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Abstract—Internet Coordinate Systems (ICS) have been pro-
posed as a method for estimating delays between hosts without
direct measurement. However, they can only be accurate when
the triangle inequality holds for Internet delays. Actually Triangle
Inequality Violations (TIVs) are frequent and are likely to remain
a property of the Internet due to routing policies or path inflation.
In this paper we propose methods to detect TIVs with high
confidence by observing various metrics such as the relative
estimation error on the coordinates. Indeed, the detection of
TIVs can be used for mitigating their impact on the ICS itself,
by excluding some disturbing nodes from clusters running their
own ICS, or more generally by improving their neighbor selection
mechanism.

Index Terms—Internet delay measurements, Internet Coordi-
nate Systems, Performance, Triangle inequality violations.

I. I NTRODUCTION

Internet Coordinate Systems (ICS) have been used to predict
the end-to-end network latency for any pair of hosts among a
population without extensive measurements. Several prediction
mechanisms have been proposed,e.g., [1], [2], [3]. Example
of applications than can benefit from such knowledge include
overlay routing networks, peer-to-peer networks, and applica-
tions employing dynamic server selection, etc.

These systems embed latency measurements among samples
of a node population into a geometric space and assign a
network coordinate vector (or coordinate in short) in this
geometric space to each node, with a view to enable accurate
and cheap distance (i.e. latency) predictions amongst any pair
of nodes in the population. Node’s coordinates are determined
based on measurements to a set of nodes, called neighbors or
reference points (often referred to as landmarks).

Most coordinate systems [1], [2], if not all, assume that the
triangle inequality holds for Internet delays. Suppose we have
a network with 3 nodesA, B and C, whered(A, C) is 1 ms,
d(C, B) is 2 ms, andd(A, B) is 5 ms, with d(X, Y)denoting
the measured delay betweenX andY. The triangle inequality
is violated becaused(A,C) + d(C,B) < d(A,B) endABC
is called aTIV (Triangle Inequality Violation). WhenABC
is a TIV, AB is always the longest edge (by convention) and
is referred to as theTIV base. In fact, triangle inequalities are
often violated by Internet delays due to routing policies or
path inflation [4], and are likely to remain a property of the
Internet for the forseeable future. It is also known that such
TIVs [5], [6] degrade the embedding accuracy of any ICS [1],
[2], [3]. Some papers consider the removal (or at least the
exclusion) of the Triangle Inequality violator nodes from the

system to decrease the embedding distortion [7], [8]. However,
we claim that sacrificing even a small fraction of nodes, is not
arguable since TIVs are an inherent and natural property of
the Internet. Rather than trying to remove them, we consider
exploiting them to mitigate their impact on ICS and improve
overlay routing.

Since TIVs are inherent to the Internet, it is mandatory to
build systems that are TIV-aware [9]. Therefore, it might be
exploited by overlay routing to set up end-to-end forwarding
paths with reduced latencies, or by nodes participating in
an ICS to improve their neighbor selection mechanisms. To
improve the neighbors detection mechanisms and mitigate the
impact of TIVs on ICS, finding the node pairs that form TIV
bases is sufficient [10], [11].

In this paper, we aim at identifying node pairs that are likely
to be TIV bases. We characterize these pairs using different
metrics such that theRelative Estimation Error(REE) on
coordinates. One of our findings is that the REE variance of
TIV bases is usually smaller. This can be used to infer TIVs
with some confidence without any additional measurement.
Consequently, we aim at clusterizing node pairs following their
REE variances using Gaussian Mixture Models (GMMs) [12].
GMMs are one of the most widely used unsupervised clus-
tering methods where clusters are approximated by Gaussian
distributions, fitted on the provided data. We have also applied
an AutoRegressive Moving Average (ARMA) [13] model on
the sorted REE variances to find a breaking point, because
in many practical regression-type we cannot fit one uniform
regression function to the data.

