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Abstract

WASP is a programmable router platform that allows end-hosts to store ephemeral state in routers along the path of IP flows
and to execute packet-attached bytecode that processes this data. We exploit lessons from past active network researchand our
knowledge of network processors to design a minimal interpreter that favours language restrictions over run-time checks. WASP
provides safety with limited performance penalty through predictable execution time and bounded usage of memory and network
resources. WASP is expressive enough to enable several applications including statistics collection and service discovery. It can
also detect common trunk of two Internet paths and exchange local measurements about these paths.

We propose a robust implementation on the IXP2400 network processor, and evaluate its performance through short benchmark
programs against native functions hard-coded in the router. We achieve latencies below 7µs, i.e. less than the reference IPv4
forwarding latency, and throughputs approaching 800 kpps per core, which competes with, and sometimes even outperforms, native
programs. We further exploit our results to give hints on further improving resource usage and guidelines on managementof
ephemeral stores in high-speed networks.
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1. Introduction

On today’s Internet, multimedia applications have become
a daily reality for the average user. Be it socially-shared videos,
crawling about massive amount of annotated pictures, video
calls or online gaming where you can vocally tease your op-
ponent, the fact is that Internet is going away from its mostly
text-based structure and now focuses on other delay-sensitive
forms of media. In the meantime the progression of wireless
access networks offers a growing variety of connectivity, and
potentially multi-homing possibilities. Since most services on
Internet are already replicated at multiple locations, an applica-
tion is likely to get even more potential paths to connect to a
replica. Each path will have its own properties, and could be
preferred or not for a given kind of transfer, which increases the
need for sensing the state of the network.

The currently deployed architecture, however, provides lit-
tle support for such investigations of the network’s “health”,
and the simple task of figuring out the common trunk between
a host and two of its partners involves several probing packets
to unveil a part of the network topology. The current trend is
to overcome those limitations of the network by more sophis-
ticated interactions between end-systems, collaboratingfor ac-
quiring network statistics and sharing observations in a peer-to-
peer fashion. While it is a perfectly valid approach under many
aspects, it certainly leads to additional burden on the network
as each application performs redundant active measurements to
compensate for the lack of support from the network.
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During the last decade the active network research activities
have fundamentally revised the paradigms on which we build
computer networks to offer more flexibility, such as the ability
to perform application-specific forwarding decisions based on
network status (congestion, queue levels, available bandwidth,
etc.). In a typical active router, each packet carries or identi-
fies a piece of code that defines either the complete forwarding
procedure, or some custom code to be applied in pre-defined
hooksof an otherwise static forwarding procedure. In WASP
(World-friendly Active packets for ephemeral State Process-
ing), we explore a way to extend router functionality in order to
provide support for network measurements and properties dis-
covery. Unlike the vast majority of previously proposed active
platforms, WASP does not attempt to provide a fully expressive
programmable network, but rather restricts the programming
model to achieve efficient and safe processing.

Given those restrictions, WASP offers a flexible service that
can be used in conjunction with orthogonal services such as
multicast or multi-path forwarding, rather than a catch-all solu-
tion. For instance, WASP cannot deflect traffic around a con-
gested link, but it enables us to scalably publish the observation
of congestion along a path so that other flows considering a pos-
sible switch to that path would know in advance whether their
performance could be improved.

Related Work

Most of the research activities to run active code on network
processors so far have focused on building custom services by
chaining pre-installed and operator-approved modules [1,2, 3].
In [4], the authors present a prototype of the Ephemeral State
Processing (ESP) router on IXP1200 network processors, where
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end-systems may only use a restricted number ofoperations
that are performed on the router state store. Our work is clearly
a derivative of this work where we replace pre-defined opera-
tions by a bytecode interpreter.

Comparatively an implementation of SNAP [5] on the IBM
PowerNP [6] has explored the feasibility of a just-in-time com-
piler for SNAP bytecode. While the results speak in favour
of compilation (rather than interpretation), this only holds for
programs using loops or if the code generated for one packet
can be reused for subsequent packets. We argue that, given
the limited size of the instruction store in network processors
(and especially in the Intel IXP family), compilation should be
a way to optimise most frequent packets rather than the default
behaviour.

We also need to mention StreamCode [7], which also pro-
posed programmability through a dedicated processor on FPGA
suited to packet forwarding routines, using ’co-processors’ for
data copy and routing table lookup. A significant design choice
in StreamCode is that the code in packets is in charge of allo-
cating buffers and decides the next hop for each packet. This
level of control over the router and network resources implies
that StreamCode should not originate from the end-systems,but
would rather be used by a smart border gateway to enforce spe-
cific QoS behaviours [8].

Document Structure

The paper is organised as follows: Section 2 presents the
principles that have guided the design of the WASP platform.
Section 3 discusses the platform itself, including the trade-off
between expressiveness and safety of operations. We imple-
mented a prototype of our WASP interpreter on the IXP2400
network processor and present a performance evaluation against
the ESP filter prototype in section 4. We finally propose scal-
ability improvements and guidelines for deployment on high-
grade routers in section 5.

2. Design Principles

2.1. Ephemeral Store on a Router

The Ephemeral State Store (ESS) is a corner stone in the
design of WASP, which has been inherited from former ESP
(Ephemeral State Processing [9]) filter. It is a(key, value)
repository associated with a network interface where packets
can drop and inspect state. Because all entries in the ESS have
the same size (64-bit key and value) and are allocated for a fixed
time periodτ (namely 10 seconds), it is possible to engineer the
state store so that it can always satisfy a request for a new slot,
even at peak rate.

In [4] the authors illustrate this principle on an IXP1200
network processor. With at most105 packets per second, each
allowed to create 2 ESS entries that last for 10 seconds, a 46MB
ephemeral store never gets full. Access to the ephemeral store
can thus be made available to any end-system, without prior
authentication or specific accounting, just like IP forwarding is
offered to every machine connected to the network.

