

UNIVERSITE DE LIEGE

FACULTE DES SCIENCES APPLIQUEES

DÉPARTEMENT D'HYDRAULIQUE ET DE TRANSPORT

Développement de modèles hydrosédimentaires pour la gestion de grands ouvrages hydrauliques

Benjamin Dewals Ingénieur civil physicien

Mémoire présenté en vue de l'obtention du D.E.A. en Sciences appliquées

Année académique 2001-2002

Je souhaite remercier très chaleureusement Monsieur Michel Pirotton qui, grâce à son enseignement rigoureux et sa personnalité exceptionnelle, m'a communiqué sa passion pour l'hydrodynamique au sens large. Il m'a fait l'honneur de m'accueillir au sein de son équipe de recherche et a suivi au jour le jour l'évolution de mes travaux, qu'il trouve ici l'expression de ma reconnaissance.

J'exprime toute ma gratitude à l'égard de Monsieur André Lejeune, Professeur ordinaire à l'ULg, pour le regard expérimenté qu'il porte sur ce mémoire et pour le cadre de travail privilégié au sein du Département d'Hydraulique et de Transport qu'il préside.

Ce travail a aussi bénéficié des contacts quotidiens avec les collègues du HACH. Les échanges avec Pierre Archambeau, Thibaut Mouzelard et Sébastien Erpicum furent toujours des occasions privilégiées de discussions à la fois scientifiques et amicales, qui sont le charme de notre profession.

Mes remerciements vont également à Monsieur Pierre Beckers, Professeur ordinaire à l'Ulg, ainsi qu'à Monsieur Paul Dewil, Premier Ingénieur des Ponts et Chaussées au SETHY, qui m'ont fait l'honneur de lire ce mémoire et ont accepté de le juger.

Enfin, ce document n'aurait pu voir le jour sans les encouragements répétés de mes proches et mes amis. Les mots ne suffisent pas à traduire ma profonde reconnaissance pour la patience sans faille dont ils ont fait preuve pendant les longs moments consacrés à l'élaboration de ce travail.

"Hydraulic engineering is clearly a field for those who love nature and who are comfortable in applying the laws of fluid mechanics for the betterment of mankind while preserving nature."

> James A. Liggett in "What is Hydraulic Engineering ?", J. Hydraul. Eng., vol. **128**(1), 2002

Table des matières

Table des i	matières	5
I. Introd	luction	8
II. Int	égration temporelle implicite	10
II.1 I	mplicite vs explicite	10
II.2 I	Méthode	12
II.3	Application aux équations de Saint-Venant	13
II.4 (Construction de la matrice Jacobienne	15
II.5 I	Résolution de grands systèmes linéaires	19
II.5.1	Stockage de très grandes matrices	19
II.5.2	Stratégie de résolution	19
II.5.3 II.5.4	Methode des sous-espaces de Krylov	19
II.5.4 II 5 5	Préconditionnement par factorisation incomplète	20
II.5.6	Résolution du système linéaire	20
II.6 (Choix du pas de temps	21
II.7 I	Efficacité d'une intégration temporelle implicite	22
II.8 I	Discrétisation spatiale bidimensionnelle	23
II.8.1	Fractionnement des flux	23
II.8.2	F.D.S. de Roe	26
II.8.3	Schéma AUSM	27
Int	roduction	27
Co	ût du calcul	27
FOI	mulation du schema	21
II.9 1	Exemples de résultats bidimensionnels	31
II.9.1	Canal courbe	31
II.9.2	Log da Kal (Inda)	33
11.9.5		54
II.10	Bibliographie	36
III. Mo	délisation d'écoulements à l'aide d'un formalisme en coordonnées curvilignes	
III.1	Introduction	38
III.2	Présentation synthétique de la méthode	39
III.3	Changement de variables général	40
III.4	Transformation d'une équation d'advection quelconque	41
III.5	Système de coordonnées adapté aux déversoirs	41
III.6	Forme locale des équations en coordonnées curvilignes	44
III.6.1	Composantes des vitesses dans les deux systèmes de coordonnées	44
III.6.2	2 Conservation de la masse	44
111.6.3	6 Conservation de la quantité de mouvement	45
III.7	Passage en adimensionnel	45

III.8	Forme locale des équations en coordonnées curvilignes (seconde variante)	48
III.8.1 III.8.2	Conservation de la masse	48 48
III.8.3	Conservation de la quantité de mouvement	48
111 Q	Conditions limites en coordonnées curvilignes	49
III.9.1	Condition limite à la surface libre	49
III.9.2	Condition limite au fond	50
III.10	Intégration de l'équation de continuité sur la hauteur locale	50
III.11	Intégration sur la hauteur de l'équation de quantité de mouvement	51
III.12	Inconnues conservatives	51
III.12	1 Définitions	51
III.12 III.12	2 Evaluation de la hauteur d'eau 3 Signification des inconnues conservatives	52
	5 Signification des inconnues conservatives	
III.13 III.12	Hypothèses sur la distribution de vitesse	54 54
III.13 III.13	2 Autres hypothèses	55
III.14	Comparaison des surpressions calculées avec la formule de Gumensky	56
III.15	Hypothèses concernant la distribution de vitesse à l'amont	57
III.15	1 Zone morte	58
III.15	2 Zone de recirculation	58
III.15	3 Décélération graduelle du fluide vers le fond	59
III.16	Influence d'une pression additionnelle	60
III.17	Géométrie d'un déversoir standard	61
III.18	Résultats de simulations	62
III.18	1 Déversoir sans seuil	62
Apj Mo	proche classique délisation basée sur les coordonnées curvilignes	62
III.18	2 Influence de la géométrie du déversoir	65
III.18	3 Seuil topographique	67
III.18	4 Déversoir parabolique	68
	cun traitement particulier des variations d'inclinaison	68
Dis	tribution de vitesse avec recirculation (80 %)	70
Dis	tribution de vitesse avec recirculation (75 %)	71
Dis	tribution de vitesse avec recirculation (77 %)	72
III.19	Bibliographie	74
IV. Mo	délisation de l'ensablement d'une grande retenue	75
IV.1	L'alluvionnement de grandes retenues	75
IV.1.1	Les conséquences de l'envasement d'une retenue	75
IV.1.2	2 Quelques exemples d'alluvionnement prononcé	76
IV.1.3 IV.1.4	Phénomènes modélisés	79 79
IV.2	Stratégie générale adoptée pour l'étude	80
IV.3	Modèle de transport sédimentaire	81
IV.3.1	Bilan de masse pour les matériaux solides	81
Con	servation de la masse pour une classe granulométrique individuelle	82
Coi	nservation de la masse totale de particules solides	83
EVa IV 3 2	luation du pas de temps maximum garantissant la stabilité	84 85
Eva	luation des capacités de transport	85
Мо	dèle d'advection – diffusion	85
I	ois de transport distinctes	85
l Die	ors de transport total ponibilité en sédiments et débits solides	86 86
		00

V. Con	clusion	
IV.6	Bibliographie	130
IV.5.11	Conclusion	129
IV.5.10) Région la plus en aval	114
IV.5.9	Région 8	112
IV.5.8	Région 7	110
IV.5.7	Région 6	107
IV.5.6	Région 5	106
IV.5.5	Région 4	105
IV.5.4	Région 3	101
IV.5.3	Région 2	100
IV.5.2	Région 1 : la plus en amont	98
Solu	tion hydrodynamique stabilisée	97
Con	ditions de simulation	96
IV.5.1	Topographie d'ensemble	96
IV.5	Résultats	96
IV.4.9	Traitement de la granulométrie	96
IV.4.8	Simulations plus détaillées à l'aval	95
IV.4.7	Calibrage de la loi	95
IV.4.6	Aspects numériques	94
La lo	bi de Ackers et White	93
Choi	ix d'une loi de transport total	93
IV.4.5	Loi de transport sédimentaire	93
IV.4.4	Propriétés des sédiments	93
IV.4.2 IV.4.3	Détermination du débit de simulation	91
IV.4.1 IV.4.2	Conditions limites sédimentaires	90
IV.4 IV.4.1	Conditions limites hydrodynamiques	89
IV A	Conditions do simulation nour la las da Kal	80
IV.3.4	Validation du modèle	88
IV.3.3	Débits solides dus à la gravité	88

I. Introduction

Ce travail de D.E.A. s'inscrit dans le prolongement direct du travail de fin d'études d'Ingénieur civil réalisé au sein du HACH au cours de l'année académique 2000-2001, dans le domaine de la modélisation numérique du transport sédimentaire intense. Il constitue aussi à part entière un préliminaire à la poursuite de recherches relatives au transport solide, appliqué au domaine des constructions hydrauliques.

D'ores et déjà il est utile de mettre en évidence la chronologie des sujets abordés, qui se succèdent en suivant un enchaînement logique.

Les premiers modèles développés au cours du travail précédent, à 1D puis à 2D, assurent un couplage complet entre l'écoulement d'une part et, d'autre part, l'érosion, le remaniement topographique concomitant et la rétroaction de celui-ci sur l'hydrodynamique.

La mise au point et la résolution numérique de ce genre de modèle entièrement couplé demeure aujourd'hui relativement rare en raison des défis numériques de taille à surmonter afin d'assurer la stabilité du schéma. Dans notre cas, une évaluation stable des flux de l'opérateur spatial discrétisé est garantie grâce à un schéma original, utilisé en conjonction avec une technique d'intégration temporelle explicite. La robustesse du schéma numérique et l'applicabilité du logiciel en topographie quelconque ont été illustrées sur des cas de figure variés, allant de la propagation de la crue consécutive à une rupture de barrage sur topographie naturelle érodable, à l'interaction fluide-structure avec effet érosif marqué au cours de l'évasement progressif d'une brèche dans un ouvrage de retenue en terre.

Pour satisfaisantes que soient ces simulations réalisées à partir du modèle couplé, celui-ci présente l'inconvénient d'imposer une contrainte extrêmement restrictive sur le pas de temps à utiliser. S'il est adapté à l'étude d'écoulements hautement transitoires, tels que ceux engendrés par la ruine d'un ouvrage de retenue, il s'avère totalement inadéquat pour l'étude de processus plus graduels dans le temps. La mise au point d'un modèle découplé, quasi-stationnaire pour l'hydrodynamique, s'est dès lors imposée. Cette approche consiste, pour chaque pas de temps, à calculer un écoulement d'eau en régime établi, puis à évaluer séparément le transport solide et la mise à jour consécutive de la topographie.

Afin de tirer un maximum d'avantages d'une stratégie de résolution quasistationnaire, il est primordial de disposer d'un outil très performant pour converger vers une solution hydrodynamique stabilisée. Nous nous sommes alors détournés des schémas temporels explicites dans ce cadre précis, pour privilégier une technique implicite. Beaucoup plus complexe à mettre en œuvre, mais relaxant toute restriction sur le pas de temps, l'intégration temporelle implicite s'est révélée extrêmement compétitive et a conduit, pour des solutions stationnaires, à un gain d'un facteur 100 en temps de calcul. Ce travail décrit les étapes successives qui ont conduit à la mise au point de l'outil d'intégration implicite, en partant du cas unidimensionnel et en franchissant progressivement les obstacles pour accéder finalement à des simulations quasitridimensionnelles.

Un formalisme original basé sur l'utilisation de coordonnées curvilignes dans le plan vertical est ensuite présenté. Il sera appliqué à la description d'écoulements sur des pentes fortes et variables, telles que celles rencontrées sur un coursier de déversoir, mais son intérêt est en réalité beaucoup plus large. En effet, dès lors que l'hydrodynamique est largement influencée par les conditions opératoires des organes d'évacuation, qu'ils soient de surface ou de fond, une représentation hautement fiable des conditions de mise en vitesse s'impose comme condition incontournable à l'obtention de résultats hydrodynamiques de qualité. Tous les résultats présentés dans ce cadre ont été obtenus par intégration temporelle implicite. La compétitivité des techniques implicites pour la recherche de solutions stationnaires a donc été mise à profit de façon appropriée.

Une application innovante portant sur la simulation à très long terme de l'alluvionnement d'un lac est illustrée. Elle permettra d'introduire un critère supplémentaire au niveau du choix d'un schéma explicite ou implicite, portant sur la distinction entre l'étude d'un régime établi proprement dit et celle d'une succession d'états quasi-stationnaires. La conclusion synthétisera finalement les principaux objectifs atteints et dégagera, à la lumière des résultats obtenus, des pistes de recherche à explorer davantage.

II. Intégration temporelle implicite

II.1 Implicite vs explicite

Le choix entre une méthode d'intégration temporelle implicite et une méthode explicite dépend de la finalité du calcul. Les techniques implicites autorisent le recours à des pas de temps plus longs mais les inversions de matrices qu'elles nécessitent engendrent un coût de calcul lourd et parfois prohibitif. Toutefois, une telle façon de procéder s'avère réellement profitable dès lors que le pas de temps sensiblement plus élevé auquel elles donnent accès demeure tout à fait acceptable eu égard à la précision exigée par le modélisateur sur l'évolution instationnaire. Le recours à une intégration temporelle implicite offre également un maximum d'avantages dans le cas de la recherche d'un écoulement stationnaire, et donc notamment si une stratégie de résolution quasistationnaire est adoptée.

Au contraire, une intégration temporelle explicite est typiquement mise à profit dans le cadre de simulations de nature hautement transitoire. Pour nombre d'applications envisagées au HACH, dont les ruptures de barrages (voir notamment Archambeau & al. [2] ou Dewals & al. [6]), les temps caractéristiques physiques n'excèdent pas sensiblement la valeur du pas de temps imposée pour une intégration temporelle explicite stable et il serait erroné d'utiliser un pas de temps nettement supérieur à ces temps caractéristiques des processus physiques examinés. C'est pourquoi, seule une intégration temporelle explicite était traditionnellement disponible dans la suite de logiciels WOLF.

A titre d'exemple, la Figure 1 illustre un cas de rupture de barrage idéalisée dans un canal rectangulaire à fond mobile (Dewals [5]). L'évolution très rapide du profil en long de la surface libre ainsi que du niveau du lit au cours des tout premiers instants de simulation permet de conclure immédiatement que le temps caractéristique du phénomène est lui aussi extrêmement faible et de toute façon de l'ordre du pas de temps requis pour la stabilité d'un schéma explicite. Il serait donc totalement superflu et excessivement onéreux de recourir à une intégration implicite.

De plus, l'utilisation d'un tel schéma avec des pas de temps plus importants, bien que stable, fournirait pour solution une évolution transitoire des champs dépourvue d'intérêt car incapable d'appréhender l'évolution fortement instationnaire de l'écoulement. Par exemple, des cartes de risque obtenues à l'issue d'une telle simulation se révéleraient sensiblement faussées car des valeurs extrêmes des différents champs auraient échappé au calcul mené avec des pas de temps sensiblement plus grands que le temps caractéristique du phénomène.

Néanmoins, force est de constater que dans une multitude d'applications pratiques, moins extrêmes que la rupture d'ouvrages de retenue, les limites de l'intégration temporelle explicite sont atteintes. Qu'il s'agisse de la recherche proprement dite d'un écoulement en régime ou encore l'implémentation d'un processus quasi-stationnaire à grande échelle spatio-temporelle, le recours à l'implicite se révèle finalement incontournable. Même si cette question demeure encore polémique aux yeux de certains scientifiques, de très nombreuses publications attestent également de la supériorité des méthodes implicites par rapport aux méthodes de Runge-Kutta, même accélérées (Lacor [12]), dans le cas précis de la recherche d'une solution stationnaire (Amaladas & Kamath [1], Fäh [7]).

Nous nous somme donc attelé à la mise sur pied d'un schéma d'intégration temporelle implicite, à même de jouer un rôle précieux dans de nombreuses simulations hydrosédimentaires et pourrait même représenter une condition sine qua non pour mener à bien des prévisions à très grandes échelles spatiale et temporelle.

Figure 1 – Rupture de barrage instantanée sur fond mobile, modélisée à l'aide d'un modèle hydrosédimentaire couplé (Résultats à l'issue de 0.1, 0.2, 0.3 et 0.4 s).

II.2 Méthode

Quel que soit le modèle exploité (Navier-Stokes, Euler, Saint-Venant, ...) la discrétisation spatiale des équations aux dérivées partielles fournit des équations différentielles ordinaires :

$$\frac{d\mathbf{U}}{dt} = \mathbf{R}(\mathbf{U}),\tag{2.1}$$

où U est un vecteur qui contient toutes les inconnues et R désigne l'opérateur spatial discrétisé.

Il faut ensuite à mener à bien l'intégration temporelle de (2.1) afin de déterminer les valeurs des inconnues à chaque instant à partir de la connaissance d'un champ initial donné. Par exemple, un schéma simple de type Euler *explicite* s'écrit :

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = \mathbf{R}(\mathbf{U}^n), \qquad (2.2)$$

où n et n+1 font respectivement référence aux pas de temps connu et inconnu. L'opérateur spatial est évalué à partir des valeurs connues de U. Il apparaît dès lors clairement que (2.2) permet une mise à jour directe de l'inconnue, sans passer par la résolution d'un système d'équations.

Au contraire, si une technique de type *implicite* est utilisée, (2.2) devient :

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = \mathbf{R} \left(\mathbf{U}^{n+1} \right).$$
(2.3)

Toutes les équations doivent donc être traitées simultanément et, une fois discrétisées, elles forment un grand système d'équations algébriques non linéaires à résoudre afin de déterminer la valeur des inconnues au pas de temps suivant. Il existe donc un couplage total de toutes les inconnues à tous les nœuds.

Aussi bien le schéma explicite (2.2) que son homologue implicite (2.3) sont du premier ordre de précision temporelle. Le second ordre de précision dans le temps pourrait par exemple être atteint grâce à un schéma semi-implicite proposé par Crank-Nicholson :

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = \frac{1}{2} \big[\mathbf{R} \, (\mathbf{U}^n) + \mathbf{R} \, (\mathbf{U}^{n+1}) \big], \tag{2.4}$$

qui s'apparente à une différence centrée dans le temps autour de la station temporelle intermédiaire $n + \frac{1}{2}$.

Il est important de se rendre compte de la taille tout à fait conséquente que peut prendre ce système émanant de (2.3) ou (2.4). Par exemple la résolution du modèle des eaux peu profondes sur un maillage de 250 000 éléments conduit à un système algébrique non linéaire de 750 000 inconnues. Si en outre le modèle hydrodynamique était couplé à une équation de bilan de masse pour les sédiments, la taille du système, pour un maillage identique, atteindrait un million d'équations. Aucun algorithme ne permet actuellement de fournir directement la solution exacte d'un tel système non linéaire, constitué d'au moins plusieurs centaines de milliers d'inconnues. Il s'avère par conséquent incontournable de procéder à une linéarisation du système. Une méthode de type Newton-Raphson, avec une seule itération, a été retenue. L'itération unique se justifie ici par la seule volonté de converger vers une configuration stationnaire, sans capter de façon précise l'évolution transitoire de l'écoulement entre son état initial et le régime établi. Nous expliciterons aussi pourquoi, même dans le cas de la recherche d'un régime établi, la méthode de Newton-Raphson ne peut être utilisée seule, indépendamment d'une intégration pseudo-temporelle.

La matrice du système linéaire ainsi obtenu s'appelle le Jacobien **J** du système. Son évaluation, analytique ou numérique, représente un des deux grands défis de l'implémentation d'un schéma numérique implicite. Le second obstacle majeur à surmonter se trouve dans la résolution, suffisamment précise et surtout rapide, du très grand système linéaire.

Le calcul de la matrice Jacobienne sous forme symbolique requiert l'évaluation de dérivées par rapport à toutes les variables discrètes aux nœuds du maillage. La complexité mathématique et surtout algorithmique d'une telle tâche en toute généralité est extrême, mais elle permet de réduire la charge de calcul CPU par rapport à des dérivées évaluées par différences finies, tout en garantissant une précision accrue.

Cette méthodologie a été implémentée au sein de WOLF et a conduit à d'excellents résultats pour des simulations unidimensionnelles : par rapport au cas explicite, le temps de calcul se voit typiquement réduit d'un facteur atteignant plusieurs centaines. Un fractionnement des flux original et simple est utilisé actuellement dans WOLF (Mouzelard [15] et Archambeau & al. [2]), ce qui a rendu abordable l'évaluation analytique de la matrice Jacobienne. Toutefois, ce fractionnement des flux propre à WOLF présente l'inconvénient de produire, en présence de composantes de vitesse très faibles, des flux qui ne sont plus dérivables par rapport aux inconnues aux nœuds. Cette limitation demeure imperceptible dans la toute grande majorité des simulations 1D mais par contre, à quelques exceptions près, son effet néfaste transparaît immédiatement dans le cas de simulations bidimensionnelles. Autrement dit, ce schéma numérique original et très compétitif bénéficie d'avantages substantiels à 1D et dans tous les cas où il est couplé à une intégration temporelle explicite, mais son extension au bidimensionnel implicite n'est pas immédiate. C'est pourquoi le schéma classique de Roe est exploité actuellement pour mener à bien tout type de simulation d'écoulement complètement bidimensionnel en implicite. Dans ce cas, un calcul numérique des dérivées à l'aide d'un quotient différentiel procure une assez bonne approximation des différents éléments de la matrice Jacobienne. La généralisation du 1D au 2D est possible sans difficulté particulière. Il est néanmoins primordial d'apporter un traitement particulier aux termes sources, présents dans le modèle des eaux peu profondes, afin de mettre leur discrétisation en adéquation parfaite avec celle des termes advectifs (Toro [20]).

Dans le cas d'un problème dont on ne recherche que la solution stationnaire, il n'y a aucune raison de se fixer a priori un pas de temps. Au contraire, il est avantageux d'opter à chaque moment pour la valeur maximale admissible de ce pas de temps. Une évaluation efficace de ce pas de temps le plus approprié sera présentée au paragraphe II.6.

II.3 Application aux équations de Saint-Venant

La méthodologie à suivre pour procéder à l'intégration temporelle des modèles exploités en hydrodynamique à surface libre va être illustrée sur base des équations de Saint-Venant particularisées au cas d'un canal prismatique à section rectangulaire. Cellesci constituent un modèle unidimensionnel obtenu à la suite d'une intégration sur la section mouillée des équations de base de la mécanique des fluides (Pirotton & al. [17], Pirotton [16]). Nous bénéficions donc ici du formalisme relativement léger de ce cas particulier et la démarche sera ensuite généralisée au cours des paragraphes ultérieurs. Le système à résoudre se compose d'une équation de continuité et d'un bilan de quantité de mouvement :

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = q_L \tag{2.5}$$

$$\frac{\partial q}{\partial t} + \frac{\partial}{\partial x} \Big(\rho_{xx} uq + \frac{g}{2} h^2 \cos \theta \Big) + gh \frac{\partial z_{\rm b}}{\partial x} - gh \sin \theta - \frac{\tau_x}{\rho b} = 0$$
(2.6)

avec

- *h* la hauteur d'eau,
- *q* le débit spécifique,
- x la coordonnée spatiale,
- t le temps,
- q_L les apports latéraux,
- $z_{\rm b}$ le niveau du lit,
- *b* la largeur du bief,
- ρ_{xx} le coefficient d'inégale répartition des vitesses,
- *u* la vitesse de l'écoulement,
- *g* l'accélération de la pesanteur,
- $\sin \theta$ l'inclinaison par rapport à l'horizontale de l'axe de référence,
- τ_x la contrainte de friction,
- ρ la masse volumique du fluide.

Discrétisé dans le temps, le système constitué des équations (2.5) et (2.6) peut s'écrire :

$$\frac{\mathbf{u}_{i}(t + \Delta t) - \mathbf{u}_{i}(t)}{\Delta t} + \mathcal{O}(\Delta t) = \mathbf{r}_{i}$$
(2.7)

où le second membre r au nœud i dépend uniquement des valeurs aux nœuds i-1, i et i+1 en reconstruction constante :

$$\mathbf{u}_i = \begin{pmatrix} h_i \\ q_i \end{pmatrix} \tag{2.8}$$

et

$$\mathbf{r}_{i} = \begin{pmatrix} q_{L,i} - \frac{\partial q}{\partial x} \Big|_{i} \\ gh_{i} \sin \theta_{i} + \frac{\tau_{x,i}}{\rho b} - \frac{\partial}{\partial x} (\rho_{xx} uq) \Big|_{i} - \frac{\partial}{\partial x} \Big(\frac{g}{2} \cos \theta h^{2} \Big) \Big|_{i} - gh \frac{\partial z_{\mathrm{b}}}{\partial x} \Big|_{i} \end{pmatrix}.$$
(2.9)

Dans l'optique d'un traitement implicite de (2.7), un système d'équations non linéaires doit être résolu à chaque pas de temps :

$$\mathbf{F}(\mathbf{S}, \mathbf{U}^n) = \frac{\mathbf{S} - \mathbf{U}^n}{\Delta t} - \mathbf{R}(\mathbf{S}) = 0$$
(2.10)

dont la solution à rechercher est $S = U^{n+1}$.

Pour résoudre ce système, une méthode de type Newton-Raphson sera utilisée mais, comme la précision instationnaire ne constitue pas la finalité du calcul, seule une itération sera effectuée. Le système linéarisé s'écrit :

$$\mathbf{F}(\mathbf{S}, \mathbf{U}^{n}) \simeq \mathbf{F}(\mathbf{U}^{n}, \mathbf{U}^{n}) + \frac{\partial \mathbf{F}}{\partial \mathbf{S}}\Big|^{n} (\mathbf{S} - \mathbf{U}^{n})$$
(2.11)

soit encore

$$-\mathbf{R}(\mathbf{U}^{n}) + \left(\frac{\mathbf{I}}{\Delta t} - \frac{\partial \mathbf{R}}{\partial \mathbf{U}}\right)^{n} (\mathbf{S} - \mathbf{U}^{n}) = 0$$
(2.12)

Si on définit la matrice Jacobienne

$$\mathbf{J} = \left(\frac{\mathbf{I}}{\Delta t} - \frac{\partial \mathbf{R}}{\partial \mathbf{U}}\right),\tag{2.13}$$

la résolution du système non linéaire se réduit à la résolution du système d'équations algébriques linéaires

$$J\delta U = R(U^n), \qquad (2.14)$$

où δU représente l'accroissement qui sert à effectuer la mise à jour du vecteur d'inconnues :

$$\mathbf{U}^{n+1} = \mathbf{U}^n + \delta \mathbf{U} \,. \tag{2.15}$$

II.4 Construction de la matrice Jacobienne

Un élément générique de la matrice Jacobienne s'écrit

$$\mathbf{J}_{kl} = \frac{\delta_{kl}}{\Delta t} - \frac{\partial \mathbf{R}_k}{\partial \mathbf{U}_l} \qquad \qquad k, l = 1, ..., 2N, \qquad (2.16)$$

où N est le nombre de nœuds du maillage unidimensionnel.

Cette matrice Jacobienne est en réalité constituée de blocs quatre éléments à 1D (ou de neufs éléments à 2D) :

$$[\mathbf{J}]_{ij} = \begin{bmatrix} \frac{\delta_{ij}}{\Delta t} - \frac{\partial \mathbf{r}_{i,1}}{\partial h_j} & -\frac{\partial \mathbf{r}_{i,1}}{\partial q_j} \\ -\frac{\partial \mathbf{r}_{i,2}}{\partial h_j} & \frac{\delta_{ij}}{\Delta t} - \frac{\partial \mathbf{r}_{i,2}}{\partial q_j} \end{bmatrix}$$
(2.17)

où cette fois i, j = 1, ..., N correspondent à l'indice des nœuds du maillage.

Calculer la dérivée de l'opérateur spatial discrétisé par rapport à toutes les variables discrètes de manière symbolique est extrêmement complexe, mais néanmoins réalisable dans certains cas. Cette construction analytique du Jacobien a été implémentée dans le cas du fractionnement des flux exposé au paragraphe II.8.1.

Par différences finies, le calcul numérique des dérivées à l'aide du quotient différentiel proposé ci dessous procure une assez bonne évaluation des différents éléments de la matrice Jacobienne :

$$\frac{\partial \mathbf{R}_{k}}{\partial \mathbf{U}_{l}} \simeq \frac{\mathbf{R}_{k} \left(\mathbf{U}_{m\neq l}, \mathbf{U}_{l} + \delta \mathbf{U}_{l}\right) - \mathbf{R}_{k} \left(\mathbf{U}_{m\neq l}, \mathbf{U}_{l}\right)}{\delta \mathbf{U}_{l}}$$
(2.18)

La perturbation des variables conservatives se calcule via la formule

$$\delta \mathbf{U}_{k} = \varepsilon \, \|\mathbf{U}\|_{k} \tag{2.19}$$

dans laquelle ε vaut typiquement 10⁻⁸ (voir par exemple Rogiest [18]).

