4. Bottleneck sharing between TCP and CIFL
4.2 TCP versus CIFL

Reminder. Previous studies ([5] and [2]) have shown that the most
severe situations to get fairness towards TCP are the following:

— Either TCP begins before the multicast protocol, when the RTT is

short,

— Or TCP begins after the multicast protocol, for long RTTs.
In the first case, TCP is so aggressive that it prevents the multicast
protocol (RLM, RLC) to get a reasonable share of the capacity. In the
second case, TCP is so slow and so vulnerable that it cannot get a reason-
able throughput. This happens because TCP’s clock is its RTT, which
is not the case for the other multicast protocols. We will see that CIFL
performs much better in the extreme cases.

RLC —
RLM
CIFL

Q
E

Ratio tcp /

one-way delay in milliseconds

Fig.5. RLM, RLC and CIFL according to the one way delay

Simulations. We use the topology of Figure 2(a) with one TCP source
and one CIFL receiver to test the behaviour of both traffics. The param-
eter values are: By = 64 kbps and B;+1 = B; + By i.e. ViL; = Lo = Bo.
Figure 4(a) shows the sharing in the first extreme case, i.e. a short RTT
(1 ms) and TCP begins before CIFL. We see that CIFL is so aggressive
in the beginning that it can take more bandwidth than TCP. After this,
it decreases its throughput to get exactly what TCP gets. In the medium
term, the sharing ratio, ::sﬁ, is 1. For the second extreme case, the
RTT is approximatively equal to 2 sec. Figure 4(b) illustrates this case
and shows that when TCP begins, CIFL halves its throughput by leaving
8 layers, and does not perform any future attempt. TCP pays for its
greediness. In fact, every time TCP wants to have more bandwidth than
the optimum, it creates congestion and has to decrease its throughput.
And since the RTT is large, TCP needs a long time to reach again its
fair share of the bandwidth. That is why the ratio is around 0.6 for long
RTTs, while it remains slightly below 1 for short RTTs.

To better illustrate the dependence of the sharing ratio according to the
RTT, we carried out several experiments where we changed only the

CIFL

1.2e+06 30

1e+06 ‘""’?"”MWH”W Ll 25

800000 20

600000

15

Throughput (bps)
Levels

400000

200000

[o} - . o
o 50 100 150 200 250 300

Time (sec)

Fig. 6. The behaviour of the receiver when TCP disappears
propagation delay. We have done it for RLM and RLC too (for more
results concerning these two protocols, refer to [5]). The results are il-
lustrated on Figure 5. The CIFL curve remains close to 1, contrary to
RLM and RLC whose ratios converge to zero for long RTTs and are far
above 1 for short RTTs.

Now we show that a CIFL receiver can find a better optimal level, when a
competing TCP connection stops. We consider topology 2(a) with TCP
and CIFL beginning simultaneously. After both protocols have reached

their fair bandwidth, TCP stops. There are two possibilities:

1. If the next SP arrives more that a cycle after TCP has disappeared,
the CIFL receiver is unlikely to have suffered loss during the last
cycle. If so, it will double its bandwidth (limited to the bottleneck
capacity it had computed).

2. If the next SP arrives less than a cycle after TCP has disappeared,
the CIFL receiver can still have noticed some losses during the last
cycle. This case is illustrated in Figure 6. The CIFL receiver com-
putes its new estimated fair share and decides to join a certain num-
ber of layers (in our case, 2 layers). When the next SP arrives, the
CIFL receiver behaves as in the previous case.

4.3 Fairness towards another CIFL session

We will show that CIFL fulfills this requirement. This is so because all
CIFL sessions try to be TCP-friendly. We use two different sessions,
one with By equal to 64 Kbps and the other one with B2 equal to 124
Kbps. To be in a difficult case, the session with the smallest base layer
begins when the other one has already reached its optimal level. Figure 7
illustrates the result. We see that both sessions get the same bandwidth,
although these bandwidths correspond to different number of layers in
the two sessions.

5 Conclusion

We have proposed a congestion control protocol for layered multicast
transmission, called CIFL, that ensures:

— intra-session fairness,

— fairness towards TCP, the ratio % is close to 1

— fairness between sessions in terms of throughput (instead of levels),

— stability, the receiver uses its past failures to performs a sort of

reinforcement learning.

We have simulated our protocol in different situations, and the obtained
results show that intra- and inter-session fairness is fulfilled even when
there are several TCPs and several CIFL in competition.

11

12

Ibtissam El Khayat and Guy Leduc

Throughput (bps)

1.2e+06 35 -
Session 1 bw —— Session 1 levels
Session 2 bw - Session 2 levels

Session 2 levels
1e+06 = 30

25

800000

20
600000

Levels

ki
u TR 15 1
400000 L i
‘ ¥ v 10
1

200000
I

0
0 20 40 60 80 100 120 140 160 180 200 0 50 100 150 200
Time (sec) Time (sec)

Fig. 7. Fairness between 2 different CIFL sessions

References

1.

10.

11.

12.

13.

A Basu and J. Golestani. Estimation of receiver round trip times
in multicast communications. Technical report, Bell Laboratories,
http://www.bell-labs.com/user/golestani/rtt.ps, 1999.

Ibtissam El Khayat. Comparaison d’algorithmes de controle de con-
gestion pour la vidéo multipoints en couches. Master’s thesis, Uni-
versity of Liege, Belgium, June 2000.

Ibtissam El Khayat and Guy Leduc. Congestion control for layered
multicast transmission. To appear in Networking and Information
Systems, 2000.

A Legout and E. W. Biersack. PLM: Fast convergence for cumula-
tive layered multicast transmission schemes. In Proceedings of ACM
SIGMETRICS’2000, Santa Clara, CA, USA, June 2000.

A Legout and W Biersack. Pathological behaviors for RLM and
RLC. In Proceedings of NOSSDAV’2000, Chapel Hill, North Car-
olina, USA, June 2000.

M. Mathis, J. Semke, Mahdavi, and T. Ott. The macroscopic be-
havior of the TCP congestion avoidance algorithm. Computer Com-
munication Review, 27(3), July 1997.

S McCanne and S Floyd. The LBNL Network Simulator. Lawrence
Berkeley Laboratory, 1997.

S McCanne, V Jacobson, and M Vetterli. Receiver-driven layered
multicast. In Proceedings of ACM SIGCOMM’95, pages 117-130,
Palo Alto, California, 1995.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
reno performance: A simple model and its empirical validation. In
Proceedings of ACM SIGCOMM’2000, August 2000.

Dan Rubenstein, Jim Kurose, and Don Towsley. The impact of
multicast layering on network fairness. In Proceedings of ACM SIG-
COMM’99, Cambridge, MA, September 1999.

Schulzrinne, Casner, Frederick, and Jacobson. RTP: A transport
protocol for real-time applications. Internet-Draft ietf-avt-rtp-new-
01.tzt (work inprogress), 1998.

D Sisalem and A Wolisz. MLDA: A TCP-friendly congestion con-
trol framework for heterogenous multicast environments. In Fighth
International Workshop on Quality of Service (IWQoS 2000), Pitts-
burgh, June 2000.

Lorenzo Vicisano, Jon Crowcroft, and Luigi Rizzo. TCP-like con-
gestion control for layered multicast data transfer. In Proceedings of
IEEE INFOCOM’98, San Francisco, CA, March 1998.

