
Reconstruction of Low-Voltage Networks with
Limited Observability

Daniele MARULLI, Sébastien MATHIEU, Amina BENZERGA, Antonio SUTERA, Damien ERNST
Department of Electrical Engineering and Computer Science

University of Liège
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Abstract—This work addresses the problem of reconstructing
topology and cable parameters of three-phase low-voltage net-
works when no a priori information about them is provided and
not all the nodes in the grid are equipped with smart meters.
This paper presents a methodology to obtain an estimation of
the electrical model of each phase of the network, analysing
voltage and current time-series measurements provided by the
available meters. The proposed methodology involves an itera-
tive algorithm developed to tackle the network reconstruction
problem when unmetered nodes are located reasonably far from
each other. The algorithm is tested on a 30-node network with
different sets of metered nodes, providing relevant solutions in
most scenarios having more than 80% of metered nodes.

Index Terms—network reconstruction, low-voltage network

I. INTRODUCTION

With an ever-increasing penetration of distributed energy
resources and electric vehicles, the efficient management of
distribution networks becomes more complicated and dis-
tribution system operators (DSOs) might encounter serious
difficulties in guaranteeing the safety of their network at
Low-Voltage (LV) levels. In order to implement effective
preventive or corrective measures, DSOs need to be able to
assess the system’s response to different realistic scenarios.
These kinds of analyses are usually performed through power
flow studies which require accurate information about the
topology and physical characteristics of the network. However,
most DSOs lack a reliable electrical model of their LV network.
This lack of knowledge can hinder an efficient management
and development of the system. Network reconstruction is a
mathematical process that allows one to deduce this information.
Effective network reconstruction methods for LV networks
are essential for the development of smarter grids [1]. This
work presents a methodology that allows one to infer the
network topology (i.e. the connections between nodes) and
to assess cable parameters of a LV network from time-series
measurements (i.e. currents and voltages) provided by a limited
number of smart-meters in the grid.

II. LITERATURE REVIEW

In transmission systems, topology and cable parameters
are usually known [1] and, thanks to a large number of
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measurement devices, changes can be detected through well-
established state estimation methods. Unfortunately, the same
does not apply to LV distribution networks. With the increasing
importance and complexity of distribution systems, the recon-
struction problem of LV networks has gained more attention
in scientific literature. Papers [1] and [2] focus on identifying
the network topology when limited information is available.
Algorithms that aim, as this work does, to simultaneously
identify both network topology and cable parameters, are
presented in [3]–[6]. Authors of [3] use the evaluation of voltage
sensitivities with respect to active and reactive power injections
to reconstruct the topology of small networks, assuming that
only specific cable types and lengths are used for the cables.
The identification problem in [4] takes the name of an inverse
power flow problem, where the system admittance matrix is
found by solving an unconstrained least square problem. The
case with non-measured nodes in the grid, also referred to as
hidden nodes, is also tackled in paper [4], both for meshed
and radial topologies, with the assumption that these hidden
nodes have zero net current injections. The inverse power flow
problem is extended to poly-phase systems in [5], with the
full-observability assumption. Finally, an algorithm to jointly
estimate both admittances and topology, assuming that the
measurements for all the non-zero power injecting nodes are
available, is presented in [6].

III. PROBLEM STATEMENT

Let us consider a three-phase four-wire LV radial distribution
network with customer connected to the feeder through a single
phase and the neutral wire. The three phases are denoted by
a, b and c, and the neutral wire by d. Let P = {a, b, c} and
N be the set of phase indexes and the set of nodes of the
network, respectively. The system is observed over a finite time
period discretized into T intervals of length ∆t. The value of
a variable at certain time t ∈ {1, . . . , T} is accessed with an
additional subscript, e.g. xi,t refers to the variable xi at time
t. The absence of such subscript denotes the entire time-series.
Each phase of the network is considered separately as shown
in Figure 1.

Phase p ∈ P of the network is modelled as a rooted tree
Gp = (N p, Ep) where N p is the set of nodes connected to
phase p and Ep the set of edges. Let e = (i, j) ∈ Ep represent
the edge connecting node i to node j. Let V p
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the amplitudes of the voltage and the current injection of node
n ∈ N p at phase p and time t ∈ {1, . . . , T}. Let Mp ⊆ N p

be the set of nodes in Gp for which a meter is available.
These meters are assumed to provide both voltage and current
magnitude time-series measurements of the nodes to which they
are connected. The set of hidden nodes is denoted by Hp =
N p \Mp.