Similarly, the ESS offers only best-effort privacy, and it is
up to the end-systems to agree on the 64-bit key(s) they will use
so that no adversary could eavesdrop it. Even without that/those
key(s), one could still generate random keys in a brute-force
way to try and corrupt existing state. However, since the state
is kept only for 10 seconds, an attacker that manages to send 1.4
million WASP packets per second (i.e. saturating a 1Gbps link
with his attack) would only alter existing state with probability
lower than2−40.

Furthermore the ESS can ease several monitoring tasks such
as evaluating the jitter of a given packet flow. The local timet0
observed when packetP0 crosses the router is written in the
ephemeral store. The next packetP1 can compare this with the
observed local timet1 and build average, maximum and mini-
mum values over a few packets. A special packet then collects
those values in each router. Other statistics such as the depth
of output buffers, transmission errors or access to the network
packet header will of course enable more applications.

Proper operation of virtually any ESS-based protocol relies
on the assumption that the network can be trusted to deliver
packets only to their intended recipients. In some access or
local networks this may require link-level encryption between
hosts and access routers to avoid blatant information harvesting
and impersonation.

2.2. World-Friendliness
Our aim with WASP is to find the right balance between ex-

pressiveness, efficiency and safety in processing of application-
specific code in the network. We use the term “world-friendly”
to refer to this triple objective of (1)user-friendliness: WASP
should provide enough flexibility and a clear model of the of-
fered service where the end-system keeps control on the ser-
vice their packet should receive; (2)router-friendliness: WASP
makes sure that router resources are correctly used, and that
(possibly malicious) bytecode have predictable executiontime
and cannot exhaust router memory; and (3)network-friendli-
ness: WASP sticks to the network transparency model of IP,
disabling any “surprising” behaviour such as cloning of pack-
ets or altering source/destination fields. The transport protocol
and application data are also out of reach and the only part of
the packet WASP can alter is its own “scratchpad” to record
state observed in the network.

2.3. The Case for Cooperation
Even if we perfectly fulfil the world-friendliness objectives,

any addition of functionality to the network is only of interest
for a network operator if it can bring some added-value to his
business. WASP mainly allows to trade-off processing power
and temporary storage against bandwidth, in the same way a
transparent Web proxy does, which – depending on an operator
– may reduce operational expenses or not.

Unlike transparent proxies however, WASP requires coop-
eration from end-systems, where applications will attach WASP
programs and extract results, but it offers a richer set of interac-
tions. It is possible for instance to efficiently locate third-party
services along a path, control one’s flow rate or locate peer sys-
tems that own a replica of a wanted piece of data.
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Figure 1: IXP2400 network processor structure diagram, annotated with tim-
ings reported by [14]

Locating available members of a peer-to-peer application
(e.g. grid computing, file sharing, maintaining virtual coordi-
nates) in a decentralised fashion for instance, typically requires
scanning large parts of the Internet (e.g. using randomly gen-
erated addresses [10]) before a contact node can be found. We
have shown previously [11] that having 10% of a community
connected through routers offering ephemeral storage is enough
to find a contact node with only a small number of probes.
Moreover peers that are attached through a WASP router will
almost immediately discover peers running in the same ISP, po-
tentially reducing long-distance traffic.

We also previously illustrated the use of WASP and ephe-
meral store to allow an operator deploying an application-speci-
fic service (such as a proxy/depot, a media transcoder or a sys-
tem for merging results of grid computations) to make the ser-
vice visible to end-systems establishing a connection through
the network [12].

We believe that in the context of an increasingly flattening
Internet [13], where major content providers are pushing their
WAN closer to the connectivity providers, a generic mechanism
for enabling such interactions could be both technically viable
and economically sound, especially as it allows one to decou-
ple hardware upgrades from application-level innovationsand
improvements. It may also be useful for an operator that has
special interest e.g. in grid computing and wants to differen-
tiate his offer with additional services, but has no direct way
to remotely configure customers’ software (e.g. a national re-
search & education network).

2.4. IXP Network Processors

Network processors (NPUs) are programmable chips de-
signed to replace the dedicated circuits that used to equip line-
cards in routing equipments. The term covers a large diversity
of designs, but on most of them, we can highlight the presence
of a control core(typically an embedded RISC processor), and
a series ofdata-processing coresto perform custom functions
on every packet. The chip usually also features co-processors
that assist the other units in specific tasks such as checksums,
data transfers, lookups, encryption, etc.

In this paper we will focus on the Intel IXP2400 depicted
on Fig. 1, which features eight micro-programmed cores (the

Figure 2: A WASP router and WASP execution environment. Gray items mean
the VPU has read-only access to the resource

micro-enginesor MEs) for fast-path functions and a StrongArm
for control and management. We can also note the presence of
memory units of different technologies, each with its own ac-
cess characteristics (such as commodity DRAM with high ac-
cess latency but efficient burst transfers) and size limits.Pro-
grams on the micro-engines are directly exposed to those hard-
ware details, and optimising the placement of data structures
on the right kind of memory is usually required to achieve good
performance.

A determining aspect of NPU programming is the pursuit
of wire speedprocessing. In other words we want to ensure
that our network device is capable of fully utilising the output
links when it receives enough traffic on its input links, even
when all packets have minimal size [1]. If a router fails to meet
this requirement, an attacker can easily deny routing to other
flows with a traffic volume that the router should handle with-
out problems. In order to keep the output link busy even when
the processing time exceeds the transmission time of a minimal
packet, NPUs typically feature massively parallel architectures
that allows for pipelining of sub-tasks and parallel execution on
different packets. On the IXP2xxx, each micro-engine has 8 in-
dependent hardware contexts and an arbiter that allow another
context to be executed on the ME while the previous context is
waiting for a memory or I/O access to complete.