Les deux variables de chaque nœud sont donc successivement perturbées et la perturbation correspondante du vecteur R est évaluée en chaque nœud. Cette stratégie conduit à 2N + 1 évaluations de l'opérateur spatial ! En effet, 2N évaluations avec perturbation sont nécessaires en plus d'une évaluation de l'opérateur non perturbé. Il est heureusement possible de sensiblement décroître ce coût de calcul en examinant le domaine d'influence numérique de chaque nœud au cours d'un pas de temps.

En reconstruction constante, l'opérateur spatial en un nœud i n'est fonction que des variables conservatives au nœud lui-même ainsi qu'en ses voisins directs i-1 et i+1. Si une variable conservative se voit perturbée au nœud i, seuls trois élémentsblocs de R sont donc influencés par cette perturbation, et donc seuls trois termes de la ligne correspondante de la matrice J sont non nuls.

En perturbant non pas une variable conservative d'un seul nœud à la fois, mais d'un nœud sur trois, aucune interférence entre les perturbations des différents éléments de R n'est générée. En conséquence, le nombre total minimum d'évaluations de R vaut :

$$3 \times 2 + 1 = 7 \tag{2.20}$$

au lieu de 2N + 1.

u			ι.								
		1	•••		i			i+1		•••	N
	1	X	X		0			0			0
	÷	X	X		÷			÷		[.]	÷
	i-1	0	·.	$\begin{bmatrix} -\frac{\partial \mathbf{r}_{i-1,1}}{\partial h_i} \\ -\frac{\partial \mathbf{r}_{i-1,2}}{\partial h_i} \end{bmatrix}$		$-\frac{\partial \mathbf{r}_{i-1,1}}{\partial q_i} \\ -\frac{\partial \mathbf{r}_{i-1,2}}{\partial q_i} \end{bmatrix}$		0			0
	i			$\begin{bmatrix} \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{i,1}}{\partial h_i} \\ - \frac{\partial \mathbf{r}_{i,2}}{\partial h_i} \end{bmatrix}$		$\left. \begin{array}{c} -\frac{\partial \mathbf{r}_{\!$	$\begin{bmatrix} -\frac{\partial \mathbf{r}_{\!$		$-\frac{\partial \mathbf{r}_{\!$		0
	i+1			$\begin{bmatrix} -\frac{\partial \mathbf{r}_{i+1,1}}{\partial h_i} \\ -\frac{\partial \mathbf{r}_{i+1,2}}{\partial h_i} \end{bmatrix}$		$-\frac{\partial \mathbf{r}_{i+1,1}}{\partial q_i} \\ -\frac{\partial \mathbf{r}_{i+1,2}}{\partial q_i} \end{bmatrix}$	$\begin{bmatrix} \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{i+1,1}}{\partial h_{i+1}} \\ - \frac{\partial \mathbf{r}_{i+1,2}}{\partial h_{i+1}} \end{bmatrix}$		$\begin{aligned} & -\frac{\partial \mathbf{r}_{i+1,1}}{\partial q_{i+1}} \\ & \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{i+1,2}}{\partial q_{i+1}} \end{aligned} \right]$		
	i+2	0			0		$\begin{bmatrix} -\frac{\partial \mathbf{r}_{i+2,1}}{\partial h_{i+1}} \\ -\frac{\partial \mathbf{r}_{i+2,2}}{\partial h_{i+1}} \end{bmatrix}$		$-\frac{\partial \mathbf{r}_{i+2,1}}{\partial q_{i+1}} \\ -\frac{\partial \mathbf{r}_{i+2,2}}{\partial q_{i+1}} \end{bmatrix}$	·.	0 (2.21)
	÷	:	·.,		÷			÷		X	X
	N	0			0			0		X	X

La formulation classique de la matrice Jacobienne en reconstruction constante s'écrit :

Etant donné que la matrice Jacobienne présente un caractère bande et que sa taille est tout à fait conséquente pour toute application réaliste, la stocker entièrement représenterait un gaspillage d'espace mémoire, qui prendrait rapidement des proportions pénalisantes. En pratique, seule la bande de la matrice sera effectivement stockée. En reconstruction constante, la matrice stockée se limitera à 3N blocs de quatre éléments. La matrice Jacobienne sera donc mémorisée de façon optimale selon le canevas :

	1	2	3
1	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{\mathbf{l},1}}{\partial h_1} & & -\frac{\partial \mathbf{r}_{\mathbf{l},1}}{\partial q_1} \\ -\frac{\partial \mathbf{r}_{\mathbf{l},2}}{\partial h_1} & & \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{\mathbf{l},2}}{\partial q_1} \end{bmatrix}$	$ \begin{bmatrix} -\frac{\partial \mathbf{r}_{\mathbf{l},\mathbf{l}}}{\partial h_{\mathbf{l}+1}} & -\frac{\partial \mathbf{r}_{\mathbf{l},\mathbf{l}}}{\partial q_{\mathbf{l}+1}} \\ -\frac{\partial \mathbf{r}_{\mathbf{l},2}}{\partial h_{\mathbf{l}+1}} & -\frac{\partial \mathbf{r}_{\mathbf{l},2}}{\partial q_{\mathbf{l}+1}} \end{bmatrix} $
÷	:	÷	÷
i	$\begin{bmatrix} -\frac{\partial \mathbf{r}_{i,1}}{\partial h_{i-1}} & -\frac{\partial \mathbf{r}_{i,1}}{\partial q_{i-1}} \\ -\frac{\partial \mathbf{r}_{i,2}}{\partial h_{i-1}} & -\frac{\partial \mathbf{r}_{i,2}}{\partial q_{i-1}} \end{bmatrix}$	$ \begin{bmatrix} \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{i,1}}{\partial h_i} & & -\frac{\partial \mathbf{r}_{i,1}}{\partial q_i} \\ -\frac{\partial \mathbf{r}_{i,2}}{\partial h_i} & & \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{i,2}}{\partial q_i} \end{bmatrix} $	$\begin{bmatrix} -\frac{\partial \mathbf{r}_{i,1}}{\partial h_{i+1}} & & -\frac{\partial \mathbf{r}_{i,1}}{\partial q_{i+1}} \\ -\frac{\partial \mathbf{r}_{i,2}}{\partial h_{i+1}} & & -\frac{\partial \mathbf{r}_{i,2}}{\partial q_{i+1}} \end{bmatrix}$
÷	:	÷	:
N	$ \begin{vmatrix} -\frac{\partial \mathbf{r}_{N,1}}{\partial h_{N-1}} & -\frac{\partial \mathbf{r}_{N,1}}{\partial q_{N-1}} \\ -\frac{\partial \mathbf{r}_{N,2}}{\partial h_{N-1}} & -\frac{\partial \mathbf{r}_{N,2}}{\partial q_{N-1}} \end{vmatrix} $	$ \begin{bmatrix} \frac{1}{\Delta t} - \frac{\partial \mathbf{r}_{N,1}}{\partial h_N} & & -\frac{\partial \mathbf{r}_{N,1}}{\partial q_N} \\ -\frac{\partial \mathbf{r}_{N,2}}{\partial h_N} & & \frac{1}{\Delta t} & -\frac{\partial \mathbf{r}_{N,2}}{\partial q_N} \end{bmatrix} $	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

(2.22)

- la première colonne représente l'influence sur un nœud i de la perturbation d'une variable conservative du nœud précédent (i 1),
- la deuxième colonne donne l'influence sur un nœud de la perturbation d'une variable conservative de ce même nœud,
- la dernière colonne indique l'influence sur un nœud i de la perturbation d'une variable conservative au nœud suivant (i + 1).

Sept évaluations de l'opérateur spatial sont requises pour le calcul complet de cette matrice Jacobienne. Tout d'abord une évaluation du vecteur R non perturbé en fonction des valeurs des variables conservatives au temps t. Ensuite suivent six évaluations successives correspondant aux perturbations des 2N variables conservatives. A l'aide de notations cohérentes avec le formalisme adopté précédemment, la démarche peut être synthétisée de la façon suivante :

- deux évaluations de R pour la perturbation des deux variables i 1,
- deux évaluations de R pour la perturbation des deux variables i,
- deux évaluations de R pour la perturbation des deux variables i + 1.

De façon plus détaillée on est conduit aux opérations suivantes :

- perturbation d'une valeur sur trois (valeurs d'indice $3 \times j$ avec j de 1 à N/3) des termes de h_j^t et q_j^t , puis calcul des vecteurs R correspondants,
- perturbation des termes h_j^t et q_j^t d'indices $3 \times j 1$ (avec j de 1 à N/3) calcul des vecteurs R correspondents,
- perturbation des termes h_j^t et q_j^t d'indices $3 \times j 2$ (avec j de 1 à N/3) calcul des vecteurs R correspondents.

L'algorithme se charge ensuite de remplir la matrice Jacobienne. Néanmoins, selon la technique utilisée pour la résolution du système linéaire, il peut être possible d'éviter le calcul explicite (et donc le stockage) du Jacobien. Dans ce cas, la matrice Jacobienne n'intervient que via des produits matrice-vecteur J p, qui peuvent être

estimés de façon beaucoup plus économique par une dérivée directionnelle :

$$J p \simeq \frac{F(U^n + \varepsilon p) - F(U^n)}{\varepsilon}$$
(2.23)

où ε est choisi judicieusement. Il est couramment fixé à une valeur de l'ordre de 10^{-8} . L'expression (2.10) de F, permet de transformer la relation (2.23) :

$$Jp \simeq \frac{\frac{\varepsilon p}{\Delta t} - R(U^n + \varepsilon p) + R(U^n)}{\varepsilon} = \frac{p}{\Delta t} - \frac{R(U^n + \varepsilon p) - R(U^n)}{\varepsilon}.$$
 (2.24)

L'avantage considérable apporté par les relations précédentes réside dans le fait qu'elles évitent la manipulation de matrices de grande taille. En effet, les produits matrice-vecteur sont exprimés directement en termes de vecteurs de dimension 2N.

Cette structure algorithmique visant à évaluer et à stocker de façon optimale le Jacobien a été implémentée aussi bien dans le modèle unidimensionnel qu'au sein du code de calcul bisimensionnel.

où

II.5 Résolution de grands systèmes linéaires

II.5.1 Stockage de très grandes matrices

Comme la matrice Jacobienne est toujours une matrice très creuse, voire bandeblocs, la stocker entièrement serait un gaspillage inacceptable d'espace mémoire. En pratique, comme l'évoquait déjà le paragraphe précédent, seuls les éléments susceptibles de ne pas être nuls sont stockés.

Le rôle déterminant des temps d'accès à la mémoire a été mis en exergue au cours des travaux. Lors des tout premiers développements, la matrice Jacobienne avait été stockée entièrement. Ensuite, un stockage plus judicieux a été implémenté et à partir de ce moment, un gain en temps de calcul a encore été constaté, malgré une augmentation du nombre d'opérations à réaliser afin d'extraire une valeur désirée de la matrice Jacobienne. Ceci confirme la nécessité impérieuse d'intégrer le temps des opérations d'accès à la mémoire en plus du temps de traitement proprement dit des opérations mathématiques dans une stratégie d'optimisation du temps total de calcul.

II.5.2 Stratégie de résolution

Les solveurs directs classiques nécessitent un nombre d'opérations de l'ordre de N^3 et des ressources mémoire de l'ordre de N^2 , où N est la taille du système à résoudre.

Le nombre d'opérations N^3 pour une matrice pleine se réduit toutefois à $N \times p^2$ pour une matrice bande de largeur p. Autrement dit, s'il est possible d'exploiter pleinement le caractère bande de la matrice, le nombre d'opérations requis pour l'inversion du système devient linéaire par rapport à la taille du problème.

Cette structure bande existe pour les problèmes 1D, c'est pourquoi dans ce cas une décomposition LU permet de résoudre le système. A deux dimensions par contre la situation est nettement plus complexe en raison de l'impossibilité d'attribuer des numéros consécutifs à tous les éléments qui s'influencent mutuellement. En conséquence, nous avons opté, dans le cadre du présent travail, pour une méthode itérative basée sur les sous-espaces de Krylov.

II.5.3 Méthode des sous-espaces de Krylov

Seule une description très synthétique de la méthode des sous-espaces de Krylov est exposée dans le présent paragraphe. Le lecteur intéressé est invité à se référer par exemple à Rogiest [18].

Afin de résoudre un grand système linéaire une solution itérative peut être utilisée. Cette stratégie de résolution présente l'avantage de pouvoir alléger sensiblement le coût de calcul pour des systèmes de très grande taille et, d'autre part, d'autoriser un arrêt du processus dès que l'itéré courant offre une précision suffisante. Il y a donc un contrôle permanent de l'évolution du processus et la possibilité concomitante de l'interrompre au moment le plus opportun. La méthode des sous-espaces de Krylov consiste à construire progressivement une base, à laquelle on ajoute un vecteur et donc une dimension à chaque itération. En outre, le résidu du système linéaire est rendu orthogonal à une base, éventuellement différente de la première, mais qui est aussi de dimension croissante à chaque nouvelle itération. Cette contrainte s'exprime via les *conditions de Petrov-Galerkin*.

Si les deux bases sont choisies identiques, une méthode de *projection orthogonale* est obtenue et les conditions d'orthogonalité sont alors baptisées *conditions de Galerkin*. Au contraire, le GMRES, utilisé ici, est une méthode de *projection oblique*.

L'algorithme du GMRES (*General Minimal Residual*) constitue une généralisation à des systèmes quelconques de méthodes plus classiques limitées au cas de matrices symétriques. Une propriété importante du GMRES est celle d'*optimalité*, qui assure que le résidu ne peut que décroître d'une itération à la suivante.

Cette procédure garantit, pour une arithmétique exacte, la convergence vers la solution exacte du système en un nombre d'itérations égal à la taille du système. En pratique il serait bien entendu impossible, mais aussi stérile, d'effectuer un tel nombre d'itérations.

Afin de mettre en œuvre l'orthogonalisation du résidu, il est nécessaire de construire la base orthonormée. L'*algorithme d'Arnoldi*, basé sur la méthode de Gram-Schmidt, est mis à profit à cet effet.

II.5.4 Le préconditionnement

La vitesse de convergence du GMRES dépend étroitement de la racine carrée du nombre de conditionnement de la matrice Jacobienne. En conséquence, un préconditionnement judicieux s'impose.

Ce préconditionnement est possible à droite ou à gauche. Cependant, dans le cas d'un préconditionnement à droite, le résidu est calculé directement alors que cette évaluation serait plus compliquée, et donc plus coûteuse en temps de calcul, si un préconditionnement à gauche était choisi car un système d'équations devrait être résolu pour évaluer le résidu.

II.5.5 Préconditionnement par factorisation incomplète

Une factorisation est qualifiée d'incomplète si celle-ci conduit à ignorer des éléments non nuls (*fill elements*) au cours du processus et dont la position correspond à celle d'éléments nuls de la matrice d'origine. La factorisation incomplète trouve son intérêt dès lors qu'on constate le coût CPU important d'une factorisation exacte.

L'existence d'une factorisation incomplète n'est pas garantie en toute généralité, même dans les cas où la possibilité de réaliser une factorisation complète est assurée. Néanmoins, il a été démontré que l'applicabilité de la technique particulière mise en œuvre, nommée ILU (*Incomplete Lower-Upper factorization*), est très large.

La variante la plus simple, ILU(0), permet d'aboutir à deux matrices L et U qui possèdent des zéros aux mêmes endroits que, respectivement, les parties triangulaires inférieure et supérieure de la matrice d'origine **J**. De ce fait, aucune surcharge en termes de mémoire nécessaire pour le stockage n'est requise pour évaluer cette factorisation incomplète.

A elle seule, une procédure de factorisation inexacte introduit des erreurs qui peuvent porter sévèrement atteinte au pas de temps autorisé et donc dégrader la robustesse ainsi que l'efficience du schéma d'intégration temporelle (Amaladas & Kamath [1]).

II.5.6 Résolution du système linéaire

Dans le cadre des simulations unidimensionnelles réalisées en implicite, la matrice Jacobienne présentait toujours une structure bande particulièrement favorable à la résolution rapide du système par le biais d'une méthode itérative. En effet, étant donné qu'en reconstruction constante, chaque maille n'est directement influencée que par ses deux voisins, la matrice est tridiagonale-blocs. De même, si une reconstruction linéaire est effectuée, seules cinq cellules différentes s'influencent directement et, comme la configuration 1D permet de leur attribuer des places successives au sein de la numérotation, la matrice devient pentadiagonale-blocs. Dans ce cas, une décomposition LU incomplète se révélait à même de produire une approximation suffisante de la solution du grand système linéaire.

Au contraire, les mailles contiguës dans le stencil bidimensionnel ne peuvent être systématiquement ordonnées de façon successive au sein de la numérotation continue. La numérotation des cellules joue dès lors un rôle de premier plan et il devient primordial de l'optimiser. C'est pourquoi la méthode dite de *la tache d'huile*, implémentée au sein du logiciel WOLF, a été exploitée. Son influence nettement favorable se concrétise effectivement par une réduction tangible du nombre d'itérations requises lors de la convergence du GMRES.

II.6 Choix du pas de temps

Bien que théoriquement aucun critère de stabilité ne limite le pas de temps au cours d'une intégration temporelle de type implicite, notre incapacité à résoudre directement un grand système non linéaire va réintroduire une limitation.

En effet, le système non linéaire n'est résolu qu'approximativement par le biais d'une linéarisation, selon la méthode de Newton-Raphson. Cette technique classique offre l'avantage d'assurer une convergence quadratique vers la solution dans un voisinage de celle-ci. Néanmoins, en dépit de cette convergence locale très favorable, la convergence globale de la méthode de Newton-Raphson n'est en rien assurée. Il devient dès lors indispensable de combiner celle-ci avec une évolution dans un pseudo-temps.

La discrétisation spatiale des équations aux dérivées partielles à résoudre permet d'aboutir à un système d'équations différentielles ordinaires dont la seule variable indépendante restante est le temps. Formellement, celles-ci peuvent s'écrire à l'aide de la formule (2.1) :

$$\frac{d\mathbf{U}}{dt} = \mathbf{R}\left(\mathbf{U}\right) \tag{2.25}$$

où U désigne le vecteur des inconnues aux nœuds et R l'opérateur spatial discrétisé. Le schéma (2.2) d'intégration de type Euler implicite pour cette équation s'écrit :

$$\frac{\mathbf{U}^{n+1} - \mathbf{U}^n}{\Delta t} = \mathbf{R} \left(\mathbf{U}^{n+1} \right) \quad \Leftrightarrow \quad \frac{\Delta \mathbf{U}}{\Delta t} = \mathbf{R} \left(\mathbf{U}^n + \Delta \mathbf{U} \right) \tag{2.26}$$

Il constitue un grand système d'équations non linéaires. Les inconnues sont les incréments à apporter aux valeurs aux centres des mailles, contenues dans le vecteur $\Delta U = U^{n+1} - U^n$, de taille égale au produit du nombre de nœuds et du nombre d'inconnues par nœud. Il est bien entendu incontournable de passer à une linéarisation de (2.26) :

$$\left[\frac{\mathrm{I}}{\Delta t} - \frac{d\mathrm{R}}{d\mathrm{U}}\right]^{n} \Delta \mathrm{U} = \mathrm{R}\left(\mathrm{U}^{n}\right)$$
(2.27)

A la limite où $\Delta t \rightarrow \infty$, l'équation (2.27) se réduit à la méthode classique de Newton-Raphson pour déterminer la solution de R(U) = 0. Comme cette dernière n'assure une convergence quadratique qu'à condition que l'itéré initial soit suffisamment proche de la solution, une condition initiale adéquate peut être générée grâce au schéma d'intégration temporelle, i.e. en choisissant des pas de temps plus faibles de façon à conserver dans (2.27) le terme instationnaire.

En conclusion, une stratégie appropriée pour accélérer la convergence vers un régime établi est de permettre au processus itératif de résolution de (2.27) d'imiter un schéma d'intégration temporelle précis en choisissant des pas de temps faibles au début. Puis, au fur et à mesure que l'évolution transitoire rapproche la solution courante du régime établi, de plus grands pas de temps seront à privilégier afin de profiter du caractère inconditionnellement stable de l'intégration temporelle implicite. Cette approche est à la base de la stratégie *Switched Evolution – Relaxation* (SER) proposée par Van Leer (1984). L'odre de grandeur du pas de temps à choisir pour obtenir l'effet désiré est donné par Amaladas & Kamath [1] :

$$\Delta t \simeq \frac{\|\mathbf{U}^n\|}{\|\mathbf{R}(\mathbf{U}^n)\|} \tag{2.28}$$

Plus précisément, dans le logiciel développé, nous nous fixons un nombre de Courant initial CFL^0 qui sera par la suite mis à jour en fonction de la décroissance du résidu :

$$CFL^{n} = CFL^{0} \left[\frac{\|\mathbf{R}(\mathbf{U}^{0})\|}{\|\mathbf{R}(\mathbf{U}^{n})\|} \right]^{SER}$$
(2.29)

où SER désigne un exposant ayant une valeur de l'ordre de 1.

II.7 Efficacité d'une intégration temporelle implicite

La comparaison des pas de temps implicite et explicite est éloquente. Par exemple, un cas de figure d'écoulement fluvial dans un canal courbe (2200 points de calcul, régime fluvial) conduit à un pas de temps explicite maximum de l'ordre du centième de seconde, étant donné la limitation très restrictive portant sur le nombre de Courant. Quel que soit le schéma explicite utilisé, le nombre de Courant demeure toujours de l'ordre de l'unité. Par contre, dans le cas d'une intégration implicite, le nombre de Courant a été choisi égal à 100 dès le début du calcul et s'accroît jusqu'au-delà de 10⁸ à l'image de l'amélioration de la qualité de la solution, ce qui se traduit par des pas de temps (10⁷ s) sans commune mesure avec ceux imposés par le critère de stabilité en explicite. Ces améliorations conduisent in fine au gain d'un facteur 100 en temps de calcul. La convergence quadratique de la méthode de Newton-Raphson dans le voisinage de la solution finale est mise en évidence à la Figure 2. Le schéma d'intégration temporelle implicite a en outre été couplé à un outil de raffinements successifs et automatiques du maillage au cours de la convergence développé récemment au HACH. Les Figure 10 et Figure 11, présentées au paragraphe II.9.1, illustrent la mise en œuvre de cette adaptation automatique du maillage.

Figure 2 – Courbe de convergence d'un calcul d'écoulement en régime stationnaire par intégration temporelle implicite.

II.8 Discrétisation spatiale bidimensionnelle

La discrétisation spatiale habituellement utilisée au HACH se base sur une méthode simple et rapide de fractionnement des flux. Celle-ci sera décrite et discutée en mettant en exergue ses points forts ainsi que certaines limitations. Ensuite, les avantages que peut apporter la technique classique de Roe seront brièvement exposés. Finalement, le schéma récent AUSM sera décrit puis exploité lors d'une application.

II.8.1 Fractionnement des flux

Les méthodes de *fractionnement des flux* (ou *Flux Vector Splitting*, FVS) consistent à séparer le vecteurs flux en deux contributions (Hirsch [11]) :

$$f = f^+ + f^-. (2.30)$$

Les matrices convectives partielles relatives à chacun des deux termes de (2.30) doivent respectivement avoir des valeurs propres non positives et non négatives. Ces matrices, ainsi que leurs valeurs propres, ont été évaluées et une analyse de von Neumann démontrant la stabilité linéaire du schéma a été présentée au cours de travaux antérieurs (voir Dewals [5] ou Mouzelard [15]). Au sens d'une analyse linéaire, la stabilité de ce FVS est garantie quel que soit le régime d'écoulement, y compris pour un modèle hydrosédimentaire complètement couplé.

La physique de la propagation de l'information dans le domaine est prise en compte. En effet, les contributions purement advectives des flux sont systématiquement décentrées vers l'amont. Au contraire le terme de pression est calculé à partir de l'information provenant de l'aval.

Ce schéma original a été appliqué au calcul d'un écoulement unidimensionnel en régime stationnaire. Il s'agit du calcul d'une ligne d'eau avec ressaut sur un lit présentant trois pentes successives (1%, 5% et 1%). Le débit spécifique s'élève à 10 m²/s et la hauteur d'eau aval est fixée à 7 m.

Figure 3 – Ligne d'eau sur une pente multiclinale : solution stabilisée avec un ressaut hydraulique et condition initiale, correspondant à un débit dix fois moindre.

Figure 4 – Evolution du résidu au cours du calcul de la ligne d'eau avec ressaut sur les trois pentes et influence du nombre de Courant initial.

L'examen de la Figure 4 illustre l'efficacité du schéma implicite à produire une solution stabilisée de très haute précision. Deux phases peuvent être distinguées dans la diminution du résidu : une évolution pseudo-temporelle conduisant les itérés successifs dans un voisinage suffisamment étroit autour de la solution recherchée, puis une convergence ultra rapide vers cette solution en régime. Ce processus est géré grâce à l'adaptation judicieuse et automatique du pas de temps, conformément aux considérations présentées au paragraphe II.6. L'allure des deux courbes exposées à la Figure 4 laisse déjà présager la nécessité de systématiquement opter pour un nombre de Courant initial maximum, tout en préservant la propriété de convergence du processus.

La dissipation numérique que le schéma apporte contribue à son extrême robustesse. Parmi les inconvénients de la méthode, citons le traitement non automatique des vitesses faibles divergentes et les discontinuités du flux de pression intervenant pour de faibles débits susceptibles de changer de sens.

La première limitation évoquée est néanmoins maîtrisée actuellement grâce à une traitement particulier approprié de ce genre de situation. De façon générale, la difficulté liée aux faibles composantes de vitesse est illustrée à la Figure 5. Le problème d'une telle configuration résulte de la difficulté à dégager un critère de sens de décentrement approprié de façon suffisamment général. Par exemple, le simple examen de la composante de vitesse normale au bord ne permet pas de distinguer les deux premiers cas représentés à la Figure 5, bien que physiquement ils soient fortement dissemblables. De même, un critère basé uniquement sur la comparaison des orientations α_R et α_L s'avère également incomplet car il ne tient aucunement compte de l'intensité des vecteurs vitesses et ca révèle per conséquent incompte à différencier une gone quesi morte d'une cituation de

et se révèle par conséquent inapte à différencier une zone quasi-morte d'une situation de transport intense.

Figure 5 – Représentation schématique d'un bord où les vecteurs vitesses reconstruits à gauche (u_L) et à droite (u_R) divergent.

II.8.2 F.D.S. de Roe

Le *flux difference splitting* (FDS) de Roe s'est hissée parmi les méthodes les plus reconnues et les plus exploitées pour le calcul des flux numériques dans une discrétisation de type volumes finis. Elle a gagné ses lettres de noblesse dans de très nombreux domaines depuis la mécanique des fluides compressibles, avec le cas-test incontournable du tube à choc, jusqu'à l'étude de la propagation d'ondes raides consécutives à la rupture d'ouvrages de retenue.

Le principe de l'évaluation des flux est fondé sur la résolution exacte d'un problème de Riemann linéarisé à chaque interface entre cellules. Les conditions initiales discontinues sont fournies par les valeurs des inconnues reconstruites à gauche et à droite du bord. Une formulation détaillée du calcul des flux se trouve dans l'ouvrage de Toro [20], ou encore, sous forme adaptée aux équations des eaux peu profondes, leur évaluation est explicitée notamment par Toro [19] et par Mouzelard [15].