The rest of this paper is organized as follows. Sec. II
evaluates how TIVs impact the Vivaldi system and introduces
our used metric to detect TIV situations. Sec. III explores and
evaluates several strategies to infer TIV bases. Finally, Sec. IV
summarizes our conclusions and discusses future research
directions.

II. V IVALDI AND TRIANGLE INEQUALITY V IOLATIONS

Internet coordinate systems [1], [2], [3] embed latency
measurements into a metric space and associate with each
node a coordinate in this metric embedding space. When faced
with TIVs, coordinate systems resolve them by forcing edges
to shrink or to stretch in the embedding space.

We used two basic characterizations of TIVseverity as
proposed in [11]. The first one is therelative severityand is
defined byGr = (d(A,B) − (d(A,C) + d(C,B)))/d(A,B).



Relative severity is an interesting metric, but it may be argued
that for small triangles, a high relative severity may not
be that critical. Therefore we also define a second metric
called the absolute severity, which is defined asGa =
d(A,B)− (d(A,C) + d(C,B)). In the sequel, we will ignore
the less important TIVs by considering only those satisfying
Ga > 10ms andGr > 0.1 [11], and we will omit the “severe”
qualifier. By convention aTIV baseis a node pairAB for
which there exists at least oneC node so thatABC is a TIV.
A non-TIV baseis a node pairAB for which there exists no
C node so thatABC is a TIV.

A. Vivaldi overview

Vivaldi [2] is an Internet coordinate system based on a
simulation of springs, where the position of the nodes that
minimizes the potential energy of the spring also minimizes
the embedding error. In this system, a new node computes
its coordinate after collecting latency information from afew
other nodes (its neighbors) only. We choose to focus on
Vivaldi because it has many interesting properties: it is fully
distributed and requires neither a fixed network infrastructure,
nor distinguished nodes. Vivaldi considers a few possible
coordinate spaces that might better capture the underlying
structure of the Internete.g., 2D, 3D or 5D Euclidean spaces,
spherical coordinates, etc. For the present study, we use a9D
Euclidean space and each node computes its coordinates by
doing measurements with32 neighbors.

B. Impacts of TIVs on Vivaldi

We used two real data sets to model Internet latencies: the
“P2psim” data set, which contains the measured RTTs between
1740 Internet DNS servers, and the “Meridian” data set, which
contains the measured RTTs between2500 nodes. Considering
the P2psim data set (resp. Meridian), we found that 42% (resp.
83%) of all node pairs are TIV bases.

The authors of [11] show that TIVs impact the performance
of Vivaldi, and consequently, the nodes that are the most
involved in TIVs have less stable coordinates. Furthermore,
the estimated RTT of those nodes pairs are a lot less accurate.

In the present study, we do not focus on the nodes and
their coordinates but on the node pairs. We define two basic
metrics: theAbsolute Estimation Error(AEE) and theRelative
Estimation Error (REE). Following these two metrics, for a
givenAB, we compute:

AEE(AB) = EST (A,B) −RTT (A,B)

REE(AB) =
AEE(AB)

RTT (A,B)

whereRTT (X,Y ) is the measured RTT between the nodes
X andY andEST (X,Y ) is the estimated RTT obtained with
the coordinates of the nodesX andY .

Wang etal. in [10] show that it exists a relation between the
estimation error and the TIV severity. They observed that ifa
node pair is a TIV base, it is probably shrunk in the metric
space. By comparing the RTTs of our two delay matrices to
those obtained with Vivaldi (i.e estimated), we found the same
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Figure 1. Distribution of the P2psim node pairs in function of AEE.
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Figure 2. Distribution of the P2psim node pairs in function of REE.

trend. Indeed, according to the P2psim and Meridian datasets,
more than 70% of TIV bases are underestimated (i.e. they
have a negative estimation error). For each delay matrix, we
clusterize node pairs into two groups: the TIV bases, and the
non-TIV bases. Based on the P2psim data set, figures 1 and 2
show the distributions of node pairs with respect to their AEE
and REE. We divide the whole range of AEE (resp. REE) into
bins equal to10 ms (resp0.05).