3. The WASP Platform

The WASP router combines an unmodified forwarding core,
surrounded by WASP filters, each associated with a network
interface. A packet crossing the router is thus first processed
by the WASP filter associated with the receiving interface, then
handled by the forwarding core (which will e.g. lookup the
forwarding table and dispatch packet to the proper output card),
and finally processed by the WASP filter associated with the
output interface, as shown on Fig. 2.

This overall design is inherited from the Ephemeral Store
Processing (ESP) router [9] and has strongly helped in reaching
network-friendliness. As the core of the router still operates like
a regular router forwarding engine, the only notable difference,
as far as forwarding is concerned, is that filters introduce the
possibility for a packet to be dropped pro-actively (just asif a
queue was full) or anticipatively be returned to its source (just
as if the TTL limit was reached).

Each WASP filter consists of a dedicated ephemeral state
store (ESS) and a virtual processor (VPU) executing WASP
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programs embedded in packets passing through the filter. Dur-
ing its execution, a WASP program only has access to its own
scratchpadSP (packet-carried variables) and a set of ESS en-
tries (E1, E2, . . .) identified by thekeyscarried with the packet.
The sole effect of the WASP (or ESP) filter is to transform these
entries intoS′

P
, E′

1
, E′

2
, . . . and to decide on the packet’s fate.

All other state on the router (e.g. FIB, MIB, queues) and in the
packet (forwarding headers and payload) remain unchanged.

WASP departs from the ESP design by expressing the func-
tion that performs this transformationin the packet itself, via a
bytecode program that will be interpreted on a virtual proces-
sor associated with the ESS. Comparatively, in the originalESP
packets just contained operands and an opcode selecting oneof
the pre-compiled transformation function – some of which re-
quiring over 20 lines of pseudo-code for their description.

We also decided to drop ESP’s “central” store, which could
theoretically process every packet crossing the router, toensure
a scalable architecture where extra functionalities are solely
provided on line cards. We compensate this limitation through
“admin packets” that may originate only from management sta-
tions of a given network domain and that are given the ability
to commit a write inall the state stores of a node.

Compared to most interpreters featured in active routers, the
VPU found in WASP is extremely simple and lightweight. We
refined memory access opcodes and ALU workflow to allow
both compact encoding of programs and efficient execution1,
while keeping the interpreter compact enough to fit in a sin-
gle microengine of an IXP processor. Unlike most virtual ma-
chines, the VPU has no heap to manage, only performs one-
cycle arithmetic operations on integers (e.g. no float, no divi-
sions) and its whole state is reset every time a new packet is
processed.

3.1. Improving Utility

The original ESP router allowed interesting interactions via
the ephemeral state store, mainly illustrated in the context of re-
liable multicast transmission [15]. Yet, the programming model
remained tedious to use and master. For a given problem where
the designer has the feeling Ephemeral State Store could be
helpful, it is at best unclear how to combine available functions
(in a sequence of packets) to achieve that goal. In many other
situations we just experience the frustration that the operations
defined are too specialised to be of any use.

In contrast a bytecode-based encoding of the functions al-
lows the application designer to express the exact operation to
be performed by each WASP packet. We also provided new
“micro-operations” through the bytecode interpreter thatwere
not found in any previous ESP function, such as the ability for
a packet to return to its source.

To further extend the utility of WASP compared to ESP,
we allow the bytecode to access per-interface and basic router
setup information (depicted on Fig. 2 as “environment vari-
ables” memory bank) and network-layer packet header. Such

1Mainly through optimising for sequential access to packet variables

variables will indicate e.g. the IP address of the node, a node-
local timestamp, rough state of the output queues of an inter-
face (to allow packet “sensing” congestions). They could also
indicate whether a given link is wireless, its error rate andpeak
bandwidth. We tried to keep such information minimal, as net-
work operators are typically reluctant to disclose any informa-
tion about the internals of their network. As a rule of thumb we
suggest that information is eligible for environment variables
only if it is already possible for end-systems to infer that infor-
mation through active measurements.

Finally we extended the semantics of the ESS itself. While
entries in ESP always have public visibility, WASP also sup-
ports protectedentries that can be modified only by the net-
work operators and optionalprotocol-privateentries that are
accessible only to packets using a specific program. As we
shown previously [11, 12] this enables applications operating
on more sensitive data such as locations where traffic could be
redirected.

3.2. Building for Safety

The challenge of safety in active networks is essentially
twofold: execute third-party code without putting the router
at risk (e.g. ensure there will be CPU and memory to sustain
submitted packets) and allow applications to control theirflow
without raising threats on the network (e.g. avoid those pro-
grams to flood hosts/links). Though we exploited the results
and guidelines of previous active network research (e.g. [16]),
most of the safety issues were fortunately simplified by VPU
design, removing the need for run-time checks.

Network resourcesusage is at worst similar to the regular
use in IP networks, thanks to the filter-based organisation:ei-
ther the filter drops the packet, or it lets the legacy core handle
it. If we ensure thatreturn operations can happen only once
for each packet, WASP trivially never introduces loops in the
network, nor does it flood (or help flood) hosts and links. We
should stress however that if we attempt to extend the func-
tionalities of WASP, we need to ensure that we do not break
this property. While we initially planned to allow WASP pro-
grams to alter the destination of their packets in a restricted way
[17], it turned out that this could not be implemented safelyun-
less forwarding infrastructure guarantees that packets originate
from their respective source address.

Similarly the simplicity of the VPU and its minimal set
of opcodes allow us to guarantee that processing time of any
packetP is O(|P |), where|P | is the length of the WASP pro-
gram attached toP in bytes. This is possible thanks to the fact
that we forbidbackward jumpsas in SNAP [5], allowing only
if-elseblocks, but no (wild) loops. By also forbidding complex
arithmetic instructions, we ensure that all microbytes2 can be
processed in a similar time, which prevents attacks using anab-
normally high amount of “heavy” opcodes (such asdiv). If we
enforce a restriction on the number of ESS references a program
can issue, the code length (not its content) is thus sufficient to
predict execution time.