Trois expressions mathématiquement équivalentes peuvent être utilisées pour l'évaluation des flux numériques aux interfaces selon la méthode de Roe :

$$\mathbf{F}_{\mathbf{N}}(\mathbf{U}_{L},\mathbf{U}_{R}) = \mathbf{F}_{\mathbf{N}}(\mathbf{U}_{L}) + \mathbf{A}_{\mathbf{N}}^{-}(\mathbf{U}_{R} - \mathbf{U}_{L}), \qquad (2.31)$$

$$\mathbf{F}_{\mathbf{N}}(\mathbf{U}_{L},\mathbf{U}_{R}) = \mathbf{F}_{\mathbf{N}}(\mathbf{U}_{R}) - \mathbf{A}_{\mathbf{N}}^{+}(\mathbf{U}_{R} - \mathbf{U}_{L}), \qquad (2.32)$$

$$F_{N}(U_{L}, U_{R}) = \frac{1}{2}[F_{N}(U_{L}) + F_{N}(U_{R})] - \frac{1}{2}|A_{N}|(U_{R} - U_{L}).$$
(2.33)

où F_N représente le flux numérique à calculer au bord, U_L et U_R sont les valeurs des inconnues reconstruites respectivement à gauche et à droite de l'interface. A_N^+ , A_N^- et $|A_N|$ désignent des décompositions de la matrice Jacobienne propres à la méthode de Roe et explicitées, par exemple, par Mouzelard [15]. La représentation (2.31) est préféré pour évaluer les flux $(F_N)_{i+\frac{1}{2},j}^{n+1}$ et $(F_N)_{i,j+\frac{1}{2}}^{n+1}$, alors que la formulation (2.32) s'avère particulièrement adaptée au calcul de $(F_N)_{i-\frac{1}{2},j}^{n+1}$ et $(F_N)_{i,j-\frac{1}{2}}^{n+1}$.

Le FDS de Roe procure au moins trois avantages substantiels par rapport au FVS précédent. D'une part, la dissipation numérique artificiellement introduite se voit notablement réduite par rapport au FVS. D'autre part les faibles vitesses n'engendrent

aucune singularité car elles sont traitées automatiquement et, de façon corollaire, les flux numériques évalués sont continus par rapport aux valeurs des inconnues aux nœuds. Cette dernière propriété rend le schéma de Roe très adapté à un traitement implicite de l'intégration temporelle.

Toutefois, l'extension du schéma de Roe de son expression originale, adaptée aux équations d'Euler, au modèle des eaux peu profondes n'est pas dépourvue de difficultés. En effet, une mise en adéquation correcte du terme source de pente de fond avec l'évaluation du flux de pression est loin d'être triviale. Plusieurs méthodes ont été proposées pour pallier cet inconvénient, notamment par Garcia-Navarro & Vazquez-Cendon [9], Benkhaldoun & al. [3], Garcia-Navarro & Vazquez [8], Garcia-Navarro & Vazquez-Cendon [10] et Bradford & Sanders [4]. En outre, tout comme pour les équations de la mécanique des fluides, des adaptations, appelées *entropy fix*, doivent être apportées au schéma afin de traiter correctement des ondes de dépression.

II.8.3 Schéma AUSM

Introduction

Plus récent que les précédents, le schéma AUSM a été proposé en 1993 par Liou & Steffen [14] et repris par Liou & Edwards [13]. Le principe fondamental du calcul des flux reste analogue à celui qui a conduit au premier FVS décrit, d'où le nom *Advective Upstream Splitting Method* (AUSM) pour ce schéma intermédiaire entre les FVS et FDS et qui offre une combinaison des avantages des deux autres familles. Tout comme le premier fractionnement des flux, le schéma AUSM se distingue par sa remarquable simplicité, tout en rivalisant avec les performances du FDS de Roe et en les dépassant même dans certains cas, tant en termes de précision que de faible diffusion numérique.

Coût du calcul

Contrairement au schéma de Roe, AUSM ne fait pas intervenir de matrice Jacobienne et écarte de ce fait tout problème lié à la différentiation des flux. En outre, le coût de la construction des vecteurs flux requiert, en chaque nœud, de l'ordre de n^2 opérations, où n est le nombre d'équations. Au contraire, le schéma AUSM nécessite un nombre d'opérations de l'ordre de n seulement, ce qui le rend d'autant plus compétitif si des équations de transport additionnelles sont greffées au modèle. Toute la mesure de cet avantage devrait notamment être perçue lors de l'étude du transport sédimentaire différencié d'un mélange de particules solides de tailles différentes. Dans ce cas effectivement des équations de continuité supplémentaires doivent être ajoutées, en nombre égal au nombre de classes granulométriques considérées.

Formulation du schéma

Le schéma est directement adapté aux équations des eaux peu profondes et non pas présenté dans sa forme originale, relative aux équations d'Euler de la Mécanique des fluides compressibles. La présente adaptation est à notre connaissance inédite.

La méthode repose essentiellement sur la définition judicieuse d'un nombre de Froude à l'interface, en fonction des valeurs reconstruites des inconnues. Ce nombre de Froude particulier est ensuite exploité afin de déterminer les expressions des flux conduisant à une discrétisation stable et précise. Les équations régissant un écoulement instationnaire à surface libre peuvent s'écrire

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial \mathbf{f}}{\partial x} + \frac{\partial \mathbf{g}}{\partial y} = \mathbf{s}$$
 (2.34)

avec

$$\mathbf{u} = \begin{pmatrix} h \\ hu \\ hv \end{pmatrix} \quad ; \quad \mathbf{f} = \begin{pmatrix} hu \\ hu^2 + \frac{g}{2}h^2 \\ huv \end{pmatrix} \quad ; \quad \mathbf{g} = \begin{pmatrix} hv \\ hvu \\ hvu \\ hv^2 + \frac{g}{2}h^2 \end{pmatrix}. \tag{2.35}$$

La première étape revient à distinguer dans les flux donnés en (2.35) deux contributions de significations physiques totalement différentes :

~ ·

$$\mathbf{f} = u \begin{pmatrix} h \\ hu \\ hv \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{g}{2}h^2 \\ 0 \end{pmatrix} = \mathbf{f}^c + \begin{pmatrix} 0 \\ \frac{g}{2}h^2 \\ 0 \end{pmatrix}, \qquad (2.36)$$

à savoir un terme purement convectif et un terme résultant de l'intégration sur la hauteur de la distribution hydrostatique de pression. Le terme convectif apparaît dès lors comme un vecteur de grandeurs scalaires qui seraient advectées passivement par un écoulement de vitesse correctement évaluée.

Etant donné les différences fondamentales entre les deux termes, ils seront discrétisés séparément. Des développements en tout point analogues doivent bien entendu être effectués pour le flux dans l'autre direction spatiale.

A une interface $i + \frac{1}{2}$, où les inconnues reconstruites à droite et à gauche du bord sont munies des indices R et L respectivement, le flux convectif sera calculé à l'aide de

$$f_{\frac{1}{2}}^{c} = Fr_{\frac{1}{2}} \begin{pmatrix} hc \\ hcu \\ hcv \end{pmatrix}_{L/R} = Fr_{\frac{1}{2}} \left[\hat{f}_{\frac{1}{2}}^{c} \right]_{L/R}, \qquad (2.37)$$

où

$$(\bullet)_{L/R} = \begin{cases} (\bullet)_{L} & \text{si } \operatorname{Fr}_{\frac{1}{2}} \ge 0\\ (\bullet)_{R} & \text{si } \operatorname{Fr}_{\frac{1}{2}} < 0 \end{cases}$$
(2.38)

et *c* représente la célérité. Il est intéressant de constater que les relations précédentes ouvrent la voie à toute une famille de schémas, selon la définition choisie pour le nombre de Froude à l'interface.

Notons bien que, malgré sa formulation particulière, la définition (2.38) n'engendre aucune discontinuité dans l'évaluation du flux à l'interface, même pour des valeurs très faibles du Froude. En effet, dans ce cas le flux advectif tend tout simplement vers zéro et la transition du décentrement dans un sens à celui dans l'autre sens a lieu de façon continue. Cette observation ne pourrait en aucun cas être transposée au terme de pression, qui lui ne s'annule qu'à condition que la hauteur d'eau fasse de même. Ceci constitue une différence notoire entre les deux termes, ce qui plaide une fois de plus pour

un traitement numérique séparé de chacun d'eux. En ce qui concerne le flux de pression, il est calculé à l'aide d'une somme pondérée des valeurs extrapolées à gauche et à droite de l'interface.

Il reste à définir l'expression de $Fr_{\frac{1}{2}}$ en fonction des grandeurs reconstruites aux bords. Pour ce faire, les polynômes suivants sont introduits (Toro [19]) :

$$Fr^{\pm} = \begin{cases} \pm \frac{1}{4} (Fr \pm 1)^2 & \text{si } |Fr| \le 1, \\ \frac{1}{2} (Fr \pm |Fr|) & \text{si } |Fr| > 1 \end{cases}$$
(2.39)

et le terme de pression $p = \frac{g}{2}h^2$ sera évalué au moyen de

$$p^{\pm} = \begin{cases} \frac{1}{2} p (1 \pm Fr) & \text{si } |Fr| \le 1, \\ \frac{1}{2} p \frac{Fr \pm |Fr|}{Fr} & \text{si } |Fr| > 1 \end{cases}$$
(2.40)

ou encore

$$p^{\pm} = \begin{cases} \frac{1}{2} p (Fr \pm 1)^2 (2 \mp Fr) & \text{si } |Fr| \le 1, \\ \frac{1}{2} p \frac{Fr \pm |Fr|}{Fr} & \text{si } |Fr| > 1. \end{cases}$$
(2.41)

Les définitions (2.39) et (2.41) sont illustrées graphiquement à la Figure 6 et la Figure 7. Elles permettent finalement le calcul de $Fr_{i+\frac{1}{2}}$ et $p_{i+\frac{1}{2}}$ grâce à :

$$Fr_{i+\frac{1}{2}} = Fr_L^+ + Fr_R^-$$
 et $p_{i+\frac{1}{2}} = p_L^+ + p_R^-$. (2.42)

Figure 6 – Evaluation continue de la partie positive Fr^+ et de la partie négative Fr^- du nombre de Froude à l'interface, conformément à la définition (2.39).

Figure 7 – Représentation des quotients $\frac{p^+}{p}$ et $\frac{p^-}{p}$ fournis par la définition (2.41).

Une application unidimensionnelle a été traitée afin de mettre en évidence certaines différences entre d'une part le fractionnement original des flux et d'autre part la technique AUSM. La comparaison de la Figure 8 avec la Figure 9, toutes deux obtenues en reconstruction constante, met en exergue la dissipation numérique nettement moindre de la méthode AUSM par rapport à la première dans le cas de la ligne d'eau avec ressaut sur un lit présentant trois pentes successives.

Figure 8 – Ligne d'eau sur une pente multiclinale, calculée à l'aide du FVS.

Figure 9 – Ligne d'eau sur une pente multiclinale, calculée à l'aide de la méthode AUSM.

II.9 Exemples de résultats bidimensionnels

II.9.1 Canal courbe

Un exemple de solution hydrodynamique stationnaire a été recherché à l'aide du schéma d'intégration temporelle implicite implémenté. La géométrie correspond à un canal courbe d'un angle totale de 90°, large de 1 mètre. La hauteur d'eau imposée à l'aval vaut également 1 mètre.

Figure 10 – Contour du maillage grossier, solution au premier pas de temps et échelle des débits spécifiques (m^2/s) .

Figure 11 - Solutions stabilisées sur les maillages de 20 cm et 10 cm respectivement.

La technique de maillage à raffinement progressif est mise en œuvre afin de partir d'un état initial tout à fait quelconque et de converger le plus rapidement possible vers un écoulement en équilibre. Cette procédure est illustrée à la Figure 10 et la Figure 11.

Il est intéressant de constater à la Figure 10 que dès le tout premier pas de temps, des débits naissent dans l'ensemble du domaine, qui est donc immédiatement « contaminé » par la condition limite imposée à l'amont.

L'évolution du résidu au cours du temps de calcul est représenté à la Figure 12. Le critère d'arrêt s'élève à 10^{-8} . La condition initiale correspond à un champ de débits nul

Dans le premier cas, deux maillages successifs sont utilisés. Une première solution est recherchée sur un maillage grossier de mailles de 40 cm de large. Ensuite la solution finale est obtenue à l'aide de cellules de 10 cm de côté. Le nombre d'itérations du GMRES est limité à 40 à chaque pas de temps. On observe la décroissance rapide du résidu sur le premier maillage puis sa remontée lors du passage d'une taille de maille à la suivante. Malgré cette remontée du résidu, l'utilisation d'un maillage à raffinement progressif se justifie en constatant la différence notoire de temps CPU requis pour effectuer une itération sur le maillage grossier par rapport au maillage fin. Le second exemple confirme aussi la pertinence de l'approche.

Dans le second cas, un remaillage supplémentaire est utilisé afin d'estimer dans quelle mesure les avantages du remaillage compensent avantageusement les opérations additionnelles requises pour passer d'un grid à l'autre. Cette fois, trois tailles de mailles sont considérées : 40 cm, 20 cm et 10 cm. La figure montre que cette approche s'avère encore plus compétitive que la précédente.

Dans le troisième cas, le nombre d'itérations lors de la résolution des systèmes linéaires n'est pas limité et on observe que le temps de calcul se voit nettement augmenté en raison d'une recherche inutile de précision lors des pas de temps intermédiaires.

Dans le dernier cas finalement, le calcul est effectué, à partir des conditions initiales de débit nul, directement sur le maillage le plus fin. Tous les pas de pseudotemps et, partant, toutes les itérations en vue de la résolution des systèmes linéaires sont réalisés sur le maillage raffiné au maximum, ce qui pénalise visiblement le temps de calcul total. Le nombre d'itérations du GMRES a de nouveau été restreint à un maximum de 40. Sans cette dernière précaution, le temps de calcul était encore doublé par rapport à celui du cas 4.

Figure 12 - Evolution du résidu lors de la recherche d'une solution bidimensionnelle stationnaire.

II.9.2 Comparaison entre Roe et AUSM

Dans la même configuration que le cas précédent, les deux techniques d'évaluation des flux appropriées au schéma implicite ont été comparées. La hauteur imposée à l'aval du canal courbe vaut 1 m et le débit spécifique imposé est également unitaire. Les conditions initiales correspondent à une configuration de repos (débits nuls partout) en présence d'une surface libre horizontale.

La Figure 13 compare la décroissance du résidu en fonction du temps total de calcul. Il est bien entendu essentiel d'établir la comparaison sur base du temps de calcul, seule grandeur tangible et véritablement pénalisante dans le cadre d'une application pratique, et pas seulement sur base du nombre d'itérations. Il apparaît que le FDS de Roe fournit une convergence accélérée par rapport à celle de la technique AUSM. Plus précisément, on observe que la seconde évaluation des flux se révèle peu performante au début de la simulation ou, autrement dit, pour de très faibles vitesses. Constatant que la majorité de ce temps de calcul est lié à la résolution du système linéaire, cette différence de comportement s'interprète immédiatement en concluant à un moins bon conditionnement de la matrice Jacobienne AUSM par rapport à celle de Roe, surtout dans le cas d'un champ de vitesses quasi nulles.

Figure 13 – Evolution du résidu obtenue à l'aide du FDS de Roe et avec la technique AUSM.

II.9.3 Lac de Kol (Inde)

Une partie du présent travail est consacrée à l'évaluation du temps d'alluvionnement du futur lac de Kol sur la rivière Satluj (Inde). La topographie de la partie aval de cette grande retenue a d'ores et déjà été exploitée afin de mettre en évidence l'influence du choix du pas de temps initial sur la vitesse de convergence.

Figure 14 - Visualisation 3D de la topographie aval de Kol et de la surface libre calculée.

Figure 15 – Répartition des débits spécifiques (m²/s) calculés pour le débit de dimensionnement (PMF) du barrage de Kol.

Comme détaillé au paragraphe II.6, le pas de temps est contrôlé par la valeur initiale fixée pour le nombre de Courant et évolue ensuite au gré de l'augmentation de la précision atteinte sur le résultat. Une solution en régime a été calculée sur un maillage de 2500 mailles pour le débit de dimensionnement valant 16500 m³/s.

La condition initiale correspond à une surface libre horizontale, fixée à la cote 645 comme la condition limite aval, et à une approximation grossière pour la répartition des débits. Cette dernière résulte en effet du calcul de quelques pas en explicite.

Figure 16 – Evolution du résidu, en fonction du nombre de Courant initial, au cours du calcul de l'hydrodynamique dans le lac de Kol.

La Figure 16 met en exergue l'influence déterminante du nombre de Courant (CFL) fixé au début du calcul. En effet la simulation débutant avec un nombre CFL relativement faible (100) représente dans un premier temps une évolution instationnaire avant de véritablement converger vers le régime établi. Par contre, si CFL est d'emblée choisi de l'ordre de 1000 ou plus, on observe que les itérés successifs plongent littéralement vers la solution stabilisée dès les premiers pas de temps. Ne perdons toutefois pas de vue que si l'itéré initial est fortement éloigné de la solution finale, un CFL faible sera requis au début du processus en raison du caractère *local* et non *global* de la convergence de l'algorithme de Newton-Raphson. De nouveau, la convergence quadratique est très visible à la Figure 16 qui montre le gain de deux ordres de grandeur au cours de chacune des dernières itérations. De plus, les valeurs extrêmement faibles du résidu sont sans commune mesure avec celles qu'un schéma explicite permet d'atteindre en un temps de calcul semblable.

II.10 Bibliographie

- [1] Amaladas, J.R. & H. Kamath, *Implicit and multigrid procedures for steady-state computations with upwind algorithms*. Computers & Fluids, 1999. **28**: pp. 187-212.
- [2] Archambeau, P., B. Dewals, S. Erpicum, T. Mouzelard & M. Pirotton. Dam-break hazard mitigation with geomorphic flow computation, using WOLF 2D hydrodynamic software. in International Conference on Risk Analysis. 2002. Sintra, Portugal: WIT Press.
- [3] Benkhaldoun, F., L. Monthe & I. Elmahi. A splitting finite volume roe scheme for shallow water equations with source terms. in CADAM meeting. 1998. Wallingford: European Commission.
- [4] Bradford, S.F. & B.F. Sanders, *Finite-Volume Model for Shallow-Water Flooding* of Arbitrary Topography. J. Hydraul. Eng, 2002. **128**(3).
- [5] Dewals, B., *Modélisation numérique du transport sédimentaire*. Diploma Thesis. 2001, University of Liege.
- [6] Dewals, B., P. Archambeau, S. Erpicum, T. Mouzelard & M. Pirotton. *Wolf* software: a fully integrated device applied to modelling gradual dam failures and assessing subsequent risks. in Advances in Fluid Mechanics. 2002. Ghent, Belgium: WIT Press.
- [7] Fäh, R., Numerische Simulation der Strömung in offenen Gerinnen mit beweglicher Sohle. PhD Thesis. 1997, VAW-ETHZ: Zürich.
- [8] Garcia-Navarro, P. & M. Vazquez, Some Considerations and Improvements on the Performance of the Roe's scheme for 1D Irregular Geometries. 1997, Universidade de Santiago do Compostela: Santiago do Compostela.
- [9] Garcia-Navarro, P. & M.E. Vazquez-Cendon. *Roe's scheme for 1D irregular geometries*. in *Hydroinformatics 98*. 1998. Balkema, Rotterdam, NL.
- [10] Garcia-Navarro, P. & M.E. Vazquez-Cendon, *On numerical treatment of the source terms in the shallow water equations*. Computers & Fluids, 2000(29): pp. 951-979.
- [11] Hirsch, *Numerical Computation of internal and external Flows*. Vol. 1: Fundamentals of Numerical Discretization. 2000, Chichester: John Wiley & Sons.
- [12] Lacor, C., Solution of Time Dependent Reynolds Averaged Navier-Stokes Equations with the Finite Volume Method. 1998.
- [13] Liou, M.-S. & J.R. Edwards. *AUSM Schemes and extensions for low mach and multiphase flows.* in *30th Computational Fluid Dynamics.* 1999: von Karman Institute for Fluid Dynamics.
- [14] Liou, M.-S. & C.J. Steffen, *A new flux splitting scheme*. Journal of Computational Physics, 1993. **107**: pp. 23-39.
- [15] Mouzelard, T., Contribution à la modélisation des écoulements quasi tridimensionnels instationnaires à surface libre. Thèse de doctorat. 2002, Université de Liège.
- [16] Pirotton, M., Une Approche Globale pour Modéliser la Genèse et la Propagation des Crues Naturelles ou Accidentelles. Classe des Sciences. 1997: Académie Royale de Belgique.
- [17] Pirotton, M., P. Archambeau, B. Dewals, S. Erpicum & T. Mouzelard, *Cours d'Hydraulique Appliquée*. 2002: Université de Liège.
- [18] Rogiest, P., An Implicit Finite Volume Scheme for the Computation of Unsteady Compressible Flows on Multi-Block Structured Grids. Application to Aeroelastic Problems. PhD Thesis. 1997, University of Liege.
- [19] Toro, E., *Shock-Capturing Methods for Free-Surface Shallow Flows*, ed. Wiley. 2001. 309.
- [20] Toro, E.F., *Riemann Solvers and Numerical Methods for Fluid Dynamics*. 1997, Berlin: Springer.

III. Modélisation d'écoulements à l'aide d'un formalisme en coordonnées curvilignes

III.1 Introduction

Même si les coursiers et déversoirs ne sont pas eux-mêmes le siège de phénomènes de transport solide intense, leur influence est prépondérante sur le niveau exact du plan d'eau amont, où ont lieu les phénomènes d'alluvionnement ou de mise en mouvement des sédiments, par exemple au cours de chasses. Il est par conséquent incontournable d'inclure également ces organes de régulation dans le domaine de simulation, d'autant plus que le rôle tout à fait déterminant de la hauteur d'eau sur la capacité de charriage de tout écoulement est connue.

Le modèle des eaux peu profonde nécessite néanmoins une extension afin de traiter rigoureusement l'écoulement au droit du seuil ainsi que sur les coursiers à inclinaison forte et surtout variable. En effet, comme le montre la Figure 17, les axes sont classiquement orientés selon la pente moyenne de l'écoulement principal de telle sorte que le modèle demeure strictement valide quelle que soit la pente moyenne. Il n'y a donc aucune limitation portant sur l'inclinaison proprement dite mais il n'en va pas de même en ce qui concerne les *variations* locales d'inclinaison des axes. Ces changements d'orientation n'étant pas traités de façon adéquate dans le modèle initial, nous avons proposé une extension rigoureuse et originale, inédite à notre connaissance, autorisant la modélisation correcte d'écoulements moyennés sur la hauteur et dont la direction moyenne dans le plan vertical subit des transitions brusques.

Elle est basée sur une nouvelle formulation très générale du modèle des eaux peu profondes, établie moyennant une intégration entre un lit quelconque évoluant éventuellement avec le temps et une surface libre a priori inconnue, définis tout deux dans un plan vertical muni d'un repère curviligne ad hoc.

Figure 17 - Inclinaison des axes selon la pente moyenne de l'écoulement.

Figure 18 – Exemple de déversoir avec cuillère et jet libre.

III.2 Présentation synthétique de la méthode

Nous avons formulé les équations dans un système de coordonnées curvilignes général, choisi de telle sorte que qu'une des familles de lignes de coordonnées soit *localement* parallèle au fond moyen. Le seconde famille de lignes de coordonnées est prise *localement* normale à la première.

Les équations aux dérivées partielles sont transformées, en procédant non seulement au changement de coordonnées mais également à un changement d'inconnues, de façon à préserver une formulation conservative des équations de bilan, y compris dans le système de coordonnées curvilignes.

La seule hypothèse émise consiste à admettre que le rapport des carrés de la vitesse normale et de la vitesse longitudinale par rapport à la direction principale d'écoulement soit négligeable. Aucune hypothèse ne porte directement sur la pression. On obtient comme résultat de calcul une expression de la pression, qui se réduit à une

distribution hydrostatique uniquement si le repère est cartésien. L'intégration des équations selon la normale locale à la direction principale d'écoulement est ensuite réalisée.

L'intégration spatiale réalisée ici conduit bien entendu à une connaissance moyenne, ou « faible » des différents champs et, en particulier, de la vitesse ou du débit. Néanmoins, le profil réel de vitesse garde une influence et les écarts de la vitesse locale par rapport à la valeur moyenne sur la hauteur se manifesteront directement par le biais de termes additionnels dans la forme intégrée de tous les termes non linéaires. Cette question se pose de façon analogue à celle des tensions turbulentes qui interviennent à l'issue de l'intégration temporelle effectuée lors de la moyenne de Reynolds des équations de la mécanique des fluides. En outre, la variation d'inclinaison des axes avec l'abscisse curviligne donne naissance à de nouvelles non linéarités. Différents traitements vont être testés pour appréhender correctement ces termes non linéaires et in fine fermer le système d'équations.

Les développements décrits ici ont permis de mettre en évidence plusieurs modifications significatives au sein des équations de bilan intégrées sur la hauteur lorsque l'inclinaison variable de l'axe d'écoulement principal est prise en compte. D'une part, les inconnues conservatives qui apparaissent naturellement dans les termes instationnaires des bilans sont affectées d'une correction directement proportionnelle à la variation locale d'inclinaison de l'axe. L'interprétation de cette modification est immédiate car elle traduit simplement l'augmentation de la taille des mailles dans le plan vertical, muni du maillage curviligne présenté, au fur et à mesure que la distance par rapport au fond s'accroît. D'autre part, le terme source directement lié à l'inclinaison des axes se voit lui aussi affecté d'un facteur correctif analogue à celui qui porte sur les inconnues conservatives. L'interprétation est en tout point semblable à la précédente. D'autres termes sources apparaissent du fait des écarts de la distribution de pression par rapport au profil hydrostatique.

III.3 Changement de variables général

Un changement de variables quelconque va être appliqué pour passer de coordonnées curvilignes quelconques dans un plan vertical à des coordonnées cartésiennes :

$$t = t ; (3.1)$$

$$x = x(\xi, \eta) ; \tag{3.2}$$

$$y = y(\xi, \eta). \tag{3.3}$$

La transformation des opérateurs de dérivation s'obtient à l'aide de la matrice Jacobienne du changement de coordonnées :

$$\begin{pmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ 0 & \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix}.$$
(3.4)

On en déduit la transformation inverse :

$$\begin{bmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{J} \frac{\partial y}{\partial \eta} & -\frac{1}{J} \frac{\partial y}{\partial \xi} \\ 0 & -\frac{1}{J} \frac{\partial x}{\partial \eta} & \frac{1}{J} \frac{\partial x}{\partial \xi} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{bmatrix},$$
(3.5)

où J désigne le Jacobien de la transformation, défini par :

$$J = \frac{\partial x}{\partial \xi} \frac{\partial y}{\partial \eta} - \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}.$$
(3.6)

III.4 Transformation d'une équation d'advection quelconque

Le changement de variables décrit ci-dessus va être appliqué à une équation d'advection unidimensionnelle du type :

$$\frac{\partial s}{\partial t} + \frac{\partial f_x}{\partial x} + \frac{\partial f_y}{\partial y} = S.$$
(3.7)

où *s* désigne l'inconnue, $f_x = f_x(s)$ et $f_y = f_y(s)$ sont des flux et *S* représente un terme source. Les résultats du paragraphe précédent permettent d'exprimer immédiatement l'équation aux dérivées partielles dans les nouvelles coordonnées :

$$\frac{\partial s}{\partial t} + \frac{1}{J}\frac{\partial y}{\partial \eta}\frac{\partial f_x}{\partial \xi} - \frac{1}{J}\frac{\partial y}{\partial \xi}\frac{\partial f_x}{\partial \eta} - \frac{1}{J}\frac{\partial x}{\partial \eta}\frac{\partial f_y}{\partial \xi} + \frac{1}{J}\frac{\partial x}{\partial \xi}\frac{\partial f_y}{\partial \eta} = S.$$
(3.8)

Cette dernière équation présente le défaut majeur de ne pas être conservative, ce qui compliquera son traitement numérique, en particulier en présence de champs discontinus. Il est néanmoins possible de pallier cet inconvénient car un changement judicieux d'inconnue permet de retrouver une forme conservative. Celle-ci s'écrit :

$$\frac{\partial}{\partial t}(Js) + \frac{\partial}{\partial \xi} \left(f_x \frac{\partial y}{\partial \eta} - f_y \frac{\partial x}{\partial \eta} \right) + \frac{\partial}{\partial \eta} \left(f_y \frac{\partial x}{\partial \xi} - f_x \frac{\partial y}{\partial \xi} \right) = JS.$$
(3.9)

III.5 Système de coordonnées adapté aux déversoirs

Afin de simuler des écoulements sur un déversoir, tout en conservant la validité des hypothèses justifiant le modèle des eaux peu profondes, il est incontournable d'opter pour un système adapté de coordonnées. L'axe des abscisses (ξ) dans ce nouveau repère sera aligné avec la pente locale du déversoir (Figure 20). La direction du second axe (η) est choisie localement normale à celle du précédent.