According to figures 1, 2, we can see that a criterion based
on the estimation errors (as proposed in [10]) has a serious
drawback: since the overlaping of the two curves is important
in each case, it would be difficult to discriminate the TIV
bases. Note that the Meridian data set shows similar results
with respect to P2psim data set.

Since a detection criterion based on the basic AEE and
REE parameters cannot give satisfactory results, we take into
account another parameter. Instead of considering the relative
estimation error at a fixed time, a simple alternative is to
observe its evolution. For instance, the variance is a metric
that can characterize the evolution of the REE with respect
to time. To implement a TIV basis detection criterion, we
compute the REE variances of node pairs during the last 100
ticks of our simulation. We used the P2psim discrete-event
simulator [14], which comes with an implementation of the
Vivaldi system. Considering the P2psim (resp. Meridian) data
set, figure 3 (resp. 4) shows the CDF of the REE variances of
the TIV bases and the non-TIV bases. The first observation is
that most TIV bases have small REE variances compared to
non-TIV bases.
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Figure 3. CDF of the REE variance (P2psim).
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Figure 4. CDF of the REE variance (Meridian).

These findings lead to an easy TIV base detection criterion:
if a node pair has a low REE variance, it is likely to be a TIV
base. Since the non-TIV base curve has a gentle slope on figure
4, such criterion is expected to give very good results (high
TPR and low FPR) on the Meridan data set. On the P2psim
data set, the results should be less satisfactory. Indeed, we
can see on figure 3 that about 25% of the non-TIV bases have
small REE variances. This will probably lead to false positives
with a detection criterion based on the REE variance. The next
section describes such TIV base detection criteria.

III. D ETECTING TIV BASES

In the light of our observations in section II, we propose
two methods to detect TIV bases. We consider that each node
is maintaining a sliding window (history) of the REE of each
link to its ICS neighbors. Each node then computes variances
of such REE, and ends up, at each embedding step, with
a variance vectory of N entries,N being the number of
neighbors the node is considering.

The basic idea behind our detection methods is to differen-
tiate variances of TIV bases from variances of non-TIV bases.
We aim at creating two separate sets of variances. The set
that leads to the minimum mean is likely to contain variances
of TIV bases. Next, we will introduce our proposed methods,
that we turn into tests to suspect a node pair to be a TIV base.
Then, we discuss the performance of our tests in term of false
positive and true negative rates.

A. Detection by ARMA models

In this first approach, our objective is to cluster the variances
of the REE using the change point detection method. The
key idea is to consider a vector of sorted variances as a time
series, model such series, and then detect data discontinuities
using the model predictions. One of the most suitable models,

frequently used in system identification and change point
detection is the ARMA (AutoRegressive Moving Average)
model. Let us considery(t) as the time series resulting from
the sorted vectory. The general form of the ARMA model is
as follows [13]:

y(t) = H(q, θ)e(t) (1)

H(q, θ) =
C(q)

A(q)
(2)

A(q) = 1 + a1q
−1 + ...+ ana

q−na (3)

C(q) = 1 + c1q
−1 + ...+ cnc

q−nc (4)

θ = [a1 a2 ...ana
c1 c2 ...cnc

]T (5)

where q is the shift operator,θ is a vector to describe the
time series model,H(q, θ) is a rational function,e(t) is the
white noise with varianceσ, A(q) andC(q) are polynomials,
na and nc are model orders. Based on the observations up
to time t− 1, the corresponding one-step-ahead prediction of
y(t) can be expressed as follows:

ŷ(t|θ) = [1 −A(q)]y(t) + [C(q) − 1]ǫ(t|θ) (6)

whereǫ(t|θ) is the prediction error, i.e.,ǫ(t|θ) = y(t)− ŷ(t|θ).
The model parameterθ can be calculated by minimizing the
norm JN (θ) [13]:

θ̂(N) = arg minθ JN (θ) (7)

JN (θ) =
1

N

N
∑

t=1

l(t, θ, ǫ(t|θ)) (8)

where arg min means “the minimizing argument of the func-
tion”, and l(t, θ, ǫ(t|θ)) is a scalar-valued function to measure
the prediction errorǫ(t|θ). This way of estimating the model
parameterθ is called the prediction-error identification method
(PEM).