2With the notable exception of ESS access instructions
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The most challenging checks to ensure safety of an active
router come from memory protection and the need to avoid
router state corruption or information disclosure. This isa spe-
cific issue that should not be confused with access control to
application-maintained state. In most active networks, the vir-
tual machine processing application-specific code has access
to sensitive router state such as forwarding tables or packet
queues. This access can either be direct (e.g. the data sits in the
VM’s address space) or indirect (the VM relays objects between
trusted address spaces), and designers mostly rely on strongly
typed languages to avoid abuses through wild pointers.

In contrast the VPU has an extremely small address space
(256 bytes), which only contains data that WASP bytecode is al-
lowed to access. Packet-bound variable are not allowed to grow
beyond the room initially allocated by the sender, and node-
resident data are only accessed through the key/value interface
of the ESS. The absence of any type-checking in the VPU is
possible because the VPU ignores any type except integers, and
because we leave the organisation of ESS entries and scratch-
pad entirely up to the application. Unlike scripting languages
designed to be used as glue between sensible services, we do
not need more typing in the case of WASP.

Rather than issuingreferences, WASP programs look for
randomly generated 64-bitkeys, and access control is defined
on a per-entry basis: either the whole entry is publicly avail-
able (and anyone knowing its key can alter any bit of it) or it
is an operator-installed, read-only entry. This gives us the extra
advantage that packet-bound variables can be accessed directly,
without the need for any unmarshalling operation – which may
account for e.g. up to 42% of the processing time for simple
packets in Java-based active networks [18].

3.3. Example of Use

We insist on the fact that the WASP programming model
allows the network to mix WASP-capable and legacy routers.
Applications using WASP will thus have to take this into con-
sideration and degrade gracefully when we have less “cooperat-
ing” routers. This could mean less information available tothe
end-systems, sub-optimal placement of helper proxies, etc.

Scanning path The most obvious WASP application is a trace-
route-like packet that records information about routers
it crosses. However, while a regular traceroute program
requires at least one packet per hop, WASP can easily
store 30 hops in a single packet. It is also possible to
program the WASP byte code so that only a portion of the
path is recorded, or that the packet returns after collecting
n addresses.

Common trunk Given three nodesS, A andB, a very sim-
ple use of the ephemeral state allowsS to tag routers
on pathS − A with one packet while a second packet
will travel along pathB − S and record the addresses of
tagged routers3. This can identify the common partS−R

3This mechanism was initially described in [15], though none of the ESP
operations provide support for it

Figure 3: Internal structure of our WASP/ESP packet filter. 4MEs do
WASP/ESP processing and we have one “spare” ME.

of the two paths where traffic towardsA andB may inter-
fere, or directly return the address ofR (the last common
router) where deployment of a duplication/merging func-
tion could be interesting.

Rate Control Given that routers export a hint on the depth of
output queues, we can program packets that drop them-
selves if the router appears congested, making room for
“more important” data in the same flow4. WASP also of-
fers the flexibility to detect losses between any successive
WASP routers and to prepare state so that such losses are
reported back to the source by e.g. acknowledgements.
The positive impact of such decisions on the quality of
a video stream has been demonstrated in many former
works on active networks [19].

Service Advertisement WASP packets coming from manage-
ment stations in an autonomous system drop the IP ad-
dress of a service provider using a well-knownprotected
key (e.g. a hash of the service name), so that a modified
version of the path-scanning program can report to the
end-system where the wanted service can be found [12].
At each routerR where the advertisement is stored, the
TTL of the advertisement packet can be used to keep only
the closest provider fromR.

Most of these programs can of course be extended or mod-
ified to better match application needs. Scanning, for instance,
is not limited to IP addresses of routers, but can be extendedto
any piece of information available in the ESS or in the environ-
ment variables memory bank.

More sophisticated versions of the common trunk identifi-
cation could use a bitmask in the ESS in order to quickly get
a snapshot of a full sink tree. Another possible extension isto
make use of a shared secret key so that members of a commu-
nity can mark path on the Internet that are under measurement
(e.g. bandwidth-wise in a peer-to-peer distribution network) to
avoid oscillations due to simultaneous probing of a path by two
pairs of nodes.

3.4. WASP on Network Processor

An application on the IXP is typically split up into several
components that will run on the different processing elements.
Pipe-line processing is typically assisted by hardwarescratch
rings programmed to relay packet handles and metadata be-
tween MEs. Note that the packet content is transmitted directly

4E.g. dropping B-frames in favour of I-frames in an MPEG flow [17]
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Figure 4: Layout of the Ephemeral Store, showing 3 keys (K1,K2 andK3)
hashed to the same valuek and chained in the entry table, with their respective
creation time (ctime).

from I/O buffers into DRAM (by the RX microblock) and only
meaningful parts will be fetched on demand, e.g. by the classi-
fier microblock CLS.

The setup of our proof-of-concept implementation is de-
picted on Fig. 3. We limited ourselves to layer 2 forwarding
(plus WASP processing) and the XScale’s role is limited to
microcode loading, monitoring and debugging. We kept ESP
and WASP apart, on separate MEs, to ease individual testing of
each implementation. Each of the 4 MEs doing WASP or ESP
processing is connected to the classifier with 16 independent
queues and operates its own ESS.

Out of the 256 MB of DRAM available on our Radisys
ENP-2611 card, 192 are under the control of the Linux ker-
nel running on the XScale, 32 are used as packet buffers by the
microengines, and the remaining 32 MB hosts the 4 ephemeral
stores. As depicted on Fig. 4, one ESS is made of ahash table
in SRAM and anentry tablehosted in DRAM, where each en-
try consists of a 64-bit key, its associated 64-bit value andmeta-
data for a total of 24 bytes. Every slotk in the hash table points
towards the oldest entry in the store wherehash(K1) = k.
Other colliding entries (e.g.K2 andK3 on Fig. 4) that hash
to the same valuek are simply chained in their creation or-
der. Thanks to this organisation, periodic cleanup of the ESS is
greatly simplified. We just sequentially scan entries in DRAM
starting fromlast_cleared mark until we hit an entrye
with e.ctime + τ > now. When e.g.K1 expires, we replace
pointer in SRAM slotk by a pointer toK2 (e.next) and we
advancelast_cleared.