L'angle mesuré localement entre l'axe des abscisses curvilignes ξ et l'horizontale est noté α et est compté positivement dans le sens horloger. Il permet d'établir une relation analytique entre les coordonnées des deux systèmes.

Afin d'expliciter ce changement de variables particulier, il est utile de commencer par s'intéresser aux points caractérisés par $\eta = 0$. La Figure 20 permet de constater qu'une variation de la coordonnée ξ , lorsque $\eta = 0$, se répercute de la façon suivante sur les coordonnées cartésiennes :

$$dx = \cos \alpha \ d\xi \tag{3.10}$$

$$dy = -\sin\alpha \ d\xi \tag{3.11}$$

où, en toute généralité, l'angle α demeure bien entendu une fonction de la coordonnée ξ . Cette relation fonctionnelle devra être choisie représentative de la forme du déversoir à modéliser.

L'intégration de ces relations (3.10) et (3.11) entre une valeur nulle et une valeur finale de ξ conduit au changement de variables valable pour tous les points situés sur l'axe des ξ :

$$x - x_0 = \int_0^{\xi} \cos \alpha \ d\xi'$$
 (3.12)

$$y - y_0 = \int_0^{\xi} -\sin \alpha \ d\xi'$$
. (3.13)

Dans un second temps, le rôle de η doit être pris en compte. La Figure 20 illustre également les projections à effectuer pour aboutir finalement au changement de variables complet :

$$x - x_0 = \int_0^{\xi} \cos \alpha \ d\xi' + \eta \sin \alpha \tag{3.14}$$

$$y - y_0 = \int_0^{\xi} -\sin\alpha \ d\xi' + \eta \ \cos\alpha \tag{3.15}$$

où x_0 et y_0 désignent les coordonnées du point correspondant à l'origine des ξ et η .

Les variations de x et de y s'en déduisent immédiatement :

$$dx = \cos\alpha \left(1 + \eta \frac{d\alpha}{d\xi}\right) d\xi + \sin\alpha \ d\eta \tag{3.16}$$

$$dy = -\sin\alpha \left(1 + \eta \frac{d\alpha}{d\xi}\right) d\xi + \cos\alpha \ d\eta \,. \tag{3.17}$$

Figure 19 - Changement de coordonnées adapté à un déversoir.

Figure 20 - Changement de coordonnées pour les points de l'axe ξ .

Ce résultat permet d'évaluer les éléments de la matrice Jacobienne du changement de variables ainsi que le Jacobien correspondant. En toute généralité, ce dernier prend la forme simple :

$$J = 1 + \eta \frac{d\alpha}{d\xi} \tag{3.18}$$

et se ramène à l'unité si l'inclinaison de l'axe est uniforme.

On déduit immédiatement de (3.16) et (3.17) que (3.5) se particularise sous la forme :

$$\begin{pmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{J}\cos\alpha & \sin\alpha \\ 0 & -\frac{1}{J}\sin\alpha & \cos\alpha \end{pmatrix} \begin{pmatrix} \frac{\partial}{\partial t} \\ \frac{\partial}{\partial \xi} \\ \frac{\partial}{\partial \eta} \end{pmatrix}.$$
(3.19)

III.6 Forme locale des équations en coordonnées curvilignes

III.6.1 Composantes des vitesses dans les deux systèmes de coordonnées

Le vecteur représentant la vitesse locale peut être décrit aussi bien par ses composantes dans un des systèmes de coordonnées que dans l'autre. Une relation géométrique élémentaire relie les projections de la vitesse sur les axes des deux repères :

$$\begin{pmatrix} u_{\xi} \\ v_{\eta} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$
(3.20)

où u et v désignent les composantes dans les directions cartésiennes x et y respectivement. u_{ξ} et v_{η} sont les projections du vecteur vitesse sur les axes locaux ξ et η . La relation (3.20) peut être modifiée afin d'effectuer la transformation inverse :

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} u_{\xi} \\ v_{\eta} \end{pmatrix}.$$
 (3.21)

III.6.2 Conservation de la masse

Si l'hypothèse de fluide incompressible est admise, l'équation de continuité s'écrit en coordonnées cartésiennes :

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3.22}$$

Les formules (3.9), (3.16) et (3.17) permettent de reformuler la conservation de la masse dans le système de coordonnées approprié décrit au paragraphe III.5 :

$$\frac{\partial}{\partial\xi} \left(u \cos \alpha - v \sin \alpha \right) + \frac{\partial}{\partial\eta} \left[v \cos \alpha \left(1 + \eta \frac{d\alpha}{d\xi} \right) + u \sin \alpha \left(1 + \eta \frac{d\alpha}{d\xi} \right) \right] = 0 (3.23)$$

ou encore, en exploitant la relation (3.20),

$$\frac{\partial u_{\xi}}{\partial \xi} + \frac{\partial}{\partial \eta} (Jv_{\eta}) = 0 \tag{3.24}$$

On vérifie bien entendu que, si α reste indépendant de ξ , l'équation précédente se simplifie et s'identifie formellement à l'expression du bilan de masse (3.22) en coordonnées cartésiennes :

$$\frac{\partial u_{\xi}}{\partial \xi} + \frac{\partial v_{\eta}}{\partial \eta} = 0.$$
(3.25)

III.6.3 Conservation de la quantité de mouvement

En coordonnées cartésiennes et en l'absence de contributions diffusives ou turbulentes, les équations de bilan de quantité de mouvement s'expriment aisément sous la forme :

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(u^2 + \frac{p}{\rho} \right) + \frac{\partial}{\partial y} (uv) = S_x$$
(3.26)

$$\frac{\partial v}{\partial t} + \frac{\partial}{\partial x}(uv) + \frac{\partial}{\partial y}\left(v^2 + \frac{p}{\rho}\right) = -g + S_y \tag{3.27}$$

où p et ρ représentent respectivement la pression et la masse volumique du liquide. S_x et S_y désignent des termes sources quelconques dans chacune des directions x et y. L'exploitation de l'équation (3.9) permet de passer à des dérivées selon les coordonnées du maillage curviligne :

$$\frac{\partial}{\partial t} \left[\left(1 + \eta \frac{d\alpha}{d\xi} \right) u \right] + \frac{\partial}{\partial \xi} \left[\left(u^2 + \frac{p}{\rho} \right) \cos \alpha - uv \sin \alpha \right] \\ + \frac{\partial}{\partial \eta} \left[\left(1 + \eta \frac{d\alpha}{d\xi} \right) uv \cos \alpha + \left(1 + \eta \frac{d\alpha}{d\xi} \right) \left(u^2 + \frac{p}{\rho} \right) \sin \alpha \right] = J S_x$$
(3.28)

$$\frac{\partial}{\partial t} \left[\left(1 + \eta \frac{d\alpha}{d\xi} \right) v \right] + \frac{\partial}{\partial \xi} \left[uv \cos \alpha - \left(v^2 + \frac{p}{\rho} \right) \sin \alpha \right] \\ + \frac{\partial}{\partial \eta} \left[\left(1 + \eta \frac{d\alpha}{d\xi} \right) \left(v^2 + \frac{p}{\rho} \right) \cos \alpha + \left(1 + \eta \frac{d\alpha}{d\xi} \right) uv \sin \alpha \right] = -g \left(1 + \eta \frac{d\alpha}{d\xi} \right) + J S_y$$
(3.29)

L'utilisation des deux relations précédentes avec (3.20) et (3.21) permet d'aboutir à une équation de quantité de mouvement locale pour les vitesses alignées sur l'axe des abscisses coordonnées curvilignes ξ d'une part et, d'autre part, selon l'axe des ordonnées curvilignes η .

En l'absence de termes sources additionnels S_x et S_y , la combinaison $\cos \alpha \times (3.28) - \sin \alpha \times (3.29)$ conduit à :

$$\frac{\partial}{\partial t} (Ju_{\xi}) + \frac{\partial}{\partial \xi} \left(u_{\xi}^{2} + \frac{p}{\rho} \right) + \frac{\partial}{\partial \eta} \left[Ju_{\xi} v_{\eta} \right] = g J \sin \alpha - \frac{d\alpha}{d\xi} u_{\xi} v_{\eta}$$
(3.30)

De même, $\sin \alpha \times (3.28) + \cos \alpha \times (3.29)$ fournit :

$$\frac{\partial}{\partial t} \left(J v_{\eta} \right) + \frac{\partial}{\partial \xi} \left(u_{\xi} v_{\eta} \right) + \frac{\partial}{\partial \eta} \left[J \left(v_{\eta}^{2} + \frac{p}{\rho} \right) \right] = -g J \cos \alpha + \frac{d\alpha}{d\xi} \left(u_{\xi}^{2} + \frac{p}{\rho} \right). \quad (3.31)$$

III.7 Passage en adimensionnel

Afin d'intégrer sur la hauteur les équations de quantité de mouvement, il est indispensable d'obtenir un découplage des différentes équations, par exemple en tirant d'une équation une information sur la distribution de pression. La mise sous forme adimensionnelle des équations non intégrées permet d'isoler une expression de la pression intégrable sur la hauteur, moyennant l'hypothèse peu restrictive selon laquelle le rapport de la vitesse selon η et de la vitesse dans le sens préférentiel d'écoulement est faible et que, partant, le carré de ce rapport est négligeable.

Des grandeurs caractéristiques vont être définies de façon à rendre les équations adimensionnelles et à mettre en évidence leurs termes prépondérants.

Soient :

 $-h_0$: une épaisseur caractéristique de la lame fluide selon η

– v_{0} : vitesses caractéristiques selon l'axe η

 $-u_0$: vitesse caractéristique selon la direction principale d'écoulement (l'axe ξ).

Avec ces valeurs, construisons une longueur caractéristique selon l'axe ξ en s'aidant du rapport des vitesses caractéristiques:

$$\lambda_{\xi} = h_0 \frac{u_0}{v_0}$$
(3.32)

Les vitesses caractéristiques selon les deux axes peuvent être comparées en définissant :

$$\varepsilon \triangleq \frac{v_0}{u_0} \tag{3.33}$$

Choisissons un temps caractéristique en considérant la direction principale d'écoulement :

$$t_0 = \frac{\lambda_{\xi}}{u_0} = \frac{h_0}{v_0}$$
(3.34)

Nous pouvons rendre fort logiquement adimensionnelles les coordonnées et le temps :

$$\xi' = \frac{\xi}{\lambda_{\varepsilon}} \tag{3.35}$$

$$\eta' = \frac{\eta}{h_0} \tag{3.36}$$

$$t' = \frac{t}{t_0} = \frac{v_0}{h_0}t$$
(3.37)

On en déduit les vitesses adimensionnelles :

$$u' = \frac{u_{\xi}}{u_0} \tag{3.38}$$

$$v' = \frac{v_{\eta}}{v_0} \tag{3.39}$$

Enfin, nous considérons pour la mise sous forme adimensionnelle de la pression l'axe principal d'écoulement le long duquel se développent essentiellement les gradients de pression :

$$p' = \frac{p}{\rho u_0^2}$$
(3.40)

Parallèlement à cette définition, la gravité adimensionnelle s'écrit

$$g' = \frac{gh_0}{u_0^2}.$$
 (3.41)

En introduisant toutes ces relations dans les équations, on obtient pour la continuité :

$$\frac{\partial u'}{\partial \xi'} + \frac{\partial}{\partial \eta'} \left[v' \left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'} \right) \right] = 0, \qquad (3.42)$$

pour la quantité de mouvement selon ξ :

$$\frac{\partial}{\partial t'}(Ju') + \frac{\partial}{\partial \xi'}(u'^2 + p') + \frac{\partial}{\partial \eta'}(Ju'v') = -\frac{g'}{\varepsilon}J\sin\alpha - \varepsilon\frac{d\alpha}{d\xi'}v'u' \quad (3.43)$$

pour la quantité de mouvement selon η :

$$\varepsilon^{2} \left[\frac{\partial}{\partial t'} (Jv') + \frac{\partial}{\partial \xi'} (v'u') + \frac{\partial}{\partial \eta'} (Jv'^{2}) \right] = -g' J \cos \alpha - \frac{\partial}{\partial \eta'} [Jp'] + \varepsilon \frac{d\alpha}{d\xi'} \left(u_{\xi}'^{2} + p' \right)$$
(3.44)

et J devient :

$$J = 1 + \varepsilon \eta' \frac{d\alpha}{d\xi'}.$$
(3.45)

L'hypothèse à formuler revient à supposer ε faible, de telle sorte que son carré soit négligeable vis-à-vis de l'unité, ce qui en dehors de singularités ponctuelles est extrêmement peu restrictif pour la majorité des écoulement de surface. En toute rigueur, il faudrait bien entendu vérifier a posteriori l'ordre de grandeur de tous les termes multipliés par ε^2 .

Dans ces conditions, l'équation dynamique selon η adopte alors une forme dépouillée des termes multipliés par ε^2 . Elle évoque une distribution hydrostatique de la pression selon l'axe η , amendée d'une correction proportionnelle à la variation spatiale d'inclinaison de l'axe ξ :

$$\frac{\partial}{\partial \eta'} \left[\left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'} \right) p' \right] = -g' \cos \alpha \left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'} \right) + \varepsilon \frac{d\alpha}{d\xi'} \left(u_{\xi}^2 + p' \right)$$
(3.46)

ou encore

$$\frac{\partial p'}{\partial \eta'} = -g' \cos \alpha + \varepsilon \frac{d\alpha}{d\xi'} \frac{u_{\xi}^{\prime 2}}{\left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'}\right)}.$$
(3.47)

Le profil de pression peut dès lors être qualifié de quasi-hydrostatique.

L'effet sur les équations d'une hypothèse apparemment peu restrictive nous ramène à la base même de la méthode. Parler d'une seule hypothèse sur ε , c'est ignorer le choix sous-jacent opéré dans la mise en forme adimensionnelle des variables. Il y a là une reconnaissance implicite d'une direction prédominante d'écoulement définie par l'axe ξ .

III.8 Forme locale des équations en coordonnées curvilignes (seconde variante)

III.8.1 Composantes des vitesses dans les deux systèmes de coordonnées

Une définition des nouvelles inconnues, différente de celle donnée par la relation (3.20) est tout autant envisageable. Nous opterons ici et par la suite des développements pour une expression de u_{ξ} qui tienne directement compte de la « dilatation » de l'axe des abscisses curvilignes à mesure que η s'accroît. Autrement dit, nous répercutons sur la définition de la nouvelle vitesse inconnue u_{ξ} le fait qu'un accroissement identique de ξ se traduit dans le plan physique par des déplacements différents en fonction de la valeur de η considérée. Cette approche conduit à la définition

$$\begin{pmatrix} u_{\xi} \\ v_{\eta} \end{pmatrix} = \begin{pmatrix} \frac{\cos \alpha}{J} & -\frac{\sin \alpha}{J} \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix},$$
(3.48)

qui remplace (3.20).

III.8.2 Conservation de la masse

Cette fois, l'équation de continuité (3.22) devient

$$\frac{\partial}{\partial\xi} \Big(u \cos \alpha - v \sin \alpha \Big) + \frac{\partial}{\partial\eta} \Big[v J \cos \alpha + u J \sin \alpha \Big] = 0$$
(3.49)

ou encore, grâce à (3.48),

$$\frac{\partial}{\partial\xi} (Ju_{\xi}) + \frac{\partial}{\partial\eta} (Jv_{\eta}) = 0.$$
(3.50)

III.8.3 Conservation de la quantité de mouvement

De la même façon le bilan de quantité de mouvement (3.26) et (3.27) est transformé en :

$$\frac{\partial}{\partial t}(Ju) + \frac{\partial}{\partial \xi} \left[\left(u^2 + \frac{p}{\rho} \right) \cos \alpha - uv \sin \alpha \right] + \frac{\partial}{\partial \eta} \left[Juv \cos \alpha + J \left(u^2 + \frac{p}{\rho} \right) \sin \alpha \right] = J S_x$$
(3.51)

$$\frac{\partial}{\partial t}(Jv) + \frac{\partial}{\partial \xi} \left[uv \cos \alpha - \left(v^2 + \frac{p}{\rho} \right) \sin \alpha \right] + \frac{\partial}{\partial \eta} \left[J \left(v^2 + \frac{p}{\rho} \right) \cos \alpha + Juv \sin \alpha \right] = -gJ + JS_y$$
(3.52)

De nouveau, la définition (3.48) permet de simplifier les expressions précédentes. En effet, en faisant abstraction des termes sources S_x et S_y , la combinaison $\cos \alpha \times (3.51) - \sin \alpha \times (3.52)$ conduit à :

$$\frac{\partial}{\partial t} \left(J^2 u_{\xi} \right) + \frac{\partial}{\partial \xi} \left(J^2 u_{\xi}^2 + \frac{p}{\rho} \right) + \frac{\partial}{\partial \eta} \left(J^2 u_{\xi} v_{\eta} \right) = g J \sin \alpha - \frac{d\alpha}{d\xi} J u_{\xi} v_{\eta}$$
(3.53)

De même, $\sin \alpha \times (3.51) + \cos \alpha \times (3.52)$ fournit :

$$\frac{\partial}{\partial t} (J v_{\eta}) + \frac{\partial}{\partial \xi} (J u_{\xi} v_{\eta}) + \frac{\partial}{\partial \eta} \left[J \left(v_{\eta}^{2} + \frac{p}{\rho} \right) \right] = -g J \cos \alpha + \frac{d\alpha}{d\xi} \left(J^{2} u_{\xi}^{2} + \frac{p}{\rho} \right) (3.54)$$

A l'issue d'une analyse en variables adimensionnelles, on conclut que (3.54) se réduit à

$$\frac{\partial}{\partial \eta'} \left[\left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'} \right) p' \right] = -g' \cos \alpha \left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'} \right) + \varepsilon \frac{d\alpha}{d\xi'} \left(u_{\xi}^2 + p' \right)$$
(3.55)

ou encore

$$\frac{\partial p'}{\partial \eta'} = -g' \cos \alpha + \varepsilon \frac{d\alpha}{d\xi'} \left(1 + \varepsilon \eta' \frac{d\alpha}{d\xi'} \right) u_{\xi}^{\prime 2}$$
(3.56)

Il apparaît que, si $\frac{d\alpha}{d\xi}$ prend une valeur au maximum de l'ordre de un, le Jacobien peut être pris égal à l'unité dans cette dernière expression, tout en restant cohérent avec l'hypothèse de ne négliger que des termes de l'ordre de ε^2 au maximum. On obtient alors, sous forme dimensionnelle :

$$\frac{\partial p}{\partial \eta} = -g \cos \alpha + \frac{d\alpha}{d\xi} J u_{\xi}^2 \tag{3.57}$$

III.9 Conditions limites en coordonnées curvilignes

III.9.1 Condition limite à la surface libre

L'équation de la surface libre peut s'exprimer par

$$\eta = \eta_{\rm s}\left(\xi, t\right). \tag{3.58}$$

La trajectoire d'une particule fluide est caractérisée par des fonctions $\xi(t)$, $\eta(t)$. Si cette particule suit la surface libre à un instant donné, les fonctions précédentes doivent vérifier l'annulation de la vitesse différentielle selon η entre une particule qui suivrait la frontière et celle du liquide au même endroit :

$$\frac{D}{Dt}[\eta_{\rm s}(\xi,t) - \eta] = 0 \tag{3.59}$$

Etant donné que la dérivée totale s'exprime de façon triviale dans un le repère cartésien, il est particulièrement aisé d'expliciter (3.59) en passant par l'intermédiaire des coordonnées x et y:

$$\frac{\partial \eta_{\rm s}}{\partial t} + \left[u \right]_{\rm s} \frac{\partial \eta_{\rm s}}{\partial x} + \left[v \right]_{\rm s} \frac{\partial \eta_{\rm s}}{\partial y} - \left[v_{\eta} \right]_{\rm s} = 0.$$
(3.60)

Transformée à l'aide de (3.19), la condition limite cinématique dans le système d'axes curvilignes devient :

$$\frac{\partial \eta_{\rm s}}{\partial t} + \left[u_{\xi} \right]_{\rm s} \frac{\partial \eta_{\rm s}}{\partial \xi} - \left[v_{\eta} \right]_{\rm s} = 0, \qquad (3.61)$$

où u_{ξ} correspond à la définition (3.48).

III.9.2 Condition limite au fond

Une démarche en tout point analogue à celle du paragraphe précédent permet de conclure que la condition limite à la borne d'intégration correspondant au fond du canal doit s'écrire :

$$\frac{\partial \eta_{\rm b}}{\partial t} + \left[u_{\xi} \right]_{\rm b} \frac{\partial \eta_{\rm b}}{\partial \xi} - \left[v_{\eta} \right]_{\rm b} = 0.$$
(3.62)

III.10 Intégration de l'équation de continuité sur la hauteur locale

Une intégration selon l'axe des η va être effectuée pour l'équation (3.50) :

$$\int_{\eta_{\rm b}}^{\eta_{\rm s}} \frac{\partial}{\partial \xi} (Ju_{\xi}) d\eta + [Jv_{\eta}]_{\eta_{\rm b}}^{\eta_{\rm s}} = 0$$
(3.63)

La formule de Leibnitz peut être appliquée pour faire apparaître les grandeurs intégrées sur la hauteur :

$$\int_{\eta_{\rm b}}^{\eta_{\rm s}} \frac{\partial}{\partial \xi} (Ju_{\xi}) d\eta = \frac{\partial}{\partial \xi} \left(\int_{\eta_{\rm b}}^{\eta_{\rm s}} Ju_{\xi} \, d\eta \right) - [Ju_{\xi}]_{\eta_{\rm s}} \frac{\partial \eta_{\rm s}}{\partial \xi} + [Ju_{\xi}]_{\eta_{\rm b}} \frac{\partial \eta_{\rm b}}{\partial \xi}. \tag{3.64}$$

L'exploitation des conditions aux bornes d'intégration (3.61) et (3.62) permet d'aboutir à la formulation intégrée sur la hauteur du bilan de masse :

$$\left(1+\eta_{\rm s}\frac{d\alpha}{d\xi}\right)\frac{\partial\eta_{\rm s}}{\partial t} - \left(1+\eta_{\rm b}\frac{d\alpha}{d\xi}\right)\frac{\partial\eta_{\rm b}}{\partial t} + \frac{\partial}{\partial\xi}\left(\int_{\eta_{\rm b}}^{\eta_{\rm s}}Ju_{\xi}\,d\eta\right) = 0 \tag{3.65}$$

De nouveau, un traitement numérique approprié de l'équation aux dérivées partielles ne sera possible qu'à partir d'une écriture conservative de (3.65). Celle-ci prend la forme

$$\frac{\partial}{\partial t} \left[\int_{\eta_{\rm b}}^{\eta_{\rm s}} J d\eta \right] + \frac{\partial}{\partial \xi} \left[\int_{\eta_{\rm b}}^{\eta_{\rm s}} J u_{\xi} d\eta \right] = 0.$$
(3.66)

III.11 Intégration sur la hauteur de l'équation de quantité de mouvement

L'intégration du bilan local de quantité de mouvement (3.53) conduit immédiatement à

$$\int_{\eta_{\rm b}}^{\eta_{\rm s}} \left[J^2 \frac{\partial u_{\xi}}{\partial t} \right] d\eta + \int_{\eta_{\rm b}}^{\eta_{\rm s}} \left[\frac{\partial}{\partial \xi} \left(J^2 u_{\xi}^2 + \frac{p}{\rho} \right) \right] d\eta + \left[J^2 u_{\xi} v_{\eta} \right]_{\eta_{\rm b}}^{\eta_{\rm s}} \\
= \int_{\eta_{\rm b}}^{\eta_{\rm s}} J \, d\eta \, g \sin \alpha - \frac{d\alpha}{d\xi} \int_{\eta_{\rm b}}^{\eta_{\rm s}} \left(J u_{\xi} v_{\eta} \right) d\eta$$
(3.67)

L'utilisation de la formule de Leibnitz ainsi que des conditions limites (3.61) et (3.62) permet de simplifier l'expression précédente et conduit à

$$\frac{\partial}{\partial t} \int_{\eta_{\rm b}}^{\eta_{\rm s}} \left(J^2 u_{\xi}\right) d\eta + \frac{\partial}{\partial \xi} \int_{\eta_{\rm b}}^{\eta_{\rm s}} \left(J^2 u_{\xi}^2 + \frac{p}{\rho}\right) d\eta + \left[-\frac{p}{\rho} \frac{\partial \eta}{\partial \xi}\right]_{\eta_{\rm b}}^{\eta_{\rm s}} = g \sin \alpha \int_{\eta_{\rm b}}^{\eta_{\rm s}} J \, d\eta - \frac{d\alpha}{d\xi} \int_{\eta_{\rm b}}^{\eta_{\rm s}} \left(J u_{\xi} v_{\eta}\right) d\eta$$
(3.68)

L'utilité de l'inclinaison des axes selon la direction principale locale de l'écoulement réside dans la distribution de pression obtenue dans la direction orthogonale à la précédente. Celle-ci s'exprime par :

$$\frac{\partial}{\partial \eta} \left(\frac{p}{\rho}\right) = -g \cos \alpha + \frac{d\alpha}{d\xi} u_{\xi}^{2} \left(1 + \eta \frac{d\alpha}{d\xi}\right) \quad \Rightarrow \quad \frac{p(\eta)}{\rho} = g \cos \alpha (\eta_{s} - \eta) - \frac{d\alpha}{d\xi} \int_{\eta}^{\eta_{s}} J u_{\xi}^{2} d\eta$$
(3.69)

III.12 Inconnues conservatives

III.12.1 Définitions

L'intégration sur la hauteur des bilans de masse et de quantité de mouvement font apparaître tout naturellement des inconnues conservatives macroscopiques. Elles s'identifient, d'une part, à la masse totale se trouvant dans un élément de contrôle et, d'autre part, à la quantité de mouvement totale selon ξ dans un même élément :

$$s_1 \triangleq \int_{\eta_b}^{\eta_s} J \, d\eta \,, \tag{3.70}$$

$$s_2 \triangleq \int_{\eta_{\rm b}}^{\eta_{\rm s}} J^2 u_{\xi} \, d\eta \,. \tag{3.71}$$

Avant d'entreprendre la résolution du système formé par les équations de conservation (3.66) et (3.68), il est nécessaire d'exprimer leurs seconds membres respectifs en fonction des deux véritables inconnues du problème : s_1 et s_2 . Pour la plupart des termes, cette retranscription ne s'avère pas triviale et requiert généralement une hypothèse sur le profil de vitesse. Il apparaît aussi clairement que la valeur de la hauteur d'eau locale h devra faire l'objet d'une évaluation à partir de la première inconnue conservative, afin d'être substituée in fine dans plusieurs termes de (3.66) et (3.68).

III.12.2 Evaluation de la hauteur d'eau

L'intégrale (3.70) peut être évaluée analytiquement :

$$s_{1} = h \left(1 + \frac{d\alpha}{d\xi} \frac{\eta_{\rm b} + \eta_{\rm s}}{2} \right) = \left(1 + \frac{d\alpha}{d\xi} \eta_{\rm b} \right) h + \frac{d\alpha}{d\xi} \frac{h^{2}}{2}.$$
(3.72)

Il résulte de (3.72) que la hauteur d'eau h est la solution d'une équation polynomiale faisant intervenir l'inconnue conservative s_1 . Une grande prudence dans la résolution de (3.72) est primordiale étant donné que le *degré* du polynôme change selon que l'inclinaison des axes soit variable localement ou pas. Si l'inclinaison α ne varie pas dans la zone de calcul considérée, la relation précédente dégénère en une simple égalité entre la hauteur d'eau et l'inconnue conservative correspondante.