One important advantage of the ARMA model mentioned
above is its ability to analyze the time series by breaking them
into homogeneous segments, if there are apparent discontinu-
ities in the time series. Therefore, it is important to find the
time instants when the abrupt changes occur and to estimate
the different models for the different segments during which
the system does not change. The algorithm that is implemented
in this study follows the approach presented in [15], [13], and
is based on the following model description:

θ0(t) = θ0(t− 1) + w(t) (9)

where w(t) is zero most of the time, but now and then
it abruptly changes the system parametersθ0(t). w(t) is
assumed to be white Gaussian noise with covariance matrix



R1 = E[w(t)wT (t)]. For solving this segmentation problem,
a typical Kalman filter algorithm has been given as follows:

θ̂(t) = θ̂(t− 1) +K(t)ǫ(t) (10)

ǫ(t) = y(t) − ŷ(t) = y(t) − ψT (t)θ̂(t− 1) (11)

K(t) = Q(t)ψ(t) (12)

Q(t) =
P (t− 1)

R2 + ψTP (t− 1)ψ(t)
(13)

P (t) = P (t− 1) +R1 −
P (t− 1)ψ(t)ψT (t)P (t− 1)

R2 + ψT (t)P (t− 1)ψ(t)
(14)

where θ̂(t) is the parameter estimated at timet, ψ(t) is the
regression vector that contains old values of the observations,
y(t) is the observation at timet, and ŷ(t) is the prediction
of the valuey(t) from the observations up to timet − 1 and
the current model at timet− 1. ǫ(t) is the noise source with
variance,R2 = E[ǫ2(t)]. The gainK(t) determines how the
current prediction error,y(t) − ŷ(t), updates the parameter
estimate.

The algorithm is specified byR1, R2, P (0), θ(0), y(t) and
ψ(t). R1 is the assumed covariance matrix of the parameter
jumps when they occur. Its default value is the identity
matrix with the dimension equal to the number of estimated
parameters.θ(0) is the initial value of the parameter, which
is set to zero.P (0) is the initial covariance matrix of the
parameters. Its default is taken to be 10 times the identity
matrix. Several Kalman filters are run in parallel to estimate
system parameters, each of them corresponding to a particular
assumption about when the system actually changes. Each
time the algorithm returns the model parameter changes, we
log the instants such change occur. Recall that we consider
such time series as series of variances of REE. Hence, when
a change occurs at timeτ , we will consider ally(t), t < τ
as variances of theREE of TIV bases. Obviously, changes
may be multiple, but to differentiate variances of TIV bases
from variances of non-TIV bases, a node will consider only
the first change point detected by the model.

B. Detection by GMM clustering

In this section, we adopt a second strategy to detect TIV
bases. Rather than modeling the series of variances, we aim
at clustering the REE variances into classes where variances
in one cluster are close to each other, and clusters are far
apart. In such a way, we would be able to identify the cluster
that contains the variance with low mean, and report its
elements as variances of the REE of TIV bases. Gaussian
Mixture Models (GMMs) are among the most statistically
mature methods for clustering, and may be more appropriate
than other clustering techniques such as K-means, especially
because clusters of variances may have different sizes and
correlations between them. Although we still need to look for

a differentiation between two main clusters (TIV variances
and non-TIV variances), we could distinguish more than two
clusters, sayk. This allows the GMM clustering to create more
accurate clusters, from which we choose the cluster that is
more likely to contain TIV variances.

Given the variance vectory of N entries, clusters are
formed by representing the probability density function of
observed variances as a mixture of gaussian densities. We use
the Expectation Maximization algorithm to assign posteriori
probabilities to each component density with respect to each
observation (to each variance value in our situation). Clusters
are then assigned by selecting the component that maximizes
the posteriori probability. We report interested readers to the
approach described in [12], and that we used in this work.