The initial implementation of ESS on IXP was borrowed
from [4] and was accessed through two opcodes (lookup and
insert) that mimics statementsval = get(key) andput(val,
key) found in the pseudo-code of ESP functions. In previous
work on x86 architecture [17], we explored various ways to op-
timise ESS accesses to compete with the performance of ESP.
A first approach, later referred to as “/cache”, simply adds a
one-entry cache storing the last key looked up and the address
of the corresponding entry in DRAM. The effect is that we im-
mediately know where to write back a value with theinsert
microbyte. This saves one hash table lookup in SRAM and
chain walking in DRAM. We observed that maintaining a larger
cache is not worth the effort for WASP programs.

Figure 5: Cumulative Distribution of packet forwarding latency at low through-
put forcount instruction

Most our operations will not manipulate just a single 64-bit
value, but rather operate ontuplesin the ESS that need to be
manipulated atomically. We allowed WASP to use two consec-
utive entries of the ESS to offer a 32-byte memory bank where
elements of a tuple can be grouped together under a single key.
The map microbyte allows such an entry to be accessed as a
second bank by the VPU. WASP programs rewritten to take ad-
vantage of this alternate access mode are referred to as “/map”
in the following section.

4. Performance on IXP2400

For our performance analysis of WASP on IXP platform, we
mostly focused on two “reference” functions that were already
available on the ESP implementation. This allows us to evalu-
ate the overhead introduced by bytecode interpretation against
a pre-compiled version of the same function. Thecount func-
tion only needs one variable in the ESS that is used as a counter.
Each packet increments the counter and drops itself if the coun-
ter is above a given threshold. Thecollect function is used
to aggregatesamples fromn sources, using one ESS variable
to store the temporary aggregate for thek sources that have
already been processed, and a second variable to count the re-
mainingn − k sources that should still give their sample. A
collect packet is forwarded only when then samples have
been aggregated and then continues towards its destinationwith
the aggregated sample.

The pseudo-code forcount andcollect functions, as
well as their translation in WASP bytecode and an example of
how they can be used on a merging tree is detailed5 in [20].
Through the rest of this document,W:* prefix will be used
to refer to a WASP packet (e.g.W:count) while E:* prefix
refers to ESP packets.

4.1. Latency Measurements

All latencies in this section have been measured directly
on the IXP, through instrumentation of the “receive” (RX) and

5A lighter version can also be found athttp://www.run.monte-
fiore.ulg.ac.be/˜martin/resources/wasp-prm.pdf
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Figure 6: Cumulative Distribution of packet forwarding latency at low through-
put forcollect instruction

“transmit” (TX) microblocks provided by Intel as part of the
IXA SDK, after proper synchronisation of ME timestamp coun-
ters. The 1Gbps interface cards of the PCs in our lab indeed
proved to introduce load-dependent delays6 that interfere with
all trace-based measurements – not mentioning NTP offsets
seen as high as 10µs. Taking advantage of the internal structure
of the RX and TX code, we further separated latency measure-
ments depending on whether packet size was below or above
128 bytes7. This later allowed us to isolate measurements for
a specific class of packets by artificially “inflating” all other
packets we submitted to the IXP with padding bytes.

In the conditions described above, our WASP filter forwards
W:count packets with an average latency of 6.34µs. Dumb
packets of identical size have an average latency of 2.45µs and
W:count packets that are not processed (i.e. going through
classifier tests, but without bytecode interpretation) take on av-
erage2.91µs. The same experience repeated withE:count
packets showed an average latency of5.47µs. Comparatively,
the IPv4 forwarder demonstration application [21], takes on av-
erage 6.92µs to forward a 64-byte packet under 25% through-
put. The results forcollect (Fig. 6), on the other side, are
less impressive: 136% of the native version. With8.58µs for
WASP against6.29µs for ESP, we clearly see the impact of a
longer WASP program here.

We repeated the experiment with the one-entry cache en-
abled, which only led to a slight improvement of0.37µs and
0.78µs respectively (seeWASP /cacheseries on Fig. 5). How-
ever, as reported through theWASP /mapseries on Fig. 6, mak-
ing use ofmap strongly improved the latency ofW:collect
packets which is now almost equal (101%) of native ESP coun-
terpart. Another good thing is that/mapalso achieves good per-
formance (106% ofE:count latency) although it wasalready
using only one key. It even performs better than/cachealthough
it now transfers twice as much memory, thanks to DRAM burst
transfers.

We can also observe on Fig. 5 that the latency distribution
is mostly split into two (or sometimes three) steps and that 95%

6Likely due to interrupt moderation mechanisms on Broadcom NetXtreme
BCM5701 and on-board Intel 82541GI/PI Gigabit Ethernet controller

7Which is the size of anm-packet: the atomic data unit between the switch
fabric interface and the processing unit of the IXP

Figure 7: Packet flow in our testbed, highlighting the full-duplex use of the
loop-back link.

of the samples are located no further than52ns from the clos-
est step centre – which corresponds to variance in latency of
DRAM accesses. Those steps are intriguingly spaced by516ns
on average, with very small deviation, independently of thepro-
tocol or function considered. By deeper inspection of the chains
stored in the ESS, we can state that this is not an artifact of
some hash collision, nor an extra delay incurred by the creation
or cleaning of entries.