Par contre, dans le cas où la dérivée de α par rapport à la coordonnée curviligne ξ ne s'annule pas, le polynôme du second degré fournit comme solution :

$$h_{\pm} = \left(\frac{d\alpha}{d\xi}\right)^{-1} \left(1 + \frac{d\alpha}{d\xi}\eta_{\rm b}\right) \left[-1 \pm \sqrt{1 + 2\frac{d\alpha}{d\xi}\left(1 + \frac{d\alpha}{d\xi}\eta_{\rm b}\right)^{-2}s_{\rm 1}}\right].$$
 (3.73)

Le signe devant le radical doit être choisi de la seule façon possible pour obtenir une hauteur positive. Dans le cas particulier, fréquemment rencontré sur un coursier, où l'axe des abscisses curvilignes coïncide avec le fond, (3.73) prend la forme simplifiée

$$h_{\pm} = \left(\frac{d\alpha}{d\xi}\right)^{-1} \left[-1 \pm \sqrt{1 + 2\frac{d\alpha}{d\xi}s_1}\right].$$
(3.74)

Une approximation de (3.73), valable au premier ordre et pour $\frac{d\alpha}{d\xi}$ positif, s'écrit :

$$h \simeq s_1 \left[1 - \frac{d\alpha}{d\xi} \left(\eta_{\rm b} + \frac{s_1}{2} \right) \right]. \tag{3.75}$$

Son allure en l'absence de variation topographiques par rapport à l'axe ξ , ainsi que celle de la formule (3.74) dans les mêmes conditions, sont représentées à la Figure 21.

Figure 21 – Rapport entre la hauteur d'eau h et la première inconnue conservative s_1 en fonction de la grandeur adimensionnelle $\frac{d\alpha}{d\xi}s_1$ et pour $\eta_b = 0$.

III.12.3 Signification des inconnues conservatives

L'inconnue conservative s_1 ne représente rien d'autre qu'une mesure directe de la quantité de matière incluse dans un volume de contrôle. Etant donné que le fluide considéré est incompressible, s_1 s'identifie ici à la surface de l'élément de contrôle.

Une vérification peut être effectuée aisément dans le où ξ suit une courbe simple à décrire. A titre d'exemple, il est possible de confirmer que l'intégration du Jacobien entre les bornes correspondant à une portion de secteur de disque rend bien la surface de celuici. En effet, si le secteur considéré correspond à un quart de tour, il est facile d'estimer la valeur de la variation uniforme d'inclinaison de l'axe :

$$\frac{d\alpha}{d\xi} = \frac{\Delta\alpha}{\Delta\xi} = \frac{\frac{\pi}{2} - 0}{\frac{\pi}{2}r_0 - 0} = \frac{1}{r_0}.$$
(3.76)

Dès lors l'intégrale de s_1 s'effectue de la façon suivante :

$$\int_{0}^{\frac{1}{2}r_{0}} \left[\int_{0}^{r_{1}-r_{0}} \left(1+r\frac{d\alpha}{d\xi} \right) dr \right] d\xi = \frac{\pi}{2} r_{0} \left(r_{1}-r_{0} \right) \left(1+\frac{r_{1}-r_{0}}{2r_{0}} \right) = \frac{\pi}{4} \left(r_{1}^{2}-r_{0}^{2} \right) \quad (3.77)$$

et, conformément à toute attente, fournit bien la valeur de la surface du volume de contrôle 2D.

III.13 Hypothèses sur la distribution de vitesse

III.13.1 Distribution uniforme

Une première hypothèse communément admise consiste à supposer que la distribution selon η de la vitesse dans la direction principale d'écoulement est uniforme en première approximation ($u_{\xi} = \overline{u}_{\xi}$ et $\tilde{u}_{\xi} = 0$). Dans ce cas particulier, l'intégration de (3.57) peut être calculée explicitement :

$$\frac{p(\eta)}{\rho} = g \cos \alpha \, (\eta_{\rm s} - \eta) - \frac{d\alpha}{d\xi} u_{\xi}^2 \, (\eta_{\rm s} - \eta) \tag{3.78}$$

où la constante d'intégration a été fixée de façon à annuler la pression relative à la surface libre. Il devient dès lors aisé de remplacer l'expression de la pression locale au sein de l'équation dynamique écrite dans la direction ξ :

$$\begin{aligned} \frac{\partial s_2}{\partial t} + \frac{\partial}{\partial \xi} \bigg[u_{\xi} s_2 + \frac{h^2}{2} \bigg(g \cos \alpha + \frac{\hat{p}}{\frac{h^2}{2}} \bigg) \bigg] + \big(gh \cos \alpha + \hat{p}_{\rm b} \big) \frac{\partial \eta_{\rm b}}{\partial \xi} \\ &= g s_1 \sin \alpha - \frac{d\alpha}{d\xi} \int_{\eta_{\rm b}}^{\eta_{\rm s}} \big(Ju_{\xi} v_{\eta} \big) d\eta \end{aligned}$$
(3.79)

où \hat{p} désigne la pression additionnelle consécutive à la variation d'inclinaison des axes :

$$\hat{p} \triangleq -\frac{\hbar^2}{2} u_{\xi}^2 \frac{d\alpha}{d\xi} \left[1 + \frac{d\alpha}{d\xi} \left(\eta_{\rm b} + \frac{2}{3}h \right) \right]. \tag{3.80}$$

$$\hat{p}_{\rm b} \triangleq -u_{\xi}^2 \frac{d\alpha}{d\xi} s_1 \tag{3.81}$$

Les équations à résoudre deviennent :

$$\frac{\partial s_1}{\partial t} + \frac{\partial}{\partial \xi} (s_1 u_{\xi}) = 0 ; \qquad (3.82)$$

$$\frac{\partial s_2}{\partial t} + \frac{\partial}{\partial \xi} \left[s_2 u_{\xi} + g \frac{h^2}{2} \cos \alpha + \hat{p} \right] + \left(gh \cos \alpha + \hat{p}_{\rm b} \right) \frac{\partial \eta_{\rm b}}{\partial \xi} = g s_1 \sin \alpha \quad (3.83)$$

où $\,h\,=\,\eta_{\rm s}\,-\,\eta_{\rm b}\,$ est calculé à partir de $\,s_{1}\,$ à l'aide de (3.73).

La vitesse selon ξ est déterminée à partir de :

$$u_{\xi} = s_2 \left(\int_{\eta_{\rm b}}^{\eta_{\rm s}} J^2 \, d\eta \right)^{-1} = s_2 \frac{3 \frac{d\alpha}{d\xi}}{\left(1 + \eta_{\rm s} \frac{d\alpha}{d\xi} \right)^3 - \left(1 + \eta_{\rm b} \frac{d\alpha}{d\xi} \right)^3}$$

$$= \frac{s_2}{h + (\eta_{\rm s}^2 - \eta_{\rm b}^2) \frac{d\alpha}{d\xi} + \frac{1}{3} (\eta_{\rm s}^3 - \eta_{\rm b}^3) \left(\frac{d\alpha}{d\xi} \right)^2}$$
(3.84)

qui, en l'absence d'irrégularités topographiques ($\eta_{\rm b}\equiv 0$), se réduit à

$$u_{\xi} = \frac{s_2}{h} \left[1 + h \frac{d\alpha}{d\xi} + \frac{1}{3} h^2 \left(\frac{d\alpha}{d\xi} \right)^2 \right]^{-1}.$$
 (3.85)

Figure 22 – Rapport entre la vitesse u_{ξ} et le quotient des deux inconnues conservatives $\frac{s_2}{s_1}$.

III.13.2 Autres hypothèses

D'autres expressions pourraient bien entendu être admises pour la distribution selon η de la composante u_{ξ} de la vitesse. Néanmoins, deux faits au moins tendent à plaider en faveur du choix privilégié d'hypothèses très simples dans ce cadre. D'une part, la complexité instrumentale de toute tentative de mesure cette répartition de vitesse sur la hauteur de liquide rend difficile l'obtention de données expérimentales représentatives. Il existe donc peu d'éléments véritablement fiables à même d'orienter de façon pertinente l'adoption d'une hypothèse orientée vers une distribution sophistiquée de u_{ξ} en fonction de η . D'autre part, toute complexification de la relation $u_{\xi}(\eta)$ engendre une surcharge concomitante et significative du formalisme mathématique dans tous les développements analytiques à mener.

Il apparaît en outre que l'hypothèse retenue au paragraphe précédent se révèle d'un degré de réalisme très acceptable. Elle reproduit notamment la décroissance de la vitesse à proximité du fond dans les zones où l'inclinaison de l'axe de référence varie.

III.14 Comparaison des surpressions calculées avec la formule de Gumensky

Il est reconnu actuellement dans le domaine des Constructions hydrauliques qu'un rôle prépondérant peut être joué par les forces centrifuges au droit de la cuillère d'un déversoir. Longtemps ignorées par les concepteurs de telles structures, elles se manifestent par des surpressions générées à la suite de la déflection substantielle et parfois brusque de la lame d'eau. Avec d'autres expérimentateurs, Gumensky s'est penché sur ce problème et l'a étudié par la voie de différents modèles physiques. Il conclut ses travaux notamment par ces mots probants : "The effect of centrifugal force in deflected streams is seldom evaluated, and the walls of buckets often remain standing in a condition of near failure" (d'après Mason [4]).

A la suite des expériences menées, Gumensky (1954) a proposé une formule pour évaluer la pression interne maximale dans la perspective d'une amélioration du design de ce type de structure. Cette relation a été reprise ultérieurement par Mason [4], qui la formule de la façon suivante :

$$p_{\rm bucket} = \left(1 + \frac{u^2}{gR}\right)\rho gh \tag{3.86}$$

avec u et h désignant respectivement la vitesse et la hauteur de l'écoulement au bas du coursier. R représente le rayon de courbure de la cuillère et g l'accélération de la pesanteur. La relation (3.86) met bien en exergue la contribution hydrostatique à laquelle se greffe une correction dynamique. Cette expression doit être comparée à la formulation du facteur devant la pente de fond dans l'équation (3.83), grâce à la définition (3.81) :

$$\rho gh \cos \alpha + \rho \hat{p}_{\rm b} = \rho gh \cos \alpha + \rho \left(-u_{\xi}^2 \frac{d\alpha}{d\xi} s_1 \right) = \rho gh \left[\cos \alpha + \frac{u_{\xi}^2}{g} \left(-\frac{d\alpha}{d\xi} \right) \frac{s_1}{h} \right],$$
(3.87)

où l'ensemble a été multiplié par la masse volumique de l'eau pour des raisons de dimensions.

La très grande similarité entre les deux expressions précédentes permet de voir (3.86) comme une borne supérieure de (3.87). En effet, conformément aux définitions admises depuis le début, la géométrie de la cuillère correspond à une valeur négative de $\frac{d\alpha}{d\xi}$ et, dès lors, la Figure 21 montre clairement que $s_1 < h$. De plus, l'enseignement tiré de l'exemple (3.76) permet d'identifier la valeur absolue de $\frac{d\alpha}{d\xi}$ à l'inverse du rayon de courbure local de la structure. En tirant profit de ces différents éléments, on est amené à conclure en réécrivant (3.87) sous la forme

$$\rho gh\left[\cos\alpha + \frac{u_{\xi}^2}{g} \left| \frac{d\alpha}{d\xi} \right| \frac{s_1}{h} \right] = \rho gh\left[\cos\alpha + \frac{u_{\xi}^2}{gR} \frac{s_1}{h} \right] \le \rho gh\left(1 + \frac{u_{\xi}^2}{gR}\right).$$
(3.88)

La majoration effectuée s'identifie parfaitement à la formule de Gumensky, ce qui constitue une validation partielle de nos développements en coordonnées curvilignes et permet de confirmer, dans ce cas particulier, la pertinence de notre théorie, ainsi que le caractère judicieux des hypothèses émises.

Par ailleurs, des mesures réalisées au laboratoire du HACH corroborent également les valeurs des surpressions prédites par la théorie en coordonnées curvilignes. Les grandeurs fournies ci-dessous se rapportent au prototype et non au modèle de laboratoire mis à l'échelle. Une marge d'erreur est à considérer sur ces mesures étant donné le caractère légèrement bidimensionnel du déversoir étudié et la difficulté de mesurer de faibles hauteurs d'eau en présence d'une surface libre assez irrégulière. Afin de faciliter l'interprétation des valeurs numériques, les pressions calculées sont rapportées à des hauteurs de charge en les divisant par le produit ρg . Le résultat de l'essai est relaté au Tableau III-1. Les conditions d'écoulements correspondent au débit de dimensionnement de 16500 m³/s, s'écoulant sur le déversoir large de 70 m. La hauteur mesurée équivaut à 7 m et le rayon de courbure de la cuillère a été fixé à 20 m (Lejeune & al. [3]). La formule (3.72) a été exploitée pour évaluer la première inconnue conservative en fonction de la hauteur d'eau. Le Tableau III-1 montre la concordance des ordres de grandeur des pressions prédites par les deux modèles et celles constatées expérimentalement. De plus, les valeurs obtenues confirment que la formule de Gumensky est une majoration de celle obtenue via les coordonnées curvilignes. Elle s'avère donc plus sécuritaire mais, en revanche, conduit à un dimensionnement plus onéreux.

Tableau III-1 : Comparaison des pressions mesurées et calculées sur la cuillère du déversoir de Kol Dam.

Pression mesurée (m)	Pression selon Gumesnky (m)	Erreur relative	Pression selon (3.87) (m)	Erreur relative
40	46.5	16 %	39.5	1.4 %

III.15 Hypothèses concernant la distribution de vitesse à l'amont

Le seuil brusque situé juste à l'amont de la plupart des déversoirs constitue une difficulté supplémentaire dans la modélisation de l'écoulement. En effet, le modèle des eaux peu profondes est strictement valide pour des variations graduelles de la pente de fond et la fiabilité des résultats n'est pas nécessairement assurée en présence de changements brusques, voir de discontinuités, du niveau du lit. Ce domaine particulier fait encore l'objet de recherches poussées au niveau international, comme le confirment les travaux récents d'Alcrudo & Benkhaldoun [1].

La méthodologie envisagée ici consiste à émettre une hypothèse concernant le profil de vitesse dans la région immédiatement à l'amont du seuil et à répercuter l'allure particulière du champ de vitesse retenu sur le bilan de quantité de mouvement par le biais des coefficients d'inégale répartition des vitesses ρ_{xx} , ρ_{xy} , etc. Ces coefficients sont définis comme le quotient

$$\rho_{ij} \triangleq \frac{\langle u^2 \rangle}{\langle u \rangle^2} \tag{3.89}$$

où $\langle u^2 \rangle$ désigne la moyenne sur la hauteur d'eau du carré de la vitesse et $\langle u \rangle$ représente la vitesse moyenne sur la lame de fluide. Le coefficient (3.89) ne vaut l'unité que si le profil selon la verticale de la composante horizontale de vitesse est uniforme. Dans tous les autres cas, il sera supérieur à un en raison des termes de couplages non linéaires apparaissant au numérateur lors de l'opération de moyenne.

III.15.1 Zone morte

Dans un premier temps, la lame fluide est simplement supposée stratifiée en deux zones. D'une part une partie où la vitesse horizontale u présente une distribution uniforme sur cette portion de la hauteur et, d'autre part, une zone où la vitesse reste nulle (Figure 23).

Figure 23 – Distribution de vitesse selon la verticale présentant une zone morte dans le fond.

La vitesse moyenne s'estime grâce à :

$$\langle u \rangle = \frac{1}{h} \int_{0}^{h} u(y) \, dy = \frac{1}{h} \int_{h_0}^{h} U \, dy = \frac{h - h_0}{h} U \tag{3.90}$$

et la moyenne du carré de la vitesse est donnée par :

$$\langle u^2 \rangle = \frac{1}{h} \int_0^h u^2 dy = \frac{1}{h} \int_{h_0}^h U^2 dy = \frac{h - h_0}{h} U^2,$$
 (3.91)

où h_0 représente la hauteur de la zone morte. Le coefficient d'inégale répartition des vitesses s'en déduit immédiatement :

$$\rho_{xx} = \frac{\langle u^2 \rangle}{\langle u \rangle^2} = \frac{h - h_0}{h} U^2 \left(\frac{h - h_0}{h}U\right)^{-2} = \frac{h}{h - h_0} > 1.$$
(3.92)

III.15.2 Zone de recirculation

Une hypothèse alternative consiste à admettre que la zone inférieure qui était précédemment supposée au repos est, cette fois, le siège d'une recirculation. Le profil de vitesse selon la hauteur se compose donc d'une zone uniforme u = U, puis d'une région

où la vitesse décroît (linéairement par hypothèse), passe par zéro et change de signe pour rejoindre la valeur opposée -U (Figure 24).

Figure 24 - Distribution de vitesse selon la verticale présentant une zone de recirculation dans le fond.

La vitesse moyenne vaut :

$$\langle u \rangle = \frac{1}{h} \int_{0}^{h} u(y) dy = \frac{1}{h} \int_{h_{0}}^{h} U dy = \frac{h - h_{0}}{h} U.$$
(3.93)

La moyenne sur la hauteur totale du carré de la vitesse vaut :

$$\langle u^2 \rangle = \frac{1}{h} \int_0^h u^2 dy = \frac{1}{h} \int_0^{h_0} U^2 \left(2\frac{y}{h_0} - 1 \right)^2 dy + \frac{1}{h} \int_{h_0}^h U^2 dy = \frac{1}{h} \left(h - \frac{2}{3} h_0 \right) U^2 . (3.94)$$

Le coefficient d'inégale répartition des vitesses vaut par conséquent :

$$\rho_{xx} = \frac{h\left(h - \frac{2}{3}h_0\right)}{\left(h - h_0\right)^2} U^2 > 1.$$
(3.95)

III.15.3 Décélération graduelle du fluide vers le fond

Cette fois, la vitesse est uniforme dans la région supérieure de la nappe de fluide et décroît linéairement vers zéro au fond (Figure 25).

Figure 25 - Distribution de vitesse selon la verticale en présence d'une zone de décélération progressive .

Les relations suivantes se déduisent directement de la répartition de vitesse :

$$\langle u \rangle = \frac{1}{h} \left(h - \frac{h_0}{2} \right) U \quad ; \tag{3.96}$$

$$\langle u^2 \rangle = \frac{1}{h} \left(h - \frac{2}{3} h_0 \right) U^2.$$
 (3.97)

On en conclut immédiatement que

$$\rho_{xx} = \frac{h\left(h - \frac{2}{3}h_0\right)}{\left(h - \frac{1}{2}h_0\right)^2}U^2 > 1.$$
(3.98)

III.16 Influence d'une pression additionnelle

Si le flux de quantité de mouvement se voit affecté d'un terme de pression additionnelle, rendant compte de l'écart entre la pression réelle et une distribution hydrostatique, l'influence de la nouvelle contribution sur la hauteur dépend directement du régime d'écoulement. Ce paragraphe a pour but de mettre en évidence la différence fondamentale de comportement de l'écoulement en présence d'une variation de pression, selon qu'il soit fluvial ou torrentiel.

En effet, dans le cas d'un régime stationnaire et en l'absence de terme source, le flux de quantité de mouvement qui reste uniforme dans tout le domaine unidimensionnel s'écrit :

$$\frac{q^2}{h} + \frac{g}{2}h^2 + \hat{p}$$
(3.99)

où la seule inconnue qui reste est la hauteur. Une différentiation de l'expression (3.99), destinée à évaluer l'influence de \hat{p} sur h conduit à :

$$dh = -\frac{d\hat{p}}{gh(1 - Fr^2)}.$$
 (3.100)

L'examen du signe du second membre dans la relation (3.100) permet de conclure qu'une pression additionnelle négative augmente la hauteur d'eau en régime fluvial et la diminue en régime torrentiel. Ce raisonnement est très similaire à celui qui met en exergue l'influence différenciée d'une variation topographique sur le niveau de la surface libre en fonction du régime d'écoulement (Dewals [2]).

III.17 Géométrie d'un déversoir standard

Un déversoir est qualifié de standard s'il est dimensionné, pour un débit fixé, de telle sorte que le coursier suive précisément la trajectoire qu'aurait la lame fluide si elle était libre, i.e. dans le cas d'un déversoir à seuil mince (Figure 26).

Figure 26 – Déversoir à seuil mince et déversoir standard correspondant (Pirotton & al. [6]).

Une exemple de déversoir standard a été simulé. Afin de traiter effectivement une structure standard en présence de son débit de dimensionnement, il est utile de connaître la trajectoire du jet libre en l'absence de coursier, autrement dit dans le cas d'un déversoir à seuil mince. A cet effet, les résultats d'un modèle 2D dans le plan vertical (Mouzelard [5]) ont été exploités. Il conduit à la représentation de la Figure 27 pour la distribution de pression.

Figure 27 – Champ de pressions relatives $\frac{p}{\rho g}$ (m) obtenu à l'aide d'un modèle 2D dans le plan vertical (Mouzelard [5]).

A ce stade, la géométrie de la surface libre de la nappe inférieure nous préoccupe au premier plan. Le jet, d'allure parabolique, peut être décrit valablement par l'équation suivante, dont les coefficients ont été calés :

$$y(x) = -0.7603x^2 - 0.0137x.$$
(3.101)

L'origine des axes de référence est situé au sommet de la parabole. On en déduit directement la valeur de la pente :

$$\frac{dy}{dx} = -2 \times 0.7603x - 0.0137.$$
(3.102)

Cette dernière expression fournit la tangente de l'angle d'inclinaison locale du coursier d'un déversoir standard dimensionné pour le débit particulier utilisé.

Etant donné le formalisme en coordonnées curvilignes exploité lors de la résolution des équations, l'information concernant l'inclinaison locale des axes doit être fournie en fonction non pas la coordonnée cartésienne x mais bien en termes de l'abscisse curviligne ξ . Cette transformation s'effectue à l'aide de la relation

$$d\xi = dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}, \qquad (3.103)$$

qui doit être intégrée entre l'origine et l'abscisse courante.

III.18 Résultats de simulations

Divers résultats produits à l'issue de simulations menées à bien sur base du modèle décrit précédemment vont être présentés. Rappelons que *tous* les résultats ont été obtenus à l'aide du schéma d'intégration temporelle implicite exposé précédemment. Nous démontrons donc ici à nouveau que ce schéma implicite est actuellement opérationnel et nous avons en outre profité de son efficience maximale dans le cadre de la recherche de solutions en régime sur un maillage unidimensionnel. La souplesse que lui confère l'évaluation numérique du Jacobien par différences finies a également été pleinement exploitée étant donné que cette structure algorithmique a permis d'introduire toutes les nouveautés liées aux coordonnées curvilignes sans jamais modifier quoi que ce soit à l'opérateur implicite. Seul l'opérateur explicite était affecté.

III.18.1 Déversoir sans seuil

A titre d'exemple et en vue de mettre en évidence le rôle des principales relations théoriques établies préalablement, un exemple simple est traité ci-dessous. Il s'agit d'une configuration fictive correspondant à un déversoir dépourvu de seuil, ce qui nous permet de focaliser toute notre attention sur l'inclinaison des axes et les effets de sa variation.

Approche classique

La Figure 28 représente une ligne d'eau calculée sur un déversoir en inclinant progressivement les axes mais sans tenir compte explicitement de la variation de leur orientation. La Figure 29 illustre l'allure des inconnues primitives h et u, ainsi que celle des inconnues conservatives s_1 et s_2 . Dans ce cas simplifié, les premières inconnues

primitive et conservative s'identifient bien entendu. De même la multiplication de h par u rendrait l'inconnue conservative s_2 .

Figure 28 – Déversoir modélisé par inclinaison des axes mais sans prise en compte de leur variation d'inclinaison.

Figure 29 – Déversoir modélisé par inclinaison des axes mais sans prise en compte de leur variation d'inclinaison : inconnues primitives et conservatives.

Modélisation basée sur les coordonnées curvilignes

La Figure 30 présente des résultats analogues en incluant néanmoins les corrections nécessaires pour répercuter correctement les variations de volume des éléments de contrôle sur les équations de conservation. La Figure 31 montre que dans ce cas-ci des différences existent entre inconnues primitives et conservatives. En particulier

la première inconnues conservative rend bien compte du surplus de quantité de matière stockée dans les volumes de contrôle dans la zone d'accroissement d'inclinaison de l'axe de référence. Les hauteurs reconstruites à l'aide de la formule (3.73) demeurent continues. La seconde inconnue conservative reproduit également l'augmentation de la quantité de mouvement stockée au sein des éléments où l'inclinaison des axes varie.

Figure 30 – Déversoir modélisé par inclinaison des axes avec prise en compte correcte de l'influence de leur variation d'inclinaison sur les volumes de contrôle.

Figure 31 – Déversoir modélisé par inclinaison des axes avec prise en compte correcte de l'influence de leur variation d'inclinaison sur les volumes de contrôle : inconnues primitives et conservatives.

III.18.2 Influence de la géométrie du déversoir

L'influence du degré de continuité de la géométrie du coursier est illustrée sur les deux exemples qui suivent. La Figure 32 représente la ligne d'eau calculée, avec les coordonnées curvilignes, sur un déversoir décrit par une fonction dérivable une seule fois. Comme le montre la Figure 33, la pente de ce coursier est donc continue mais non dérivable. La Figure 35 représente une ligne d'eau homologue de la précédente mais sur un déversoir dont la géométrie est continûment dérivable (Figure 36).

Figure 32 - Ligne d'eau sur un déversoir de géométrie dérivable une fois.

Figure 33 – Inclinaison et Jacobien relatifs à un déversoir de géométrie dérivable une fois.

La comparaison de la Figure 34 et de la Figure 37 montre que la première inconnue conservative subit une discontinuité dans le premier cas alors que dans le second elle varie de façon continue, mais néanmoins brusque. Bien que, en toute généralité, la seconde approche conduise à un meilleur comportement d'un point de vue numérique, tous nos résultats démontrent l'aptitude du schéma numérique à appréhender les variations extrêmement brusques, voire les discontinuités, dans les champs inconnus. Comme représenté à la Figure 34 et à la Figure 37, la hauteur d'eau reconstruite varie bien entendu de façon continue. Le seuil n'a pas été choisi vertical, de façon à écarter jusqu'ici les particularités liées à un saut de topographie. Celui-ci est traitée de façon spécifique au paragraphe III.18.3 et sera exploité au paragraphe III.18.4.

Figure 34 - Premières inconnues primitive et conservative sur un déversoir de géométrie dérivable une fois.

Figure 35 – Ligne d'eau sur un déversoir de géométrie continûment dérivable.

Figure 36 - Inclinaison et Jacobien relatifs à un déversoir de géométrie continûment dérivable.

Figure 37 – Premières inconnues primitive et conservative sur un déversoir de géométrie continûment dérivable.

III.18.3 Seuil topographique

Toute modélisation numérique valable d'écoulements sur déversoir doit aussi être à même d'appréhender de façon satisfaisante le seuil présent juste avant le coursier.

Figure 38 – Ecoulement sur un saut de topographie, avec une zone de recirculation à l'amont supposée s'étendre respectivement jusque 0 %, 50 %, 70 % et 80 % de la hauteur du seuil.

La Figure 38 illustre la simulation d'un écoulement fluvial sur une discontinuité de topographie. Les concepts présentés au paragraphe III.15 ont été mis à profit. Les quatre résultats, obtenus en supposant une distribution uniforme de vitesse ou une zone de recirculation sur 50 %, 70 % ou encore 80 % du niveau du seuil, mettent en exergue la sensibilité de la ligne d'eau à la distribution de vitesse postulée en amont. Cette

observation traduit l'aptitude du modèle considéré à produire un résultat réaliste pour la ligne d'eau, pour autant que la distribution de vitesse imposée le soit également. Ceci rappelle néanmoins une faiblesse de l'approche intégrée sur la hauteur, puisqu'elle requiert qu'une hypothèse soit formulée à priori sur le champ de vitesses, lequel ne constitue donc plus intégralement un résultat de calcul.

III.18.4 Déversoir parabolique

Un exemple d'écoulement a été simulé sur un déversoir parabolique. La géométrie a été introduite en suivant la procédure décrite au paragraphe III.17. La comparaison des différents résultats est effectuée sur base des *coefficients de débits* déduits, d'une part de la formule théorique de Rehbock (Sinniger [7]) et, d'autre part, des simulations réalisées.

Aucun traitement particulier des variations d'inclinaison

Dans un premier temps, l'écoulement sur le déversoir parabolique a été étudié par l'approche classique, en faisant abstraction des corrections liées à l'intégration en coordonnées curvilignes. Cette première simulation nous fournit une base de comparaison pour celles qui suivent. Les résultats correspondants sont synthétisés au Tableau 2. La ligne d'eau obtenue est illustrée à la Figure 39 et l'allure des inconnues primitives est reproduite à la Figure 40. Bien entendu, les premières inconnues, conservative et primitive, s'identifient comme le prévoit la formule (3.73) lorsque la variation spatiale de l'inclinaison des axes n'est pas explicitement prise en considération.

Tableau 2 - Déversoir parabolique : approche classique.

Figure 39 – Déversoir parabolique : ligne d'eau sans traitement spécifique des variations d'inclinaisons.