More formally, let us consider the variance vectory =
(y1, ..., yN ) that we would like to cluster. Clusters are rep-
resented by probability distributions, typically a mixture of
gaussian distributions. Hence, a clusterC is represented by a
mean value of all values in the cluster,µC , and the variance of
values in the cluster, say

∑

C . The density function of cluster
C is then:

P (y|C) =
e

(y−µc)2
2.

P

C

√

(2π)N .
∑

C

(15)

Let Wi denote the fraction of clusterCi in the entire data
set. In this way, we haveP (y) =

∑k

i=1
Wi.P (y|Ci), the

density function for clusteringM = C1, ..., Ck. Each point
may belong to several clusters with different probabilities:

P (Ci|y) = Wi.
P (y/Ci)

P (y)

The Expectation Maximization (EM) algorithm, consists
then in maximizingE(M), as a measure of the quality of
the clusteringM , E(M) being defined as

E(M) =
∑

y

log(P (y))

E(M) indicates the probability that the data have been gen-
erated by following the distribution model as defined byM .
The clustering process using the Expectation Maximization
method consists then in generating an initial model, say
M ′ = (C ′

1
, ..., C ′

k), and repeat the assignments of points to
clusters and the computations of the model parameters until
the method converges to unstable clustering state maximizing
the probability that the data observed follows the distribution
model M . Basically, the algorithm (re)computesP (y/Ci),
P (y) andP (Ci|y) for each observation from the dataset and
for each cluster (Gaussian distribution)Ci, then (re)computes
a new modelM = (C1, ..., Ck) by recomputingWi, µC

and
∑

C for each clusterC (following equations 16, 17, 18).
Finally it replaces the distributionM ′ by M .

Such process continues until|E(M) −E(M ′)| < ǫ, where
ǫ is constant defining the convergence of the algorithm. When
the EM method converges, it returns the distributionM of
clusters.
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(a) P2psim data set
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Figure 5. Performance of TIV bases detection techniques.

Wi =
1

N

∑

yi∈y

P (Ci|yi) (16)

µi =

∑

yi∈y yi.P (Ci|yi)
∑

yi∈y P (Ci|yi)
(17)

∑

i

=

∑

yi∈y P (Ci|yi)(yi − µi)2
∑

yi∈y P (Ci|yi)
(18)

To select the cluster we suspect to contain variances of TIV
bases, we look for the cluster corresponding tomin1<i<k µi.

C. Detection Results

To characterize the performance of our detection tests,
we use the classical false/true positive/negative indicators.
Specifically, a negative is a non-TIV base, which should
therefore not be reported in the set of suspects that we derive.
A positiveis a TIV base, which should therefore be suspected
by the test.

A false negativeis a TIV base that has been wrongly
classified by the test as negative, and has therefore been
wrongly unsuspected. Afalse positiveis a non-TIV base that
has been wrongly suspected by the test.True positives (resp.
true negatives)are positives (resp. negatives) that have been
correctly reported by the test and therefore have been rightly
suspected (resp. unsuspected). The number of false negatives
(resp. false positives, true negatives and true positives)reported
by the test isTFN (resp.TFP , TTN andTTP ).

We use the notion offalse negative rate(FNR) which is the
proportion of all TIV bases that have been wrongly reported
as non-TIVs by the test, andFNR = TFN/PP . The number
of negatives (resp. positives) in the population comprising all
the links between a node and its neighborhood isPN (resp.
PP ). The false positive rate(FPR) is the proportion of all the
non-TIV bases that have been wrongly reported as positive by
the test, soFPR = TFP /PN . Similarly, thetrue positive rate

(TPR) is the proportion of TIV bases that have been rightly
reported as TIVs by the test, and we haveTPR = TTP /PP .