Actually, if we look at latencies until packets are queued
to TX microblock, we get a smooth, Gaussian-like distribution.
Together with the fact that the delay of516ns almost exactly
corresponds to the time required to transmit a minimal-sized
packet on the 1Gbps medium, it sounds reasonable to consider
that the “stepping” is introduced by the transmit hardware de-
pending on whether it is found idle or busy when our transmit
request is submitted.

4.2. Throughput Measurement

4.2.1. Methodology
The maximum capacity of our traffic generator (on a dual-

core Xeon, 3Ghz) was 907 Mbps with all packets having the
maximum size and 170 kpps (98 Mbps) when using only pack-
ets of minimum size, which is way below the theoretical max-
imum throughput of a single port-pair Gigabit Ethernet (1.488
Mpps). In order to keep our tests independent of additional
equipment (e.g. aggregating hubs) and to minimise the amount
of code to be modified on the network processor, we opted for
a half-software, half-hardware “traffic accelerator” testbed.

As depicted on Fig. 7, we connected port 2 of the ENP-
2611 board to a single test machine and wire the two remaining
ports together. We have then rewritten the classifier’s rules to
enforce the following policy:

1. regular packets coming on port 2 are returned to port 2;
2. WASP/ESP packets coming on port 2 are delivered either

to port 0 or 1 depending on a bit of the Computation ID
(CID) field;

3. packets received on port 0 are delivered to port 1 and vice-
versa.

The result is the creation of a two-way loop involving one
WASP/ESP processing and one transmitting delay that keeps
packets until they drop themselves. We can “load” this loop by
sending incremental traffic from the test machine and watch the
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# queues 1 2 4 6 8 16
WASP (1ME) 315 528 653 746 764 788

ESP (1ME) 390 672 1096 1258 1430 1546
WASP (2ME) 315 632 1026 1190 1293 1552

ESP (2ME) 390 779 1298 1603 1744 1744

Table 1: throughput (kpps) of WASP and ESP microblocks, processingcount
packets with single entry per hash chain and varying number ofactive queues
and hardware contexts.

impact on the system. We of course adjusted ESP functions and
WASP microbytes to allow unlimited thresholds.

Rule #1 ensures that the loop remains noise-free during our
measurements. We have indeed observed that the test machine
automatically exchanges a few packets every time we reload
the test software, which may quickly lead to an extra 200 kpps
stress on the loop. Temporarily disabling rule #1, we can mea-
sure a maximum throughput of 2 972 kpps in the loop for “reg-
ular” packets, which is 99.86% of the theoretical maximum
throughput of a full-duplex Gigabit Ethernet link. Any through-
put limitation that we will measure with ESP and WASP pack-
ets will then be attributed either to WASP/ESP microblock, or
to WASP/ESP specific part of the classifier.

We also observed that packets that simply start with aFWD
microbyte can be processed at a maximum throughput of 2 966
kpps by a single ME. The same program padded to 16 mi-
crobytes and carrying one bank of unused data (thus with a
similar fetch/checksum cost than aW:count) will grow to
100 bytes on wire and will limit the throughput to 2 046 kpps
– 98.22% of the theoretical maximum for packets of that size.

4.2.2. Count Performance with 1 Entry per Chain
Using the “transmitted packets” counter of the TX micro-

block, we estimated the throughput of flows ofcount packets
using both WASP and ESP while varying the amount of pro-
cessing resources activated. Since the classifier uses the CID
field to select the queue a packet should take to reach WASP
microblock, and since only one hardware thread can operate on
one queue at a time, we can indeed decide how many threads
(and MEs) can be active at a time by simply restricting the val-
ues allowed for CID in the traffic generator. The best perfor-
mance of ESP and WASP on a single ME correspond to 58 and
38% of the maximal throughput, respectively.

By translating throughput measurementT (n) (wheren is
the number of active threads) into inter-packet delaysD(n) =
n/T (n), we can observe that each new active thread on the ME
increases that delay byδn (almost constant and in the range
800-900ns), makingD(n) ≈ D(1) + (n − 1)δ almost linear
with n in the case of WASP. We cannot apply a similar model to
ESP, as it uses a special read-and-modify bus cycle that reduces
the available DRAM bandwidth as the packet rate increases.

While there are only 8 hardware threads on a ME, we can
see on Table 1 that all the 16 queues have been required to
achieve the highest throughput. This can be charged to the time
required to probe 8 (empty) queues and has been avoided in fur-
ther tests by properly balancing thek active CIDs among the 16
available queues (rather than using queues 1..k).

length:#ME 2:1 6:1 10:1 2:2 6:2 10:2
ESP 1502 1296 1124 1733 1470 1314

W /cache 946 902 826 1858 1686 1476
W /map 774 730 680 1526 1396 1225

Table 2: Throughput (kpps) with 16 queues, depending on the average hash
chain length, with one (left) or two (right) microengines.

We then reproduced the experiment with 1 to 8 threads bal-
anced on two different MEs to estimate how increased CPU
power improves the performance. A “4 threads” setup thus
means that we will have 2 active queues served on each ME.
Comparing rows 1 and 3 in Table 1 confirms that the WASP
interpreter is CPU-bound. Indeed, while balancing the load
on two different MEs leads to throughput increased by 20%
with ESP, WASP sees its throughput improved by 57 (4 queues)
to 70% (8 queues), and the maximum throughput when all 16
queues are used has almost doubled.

4.2.3. Increasing Hash Chain Length
In order to estimate performance of a saturated store, we ex-

tracted chains of colliding keys observed in the store and gen-
erated for each individual “computation” a series ofk packets
that will reference one of thek keys that belong to the same
chain, therefore experiencing chain traversal of length from 1
to k.