Figure 40 – Inconnues primitives et conservatives, en l'absence de traitement spécifique des variations d'inclinaisons.

Distribution de vitesse avec zone morte

La variation de volume des éléments de contrôle est prise en compte en fonction de l'évolution de l'inclinaison locale de l'axe curviligne. La distribution de pression est supposée localement hydrostatique dans la direction normale à l'axe de référence ξ .

En outre, une zone morte est supposée se trouver immédiatement à l'amont du seuil (voir le paragraphe III.15.1).

Le Tableau 3 résume les résultats obtenus. L'erreur relative sur le coefficient de débit a déjà pu être réduite de moitié par rapport au cas précédent. Les figures qui suivent reproduisent la ligne d'eau, et les champs calculés pour les différentes inconnues.

Tableau 3 – Déversoir parabolique : distribution de vitesse à l'amont avec une zone morte.

Coefficient simulé	Coefficient théorique	Erreur relative
0.4689	0.4442	5.5 %

Figure 41 – Déversoir parabolique : ligne d'eau avec traitement spécifique de la variation de volume des éléments de contrôle et une zone morte à l'amont.

Figure 42 – Inconnues primitives et conservatives, avec traitement spécifique de la variation de volume des éléments de contrôle et une zone morte à l'amont.

Distribution de vitesse avec recirculation (80 %)

Cette fois, un traitement correct des volumes de contrôle est toujours effectué en fonction des variations d'inclinaison des axes, l'hypothèse de pression hydrostatique est conservée localement et une zone de recirculation (voir le paragraphe III.15.2) est supposée s'étendre sur 80 % de la hauteur du seuil. Les hauteurs d'eau, vitesses et débits simulés sont repris à la Figure 43 et la Figure 44. Le Tableau 4 établit la comparaison entre coefficients de débits théorique et simulé. L'erreur demeure de l'ordre de 6.5 %.

Tableau 4 - Déversoir parabolique : distribution de vitesse à l'amont avec recirculation (80 %).

Figure 43 – Déversoir parabolique : ligne d'eau avec traitement spécifique de la variation de volume des éléments de contrôle et une zone de recirculation sur 80 % de la hauteur amont.

Figure 44 – Inconnues primitives et conservatives, avec traitement spécifique de la variation de volume des éléments de contrôle et une zone de recirculation sur 80 % de la hauteur amont.

Distribution de vitesse avec recirculation (75 %)

Les conditions de simulation sont identiques à celles de la configuration précédente, hormis l'étendue verticale de la zone de recirculation qui est ici limitée à 75 % de la hauteur du seuil. Les résultats (Figure 45 et Figure 46) et le Tableau 5 montrent que l'erreur relative sur le coefficient de débit a pu être sensiblement réduite.

Tableau 5 – Déversoir parabolique : distribution de vitesse à l'amont avec recirculation (75 %).

Figure 45 – Déversoir parabolique : ligne d'eau avec traitement spécifique de la variation de volume des éléments de contrôle et une zone de recirculation sur 75 % de la hauteur amont.

Figure 46 – Inconnues primitives et conservatives, avec traitement spécifique de la variation de volume des éléments de contrôle et une zone de recirculation sur 75 % de la hauteur amont.

Distribution de vitesse avec recirculation (77 %)

La zone de recirculation s'étend jusqu'à 77 % de la hauteur du seuil et les autres paramètres sont maintenus inchangés. Les dernières figures, ainsi que le Tableau 6,
rendent comptent d'une nouvelle diminution de l'erreur calculée. Il faut en conclure, comme au paragraphe III.18.3, que le modèle est à même de fournir des résultats d'une qualité excellente, mais que celle-ci demeure tributaire des hypothèses émises sur la distribution de vitesse selon la direction verticale.

Tableau 6 – Déversoir parabolique : distribution de vitesse à l'amont avec recirculation (77 %).

Figure 47 – Déversoir parabolique : ligne d'eau avec traitement spécifique de la variation de volume des éléments de contrôle et une zone de recirculation sur 77 % de la hauteur amont.

Figure 48 – Inconnues primitives et conservatives, avec traitement spécifique de la variation de volume des éléments de contrôle et une zone de recirculation sur 77 % de la hauteur amont.

III.19 Bibliographie

- [1] Alcrudo, F. & F. Benkhaldoun, *Exact solutions to the Riemann problem of the shallow water equations with a bottom step.* Computers & Fluids, 2001. **30**(6): pp. 643 671.
- [2] Dewals, B., *Modélisation numérique du transport sédimentaire*. Travail de fin d'études. 2001, Université de Liège.
- [3] Lejeune, A., M. Pirotton & S. Erpicum, *Study on hydraulic scale models of the Kol Dam Project (India) : Model of the spillway and global model.* 2002, University of Liège: Liège.
- [4] Mason, P.J., *Practical guidelines for the design of flip buckets and plunge pools.* Water Power & Dam Construction, 1993.
- [5] Mouzelard, T., Contribution à la modélisation des écoulements quasi tridimensionnels instationnaires à surface libre. Thèse de doctorat. 2002, Université de Liège.
- [6] Pirotton, M., P. Archambeau, B. Dewals, S. Erpicum & T. Mouzelard, *Cours d'Hydraulique Appliquée*. 2002: Université de Liège.
- [7] Sinniger, R., *Ecoulements stationnaires*. Traité de Génie Civil de l'EPFL, Constructions Hydrauliques. 1989. 439.

IV. Modélisation de l'ensablement d'une grande retenue

IV.1 L'alluvionnement de grandes retenues

Les cours d'eau, quels qu'ils soient, sont dotés d'une capacité à acheminer des matériaux solides, qui leur sont apportés à la suite de l'érosion, d'origine naturelle ou anthropique, des bassins versants. Lorsque ces même cours d'eau débouchent ensuite dans un réservoir, ce dernier joue le rôle d'un piège à sédiments étant donné que l'hydrodynamique d'un lac est caractérisée par une capacité de transport solide sensiblement moindre. En conséquence, les matériaux solides s'y déposent et réduisent ce faisant le volume disponible pour le stockage, tout en perturbant l'exploitation de l'ouvrage.

Ce problème d'envasement des grandes retenues dans le monde se pose actuellement avec une importance sans cesse croissante et une acuité encore accrue par la perspective d'une évolution climatique notoire. En témoignent les multiples congrès organisés à ce sujet, les innombrables publications qui y ont trait, ainsi que les cris d'alarme sans cesse répétés par des responsables à divers échelons, des gestionnaires et des scientifiques.

IV.1.1 Les conséquences de l'envasement d'une retenue

Les conséquences néfastes émanant du processus de remplissage des lacs par des matériaux solides sont multiples.

L'envasement des réservoirs affecte tout d'abord leur capacité de stockage et par suite détériore le niveau des services rendus par la retenue. D'une part, le volume utile disponible étant diminué, les capacités de laminage des crues et de soutien d'étiage se voient réduites. D'autre part, des pertes d'eau potable ou d'eau destinée à la production énergétique sont engendrées. Ajoutons encore l'usure des accélérée des turbines, qui ne cesse de s'accélérer au cours du processus d'ensablement du réservoir.

Comme l'illustre la Figure 49, la sécurité des barrages est également mise en péril par l'augmentation progressive de la poussée des alluvions sur la structure. Plusieurs ruptures de barrages ont été répertoriées dans le monde suite à ce phénomène de sollicitation renforcée. Cette atteinte à la sécurité même des ouvrages se manifeste également sous d'autres facettes. Par exemple, l'obstruction des organes de vidange de fond rendrait vaine toute manœuvre opérée en vue de diminuer rapidement le niveau du plan d'eau en cas d'urgence (séisme). De plus, suite à la détérioration de la capacité d'écrêtage des crues, les débits susceptibles de franchir la structure seront revus à la hausse pour une même quantité d'eau apportée à l'amont et, par conséquent, la hauteur de charge sur la crête sera elle aussi nettement plus importante. Cette dernière tendance est encore amplifiée par les conditions hydrodynamiques d'approche moins favorables générées par l'ensablement. D'autres effets redoutables sur les ouvrages hydrauliques annexes, sur la qualité de l'eau et sur les voies d'eau en aval sont aussi à attendre.

Figure 49 – Accroissement des sollicitations sur la structure par un renforcement de la poussée et une augmentation de la hauteur de charge au droit de la crête (d'après Chanson & James [7]).

IV.1.2 Quelques exemples d'alluvionnement prononcé

De nombreux réservoirs sont aujourd'hui entièrement comblés par des alluvions et donc rendus totalement inefficaces. Les deux principaux modes de transport, que sont le charriage (Figure 50 et Figure 51) et le transport par suspension (Figure 52), peuvent jouer un rôle majeur dans le processus de remplissage.

A titre d'exemple, la Figure 52 représente un barrage voûte destiné à l'approvisionnement en eau d'une voie de chemin de fer et dont la construction s'acheva en 1912. Les opérations de purge mises en œuvre ne furent jamais couronnées de succès dans ce réservoir long de 1.3 km, large de 110 m et qui avait à supporter un apport annuel en sédiments valant en moyenne 49 000 m³ (Chanson [6]). En 1929, la capacité de stockage était descendue à moins de 10 % de sa valeur initiale. La Figure 53 illustre un second barrage, localisé à trente kilomètre de celui de Cunningham Creek et qui a subi le même sort que le précédent.

Une sélection inadaptée du lieu d'implantation d'un ouvrage de retenue peut se traduire par des taux d'ensablement extrêmes et incontrôlables. Evénement rarissime mais néanmoins révélateur, l'alluvionnement complet du réservoir de Korrumbyn Creek (Australie, voir Chanson & James [7]) s'est déroulé en moins de 7 ans !

Bien entendu, les réservoirs européens ne sont pas à l'abri de cette problématique d'alluvionnement. Par exemple, le Rhin dépose chaque année plus de trois millions de mètres cubes de M.E.S. dans le lac de Constance, générant des problèmes d'encombrement au droit de l'embouchure du fleuve ainsi que dans les installations portuaires (Vetsch & Fäh [22]).

Qu'il s'agisse de l'extraction directe des sédiments de la retenue ou bien de manœuvres appropriées des organes de vidange, la prise de mesure destinées à endiguer la tendance à l'ensablement d'une retenue s'avère généralement fortement malaisée et toujours très onéreuse. Ainsi, même si le maintien de la capacité de stockage est jugé techniquement réalisable, il se traduit presque toujours par un impact financier et écologique lourd à supporter.

Figure 50 – Lac rempli par des sédiments charriés derrière le barrage De Burgh (1908-1929, Baren Jack NSW, Australie, d'après Chanson & James [7]).

Figure 51 – Réservoir entièrement comblé par des matériaux provenant de la charge de fond, derrière le barrage Koorawatha (Koorawatha NSW, Australie, d'après Chanson & James [7]).

Figure 52 – Résultat de la sédimentation de M.E.S. derrière le barrage Cunningham Creek (1912-1929, Harden NSW, Australie, d'après Chanson & James [7]).

Figure 53 – Réservoir entièrement comblé par des alluvions derrière le barrage Illalong Creek (1914-1985 ?, Binalong NSW, Australie), malgré l'installation de deux vannes de chasses (Chanson & James [7]).

Des opérations de chasse (*flushing*), dans la mesure du possible préventives, sont actuellement privilégiées en vue d'évacuer vers l'aval les matériaux accumulés directement en amont des barrages (Lai & Shen [17], Fan & Morris [14]). Cette technique a montré tout son intérêt dans le cadre de la gestion sédimentaire de réservoirs (voir par exemple Bouchard & al. [5]) et leur planification optimale est encore le sujet d'intenses recherches (Bouchard [4]). Ces opérations sont dorénavant surveillées en aval pour des raisons écologiques (e.g. dans les Alpes suisses et françaises, voir Durand [11]) et doivent être répétées avec une fréquence annuelle, ou plus large. Le choix des conditions de chasse reste cependant le résultat d'un compromis difficile entre de multiples contraintes, telles que la capacité maximale de débit des organes d'évacuation, le coût d'opportunité de l'eau non turbinée ou encore la limitation de l'impact écologique, souvent antagoniste par rapport à la recherche d'efficacité.

Les dispositions envisagées afin d'enrayer la décroissance progressive du volume disponible dans une retenue englobent également le cas échéant le recours à un prébarrage à l'amont, destiné à interrompre la course des sédiments charriés. Une autre solution extrême, mise en œuvre en Suisse notamment (Barrage de Mauvoisin, voir Durand [11]), consiste à consentir à un rehaussement des organes, tels que la prise d'eau et la vidange de fond, afin de les garder opérationnels. Sur ce site, deux nouveaux rehaussements sont même prévus au cours des cent prochaines années.

IV.1.3 Difficultés de modélisation

De multiples obstacles jalonnent le parcours d'un modélisateur s'attelant à la tâche de prédiction du taux d'alluvionnement d'un lac et du laps de temps correspondant. Une première complication est directement issue de la nécessité de prendre en compte les échanges verticaux de matière dans un réservoir, et donc le caractère tridimensionnel du transport au sein d'un lac. De plus, le modélisateur se voit très vite confronté à la physique extrêmement complexe des courants de turbidité, qui requièrent en outre un approche biphasique (Parker & al. [18]). Ajoutons encore qu'au cours de purges ou de chasses la consolidation des couches sédimentées et les propriétés cohésives des matériaux sont à même de modifier drastiquement l'efficacité de l'opération, à tel point qu'elles devraient être prises en compte (voir notamment Black & al. [3] ou Schweim & al. [19]). Finalement, certains événements caractérisés par un apport intense en particules solides sont également à modéliser (Banihabib & Mokhtari [1]).

La complexité à appréhender les processus d'alluvionnement au sein de modèles numériques est encore exacerbée par la difficulté à calibrer le modèle. Même s'ils existent dans certains cas (Singh [20]), des enregistrements de mesures bathymétriques au cours de plusieurs décennies sont rarement disponibles pour une validation véritablement fiable du modèle. En particulier, dans le cas de tout nouveau projet, ce genre d'opération de calibrage est exclue d'emblée. Il reste alors à se rabattre sur une étude détaillée des matériaux susceptibles d'être amenés dans la retenue, en se lançant dans des campagnes d'essais expérimentaux longues et coûteuses (e.g. Schweim & al. [19]).

IV.1.4 Phénomènes modélisés

Comme le dépeint le paragraphe précédent, les mécanismes de transport au sein du lac sont multiples. La Figure 54 illustre les deux modes de transport généralement dominants. D'une part, un courant de densité est à même d'apporter des sédiments très fins (limons, *silt*) jusqu'au pied de l'ouvrage de retenue. Ce mécanisme d'entraînement est strictement limité aux grains de taille extrêmement faible, typiquement inférieure à 60 microns. D'autre part, la progression d'un front de sédiments plus grossiers se développe à partir de l'entrée du lac. Cette dernière manifestation du transport sédimentaire au sein du lac peut raisonnablement être supposée dominante pour autant que la taille caractéristique des particules dépasse largement 60 microns. Cette hypothèse est admise dans la suite du travail.

Figure 54 – Représentation schématique des processus de transport et de sédimentation dans un réservoir (Fan & Morris [13]).

IV.2 Stratégie générale adoptée pour l'étude

L'étude à très long terme et à grand échelle de l'alluvionnement d'un lac requiert des ressources informatiques d'une telle importance qu'il n'est pas envisageable aujourd'hui d'exploiter un modèle numérique totalement couplé pour ce type de simulations. Par contre, une approche simplifiée mais bien étayée d'un point de vue physique permet de réduire drastiquement le coût du calcul en temps CPU, sans pour autant mettre en péril la qualité des résultats.

La méthodologie privilégiée dans le cadre de cette étude consiste décrire l'écoulement d'eau par une succession de configurations d'équilibre, tout en continuant à traiter les évolutions bathymétriques à l'aide d'un modèle instationnaire. La justification du bien-fondé de cette approche se trouve dans l'examen des valeurs relatives des vitesses à laquelle se propagent dans la nature des perturbations hydrodynamiques et sédimentaires.

En effet, force est de constater que la vitesse de propagation de perturbations de la topographie demeure en règle générale nettement inférieure à celle des perturbations de type hydrodynamique. En conséquence, le pas de temps maximum assurant la stabilité d'un schéma numérique totalement couplé sera essentiellement conditionné par les équations hydrauliques. Il pénaliserait donc le temps de calcul de façon exagérée eu égard au phénomène physique à modéliser ici.

La grande différence qui prévaut entre les temps caractéristiques relatifs aux variations de l'hydrodynamique et à celles de la morphologie du lit justifie en revanche le choix du calcul stationnaire de l'écoulement d'eau. En effet, pour autant que la mobilité des sédiments ne soit pas trop importante par rapport à la puissance de l'écoulement, toutes les modifications du niveau du lit de la rivière s'établissent au terme d'un laps de temps beaucoup plus long que celui nécessaire à l'écoulement pour s'adapter à une nouvelle morphologie du lit. De même, un changement de la vitesse d'écoulement exerce une influence quasiment instantanée sur la hauteur d'eau, alors que le niveau du lit ne réagira que très lentement à ce type de perturbation. On peut donc admettre, dans ces conditions appropriées, que l'hydrodynamique s'adapte instantanément à la nouvelle topographie.

Outre cette différence de *vitesse d'adaptation* avec laquelle une modification d'une des grandeurs se répercute sur les autres inconnues, un second argument joue en faveur de l'approximation quasi-stationnaire pour l'hydrodynamique. En effet, en ce qui concerne l'examen de la décroissance de la capacité de stockage du lac de Kol, les échelles de temps caractérisant l'hydrodynamique ne présentent pas un intérêt direct et doivent donc être moyennées par une approche telle que celle mise en œuvre ici.

Cette solution a été retenue et a conduit à la mise au point d'un modèle numérique basé sur un traitement quasi-stationnaire de l'écoulement. A chaque pas de temps, une ligne d'eau en équilibre est calculée en considérant un lit fixe. Ensuite, connaissant le débit liquide local et le champ de hauteurs, une loi de capacité de transport empirique permet d'obtenir la valeur du débit solide en chaque nœud. Finalement, le niveau du lit de la rivière est mis à jour localement, grâce à l'équation d'Exner (équation de continuité pour les sédiments) ou à des équations de tris (bilan de quantité de mouvement pour un mélange de sédiments de tailles variées).

Toutes les simulations numériques ont été effectuées à l'aide du logiciel de calcul d'écoulements à surface libre WOLF2D, développé par le Service d'Hydrodynamique Appliquée et des Constructions Hydrauliques (HACH) de l'Université de Liège.

IV.3 Modèle de transport sédimentaire

Le modèle hydrodynamique, régissant un écoulement décrit par une approche intégrée sur la hauteur de la lame fluide, est constitué d'une équation de conservation de la masse d'eau ainsi que d'un bilan de quantité de mouvement dans chaque direction du plan préférentiel d'écoulement. Afin de traiter de façon automatique les remaniements topographiques, il est nécessaire de lui adjoindre une loi de conservation de la quantité de matériaux solides transportés.

IV.3.1 Bilan de masse pour les matériaux solides

La conservation de la masse de sédiments se traduit par un équilibre entre l'évolution instationnaire du niveau du lit et le différentiel de débits solides dans les deux directions horizontales. Une telle relation peut non seulement être écrite en une fois pour l'ensemble du mélange de sédiments, mais en plus pour chaque classe granulométrique individuellement. Cette différentiation est indispensable pour fournir in fine un nombre suffisant d'équations permettant la mise à jour de chacune des parts granulométriques inconnues.

Ces équations additionnelles seront dérivées à partir de bilans de masse établis sur la description physique schématisée ci-dessous.

Figure 55 : Schéma de la description physique exploitée pour le modèle numérique hydrosédimentaire (d'après Fäh [12]).

Conservation de la masse pour une classe granulométrique individuelle

La variation temporelle de la part volumique d'une classe granulométrique donnée k dans un volume de contrôle est engendrée par les flux de sédiments q_{bx_k} et q_{by_k} à travers les côtés de la maille. Comme la masse volumique des sédiments est constante, l'équation de conservation s'exprime par :

$$(1-p)\frac{\partial}{\partial t}(\beta_k hm) + \frac{\partial q_{\mathbf{b}x_k}}{\partial x} + \frac{\partial q_{\mathbf{b}y_k}}{\partial y} = S_k, \qquad (4.1)$$

où hm renseigne sur la hauteur du volume de contrôle considéré. Vu que p désigne la porosité, supposée constante, l'expression (1-p)hm représente le volume total occupé par des sédiments, par unité de surface horizontale de la couche d'échange. Les inconnues β_k rendent compte de la variation de composition en les différentes classes granulométriques. Les équations du type de (4.1), en nombre égal au nombre de classes granulométriques, portent pour cette raison le nom d'équations de tri (bed-material sorting equations). Grâce au terme S_k , un apport (dépôt) ou un retrait (drague) local de sédiments peut être pris en compte.

Conservation de la masse totale de particules solides

L'équation globale de conservation de la masse de sédiments s'obtient en sommant des équations analogues à (4.1) écrites pour les différentes tailles de sédiments. On obtient alors une relation dont on déduira le niveau $z_{\rm b}$:

$$(1-p)\frac{\partial z_{\rm b}}{\partial t} + \sum_{k=1}^{nk} \left(\frac{\partial q_{\rm bx}}{\partial x} + \frac{\partial q_{\rm by}}{\partial y} - S_k \right) = 0 \tag{4.2}$$

Cette relation est célèbre dans la littérature, sous le nom d'équation d'Exner (1925).

Il apparaît très clairement ici que l'équation d'Exner ne constitue pas un nouveau bilan de masse indépendant des précédents puisqu'il s'obtient en additionnant les différentes équations de tri (4.1). Lors de la résolution pratique d'un problème hydrodédimentaire avec tri granulométrique, on jouit donc de la liberté d'utiliser, soit toutes les équations de tri, soit toutes ces équations sauf l'une d'entre elles, qui sera remplacée par l'équation d'Exner. Dans ce cas, la dernière part volumique sera déduite des autres à partir de

$$\beta_{nk} = 1 - \sum_{k=1}^{nk-1} \beta_k$$
(4.3)

Au sein d'un code de calcul, il n'y a aucune raison de privilégier telle ou telle fraction volumétrique en la déterminant au moyen de (4.3) et non à l'aide d'une équation d'évolution, de telle sorte qu'il semble plus approprié d'implémenter toutes les équations de tri. L'équation d'Exner pourrait alors éventuellement servir, au sein d'un schéma explicite, de correcteur pour le niveau du lit.

Une formulation plus courante de la relation d'Exner est obtenue pour le cas particulier où les matériaux solides sont décrits par une seule taille caractéristique des grains :

$$(1-p)\frac{\partial z_{\rm b}}{\partial t} + \frac{\partial q_{\rm bx}}{\partial x} + \frac{\partial q_{\rm by}}{\partial y} = S, \qquad (4.4)$$

dans laquelle la porosité du terrain est prise en compte au moyen du facteur 1 - p. $z_{\rm b}$ désigne encore l'élévation locale du fond du lac, qui constitue l'inconnue dont l'évolution temporelle sera prédite par la simulation à partir de la bathymétrie initiale et des débits solides entrant dans le lac. $q_{\rm bx}$ et $q_{\rm by}$ représentent les débits solides *totaux* dans les deux directions horizontales.

Ces taux de transport de sédiments q_{bx} et q_{by} ou q_{bx_k} et q_{by_k} se décomposent en plusieurs contributions de nature physique différente. Ils peuvent par conséquent également être décrits mathématiquement et numériquement par des formulations distinctes. Nous distinguerons ici les débits solides induits par l'écoulement, comprenant d'une part la charge de fond et d'autre part les M.E.S., ainsi que ceux liés directement à l'action de la gravité.

Evaluation du pas de temps maximum garantissant la stabilité

Comme les équations (4.1) ont la structure mathématique d'une équation aux dérivées partielles, leur résolution numérique est soumise au respect d'un critère de stabilité portant sur le pas de temps. Ce dernier est donné en fonction du nombre adimensionnel de Courant (ou Courant – Friedrich – Lévi)

$$\operatorname{CFL} = \frac{|c_{\max}|\Delta t}{\Delta x} \le \operatorname{CFL}_{\max} = \mathcal{O}(1)$$
 (4.5)

où Δt et Δx représentent respectivement le pas temporel et le pas spatial utilisés pour l'intégration dans le temps et pour la génération du maillage. La contrainte (4.5) ne peut être violée à aucun moment et en aucun nœud du domaine de calcul. La célérité des ondes de faible amplitude joue un rôle déterminant dans la sévérité du critère de stabilité. c_{max} désigne la célérité de plus grand module.

Le calcul algébrique complet de la célérité des ondes pour un nombre quelconque de classes granulométrique s'est révélé extrêmement complexe, mais des développements plus simples permettent aisément de fixer une borne supérieure pour c. La démarche consiste à effectuer le calcul détaillé dans les cas de deux et de trois tailles de grains puis de les majorer de façon très générale.

Les célérités sont les valeurs propres de la matrice convective obtenue en écrivant les équations du système sous forme quasi-linéaire. Si la courbe granulométrique réelle est idéalisée par deux classes de tailles distinctes, la célérité calculée vaut :

$$|c_{\max}| = \left|\frac{C_2 q_{b1} + C_1 q_{b2}}{hm}\right| \le \frac{q_{b,\max}}{hm}$$
(4.6)

où $q_{b, \max}$ représente une valeur caractéristique du débit solide maximum en valeur absolue. La majoration se justifie aisément étant donné que la somme des différentes concentrations C_k reste toujours égale à l'unité.

Un développement en tout point analogue à celui qui conduit au résultat (4.6) permet d'écrire l'expression exacte de la célérité des ondes en présence de trois classes granulométriques :

$$c_{\max} = \left| \frac{\tilde{q}_{\rm b} + \sqrt{-4\left(q_{\rm b2} \, q_{\rm b3} \, C_1 + q_{\rm b1} \, q_{\rm b3} \, C_2 + q_{\rm b1} \, q_{\rm b2} \, C_3\right) + \tilde{q}_{\rm b}^{\ 2}}{2 \, hm} \right| \le 2 \frac{q_{\rm b, \, max}}{hm} \ (4.7)$$

avec

$$\tilde{q}_{\rm b} \triangleq (C_2 + C_3) q_{\rm b1} + (C_1 + C_3) q_{\rm b2} + (C_1 + C_2) q_{\rm b3}.$$
(4.8)

Il reste enfin à généraliser les majorations proposées ci-dessus. Il apparaît clairement qu'à partir de (4.6) et (4.7) il est raisonnable de déduire l'approximation suivante, valable quel que soit le nombre de classes granulométriques :

$$|c_{\max}| \le (nk-1)\frac{q_{\mathrm{b,\,max}}}{hm},$$
(4.9)

où nk désigne précisément le nombre de familles distinctes prises en compte dans la discrétisation de la courbe granulométrique.

En conclusion, lors de l'implémentation du modèle sédimentaire au sein du code de calcul, le pas de temps Δt sera optimisé à chaque étape grâce à la formule :

$$\Delta t \sim \frac{\Delta x \, hm}{(nk-1)} \min_{\forall x,y} \left[(q_{\rm b})^{-1} \right]. \tag{4.10}$$

IV.3.2 Débits solides induits par l'écoulement

Evaluation des capacités de transport

L'écoulement est l'instigateur immédiat de deux variétés de transport solide. D'une part, la tension de cisaillement exercée sur le lit donne lieu à la migration de particules solides par voie de charriage. La turbulence, d'autre part, est susceptible d'entraîner en suspension des sédiments et de permettre leur déplacement sur de longues distances au sein même de la phase liquide.

Modèle d'advection – diffusion

Une première approche en vue de la description du transport solide selon ces deux modes consisterait à exploiter des équations semblables à (4.1) pour rendre compte des mouvements de particules à proximité du lit et d'y adjoindre un modèle d'advection - diffusion pour les M.E.S. La concentration de ceux-ci serait alors assimilée à un scalaire passif convecté par l'écoulement.

Le bilan de masse des sédiments en suspension peut être déduit de l'intégration sur la hauteur d'une équation d'advection - diffusion tout à fait générale. Cette opération fournit comme résultat une équation pronostique pour chaque concentration C_k :

$$\frac{\partial}{\partial t} (C_k h) + \frac{\partial}{\partial x} \left(C_k h u - \Gamma h \frac{\partial C_k}{\partial x} \right) + \frac{\partial}{\partial y} \left(C_k h v - \Gamma h \frac{\partial C_k}{\partial y} \right) = S_{\mathbf{s}_k}.$$
(4.11)

où Γ sert à modéliser les effets dispersifs et turbulents.