The aim of a network identification problem is to retrieve, for
each phase p, a model of the network describing the network
topology, Gp = (N p, Ep), impedance magnitudes Ze,∀e ∈ Ep
and the hidden node current injections Iph ∀h ∈ Hp, assuming
that:
• The topology of the network does not change during the

observation period
• Customers are connected to the main feeder through single-

phase two-wire connection
• The phase of the network to which metered customers

are connected is provided (for instance using [7])
• At least one node at every phase of every feeder of the

network is equipped with a meter
• Each phase of the MV/LV substation is metered.

IV. IDENTIFICATION ALGORITHM

The identification algorithm consists of three main parts,
namely topology estimation, topology validation and hidden
node detection, that are applied to each phase p ∈ P indepen-
dently. Let N̂ p ⊆ N p be the pool of nodes made available to
the identification algorithm. N̂ p initially corresponds to the set
of observed nodes Mp.

A. Topology Estimation

The first step of the algorithm consists of the estimation
of a rooted tree Ĝp = (N̂ p, Êp) with a topology as close
as possible to Gp = (N p, Ep). This operation is carried out
using correlation analysis on voltage measurements to infer
proximity between nodes. Correlation-based approaches have
already been proved successful both in phase [7] and topology
[1] identification methods. Load and production profiles at
different nodes of the LV network can present similar patterns
owing to comparable residential occupancy profiles and weather

0

1

2 4

a b c d

3

5 6 7

0a

1a

2a 3a

5a

0b

1b

3b

6b

0c

1c

4c3c

7c

Ga Gb Gc

Figure 1: Graphical representation of Ga, Gb, Gc for a 8-node
network.

conditions. To be sure that this does not affect the results of
the voltage correlation analysis, voltage time-series are pre-
processed applying a high-pass filter, as suggested in [1]. Let
wij be the Pearson Correlation Coefficient between the filtered
voltage time-series of nodes i and j. Let Ĝpw be a weighted
complete graph built on N̂ p, where the edge (i, j) weight
is equal to wij . The estimated topology Ĝp = (N̂ p, Êp) is
obtained computing the maximum spanning tree on Ĝpw.

B. Topology Validation

The second process checks each edge e = (i, j) ∈ Êp
and suggests where missing nodes and wrong connections, if
any, are. This process is performed evaluating the estimated
impedance magnitude time-series Ẑp

e = {Ẑp
e,1, . . . , Ẑ

p
e,T } for

each edge e = (i, j) ∈ Êp as, ∀t ∈ {1, . . . , T}:

Ẑp
e,t =

V p
j,t − V

p
i,t

Îpe,t
(1)

where the estimated current Îpe,t flowing in e is given by

Îpe,t =
∑
n∈D̂p

e

Ipn,t (2)

where D̂p
e is the set of downstream nodes with respect to edge

e. Since impedances are constants, the values Ẑp
e should be

close to the same constant value. Edge e is considered valid if
the relative standard deviation of time-series Ẑp

e , RSD(Ẑp
e ), is

less than an arbitrary threshold λ, e.g. determined by statistical
tests for the largest accepted standard deviation.

C. Hidden Node Detection

The third process of the algorithm exploits the results
provided from the previous steps to find the location of hidden
nodes. This step is based on the assumption that unmetered
nodes are sufficiently far apart from each other.

Assumption 1. The distance on Gp, defined as the minimum
number of edges that connect two nodes, between any pair of
hidden nodes i and j is greater than or equal to three.

Consider a hidden node X ∈ Hp. If X is a node with a
non-zero net power injection, the current flowing through the
path that connects it to the root computed by the topology
validation step is not the correct one, since the contribution
of the unobserved IpX is missing. This causes the rejection of
the edges in that path, as shown in Figure 2. Note that since
node 5 is hidden and it is not a terminal node, the algorithm
mistakenly detects an edge connecting node 3 to node 6. This
suggests that whenever there is a path of unvalidated edges in
Ĝp, a missing node X is near the leaf node of such a path.
The algorithm focuses on one of the hidden nodes at a time
to estimate its location and, if possible, its voltage and current
injection.

Let A ∈ N̂ p be the node, among all the nodes that are
connected to a rejected edge, with the longest path to the
root (node 6 in Figure 2). Let nodes B and C be the parent
and grandparent node of A, respectively. Node X ∈ Hp is



assumed to be adjacent to A. Three topological configurations
can occur, as shown in Figure 3. The hidden node detection
step examines these configurations to assess which suits best.
Let ÎpA+ = ÎpAB be the contribution to the estimated ÎpBC

flowing through BC of A and its descendant nodes, and

ÎpB+ = ÎpAB − Î
p
BC (3)

be the rest of the current. In order to detect the correct location
of X , the algorithm solves three optimization problems:

Configuration “Bridge”:

δb = min
∑
t∈T
|VB,t−VC,t−Ẑp

CB(ÎpA+,t+ ÎpB+,t+ ÎpX,t)| (4a)

subject to, ∀t ∈ T

VB,t = VA,t − Ẑp
XAÎ

p
A+,t − Ẑ

p
BX(ÎpA+,t + ÎpX,t) (4b)

with (ÎpX , Ẑ
p
XA, Ẑ

p
BX , Ẑ

p
CB) ∈ R4.