When processing on a single ME, we can note that the gap
between ESP and WASP performance is reduced (from 50 to
40%) as the average chain length increases. We can also ob-
serve that the relative throughput reduction is less important in
the case of WASP (the worst observed throughput is 87% of the
best one with WASP, against 74% in the case of ESP). Table 2
gives the observed throughputs for bothE:count and the two
flavours ofW:count already discussed in section 4.1. Sur-
prisingly, when we fully load the two MEs, the WASP packet
usinglookup outperformsthe native implementation offered
by ESP, and this regardless of the ESS state. The final expla-
nation has been found in the code: the ESP microblock – in its
current state – will re-generate the CRC checksum and update
packet header and operands in DRAM regardless of the compu-
tation performed. The WASP VPU comparatively keeps track
of data and state “dirtiness” and will only issue a DRAM up-
date when the content of the packet has been modified – which
never happens in the case ofcount.

4.3. Throughput of Collect function

We repeated the experience withcollect packets using
only thekth entry in chains. Such chains are built withcount
packets that drop themselves immediately after execution.A
vertical bar in Fig. 8 reports the throughput of one scenario(i.e.,
either ESP or WASP, and chain length) for increasing amount
of processing power. We can observe here again how ESP takes
advantage of additional threads and how WASP rather benefits
from an additional ME, even with the same number of threads.

We have seen in section 4.1 that we could come up with a
similar latency for thecollect operation for a single thread,
and as expected, on a single ME, WASP remains way behind in
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Figure 8: Measured throughput (kpps) for thecollect operation with chain
length varying from 2 to 10 entries, for both ESP and WASP (e.g. E6 is ESP
walking a 6-entries chain), varying the amount of threads andME used for
processing (e.g. 2x8 is 2 MEs, each processing 8 queues).

terms of throughput (see e.g., the 1x8 series). With two MEs
doing WASP processing however, we can now slightly outper-
form ESP. In this case, both ESP and WASP have to commit
the packet variables into DRAM. The performance improve-
ment can thus be fully attributed to the reduction of memory
accesses during the ESS entries lookup. This is true as long as
WASP does not hit the memory bandwidth limit, which hap-
pens withW10. Indeed, while WASP requires less memory ac-
cesses, each memory access transfers twice the amount of bytes
per access, theoretically requiring more DRAM bandwidth than
ESP to sustain the same number of packets per second.

Rather than reading a full bank (48 bytes, including meta-
data) while walking the chain, we repeated the experiment with
a modifiedmap implementation that only fetches 24 bytes dur-
ing chain walking, and then issues an extra access to get the re-
maining 24 bytes once the correct entry is found (the “max” se-
ries forW8 andW10 on Fig. 8). This indeed slightly improved
the throughput forW8 andW10 (from 924 to 928 kpps and
829 to 840 kpps resp.), but actually degrades the performance
for chains of 6 entries and below. As a potential alternative,
we could let the extra 24-byte transfer happen while the VPU
continues to process the next instructions, and suspend execu-
tion only if the data are still missing when we further advance
in the memory bank. This is typically an efficient programming
technique on the MEs, and our first estimations suggest that we
could achieve up to 877 kpps forW10. It would require, how-
ever, a significant revision of our code since we need to detect
and update the partially mapped bank transparently.

In other words, if we were to implement both WASP and an-
other function that is more memory-bound on an IXP network
processor (such as IP table lookup or execution of pre-compiled
operations on the ESS such as ESP), it would be preferable to
balance the amount of threads we are willing to dedicate to the
WASP interpreter on then available microengines (thus sharing
microcode and local store with the other functions) rather than
grouping them on a single microengine.

5. Towards Deployment

With latencies below 7µs and throughput up to 1.5 Mpps,
WASP can offer an interesting trade-off between flexibilityand
performance from an end-user point of view. From an oper-
ator’s perspective, however, the amount of resources required
for a guaranteed service level are prohibitive.

While the WASP service model allows partial deployment,
and even deployment only on some interfaces through sidekick
filter boxes, it still lacks some level of fine-tuning that would al-
low the operator to decide what amount of resources he’s will-
ing to dedicate to WASP traffic, and protect his router against
unusually high demand for WASP processing. This section
explores possible adjustments to the proposed implementation
that can take advantage from the knowledge of “normal” WASP
load to lower the required resources. Any such approach, un-
less properly protected, becomes vulnerable to attacks where
a group of hosts craft a flow of WASP packets exceeding the
available resource, therefore degrading or denying WASP ser-
vice to other packets.

5.1. Alternate Structures for the ESS

The organisation of the ESS as a hash table, as presented in
section 3.4, has clearly the drawback that excessive chain length
may degrade performance up to the point that service will be
denied. As a first defensive measure, we can salt the hashing
function with a local random value and enforce a maximum
chain length, so that attackers cannot craft a collection ofpacket
that ends up in the same chain. Still, the total amount of keys
we could store in the ESS is limited by the amount of expensive
SRAM which defines the number of chains the ESS can have.

We considered the alternative of balanced trees for the ESS,
as these have better worst case. The constraints would be that
the tree can store30 million items8 with a maximal depth of 8
levels9. As a first estimation, this is only possible if nodes have
at least a degree of 9, but this could not be arranged so that the
node (9 pointers and keys) fits the transfer registers of a single
ME thread.

Another possible option would be to use a forest ofN trees
that satisfy the constraints mentioned above and to map each
key to a single tree without memory lookup (e.g. through a hash
function). As a first estimation,216 B+tree holding at most 4
keys per node would meet the constraints. However this ap-
proach would involve a memory overhead of 90% of the values
stored10, and we expect difficult implementation of insertions
and deletions in a way that keeps the periodic store cleanup
lightweight enough (in terms of additional DRAM bandwidth
requirements).

The ’forest’ approach would not completely solve the case
where one of the trees receives significantly more keys than the

8Actually 29,660,000 items, assuming a top rate of 2,966 Kpps, and all
WASP packets creating an entry for 10 seconds

9Which we experimentally determined as the maximal number of DRAM
accesses we can afford per ESS lookup.