L'échange de particules entre les deux modes de transport principaux (suspension et charriage) est un processus continu au cours duquel des particules sont entraînées vers la phase liquide, pendant que d'autres se voient déposées au fond. Le terme source S_{s_k} décrit ce flux *net* vertical de particules (mise en suspension moins déposition) par unité de surface, à l'interface entre la phase liquide et la couche de charriage. Il est positif si la mise en suspension de particules est prépondérante.

Il est important de se rendre compte que la nature mathématique de la relation (4.11) correspond à une équation aux dérivées partielles à part entière. La célérité des ondes correspondantes s'identifie à la vitesse de l'écoulement. Par conséquent, le pas de temps maximum préservant la stabilité de la résolution d'un tel modèle serait de l'ordre de grandeur de celui correspondant au modèle totalement couplé et, partant, le coût de calcul se révélerait tout aussi conséquent et prohibitif. Dans l'état actuel des capacités informatiques, cette approche reste donc encore à écarter pour des simulations à très grandes échelles spatiales et temporelle.

Lois de transport distinctes

Une autre approche possible permettrait de ne recourir qu'aux bilans de masse (4.1) ou (4.2) et ainsi d'éviter la discrétisation, trop exigeante en ressources CPU, du modèle (4.11). Elle est basée sur l'utilisation de lois algébriques de capacité de transport, aussi bien pour les matériaux charriés que pour ceux en suspension, mais préserve

néanmoins l'avantage de reposer sur des expressions totalement distinctes pour chaque mode de transport. En particulier, la capacité de transport de M.E.S. résulte du calcul d'une intégrale sur la hauteur d'eau :

$$q_{\text{bs}x_{k}} = \int_{0}^{h} C_{\text{s}k}(z) u(z) dz$$
(4.12)

après qu'une hypothèse judicieuse sur la distribution verticale de vitesse ait été admise et que le profil de concentration en ait été déduit. Une expression similaire à (4.12) est bien entendu exploitée pour estimer le débit de M.E.S. dans l'autre direction horizontale. L'interaction entre les deux modes de transport transparaît dans la prise en compte du débit solide charrié comme condition limite au fond lors de l'intégration de la quantité de M.E.S. en mouvement. Cette démarche est décrite par Graf [15] et largement explicitée par Dewals [9].

L'inconvénient majeur de cette approche découle immédiatement de sa formulation mathématique fidèle à la nature physique du processus de transport en suspension. En effet, la mise en œuvre de cette stratégie d'évaluation des débits solides fait appel à l'évaluation d'intégrales qui ne peuvent être explicitées de façon algébrique. En conséquence, le recours à un tel modèle peut représenter une solution de choix pour une approche non spatialement distribuée mais engendrerait lui aussi des surcoûts inacceptables en termes de temps de calcul si ces intégrales devaient être calculées à chaque pas de temps et en chaque nœud du maillage.

En conséquence, cette démarche basée sur des lois de transport distinctes ne se révèle pas non plus adéquate dans le cadre d'une étude à grandes échelles spatiotemporelles, telle que celle entreprise ici. Une solution plus adaptée est exposée au paragraphe suivant.

Lois de transport total

Une dernière alternative en vue de la détermination des quantités totales de matériaux solides en mouvement passe par l'utilisation de lois algébriques fournissant directement la capacité total de transport en fonction des conditions hydrodynamiques. Ces lois ressemblent fortement à celles donnant le débit charrié mais elles ont été validées à l'aide de mesures de débits solides totaux, tous modes de transport confondus.

Parmi les plus célèbres et les mieux documentées, citons Engelund et Hansen, Ackers-White ou encore Bagnold, présentées notamment par Yalin [23], Julien [16] et Bayram & al. [2].

Ce type de lois, constituant la seule solution réaliste à privilégier, sera plus amplement décrit au cours du chapitre consacré aux conditions particulières de simulation de la retenue de Kol.

Disponibilité en sédiments et débits solides

La méthodologie introduite au paragraphe précédent permet de calculer la pouvoir de transport que possède un écoulement donné à un instant donné. Autrement dit, ces formules permettent en réalité de connaître la *capacité* de transport sédimentaire d'un écoulement donné. En toute généralité, l'apport effectif en sédiments peut ne pas correspondre à cette capacité de transport, auquel cas le processus de transport solide ne sera pas en équilibre :

- si la capacité est supérieure à l'apport, le transport sera accompagné d'érosion,

- si la capacité est inférieure à l'apport, le transport sera accompagné de déposition (phénomène qui dominera largement dans la retenue de Kol, surtout au cours des premières années),
- si l'apport et la capacité sont égaux, il y aura transport sans érosion ni déposition (tel que dans la configuration recherchée pour la bathymétrie d'équilibre du lac),
- si le lit a subi un processus de pavage qui le rend localement non érodable, ou si tout simplement le lit est localement recouvert d'une couche protectrice (e.g. béton), la capacité de transport peut ne pas être satisfaite, sans qu'il y ait érosion.

Soulignons le caractère *dynamique* et non statique de cet équilibre sédimentaire. La configuration d'équilibre n'est pas figée mais les débits entrant et sortant se compensent en moyenne.

Les trois premiers cas de figure sont appréhendés totalement et automatiquement par le logiciel utilisé. En effet, les équations de bilan de masse traduisent l'adaptation spontanée de la quantité de sédiments stockée dans un volume de contrôle, et partant du niveau du lit, en fonction du différentiel entre la capacité locale de l'écoulement à transporter et ce qui entre effectivement dans la maille.

Par contre, la dernière situation, dans laquelle le débit solide réel s'écarte de la valeur fournie par une loi de capacité de transport, requiert un traitement particulier. Celui-ci devra notamment se mettre en action sur la dalle du déversoir, laquelle peut être le siège de dépositions, de transport, mais en aucun cas d'érosion en deçà du niveau du béton.

Afin d'appréhender de façon réaliste ces configurations où la disponibilité en matériaux meubles est largement déficitaire par rapport à la capacité de l'écoulement à transporter, un processus itératif de limitation des débits solides a été mis en place. Il repose sur une comparaison locale entre, d'une part, le flux net des sédiments entrant et sortant de la maille en un pas de temps et, d'autre part, la quantité de particules disponibles dans la maille au pas courant. Il faut en effet que le flux net sortant des débits solides prédits n'excède pas le volume érodable disponible :

$$\left(\sum_{\text{faces}} \mathbf{q}_{\mathrm{b}} \cdot \mathbf{s}\right) \Delta t \le h_{\mathrm{d}} \Delta x \Delta y,$$
(4.13)

où $h_{\rm d}$ représente la hauteur locale de sédiments susceptibles d'être mis en mouvement et où le vecteur normal extérieur aux facettes est défini par

$$\mathbf{s} = \begin{pmatrix} \pm \Delta y \\ 0 \end{pmatrix} \quad \text{ou} \quad \mathbf{s} = \begin{pmatrix} 0 \\ \pm \Delta x \end{pmatrix}. \tag{4.14}$$

selon la direction de la face.

Si cette condition n'est pas vérifiée, les débits sortants de la maille sont tous réduits à l'aide d'un facteur multiplicatif ξ donné par

$$\xi = \frac{h_{\rm d} \,\Delta x \,\Delta y}{\left(\sum_{\rm faces} q_{\rm b} \cdot s\right) \Delta t},\tag{4.15}$$

de telle sorte que les débits solides deviennent

$$\begin{cases} q_{\rm b}^{(1)} = \min(\xi, 1) \ q_{\rm b} & \text{si} \quad q_{\rm b} \cdot n > 0 \\ q_{\rm b}^{(1)} = q_{\rm b} & \text{si} \quad q_{\rm b} \cdot n \le 0 \end{cases}$$
(4.16)

où le vecteur q_{b} de débits solides a pour composantes q_{bx} et q_{by} .

Cette procédure, bien que ne s'appliquant directement qu'à une maille à la fois, doit être répétée de façon itérative. De fait, les débits sortants affectés du facteurs de réduction sont également des débits entrant pour les mailles voisines. Ainsi, la correction a pour effet corollaire de réduire l'alimentation en sédiments des mailles voisines et par conséquent risque de provoquer la vidange de ces mailles, même si auparavant elles ne posaient aucun problème.

IV.3.3 Débits solides dus à la gravité

Il est intéressant d'observer que, selon les situations, différentes origines de la mise en mouvement des sédiments peuvent être identifiées. Ainsi, le déplacement des sédiments peut résulter non seulement de l'action des forces d'origine hydrodynamique, mais aussi de la gravité ou encore d'une combinaison de ces deux moteurs. Par exemple, au moment où une berge s'affaisse ou bien lorsqu'une digue se rompt, même si l'eau influence indirectement, le véritable instigateur du processus s'identifie à la gravité (voir Fäh [12], Dewals [8] ou Dewals & al. [10]). L'influence de ces instabilités de berges est également particulièrement perceptible au cours de la plupart des opérations de chasse de sédiments (voir par exemple Bouchard & al. [5] ou Bouchard [4]).

La modélisation de ce type de phénomène mériterait éventuellement la mise en oeuvre d'une analyse géotechnique approfondie, basée sur les différents mécanismes possibles pour l'affaissement du talus. Dans le cadre de l'étude présentée ici, une approche plus compétitive en temps de calcul et conduisant à des résultats très réalistes a été adoptée. Elle consiste à admettre que, dès qu'une partie de la berge devient localement instable (car son inclinaison dépasse un angle limite de stabilité γ_{cr} , voir Figure 56), de la matière va être transférée d'un élément à l'élément voisin de façon à ramener la valeur de l'inclinaison à *l'angle naturel de talus* γ_{nat} .

Figure 56 : Représentation schématique du modèle d'éboulement de talus (d'après Fäh [12]).

IV.3.4 Validation du modèle

Le modèle hydrosédimentaire mis au point au sein du HACH, tout comme le logiciel hydrodynamique pur, a fait l'objet de nombreuses opérations de validation. Le modèle de transport solide exploité dans la présente étude est issu du logiciel entièrement couplé déjà développé antérieurement (Dewals [9]). Ce dernier avait notamment été confronté à une solution analytique donnant la vitesse de propagation d'un front raide de sédiments et s'était montré à même de reproduire fidèlement les phénomènes de migration de dunes ou d'antidunes, quel que soit le régime d'écoulement. De plus, de nombreux résultats disponibles dans la littérature ont pu être simulés avec succès. Citons à titre d'exemple les expériences menées par Soni & al. [21] ou encore celles de von Needham et Hey (décrites par Fäh [12]).

IV.4 Conditions de simulation pour le lac de Kol

IV.4.1 Conditions limites hydrodynamiques

L'hydrogramme qui parvient à l'amont de la retenue de Kol Dam est caractérisé par une très forte variation saisonnière. Ces variations significatives sont illustrées à l'aide de trois grandeurs statistiques à la Figure 57.

Figure 57 : Distribution annuelle des débits journaliers mesurés à la station de Kasol (période de 1986 à 1999)

Pendant la majeure partie de l'année le débit entrant dans le lac se situe aux environs ou en deçà de 200 m³/s, alors que pendant la saison de mousson, ce débit peut être quasiment décuplé. Il apparaît dès lors réaliste d'effectuer la simulation de remplissage du lac en divisant chaque année en deux périodes au cours desquelles le débit sera respectivement pris à une valeur de mousson et hors mousson. En outre, ces deux niveaux de débit seront choisis non seulement représentatifs de la saison correspondante

mais en outre de telle sorte que la quantité totale de sédiments apportés en un an corresponde aux données concernant les débits solides réels estimés.

Figure 58 : Débits moyens entrant dans la retenue et approximation choisie pour les simulations quasistationnaires.

IV.4.2 Conditions limites sédimentaires

Il est parfaitement vraisemblable d'admettre que la toute grande majorité des alluvions transportées dans le lac le seront pendant la saison de mousson, étant donné les débits importants caractérisant l'écoulement à ce moment et générant des vitesses suffisantes pour conférer à la rivière à l'amont un pouvoir érosif exacerbé. Ces conditions particulièrement intenses seront supposées en vigueur pendant les trois mois de moussons. Nous tenons néanmoins également compte des M.E.S. et des sédiments charriés pendant les neuf autres mois de l'année via le choix de l'hydrogramme d'entrée.

Conformément à des relevés provenant de la station de mesure de Kasol, à l'amont de Kol, il sera supposé que la concentration en M.E.S. dans l'écoulement s'élève à 0.1 g/l hors période de moussons et 2 g/l en période de moussons. Ces données seront majorées de 15 % pour prendre en compte le transport par charriage.

Cette stratégie d'imposition de conditions limites instationnaires avec variations saisonnières a été exploitée pour réaliser des simulations entièrement bidimensionnelles et instationnaires. Elles ont conduit à une courbe d'évolution de la capacité relative de stockage du lac analogue à celle présentée à la Figure 59.

Il apparaît très clairement à la Figure 59 que seules les périodes de mousson contribuent significativement au processus d'alluvionnement du réservoir, alors que le restant du temps la décroissance de la capacité de stockage demeure quasiment imperceptible. Il apparaît dès lors raisonnable de focaliser les simulations sur des saisons de moussons juxtaposées dans le temps. Cette stratégie permet de concentrer l'effort de calcul sur les seules phases réellement critiques pour le résultat final.

Figure 59 : Exemple de courbe d'évolution de la capacité de stockage de la retenue au cours des quatre premières années. Ce résultat est obtenu à l'issue d'une simulation complètement bidimensionnelle et instationnaire.

IV.4.3 Détermination du débit de simulation

Etant entendu que la totalité de la simulation sera réalisée avec un débit constant, correspondant à une configuration de mousson, il est particulièrement crucial de choisir judicieusement cette valeur de débit.

Etant donné la finalité de l'étude, il apparaît essentiel de garantir la consistance du modèle en ce qui concerne la quantité totale annuelle introduite dans le lac. Cette contrainte portant sur la conformité à la réalité des apports en alluvions, ainsi que les hypothèses émises concernant les concentrations en sédiments, permettent de déterminer objectivement la valeur du débit à injecter.

Par souci de réalisme, nous n'avons pas opté pour une concentration subissant une transition brusque de $C_{\rm inf} = 0.1$ g/l à $C_{\rm sup} = 2$ g/l au-delà d'un seuil de débit, qui représenterait une hypothétique frontière parfaitement définie entre les saisons de mousson et hors mousson. Au contraire, nous avons admis que la concentration varie de la façon suivante :

- elle demeure égale à sa valeur hors mousson jusqu'à un premier niveau de débit $Q_{\rm inf}$;
- elle prend sa valeur maximale au-delà d'un second niveau, noté Q_{sup} ;
- elle varie graduellement entre les valeurs C_{inf} et C_{sup} au fur et à mesure que le débit croît de Q_{inf} à Q_{sup} . La variation est supposée linéaire.

Les concentrations sont donc fournies par la relation :

$$C(Q) = \begin{cases} C_{\text{inf}} & \text{si } Q \leq Q_{\text{inf}} \\ \frac{Q_{\text{sup}} - Q}{Q_{\text{sup}} - Q_{\text{inf}}} C_{\text{inf}} + \frac{Q - Q_{\text{inf}}}{Q_{\text{sup}} - Q_{\text{inf}}} C_{\text{sup}} & \text{si } Q_{\text{inf}} < Q < Q_{\text{sup}} . \quad (4.17) \\ C_{\text{sup}} & \text{si } Q \geq Q_{\text{sup}} \end{cases}$$

La Figure 60 représente la variation au cours d'une année des taux de transport de M.E.S. L'échelle des ordonnées est logarithmique.

Figure 60 : Variation annuelle des débits solides en M.E.S.

L'intégrale de la courbe représentée à la Figure 60 fournit le volume total de M.E.S. pénétrant dans la retenue en une année :

$$V_{\text{total}} \simeq 7.34 \quad 10^6 \text{ m}^3$$
. (4.18)

Dès lors, la contrainte à imposer sur le débit de simulation s'écrit :

$$V_{\text{total}} = Q_{\text{simulation}} \frac{C_{\text{sup}}}{2.5 \ 10^3} \times \frac{365}{4} \times 24 \times 3600$$
 (4.19)

où le premier dénominateur représente le produit de la densité relative des sédiments (s = 2.5) et du facteur nécessaire au changement d'unités reliant un débit massique à un débit volumique. Les trois derniers facteurs donnent le nombre de secondes en un trimestre de moussons. Le débit liquide de simulation a été fixé à 1162 m³/s. De ce fait, l'erreur globale commise sur le volume de sédiments introduit reste inférieure à 0.15 %.

IV.4.4 Propriétés des sédiments

Des valeurs aussi vraisemblables que possibles ont été retenues pour les différentes caractéristiques des sédiments et du lit mobile.

En particulier, la densité relative des sédiments vaut 2.5 et la porosité du lit, intervenant uniquement dans le bilan de masse des sédiments, est évaluée à 30 %. En ce qui concerne l'angle limite de stabilité et l'angle naturel de repos, nous optons pour des valeurs respectivement égales à 40° et 30° .

IV.4.5 Loi de transport sédimentaire

Choix d'une loi de transport total

La loi de transport solide à sélectionner pour la présente application doit être à même de rendre compte de la capacité *totale* de transport de l'écoulement. De ce fait, les lois classiques de transport par charge de fond, telles que celles de Schoklitsch (Julien [16]), Einstein et Brown (Julien [16]) ou encore Yalin (Yalin [23]), s'avèrent peu adéquates.

Au contraire, les lois de transport total de Bagnold (Yalin [23]) ou de Ackers et White (Bayram & al. [2]) sont susceptibles de s'appliquer dans les conditions qui nous préoccupent. Parmi ces deux lois, la seconde sera privilégiée pour deux raisons essentielles. D'une part, au contraire de la loi de Bagnold, basée sur des considérations énergétiques, celle de Ackers et White est caractérisée par un seuil d'emportement des particules, ce qui correspond très bien à la physique du phénomène à modéliser. Par ailleurs, la loi de Ackers et White a déjà été exploitée pour la simulation de l'alluvionnement du réservoir de Bhakra (Inde) sur la rivière Sutlej à l'aval de Kol. A cette occasion, une validation détaillée de la loi a été effectuée avec succès par comparaison du taux d'alluvionnement auquel elle conduisait avec des mesures bathymétriques prises dans la retenue pendant une période de 22 ans entre 1966 et 1988 (voir Singh [20]). Les données concernant les apports en sédiments proviennent dans les deux cas de la station de mesure de Kasol et sont donc identiques pour Bhakra et pour le projet de Kol. Il apparaît dès lors naturel de conserver également la même approche pour modéliser la capacité de transport de l'écoulement dans les deux cas.

La loi de Ackers et White

Dans chaque direction horizontale, le débit solide est fourni par la relation

$$q_{\rm t} = u d_{35} \left(\frac{u}{u_*}\right)^n C_{\rm d,gr} \max\left[\left(\frac{F_C}{A} - 1\right)^m, 0\right]$$
 (4.20)

où u_* représente la vitesse de friction, u la vitesse et F_C est un paramètre de mobilité des particules. Les grandeurs n (exposant de transition), m (exposant de la loi), $C_{d,gr}$ (coefficient de la loi) et A sont des paramètres adimensionnels évalués à partir du diamètre de grain sans dimension d_{gr} , appelé diamètre de grain du sédimentologue, et défini par :

$$d_{\rm gr} = d_{35} \left[\frac{g(s-1)}{\nu^2} \right]^{1/3}, \tag{4.21}$$

où ν est la viscosité cinématique et *s* désigne la densité relative des matériaux solides. Les paramètre de Ackers et White valent respectivement :

$$n = 1 - 0.2432 \ln d_{\rm gr} , \qquad (4.22)$$

$$m = \frac{9.66}{d_{\rm gr}} + 1.34 \quad , \tag{4.23}$$

$$C_{\rm d,gr} = \exp\left[2.86\ln d_{\rm gr} - 0.4343\ln^2 d_{\rm gr} - 8.128\right],\tag{4.24}$$

$$A = \frac{0.23}{\sqrt{d_{\rm gr}}} + 0.14.$$
 (4.25)

Il reste à définir le nombre de mobilité des sédiments :

$$F_{C} = \frac{u \left(\frac{u}{u_{*}}\right)^{n} C_{d}^{n-1}}{\sqrt{g(s-1)d_{35}}},$$
(4.26)

où

$$C_{\rm d} = 18 \log\left(\frac{10h}{d_{35}}\right) \tag{4.27}$$

et h représente la hauteur d'eau.

Comme le suggèrent les formules ci-dessus, la loi de Ackers et White s'applique également à des sédiments dont la distribution granulométrique n'est pas uniforme, à condition de simplement prendre d_{35} pour diamètre caractéristique de la taille des grains.

IV.4.6 Aspects numériques

De nombreuses tentatives d'application de cette loi ont été menées sur différentes simulations. Néanmoins, elle présente un comportement particulièrement défavorable d'un point de vue numérique, spécialement à proximité de son seuil de mise en suspension de particules, en raison de gradients importants auxquels elle donne lieu. Tous les essais de mise en œuvre directe de cette loi de capacité de transport au sein du code de calcul ont été jugés infructueux car ils ont tous fini par générer des oscillations parasites inacceptables dans les champs calculés.

Nous avons dès lors opté pour une autre stratégie qui consiste à repartir du formalisme mathématique d'une loi plus classique et mieux maîtrisée numériquement (Meyer-Peter et Müller) et d'adapter les paramètres de façon à ce qu'elle prédise des débits solides totaux en accord avec la loi de Ackers-White ci-dessus et avec les données de l'étude. La formulation de la loi s'écrit donc

$$q_{\rm b} = 8\sqrt{g(s-1)d^3} \left[\frac{Jh}{(s-1)d} - 0.047 \right]^{3/2}$$
(4.28)

où J désigne la pente d'énergie, qui joue naturellement un rôle déterminant dans la capacité de transport de l'écoulement. Le calibrage est explicité au paragraphe suivant.

IV.4.7 Calibrage de la loi

La loi de capacité de transport de l'écoulement a été calibrée pour les conditions d'écoulement de mousson. Le débit correspond au débit du niveau supérieur dans l'hydrogramme proposé à la Figure 58 : $Q = 1162 \text{ m}^3/\text{s}$. La concentration est fixée à C = 2 g/l et la densité relative des sédiments vaut s = 2.5.

Les conditions hydrodynamiques intervenant directement dans la loi de transport sont la hauteur d'eau et le débit spécifique. Une hauteur h = 9 m et une largeur de la rivière b = 90 m ont été considérées comme des valeurs réalistes pour la saison de mousson. Le débit spécifique hydrodynamique q en est déduit immédiatement.

Les données précédentes permettent d'estimer le débit spécifique solide :

$$q_{\rm b} = \frac{C}{s} \times 10^{-3} \times q \,. \tag{4.29}$$

Etant donné que la loi de Meyer-Peter et Müller (MPM) dans sa forme initiale rend compte du transport par charge de fond, elle est étendue pour l'étude présente grâce à un facteur multiplicatif :

$$q_{\rm b,tot} = \frac{115}{15} \times q_{\rm b,MPM} \tag{4.30}$$

où $q_{\rm b,tot}$ et $q_{\rm b,MPM}$ désignent respectivement le débit solide total recherché et celui prédit par la loi MPM.

L'imposition d'un débit solide spécifique prédit par la loi MPM (4.28) modifiée égal à celui calculé grâce à la relation (4.29) conduit, par le biais de l'estimation de la pente d'énergie correspondante, au choix d'un coefficient de Manning approprié.

IV.4.8 Simulations plus détaillées à l'aval

Il nous paraît approprié de consacrer un maximum de ressources en termes de temps de calcul à la partie aval de la retenue, qui sera le siège de remaniements topographiques à caractère bidimensionnel marqué conditionnant directement le diamètre de coupure du lac restant. Les simulations 2D totalement instationnaires pour l'évolution bathymétrique se concentreraient dès lors spécialement sur la topographie aval, où nous mettrons en évidence l'influence de la distribution spatiale des alluvions sur les éventuels débits solides sortant et donc sur la fréquence de coupure du lac au cours du remplissage progressif.

Par contre, des simulations préliminaires déjà effectuées montrent très clairement que pendant les premières années l'évolution de la topographie se limite à un remplissage dans la zone amont sans que des sédiments ne soient à même de quitter le lac par l'aval. A ce stade, toutes les particules solides sédimentent dans une zone d'entrée du réservoir, laquelle migre progressivement vers l'aval. Aussi longtemps qu'aucune particule solide n'est à même de traverser de part en part le réservoir, il est judicieux de limiter le calcul à la recherche de la bathymétrie d'équilibre, grâce au modèle bidimensionnel. Le temps de remplissage partiel correspondant sera déduit grâce à un différentiel entre la topographie d'équilibre trouvée et la situation initiale.

IV.4.9 Traitement de la granulométrie

Plusieurs simulations partielles de remplissage du lac ont été réalisées en considérant une distribution granulométrique non uniforme (125 microns, 250 microns et 1 mm). Elles conduisent à deux observations importantes.

D'une part, les résultats de calcul mettent bien en évidence que, dans les régions où un équilibre topographique est atteint, la distribution granulométrique finale de la couche la plus superficielle coïncide avec celle d'entrée. Même si cet équilibre individuel des classes granulométrique n'existe pas à tout instant au cours de la simulation, il sera assurément réalisé, pour les alluvions ne se situant pas dans des couches profondes, dans la configuration d'équilibre que nous recherchons.

D'autre part, dès lors que la granulométrie n'est plus représentée par un diamètre caractéristique unique mais par une distribution de tailles de particules, la structure mathématique du problème à résoudre change fondamentalement. La principale conséquence de cette modification de la formulation mathématique se fait ressentir au niveau du pas de temps autorisé au cours de l'évolution transitoire de la topographie. Les simulations partielles déjà menées à bien montrent que le pas de temps doit être réduit à des valeurs extrêmement faibles, parfois de l'ordre de la minute, pour maintenir la stabilité d'un calcul tenant compte d'un mélange de particules de tailles différentes. Cette contrainte, imposée par les propriétés mathématiques du modèle à granulométrie complexe, sont de nature à mettre en péril la possibilité de mener à bien un tel calcul sur des périodes de plusieurs décennies et sur la topographie globale.

A nos yeux, concentrer toute notre attention sur le remplissage de la région amont de la retenue, hors d'atteinte par d'éventuelles chasses, par des sédiments décrits par le diamètre caractéristique $d_{50} = 250$ microns s'avère la seule approche réaliste en termes de temps de calcul. De plus elle s'avère justifiable à la lumière des résultats obtenus à l'équilibre et de la finalité de l'étude, qui consiste à déterminer à quel moment les particules de 250 microns ne sédimentent plus dans le lac mais sont susceptibles de traverser la retenue. En outre, la loi MPM a été validée dans la littérature pour des mélanges de particules solides de tailles différentes, à condition de choisir d_{50} comme diamètre caractéristique.

IV.5 Résultats

IV.5.1 Topographie d'ensemble

Conditions de simulation

Un bac d'infiltration est positionné à l'extrême amont du modèle. Il permet d'injecter, sans imposer artificiellement une direction privilégiée d'écoulement, un débit de crue de 1162 m³/s. Le niveau d'eau aval est fixé à la cote d'exploitation de 642 m. Le contour du domaine de simulation, sur lequel les conditions aux limites sont imposées, est représentée à la Figure 61 et l'information topographique est fournie à la Figure 62.

Figure 61 : Contour du domaine de calcul correspondant à la topographie globale de la retenue.

Figure 62 : Topographie du modèle global de la retenue de Kol.

Solution hydrodynamique stabilisée

Une solution hydrodynamique stabilisée a été calculée à l'aide des données décrites ci-dessus. La solution est présentée en termes de modules de débits à la Figure 63.

Figure 63 : Modules de débits spécifiques (m²/s).

La retenue peut être décrite par plusieurs tronçons, comme l'expliquent les paragraphes suivants.

IV.5.2 Région 1 : la plus en amont

Un examen détaillé de la région la plus en amont de la retenue donne une première idée du niveau d'équilibre qui sera atteint dans les parties de la retenue où l'écoulement est caractérisé par une composante unidimensionnelle dominante.

La région en question est délimitée à la Figure 64.

Figure 64 : Localisation sur la topographie globale de la région 1.

Figure 65 : Topographie initiale de la Région 1 et vue 3D à partir de la limite aval.