Configuration “Leaf”:

δl = min
∑
t∈T
|VB,t−VC,t− Ẑp

CB(ÎpA+,t + ÎpB+,t + ÎpX,t)| (5a)

subject to, ∀t ∈ T ,

VB,t = VA,t − Ẑp
BA(ÎpA+,t + ÎpX,t) (5b)

with (ÎpX , ẐBA, ẐCB) ∈ R3.
Configuration “Common parent”:

δcp = min

T∑
t=0

|(V p
A,t−Ẑ

p
XAÎ

p
A+,t)−(V p

B,t−Ẑ
p
XB Î

p
B+,t)| (6)

with (Ẑp
XA, Ẑ

p
XB) ∈ R2.

Such problems are formulated by exploiting the currents
and voltages relationship occurring in each configuration. Once
problems (4 - 6) have been solved, the algorithm selects the
configuration with the smallest δ ∈ {δb, δl, δcp}. Depending on
the predicted location of X , the pool of nodes N̂ p is updated
accordingly. If the algorithm picks the bridge configuration,
an additional node X is added to N̂ p. The estimated current
injection magnitude ÎpX is extracted from solution of (4), along
with the values of Ẑp

XA and Ẑp
BX . The estimation of the voltage

time-series V p
X is computed as:

V̂ p
X,t = V p

A,t − Ẑ
p
XAÎ

p
A+,t ∀t ∈ {1, . . . , T} (7)

0

5

1

6

3

2

4

0

1

6

3

2

4

7

7

1

0

1

6

3

2

4

7

Topology estimation Topology validation

Figure 2: First two steps of the algorithm with node 5 as hidden
node. Dashed edges are rejected in validation.
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Figure 3: Possible locations for a hidden node X adjacent to
node A.

If the leaf configuration is selected, the current injection ÎpX is
extracted from the solution of (5), while the voltage time-series
of X cannot be estimated. To proceed with the identification
process, node A ∈ N̂ p is substituted by an auxiliary node X ′

with the same voltage as A and its current injection is given
by ÎpX′ = ÎpA + ÎpX . This allows one to fix the current flowing
in the path to the root of A for the next validation step and
to continue the identification process. If the common parent
configuration is selected, this implies that two impedances Ẑp

XA

and Ẑp
XB could be found, which leads to a common voltage

V̂ p
X . The voltage magnitude associated with V̂ p

X is computed
as the average voltage given by the two voltage drops:

V̂ p
X,t = (V p

A,t − Ẑ
p
XAÎ

p
A+,t + V p

B,t − Ẑ
p
XB Î

p
B+,t)/2 (8)

A node X is added to N̂ p with voltage V̂ p
X and a zero net

current injection, since (6) voltages and currents in nodes A
and B do not provide information to estimate any potentially
missing current injection. If X is indeed a net zero-power
injecting node, edge CX is accepted in the topology by the
validation step. Otherwise, the correct ÎpCX is obtained in the
next validation iteration by solving problem (5), since node X
is added in a leaf configuration.

Whenever Assumption 1 is not valid, the hidden node
detection step might fail to find a node X that corresponds to a
hidden node in the actual network, since none of the topological
configurations of Figure 3 may be correct. Before updating the
node pool with X , the algorithm checks if RSD(Zp

XC) < λ.
If not, the incorrect X is not added to the network since it
would compromise the rest of the identification process. In this
case, the algorithm proceeds considering the edge connecting
A to B as a valid edge.

Once the pool of nodes N̂ p has been updated, topology
validation and estimation steps are processed again. The
algorithm is performed until all the edges in Ĝp are labelled as
valid. Finally, the estimation of the edge impedance magnitude
is given by the mean value of Ẑp

e in Equation (1).

V. RESULTS

The developed algorithm is tested on a three-phase, four-
wire, 30-node radial distribution network whose topology is
known and shown in Figure 4a. Node S0 is the MV/LV
substation, nodes from H1 to H24 are single-phase customers,
and nodes from F1 to F6 are their connection point to the



main feeder. Household active power profiles are constructed
from time-series measurements of residential Belgian smart-
meters providing historical voltage and current amplitudes.
Some households are equipped with PV units resulting in
peaks and time patterns in power profiles which vary widely
from a household to another. Two different cable types and
various cable length have been selected for the modeling of
the main feeder and the laterals. Voltages and currents in the
grid are computed through a detailed unbalanced load flow
algorithm. Voltage and current amplitude measurements are
available for 15 days, at a 15-minutes resolution, resulting in
1440 time steps. The tolerated relative standard deviation for
impedance magnitudes is arbitrarily set to λ = 0.1.
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Figure 4: Case study and estimated topology.