10Assuming 32 bytes of value per key, keys alone accounting for 25% over-
head
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rest of the forest either, and is thus just a way to allow “longer
chains” with the same amount of DRAM requests. It could thus
be preferable to stick to the hash table approach, but to oper-
ate it fully in DRAM, and to dedicate enough memory (28MB
per store) to hold the hash pointers in order to keep all chains
short enough, though this still has to be confirmed by additional
performance measurements.

5.2. Best-Effort ESS

Rather than engineering the size of the state store to allow
every packet to create new state, which requires up to 1.3 GB
for a full-duplex Gigabit Ethernet interface, an operator might
prefer to estimate how much memory is sufficient to sustain
daily traffic through statistical analysis. Users would then ex-
pect the operator to ensure fairness when load is increased be-
yond the level the installed amount of memory can support.
When deciding whether a WASP packet should be allowed to
create a new entry, it would then be interesting not only to count
how many entries have been created by thisaggregatein the last
τ seconds, but also how long the current packet is.

However, the potential denial of state creation in a router in-
dependently of other routers’ decision may be inconvenientfor
applications deriving e.g. from common trunk identification.
Indeed, when creating state in nearby routers, WASP programs
have no guarantee that further routers will also accept new state.
Still, if she optimistically creates state in routers closeto her, the
user consumes quota for her aggregate and might see further re-
quest denied later on – just when she gets the chance to create
state near the core.

In case two neighbour domains support WASP and have ne-
gotiated a “fair rate” of WASP entries created per second, it
would be preferable for applications to be notified (e.g. through
node environment variables) whether their packet are “in pro-
file” for upstream entry allocation. A WASP program could
then avoid creating state nearby unless it is “blessed” by the
router and receives the guarantee that it can install state in the
next domain as well.

5.3. Optimising through compilation

Although our interpreter is capable of latencies approaching
those of the ESP prototype and throughput slightly outperform-
ing ESP, we must not forget that WASP would keep the ALU
of microengines almost fully busy, potentially leading to higher
power consumption. Moreover, thecount andcollect pro-
grams used in our tests remain relatively short (16 bytes) com-
pared to the longest program allowed in WASP (64 bytes).

We thus repeated throughput measurements with “bench-
mark” packets of variable length, mixing ALU microbytes and
access to packet scratchpad variables. It revealed that, although
WASP processing time increases linearly with bytecode size,
the slope ranges from 7 to 10 times higher than the one of packet
forwarding times. In other words, on our IXP2400 setup, a 24-
byte program should be placed in a 206-bytes packet to ensure
wire speed processing, and a 64-byte program should not be
found in a packet smaller than 470 bytes. Unfortunately, for
another implementation, the ratio between code size and packet

size might differ, and thus this cannot be enforced as a rule for
“fair” packets globally.

Compiling bytecode into native code is a well-known tech-
nique used to speed up execution of bytecode languages which,
if applied here, could allow us to sustain a given traffic with
reduced CPU power. In the IXP network processor, each mi-
croengine has its own control store, capable of storing 4096
instructions (calledµwords), and only the XScale core can alter
the contents of those control stores.

Our measurement shows that, below 1000µwords, the con-
trol store needs0.25µs perµword written. It must also be noted
that reprogramming is only feasible when the ME is halted,
which leads to an extra delay of30µs in our setup. The hand-
craftedcollect function of the ESP filter, for instance, re-
quires 60µwords of unique code, and we estimate that a di-
rect translation of WASP microbytes into IXP native code could
take up to 100µwords. Assuming that both the XScale and the
ME are ready for the reprogramming of a filter function sim-
ilar to collect would thus cost between 45 and55µs. If
we suppose that this allows aW:collect packet (3.45µs) to
have the processing time ofE:count (2.57µs), it still takes
63 packets to amortise the cost of micro-store reprogramming.

In these circumstances, only very specific traffic patterns
could benefit from just-in-time compilation approach with IXP
network processors. Yet, if the node can identify thek most
used WASP programs whose sizes do not exceed the free space
on the micro-store after compilation, it would be theoretically
possible to strongly improve the performance of the node while
keeping the ability to processanyprogram and to dynamically
adapt to a new set of popular functions.

6. Conclusions

We designed WASP after lessons learnt from former active
routers, taking into account constraints in network processor
programming. The result is a scalablevirtual processorthat
can safely interpret user-emitted bytecode on router linecards.
This has been achieved at the cost of a restricted programming
model that does not allow most of the constructs found in a
general-purpose programming language. Yet, WASP bytecode
is expressive enough to implement several application-specific
network measurement and control protocols.

We have implemented and tested WASP VPU on the IXP
2400 network processor in a “filter box” setup. Under low load,
the interpreter is competitive with pre-compiled operations as
seen in ESP and the advantage of larger entries for the state
store has been confirmed. The VPU processing makes however
more intensive use of the microengines ALU and throughput
will not scale with the number of active threads as well as it
does with ESP. It does however scale well with the number of
microengines. This advocates for integration of both code (ESP
and WASP), as well as run-time-compiled optimisations of fre-
quent WASP programs if any, on the same microengine, which
would better balance the ALU usage.

We also observed that the increase of the average chain
length in the state store may have an important impact on the
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forwarding latency of WASP and ESP packets. A mechanism
limiting the longest chain will be mandatory to support applica-
tions that measure network performance or that try to enforce a
given quality of service. The size of the ESS is thus no longer
the only key parameter for proper ESS behaviour: the amount
of SRAM holding the hash table will define the average chain
length and the average latency of ESS accesses.

We initially opted for a interpreter-based solution because
IXP2xxx series, unlike other NPUs [6], appear poorly suited
to Just-in-Time compilation. It is clear however that an IXP
2400 barely has enough resources to handle a couple of Gbps
flows full of WASP packets. In a production version of WASP,
performance (and number of MEs available for other compo-
nents) could be strongly improved by a control component that
would compile native code chunks for the most frequent func-
tions present in the bytecode. How we can efficiently identify
whether we have or not a native code chunk for a given packet
is still ongoing work.
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