For the simulation scenarios, we used the P2psim discrete-
event simulator [14], which comes with an implementation
of the Vivaldi system and each node has32 neighbors. The
REE for each node pairs is computed based on the coordinates
provided by the last tick of our simulation. We performed
10 simulations and used different detection thresholds based
on REE, and the Receiver Operating Characteristic (ROC)
curve obtained for one simulation is presented on figures 5(a)
and 5(b) respectively for the P2Psim and Meridian data sets.
Since we observed the same trend for all ROC curves only
one ROC curve is depicted on figures 5(a) and 5(b). We
consider different thresholds varying from−1 to 1 by steps
of 0.05. Each point on the ROC curves determines the TPR
and the FPR obtained with a given detection threshold. For
instance, considering the curve obtained with the detection
thresholds based on REE, different REE values are illustrated
on figure 5. Note that a REE threshold lower than0 means a
underestimation of the actual distance, whereas a REE greater
than0 expresses an overestimation.

We experimented withna = 1 andnc = 1 as model orders
of the ARMA modeling detection technique, while we set
k = 4 as number of mixtures in the GMM clustering tech-
nique. The reader should note though that we experimented
with different parameters of our detection methods that lead
to similar or better results. The plot in figure 5 shows the
points corresponding to the false positive rates along the x-
axis and to the true positive rates along the y-axis, with one
point per method used to detect TIV bases, for both data sets
with respect to 10 simulations results. By considering ARMA
and GMM models we don’t need to set any threshold.

Obviously, the closer to the upper left corner of the graph a
point is, the better, since such points correspond to high true
positive rates (i.e. a high proportion of positives being reported
as such by the test) for low false positive rates (i.e. a small
proportion of negatives incorrectly reported as positives).



The first observation on figure 5 is that the REE thresholds
which give high TPR with low FPR are different for the
P2psim and Meridian data sets. The better REE thresholds,
when one considers P2psim data set (resp. Meridian data set),
vary from0 to 0.15 (resp.0.2 to 0.35). In other words, a good
REE threshold depends on the used data set, and thus, it will
be difficult to fix it a priori.

We observe that both detection methods perform very well
for the King dataset (figure 5(a)) comparatively to the ROC
curve based on REE detection threshold which is the method
proposed in [10]. Note that the ARMA model gives better
results than GMM model. Furthemore, the two points that are
located at the right of the ROC curve (figure 5(a)) represent the
detection of TIV bases based on GMM model. The same trend
is observed on figure 5(b) where all the detection of TIV bases
based on GMM model are located at the right of the ROC
curve. Nevertheless, the ARMA model can be considered to
be excellent in the case of the Meridian data set.

In summary, the detection of TIV bases based on ARMA
model gives good performance with up to 85% of TIV bases
detected, while suspecting non-TIV bases in rare situations
(less than 2%). The reason that ARMA model outperforms
the GMM model is probably due to the fact that the REE
variances don’t follow a gaussian distribution.

IV. CONCLUSION

In this paper, we have observed that TIV bases have
usually a small REE variance. Following that, we clusterized
the REE variance of node pairs using GMMs and ARMA
models. We obtained satisfactory results with up to 85%
of TIV bases detected, while suspecting non-TIV bases in
rare situations. However, these results have been computed
considering simulations of Vivaldi: in practice the RTTs are
not constant and the detection results could be mitigated.
Moreover, in ICS applying such detection criteria on the same
set continuously can lead to a degradation of the detection
performance. Indeed, this criterion is based on the assumption
that TIVs are measured in the ICS and that they impact the
ICS behaviour. If we use the result of the detection criterion
to optimize the selection of neighbors to reduce the impact of
TIVs we will modify the behavior of the ICS. Consequently,
the FPR can increase while the TPR decreases at the same
time. To avoid such drawback, one solution is to ignore the
results of detection if most node pairs are considered as TIV
bases.

We believe these TIV bases detection techniques serve as a
first step towards a TIV-aware systems. Indeed, we can turn
TIV detection into a routing advantage [16], knowing that a
TIV means the existence of a shortcut path between the two
nodes linked by the longest edge of the “triangle”.
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