Let us first focus on a case where Assumption 1 is satisfied.
The case where nodes F1, H8, H13, H15, H17, H21 and
H23 are hidden nodes has been selected. In this scenario the

algorithm was able to produce an exact representation of the
network topology for each phase, as can be seen in Figure 4b.
Missing nodes have been correctly detected and placed at their
correct location.

Impedances are estimated for all the cables except for F6-
H21, F5-H17 and F4-H13. The impedance magnitude of these
cables cannot be determined because nodes H21, H17 and H13
were hidden leaf nodes, therefore the voltage drop of these
edges cannot be computed. The estimated impedance magnitude
for some cables is shown in Table I. This table shows that the
impedance magnitude error is on average of 11%. Note that
these impedance amplitudes could easily provide the resistive
and reactive part of the impedance using common impedances
ratios of low-voltage lines or cables.

Table I: Impedance modulus estimation of some cables of the
case study.

Branch Value Estimated

S0-F1 0.0481 0.0440

F1-F2 0.0541 0.0503

F1-H1 0.0747 0.0661

F2-H6 0.0335 0.0291

F3-H7 0.0277 0.0241

F4-H12 0.0376 0.0331

F4-F5 0.0604 0.0557

F5-H18 0.0511 0.0431

F6-H22 0.0510 0.0451

H23-H24 0.0353 0.0311

To further assess the performances of the algorithm, a total
of 830 cases have been examined, each of which is associated
to a different set of hidden nodes. Among them, 30 cases
represented the cases with one hidden node. The remaining
800 cases were equally divided in 8 groups with an increasing
number of hidden nodes that ranges from 2 to 9. When a
node is hidden, the identification process is provided with
no information about their presence, voltages and current
injections. If a hidden node is a feeder node, e.g. F1, none of
the measurements for three phases is provided to the algorithm.
The sets of hidden nodes have been randomly selected, implying
that Assumption 1 is not valid for most of cases. In particular,
none of the scenarios with more than 7 hidden nodes satisfies
Assumption 1. Two metrics are considered to analyze the
solutions provided by the algorithm in all 830 cases. The first
metric is the percentage of edges that is correctly detected by
the algorithm. This value assesses the quality of the estimated
topology. Note that for this evaluation, a three-phase edge
is considered as detected only if the nodes at its ends are
directly connected by an edge in Ĝa, Ĝb and Ĝc. Figure 5
shows that the algorithm identifies the correct topology in
most of the cases with less than 10% of hidden nodes. For
cases with 10% to 20% hidden nodes, Assumption 1 is not
valid in most cases. Nevertheless, the algorithm still performs
well, accurately detecting more than 80% of network edges
in most of the cases. Test cases with 7 and 8 hidden nodes



Figure 5: Percentage of edges correctly detected by the
algorithm.

still produce the exact topology in some cases, but the average
accuracy decreases in the others. The algorithm is not able to
find the exact topology in any case with 9 hidden nodes, but
still correctly identifies more than half of the edges in most
cases.

The second metric evaluates the quality of the impedance
magnitude estimation. This metric is given, for each metered
node, by the error on the sum of the self-impedances in its
path to the root. The mean absolute percentage error of the
impedance magnitude is presented in Figure 6. In cases with
less than 10% of hidden nodes, the cumulated impedance
error is lower than 15%. For cases with more hidden nodes,
the algorithm provides similar results when Assumption 1
is satisfied. When it is not, estimated topology and some
current flows are miscalculated, resulting in larger impedance
estimation errors.

Figure 6: Error on the cumulative impedance of the path to
the root of metered nodes.

VI. CONCLUSION

In this work, the problem of reconstructing a model for
LV networks, identifying topology and cable parameters,
is addressed. The proposed algorithm tackles the network
reconstruction problem by analysing available smart-meter data
considering that some power injecting nodes in the network are
not metered, assuming that such nodes are located reasonably
far from each other. The algorithm is shown to provide relevant
solutions in most of the scenarios with 20% or fewer hidden
nodes on a 30-node test network.

This approach allows DSOs to have a better overview of
the network, to better operate it and, for instance, be able to
implement more adjusted preventive or corrective measures.

Future work could focus on merging the identified single-
phase models into a three-phase one. Additional development
would be needed to identify the topology of networks when
a larger section of the grid cannot be observed, exploiting
additional information available to DSOs, such as GIS data
and conventional metering data.
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