Figure 66 : Topographie de la Région 1 à l'issue de cinq jours de crue et vue 3D.

Figure 67 : Topographie de la Région 1 à l'issue de dix jours de crue et vue 3D.

Comme le montrent les figures, une bonne partie de la région 1 peut être assimilée à un prolongement direct du lit mineur de la rivière car aucun remaniement topographique significatif n'est observé. Au contraire, les simulations montrent bien que la zone la plus à l'aval est le siège de dépôts important et qu'une une nouvelle cote d'équilibre local est atteinte.

La simulation de remplissage a montré en outre de façon très réaliste que les dépôts sont majoritairement observés en rive intérieure de la courbe (Figure 67), de telle sorte qu'il reste à l'extérieur du méandre une zone non comblée. On observe bien entendu que les débits spécifiques se concentrent alors davantage dans la partie extérieure de la courbe (Figure 68 et Figure 69).

Figure 68 : Répartition initiale des débits spécifiques (m²/s) dans le méandre à l'aval de la zone 1.

Figure 69 : Répartition des débits spécifiques dans le méandre à l'aval de la zone 1 après dix jours.

IV.5.3 Région 2

La Figure 70 permet d'identifier la région 2 par rapport au domaine global.

Figure 70 : Position de la région 2 sur la topographie globale.

Les résultats obtenus pour la topographie sont exposés aux figures suivantes. Les périodes de temps utilisées sont des valeurs relatives par rapport au moment où un front de sédiments atteint la zone en question. Une évolution temporelle globale sera synthétisée ultérieurement. L'échelle de couleurs de la Figure 71 s'applique également à la Figure 72 et la Figure 73.

Figure 71 : Topographie initiale de la région 2 et vue 3D de la zone la plus en aval.

Figure 72 : Topographie de la région 2 après une semaine et vue 3D de la zone la plus en aval.

Figure 73 : Topographie de la région 2 après deux semaines et vue 3D de la zone la plus en aval.

Ces figures mettent également en évidence à quel point la largeur locale de la vallée conditionne le niveau d'équilibre de la topographie. En effet, sur la Figure 72 et la Figure 73 deux zones principales de dépôts sont identifiées et correspondent précisément à des lieus d'élargissement de la vallée. Ceci s'explique par la diminution locale du débit spécifique au droit de ces élargissements et donc la perte concomitante de capacité à transporter à hauteur donnée.

IV.5.4 Région 3

La Figure 74 permet la localisation de la région 3 par rapport à la topographie globale.

Figure 74 : Localisation de la région 3 sur la topographie globale.

Les résultats de simulation sont présentés aux figures suivantes. Un remplissage rapide (environ 6 jours de crue) de la zone amont est observé en raison du volume relativement faible à combler (Figure 76 et Figure 77). Le front de sédiments se propage donc à une vitesse importante, alors que plus loin, où la topographie présente à la fois un élargissement et un approfondissement, le front se voit sensiblement ralenti (Figure 78 et Figure 79).

Figure 75 : Topographie initiale de la région 3.

Figure 76 : Topographie de la région 3 après 3 jours de crue.

Figure 77 : Topographie de la région 3 après 6 jours de crue.

Figure 78 : Topographie de la région 3 après 14 jours de crue.

Figure 79 : Topographie de la région 3 après 25 jours de crue.

Figure 80 : Topographie de la région 3 après 45 jours de crue.

Peu de changements de la topographie sont constatés dans la moitié aval de la région 3. L'étroitesse de la vallée à ces endroits explique la limitation de l'alluvionnement dans cette zone à quelques endroits fortement localisés (Figure 80).

La calcul a mis en évidence un remaniement local de la topographie, qui intervient après stabilisation de la capacité de stockage de la région 3. La Figure 81 met en effet en évidence des déplacements d'alluvions, visant à combler la partie extérieure d'une courbe. Ces modifications interviennent essentiellement entre les $45^{\text{ème}}$ et $57^{\text{ème}}$ jours de crue consécutifs.

Figure 81 : Remaniement topographique local dans la zone 3, à l'issue du 57^{ème} jour de crue.

La zone la plus intéressante est sans aucun doute l'élargissement situé approximativement au milieu de la région 3. Les figures suivantes illustrent l'évolution topographique à cet endroit. Les vues tridimensionnelles sont réalisées à partir du point de vue indiqué par la flèche bleu à la Figure 81.

Figure 82 : Vue 3D de la topographie initiale à l'endroit de l'élargissement principal.

Figure 83 : Vue 3D de la topographie après 14 jours de crue à l'endroit de l'élargissement principal.

Figure 84 : Vue 3D de la topographie après 25 jours de crue à l'endroit de l'élargissement principal.

Figure 85 : Vue 3D de la topographie après 57 jours de crue à l'endroit de l'élargissement principal.

IV.5.5 Région 4

La position de la région 4 est illustrée à la Figure 86.

Figure 86 : Localisation de la région 4 par rapport à la topographie globale.

La topographie d'équilibre est représentée à la Figure 87.

Figure 87 : Topographie d'équilibre dans la région 4.

Le temps de remplissage de cette zone s'en déduit immédiatement. On obtient un volume de 25 millions de mètres cubes de sédiments, soit un apport correspondant à environ 252 jours de crues. A cette valeur, il faut ajouter le temps de remplissage de la jonction entre les régions 3 et 4, à savoir 15 jours.

IV.5.6 Région 5

La position de la région 5 est illustré à la Figure 88.

Figure 88 : Localisation de la région 5 par rapport à la topographie globale.

La topographie initiale de la région 5 est représentée plus en détails à la Figure 89. La configuration d'équilibre trouvée grâce aux simulations bidimensionnelles est illustrée à la Figure 90 et la fournit le différentiel entre les deux cartes précédentes. A partir de celui-ci il est facile de déterminer le volume d'alluvions ayant sédimenté et, partant, le temps de remplissage.

Le volume de comblé par alluvionnement s'élève à 51,5 millions de mètres cubes. Le temps de remplissage est évalué à 17 mois de crue.

Figure 89 : Topographie initiale de la région 5.

Figure 90 : Topographie d'équilibre de la région 5.

Figure 91 : Hauteur de sédiments déposés dans la région 5.

IV.5.7 Région 6

La position de la région 6 est illustré à la Figure 92 et la topographie initiale détaillée est représentée à la Figure 94.

Figure 92 : Localisation de la région 6 par rapport à la topographie globale.

Les figures suivantes illustrent l'évolution de l'alluvionnement progressif dans la zone 6. Il est intéressant de constater la raideur du front sédimentaire (Figure 95). De plus, un effet bidimensionnel marqué est constaté au niveau de la géométrie du front à partir du moment où celui-ci dépasse une irrégularité présente en rive droite (Figure 96 et Figure 97). Le temps de remplissage de la région 6 est évalué à environ 213 jours.

Une illustration tridimensionnelle de ces différents résultats est fournie à la Figure 93.

Figure 93 : Vue 3D de l'évolution topographique dans la zone 6 (Configuration initiale et résultats pour 43, 85, 128, 170 et 213 jours de crue).

Figure 94 : Données topographiques initiales de la zone 6.

Figure 97 : Topographie de la zone 6 à l'issue de 128 jours de crue.

Figure 95 : Topographie de la zone 6 à l'issue de 43 jours de crue.

Figure 98 : Topographie de la zone 6 à l'issue de 170 jours de crue.

Figure 96 : Topographie de la zone 6 à l'issue de 85 jours de crue.

Figure 99 : Topographie de la zone 6 à l'issue de 213 jours de crue.

IV.5.8 Région 7

La position de la région 7 sur la topographie globale est identifiée à la Figure 100.

Figure 100 : Localisation de la région 7 par rapport à la topographie globale.

Figure 101 : Topographie initiale de la région 7.

Figure 102 : Topographie d'équilibre de la région 7.

Figure 103 : Hauteurs de sédiments déposés dans la région 7.

La volume de sédiments ayant comblé la retenue dans la région 7 est estimé à 47,6 millions de mètres cubes. Cette quantité d'alluvions correspond à celle qui serait apportée par la rivière au cours de 479 jours de crue, soit près de seize mois.

IV.5.9 Région 8

La région 8 est localisée sur la topographie globale du lac à la Figure 104.

Figure 104 : Localisation de la région 8 sur la topographie globale.

Figure 105 : Topographie initiale dans la région 8.

Figure 106 : Evolution de la topographie dans la région 8 après 8, 15, 23 et 31 mois.

La Figure 105 fournit la topographie initiale de la région 8. Les résultats de simulation sont présentés à la Figure 106. Le front sédimentaire prend environ 840 jours pour traverser de part en part la région 8, soit une durée équivalente à presque 28 mois de crue.

L'évolution du front proprement dit est illustrée à la Figure 107.

Figure 107 : Etat de la propagation du front sédimentaire à travers la région 8, à l'issue de 8, 15, 23 et 31 mois de crue.

IV.5.10 Région la plus en aval

Dans la partie de la retenue la plus proche du déversoir, il est impératif d'adopter une stratégie de résolution donnant accès à toute l'évolution transitoire du lit. En effet, des sédiments sont susceptibles d'atteindre la dalle du déversoir et donc de quitter le réservoir par l'aval, avant même que la topographie n'ait atteint sont profil d'équilibre définitif. Un but de l'étude étant notamment d'identifier ce moment à partir duquel le lac restant non comblé n'est plus à même de piéger les sédiments de 250 microns et plus, nous avons simulé l'alluvionnement la dernière région côté aval de façon totalement dynamique.

Figure 108 : Topographie initiale de la partie aval de la retenue.

Figure 109 : Vue 3 D de la topographie initiale dans la partie aval de la retenue.

L'évolution transitoire au cours de périodes de crues supposées juxtaposées est illustrées aux figures des pages suivantes.

De façon générale, le front a toujours une allure très raide et se propage en étant sensiblement influencé par la géométrie bidimensionnelle de cette partie du lac. Les vues en plans sur les figures suivantes le montrent clairement. Ceci confirme la pertinence et l'utilité d'une simulation bidimensionnelle. Par contre, on observe qu'une fois qu'une zone du lac est affectée significativement par des dépôts, elle atteint très rapidement son niveau d'équilibre.

Le moment où le lac n'est plus à même de piéger les particules de 250 microns de diamètre est identifié par un changement brusque dans la pente de la courbe de la capacité de stockage du lac en fonction du temps. En effet, cette dernière diminue de façon continue et monotone jusqu'au moment où les matériaux solides quittent le lac vers l'aval et ne contribuent donc plus à une réduction de la capacité de stockage.

Le temps de remplissage total est synthétisé et discuté dans le paragraphe de conclusion.

Figure 110 : Topographie de la partie aval de la retenue après 16 mois de crue.

Figure 111 : Topographie de la partie aval de la retenue après 34 mois de crue.

Figure 112 : Topographie de la partie aval de la retenue après 50 mois de crue.

Figure 113 : Topographie de la partie aval de la retenue après 67 mois de crue.

Figure 114 : Topographie de la partie aval de la retenue après 84 mois de crue.

Figure 115 : Topographie de la partie aval de la retenue après 101 mois de crue.

Figure 116 : Topographie de la partie aval de la retenue après 118 mois de crue.

Figure 117 : Topographie de la partie aval de la retenue après 134 mois de crue.

Figure 118 : Topographie de la partie aval de la retenue après 151 mois de crue.

Figure 119 : Topographie de la partie aval de la retenue après 168 mois de crue.

Figure 120 : Topographie de la partie aval de la retenue après 184 mois de crue.

Figure 121 : Topographie de la partie aval de la retenue dans la configuration d'équilibre.

IV.5.11 Conclusion

Le processus d'alluvionnement du lac de Kol a été simulé à l'aide d'un modèle numérique complètement bidimensionnel. L'hydrodynamique est traitée grâce à une approche quasi-stationnaire. Sa mise à jour est effectuée, selon les conditions hydrodynamiques et de transport solide, à l'issue de périodes de l'ordre de l'heure ou de quelques heures.

Un profil d'équilibre a été déterminé pour la topographie dans l'ensemble du lac. Cette détermination a été effectuée pour un débit de crue moyen de 1162 m³/s. A partir de ce résultat, le volume des dépôts peut être aisément déduit et, part voie de conséquence, le temps de remplissage dès lors qu'une hypothèse est émise concernant la concentration en sédiments de l'écoulement entrant dans le lac.

Le Tableau 7 rappelle que pour certaines simulations seule la configuration finale a été recherchée, en faisant abstraction de la dynamique de remplissage car, comme nous l'avons justifié précédemment, elle n'influence guère le résultat final.

Les temps de remplissage pour les différentes régions sont également synthétisés au Tableau 7. Les périodes se rapportant à des régions individuelles sont données en jours de crue. Le temps total d'alluvionnement est fourni directement en années réelles. Ces grandeurs doivent bien entendu être examinés en ne perdant pas de vue les multiples incertitudes, tant sur la modélisation proprement dite des mécanismes de transport que sur les données d'entrée (débits hydrodynamiques et les concentrations en M.E.S.).

Région	Evolution topographique	Temps de remplissage
1	Instationnaire	10 jours
2	Instationnaire	14 jours
3	Instationnaire	45 jours
4	Stationnaire	267 jours
5	Stationnaire	518 jours
6	Instationnaire	213 jours
7	Stationnaire	479 jours
8	Instationnaire	840 jours
Aval	Instationnaire	5596 jours
TOTAL	-	87 ans

Tableau 7 : Type de simulation, temps d'alluvionnement des différentes régions.

IV.6 Bibliographie

- [1] Banihabib, M.E. & A. Mokhtari. Numerical Simulation of Sedimentation in Detention Dams During a High Concentrated Flow. in 3rd International Symposium on Environmental Hydraulics. 2001. Arizona State University, Tempe, AZ.
- [2] Bayram, A., M. Larson, H.C. Miller & N.C. Kraus, Cross-shore distribution of longshore sediment transport: comparison between predictive formulas and field measurement. Coastal Engineering, 2001. 44: pp. 79-99.
- [3] Black, K.S., T.J. Tolhurst, D.M. Paterson & S.E. Hagerthey, *Working with natural cohesive sediments*. Journal of Hydraulic Engineering, 2002. **128**(1): pp. 2-9.
- [4] Bouchard, J.-P. *La gestion des sédiments par chasse : outils d'optimisation et de prévision d'impact.* in *Gestion des Sédiments : de la source à la mer.* 2001. Lyon: Société Hydrotechnique de France.
- [5] Bouchard, J.P., F. Maurel & A. Petitjean. Sedimental Impact of Reservoir Emptying: Prediction tools and site investigation. in International Water Research Symposium. 1997. Aachen, Germany.
- [6] Chanson, H., *The Hydraulics of open Channel Flow*. 1999, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi: Butterworth-Heinemann.
- [7] Chanson, H. & D.P. James. Siltation of Australian Reservoirs: some Observations and Dam Safety Implications. in Proc. Water 99 Joint Congress, 25th Hydrology & Water Res. Symp. and 2nd Intl Conf. Water Res. & Environ. Research. 1999. Brisbane.
- [8] Dewals, B., *Modélisation numérique de processus de transport sédimentaire en rivière.* Tribune de l'eau, 2001. **54**(611): pp. 45-56.
- [9] Dewals, B., *Modélisation numérique du transport sédimentaire*. Travail de fin d'études. 2001, University of Liege.
- [10] Dewals, B., P. Archambeau, S. Erpicum, T. Mouzelard & M. Pirotton. *Wolf* software: a fully integrated device applied to modelling gradual dam failures and assessing subsequent risks. in Advances in Fluid Mechanics. 2002. Ghent, Belgium: WIT Press.
- [11] Durand, P. Barrage de Mauvoisin, projet de surélévation de la prise d'eau et vidange, impacts sur l'environnement. in Gestion des Sédiments : de la source à la mer. 2001. Lyon: Société Hydrotechnique de France.
- [12] Fäh, R., Numerische Simulation der Strömung in offenen Gerinnen mit beweglicher Sohle. PhD Thesis. 1997, VAW-ETHZ: Zürich.
- [13] Fan, J. & G.L. Morris, *Reservoir Sedimentation. I: Delta and Density Current Deposits.* Journal of Hydraulic Engineering, 1992. **118**(3): pp. 354-369.
- [14] Fan, J. & G.L. Morris, *Reservoir Sedimentation*. II: Reservoir Desiltation and Long-Term Storage Capacity. Journal of Hydraulic Engineering, 1992. 118(3): pp. 370-385.

- [15] Graf, W.H., *Hydraulique fluviale*. Vol. 2: Ecoulement non permanent et phénomènes de transport. 1996: Presses Polytechniques et Universitaires Romandes.
- [16] Julien, P.Y., *Erosion and Sedimentation*. 1995, Cambridge: Cambridge University Press.
- [17] Lai, J.-S. & H.W. Shen, *Flushing sediment through reservoirs*. Journal of Hydraulic Research, 1996. **34**(2): pp. 237-255.
- [18] Parker, G., Y. Fukushima & H.M. Pantin, *Self-accelerating turbidity currents*. J. Fluid Mech., 1986. **171**: pp. 145-181.
- [19] Schweim, C., J.P. Bouchard, J. Welzel, V. Spork & J. Köngeter. Sediment management during reservoir depletion - Experimental investigations of mud siltation and resuspension. in 7th International Symposium on River Sedimentation. 1998. Hong Kong.
- [20] Singh, S.P. Mathematical model studies on sedimentation of Bhakra reservoir. in Silting Problems in Hydro Power Plants. 1999. New Delhi: Central Board of Irrigation and Power.
- [21] Soni, J.P., R.J. Garde & K.G.R. Raju, *Aggradation in streams due to overloading*. Journal of the Hydraulics Division, 1980. **106**(HY1): pp. 117-131.
- [22] Vetsch, D. & R. Fäh. Validation of a numerical model to simulate the Rhine river delta at the lake of Constance. in 3rd International Symposium on Environmental Hydraulics. 2001. Arizona State University, Tempe, AZ.
- [23] Yalin, M.S., *Mechanics of Sediment Transport*. Second ed. 1977, Oxford, New York, Toronto, Sydney, Paris, Frankfurt: Pergamon Press.

V. Conclusion

Le présent DEA s'articule autour de trois axes essentiels.

Une comparaison des approches implicite et explicite a tout d'abord été présentée pour l'intégration temporelle du modèle des eaux peu profondes. Les fondements théoriques de la méthode d'intégration implicite ont ensuite été exposés. Nous avons également abordé de façon détaillée certains des grands enjeux numériques et algorithmiques à appréhender pour implémenter et mettre en œuvre un tel schéma, qu'ils concernent le temps de calcul, la gestion de la mémoire ou encore la souplesse algorithmique.

Deux obstacles essentiels ont été surmontés. D'une part, un calcul exact de la matrice Jacobienne du système a été effectué dans le cas d'un fractionnement des flux simple. Il permet non seulement d'éviter le coût élevé d'une évaluation par différences finies, mais en outre il donne véritablement accès à la convergence quadratique de la méthode de Newton-Raphson associée. Son évaluation par différences finies, tout en garantissant une gestion optimisée de la mémoire requise, a également été implémentée et offre une très grande flexibilité à l'égard de tout changement apporté aux équations. Celui-ci serait dès lors pris en compte automatiquement dans le module implicite du code de calcul. D'autre part, nous avons implémenté une algèbre linéaire performante, basée sur l'algorithme du GMRES, et tirant raisonnablement parti des zéros liés au caractère creux de la matrice du système algébrique. Cette exigence est bien entendu inéluctable en vue d'applications réalistes, qui exigent couramment la résolution de systèmes de plusieurs dizaines voir centaines de milliers d'équations.

Dans un premier temps, un modèle unidimensionnel a été mis au point, puis, très logiquement, l'obtention de résultats encourageants à l'aide de ce premier code de calcul a été suivie d'une généralisation à deux dimensions du schéma implicite. Loin d'être immédiate, cette opération n'a été accomplie avec succès qu'à la suite de la sélection d'une technique appropriée pour l'évaluation des flux numériques. Cette étape délicate s'est révélée payante après qu'une méthode assurant la continuité des flux calculés, aussi bien à la transition critique que pour de faibles vitesses, ait été implémentée. Le modèle obtenu, extrêmement compétitif pour l'obtention de solutions stationnaires précises ouvre un très vaste champ d'applications. Ce chapitre nous a également donné l'occasion d'introduire une adaptation, à notre connaissance inédite, du schéma AUSM pour les équations de l'hydrodynamique à surface libre. Il a été comparé et confronté à la fois à un fractionnement des flux original développé au sein du HACH et à la technique classique de Roe pour le calcul des flux numériques.

Plusieurs cas de figure ont été simulés à la fin de cette première partie. Ils permettent une discussion systématique de l'influence des différents paramètres, ainsi

qu'une mise en exergue à la fois de la puissance de ce type d'approche et de certaines difficultés qui y sont liées.

Une deuxième partie du travail décrit une théorie originale, novatrice et inédite pour le traitement des écoulements sur coursiers de déversoirs. Elle est basée sur une formulation en coordonnées curvilignes des équations de la Mécanique des fluides, avant que l'opération d'intégration sur la lame fluide ne soit effectuée. La variation de volume des éléments de contrôle avec la courbure des axes est prise en compte, ainsi que d'autres termes additionnels apparaissant naturellement au cours des développements analytiques rigoureux. Le nouveau système d'équations a été implémenté au sein d'un logiciel 1D et entièrement couplé au schéma d'intégration temporelle implicite décrit précédemment. Cette étape s'est déroulée sans complication particulière en raison de la souplesse fournie par l'algorithme de calcul du Jacobien à l'aide de différences finies. Diverses applications en régime permanent ont été traitées et une comparaison avec des mesures expérimentales a permis de confirmer la validité de l'approche. Néanmoins certaines améliorations restent à apporter, essentiellement en ce qui concerne l'écoulement au droit du seuil du déversoir, où les composantes de vitesse verticale risquent de ne pas rester négligeables.

La dernière phase du travail de DEA a conduit à la réalisation d'une simulation innovante visant à prévoir l'état d'équilibre hydrosédimentaire d'un grand réservoir en Inde (plus de 600 millions de m³) et le délai d'ensablement du lac. A l'aide de considérations physiques et mathématiques, nous avons justifié le choix d'une stratégie de résolution quasi-stationnaire, assurant une maîtrise du coût de calcul. La pratique a montré qu'une remise à jour de l'hydrodynamique était requise régulièrement, de telle sorte que celle-ci a finalement été réalisée grâce à quelques pas explicites, moins onéreux qu'une ou deux itérations implicites. L'approche totalement bidimensionnelle reste extrêmement rare aujourd'hui pour des études d'une telle ampleur.

La présentation de nombreux résultats concluants ne peut être totalement dissociée de l'évocation de limitations inhérentes au modèle et de certaines difficultés auxquelles le modélisateur se voit confronté. Plusieurs d'entre elles ont d'ores et déjà été soulignées au cours des paragraphes correspondants, mais il est bon de synthétiser ici les idées principales.

La nature même du processus d'alluvionnement rend extrêmement complexe toute opération de calibrage du modèle, sauf si des enregistrements bathymétriques ont été enregistrés par le passé. Malheureusement ceux-ci font souvent défaut et sont de toute façon exclus dans le cas d'une étude d'implantation d'un ouvrage à construire. L'incertitude caractérisant tout scénario concernant la prévision des apports solides pendant la période d'ensablement se répercute certes sur la précision des conclusions tirées à partir des simulations, néanmoins la méthode entièrement bidimensionnelle développée au cours de ce travail constitue l'approche physiquement basée la plus objective accessible actuellement à la modélisation. Elle permet de fournir des éléments tangibles d'aide à la décision concernant la rentabilité de grandes installations hydroélectriques, en particulier dans des régions où la rapidité de l'alluvionnement conditionne au premier plan la faisabilité économique de tout nouveau projet.

Une modélisation séparée des différents modes de transport (charriage et suspension) est actuellement en cours d'implémentation et ne peut que conduire à un degré de réalisme accru dans la reproduction des phénomènes à simuler. Par ailleurs, la granulométrie a été caractérisée par un diamètre de grain moyen, qui ne permet pas de

refléter le tri granulométrique parfois observé dans la réalité. Cependant, des difficultés substantielles se présentent à cet égard, notamment en raison de la possible indisponibilité temporaire de certains grains à la surface du lit (pavage du lit) et de la nécessité concomitante de répertorier un historique des différentes couches qui se déposent. Des recherches sont entreprises actuellement dans cette voie. Un besoin se fait également sentir pour la recherche et l'étude de lois de débits solides reflétant de façon plus réaliste le transport différencié de chacune des classes granulométriques. Toute la complexité d'une telle tâche apparaît dès lors qu'on constate que déjà pour des sédiments de taille uniforme la plupart des lois de transport fournissent des résultats prédictifs largement insatisfaisants. Le recours à l'expérimental est donc à prévoir afin d'affiner et de généraliser les lois de capacité de transport actuelles, dont le niveau justesse conditionne directement la qualité des simulations numériques.

Le modèle intégré sur la hauteur peut sembler discutable dans certains cas. Sa validité requiert, en effet, que le carré du rapport des composantes verticale et horizontale de la vitesse soit faible. Des bases solides permettent d'étayer sa validité incontestable dans le cas d'un écoulement en rivière. Par contre, étant donné l'hydrodynamique spécifique d'un lac, le réservoir proprement dit est selon toute vraisemblance le siège d'échanges verticaux de masse et de quantité de mouvement. Des améliorations pourraient dès lors être envisagées de ce côté, selon trois méthodes de difficulté croissante. La prise en compte d'effets diffusifs au sein du lac et la réalisation d'un calibrage approprié de ceux-ci constituent un premier pas vers une description plus fidèle des phénomènes naturels. Une modélisation impliquant deux ou plusieurs couches d'écoulement représenterait un progrès supplémentaire et ouvrirait la voie entre autres à une description appropriée de mécanismes de transport particuliers, tels que les courants de turbidité. Finalement, certaines limitations inhérentes à la vue bidimensionnelle privilégiée actuellement ne peuvent être dépassées que par la mise au point d'un modèle tridimensionnel. Nombre d'obstacles restent cependant à franchir avant de pouvoir garantir une applicabilité suffisamment large et générale d'un modèle complètement 3D, spécialement dans le cadre de simulations à très grandes échelles spatiales et temporelle. Outre les exigences en termes de puissance de calcul et de capacité de stockage, rappelons également la nécessité de disposer de valeurs correctes de conditions initiales, de conditions limites et de nombreuses autres données toujours difficile à obtenir en pratique.

Deux grandes familles de schémas d'intégration temporelle sont dorénavant disponibles dans le modèle WOLF, de sorte que le plus adapté d'entre eux puisse être choisi au cas par cas, en fonction de l'application visée. Outre ces approches explicite et implicite stationnaire, un schéma d'intégration temporelle implicite transitoire reste à implémenter, dans le but d'apporter une réponse optimale pour certaines applications instationnaires dont les temps caractéristiques sont particulièrement longs. L'équipe du HACH envisage d'ores et déjà la simulation de très grands réseaux de rivières, par exemple à une échelle nationale, alimentés par des conditions limites instationnaires correspondant, par exemple, à des données horaires reflétant l'évolution des signaux de pluie et de leur ruissellement sur les bassins versants.

Chaque étape du présent mémoire s'est concrétisée non seulement par un travail de nature numérique et algorithmique, mais également par des recherches théoriques fondamentales, tant sur le plan physique que mathématique des modèles. En parallèle avec celles-ci et afin de les orienter de façon efficiente, une étude bibliographique fouillée et continue a joué un rôle permanent de soutien pour les développements entrepris et d'initiation de nouvelles approches. En conclusion, la filière de ce travail prouve que les moyens mis en œuvre ont porté leurs fruits. Les deux défis principaux ont été relevés, à savoir la mise en place du schéma d'intégration temporelle implicite et sa large validation, ainsi que la réussite de la simulation à très long terme de l'envasement d'une grande retenue. En outre, la description de l'écoulement en coordonnées curvilignes quelconques permet de jalonner une amélioration substantielle du niveau de réalisme des simulations sur coursiers de déversoirs et, partant, de toute l'hydrodynamique à l'amont étant donné l'influence prépondérante de la condition limite aval sur le domaine complet. Des pistes de recherches futures ont été tracées, aussi bien en ce qui concerne une généralisation du schéma implicite que du côté d'un perfectionnement des capacités prévisionnelles des modèles hydrodédimentaires.