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Abstract
We propose a timed extension of LOTOS, denoted TLOTOS, which is upward compatible

with the standard LOTOS. It means first that a timed behaviour expression which does not use
any language extension will have the same semantics as in standard LOTOS. In addition, we
have pushed this upward compatibility one step beyond by requiring and obtaining that all the
familiar equivalence laws of standard LOTOS be preserved, e.g. B [] B ~ B, B [] stop ~ B.
This is needed in order to keep the intuition of a standard LOTOS user unchanged. TLOTOS
has been mainly inspired by other approaches such as Moller & Tofts’s TCCS (Temporal
CCS), Hennessy & Regan’s TPL (Temporal Process Language) and Nicollin & Sifakis’s ATP
(Algebra of Timed Processes). Our model is not strictly asynchronous (like standard LOTOS,
CCS, CSP, ACP) nor strictly synchronous (like SCCS, CIRCAL, Meije). For compatibility
and simplicity, we decided to keep the model asynchronous for a large part and, for dealing
with time, to introduce a “synchronous part” by way of a new basic “synchronous” or timed ac-
tion in the asynchronous semantic model. The design of our TLOTOS is presented together
with other possible design alternatives which are all rejected according to our compatibility or
expressive power requirements. The solution that we obtain is simple and satisfactory, and its
operational semantics is presented in depth. Two examples are provided to illustrate the use of
TLOTOS.

1. Introduction
In recent years, many quantitative timed extensions of well-known asynchronous process al-

gebras have been proposed, as well as new timed process algebras. CSP [Hoa 85], CCS [Mil
89], ACP [BeK 85], LOTOS [ISO 8807] have been extended to Timed CSP [ReR 88, Ree 90],
TCCS (Temporal CCS) [MoT 89], TIC [QAF 89], ACP! [BaB 90], CELOTOS [HTZ 90],
ACP t

"# [Gro 90], Timed-Interaction LOTOS [BLT 90, BoL 91], Timed CCS [Wan 90, Wan
91] and TPCCS [HaJ 90, Han 91]. New process algebras have been proposed which are in-
tended to model time in a quantitative way: first, synchronous process algebras such as SCCS
[Mil 83], Meije [AuB 85] or CIRCAL [Mil 85] and, in a second step, timed process algebras
such as TPL (Temporal Process Language) [HeR 90], ATP (Algebra of Timed Processes)
[NRS 90, NS 90, NSY 91], PADS (Process Algebra for Distributed Systems) [Azc 90]. An
overview and synthesis on Timed Process Algebras may be found in [NS 91].

In this paper, we present a timed extension of LOTOS, denoted TLOTOS, with the objective
of upward compatibility with standard LOTOS. This means that LOTOS will be a proper subset
of TLOTOS (i.e. LOTOS specifications will be correct TLOTOS specifications, and their se-
mantics will be unchanged). In addition, we have been able to preserve all the LOTOS strong
and weak bisimulation laws in TLOTOS. This is fundamental in order to facilitate as much as
possible its use by those who were trained on standard LOTOS. These are our requirements for
claiming (true) upward compatibility. They will be further developed in section 2.



An upward compatible timed extension to LOTOS 218

TLOTOS has been inspired by other approaches such as TPL [HeR 90], ATP [NS 90],
ACP t

"# [Gro 90] and PADS [Azc 90]. Our model is between a strictly asynchronous algebra
(like LOTOS, CCS, CSP, ACP) and a strictly synchronous one (like SCCS, CIRCAL, Meije).
The idea has been suggested in the works previously mentioned here-above and may be infor-
mally presented as the addition of a “synchronous action” in an asynchronous algebra. The
motivation is twofold. First, this way of doing is clearly in the line of an upward extension of
LOTOS since the basic asynchronous model is our starting point. Second, this corresponds to
the fact that distributed systems are mainly systems which behave most of the time asyn-
chronously, but resynchronize themselves periodically. It is therefore unacceptable to burden a
whole specification with timing considerations when only a small subset of it really depends on
time. This is the main shortcoming of purely synchronous models.

The timed action that we will add in LOTOS may be defined with different properties in
mind, which would lead to several possible extensions. The design of TLOTOS will thus be
explained by presenting other possible design alternatives which will be all rejected according to
our requirements of compatibility and expressing power. In this process, we do not claim of
course to have explored all the possible timed extensions of LOTOS. However, we have tried
to be as exhaustive as possible with respect to the possible extensions based on the fundamental
concept of a distinct timed action.

The timed action is the basic element of the extended semantics. At the syntactic level, sev-
eral additional constructs are needed to benefit totally from this new expressive facility. These
constructs will be introduced and illustrated. Let us note that, at this level, other operators might
have been used or could advantageously replace the chosen ones. We have simply selected an
existing set of such timed operators (viz. those proposed in ATP) in order to avoid unneeded
additional notations. However, this choice is not arbitrary: we think that the ATP timed
operators are simple, easy to use and understand, and perfectly adequate to model many timed
behaviours such as time-outs, watchdogs, … TLOTOS is proposed with its operational
semantics for the main operators.

In order to illustrate the use of TLOTOS, we will also present two small examples. The first
one is the transmitter entity of the well-known alternating bit protocol. The second one is a
unidirectional medium which introduces delays on the exchanged messages.

2. Upward compatibility with LOTOS
The main objective of this timed extension that we are looking for is its upward compatibility

with current LOTOS [ISO 8807]. This means that, in TLOTOS, a behaviour expression which
does not use any language extension should have the same semantics as in standard LOTOS.
This allows the description in TLOTOS of untimed behaviours, exactly in the same way as in
LOTOS. This requirement is necessary to achieve upward compatibility, but we would like to
require more. We would like to use TLOTOS with the same intuition as LOTOS. This means
that behaviour expressions which were (strongly, weakly, …) bisimulation equivalent in
LOTOS should remain equivalent in TLOTOS. In other words, we want to preserve all the
familiar laws of LOTOS: e.g. B [] B ~ B, B [] stop ~ B, the commutativity and associativity of
various operators such as choice or parallel composition with the same gate list. Whereas the
first requirement only applies to the LOTOS subset of TLOTOS, this last requirement applies to
the full TLOTOS.

The first requirement can be achieved as follows: first, we should preserve, in the opera-
tional semantics, all the axioms and inference rules of the LOTOS operators; second, if new
axioms and inference rules are added for standard LOTOS operators, they should not allow
new transitions when the operands are untimed processes. By contrast, the axioms and infer-
ence rules of the new timed operators remain unconstrained by this first requirement. Indeed, in
this case, any behaviour expression in TLOTOS which does not use any new operator, will be
an untimed behaviour expression, and will thus have exactly the same Labelled Transition
System (LTS) as in LOTOS. A precise definition of a LTS will be given later on.
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The second requirement, however, will add further constraints to the new axioms and rules
of the standard operators.

Basic design choices of LOTOS also have to be preserved in order to achieve this upward
compatibility. For instance, actions will remain atomic and instantaneous (i.e. with duration 0),
and the semantics of parallelism will still be based on interleaving. We will see that this combi-
nation may lead to a satisfactory approximation of real parallelism. Intuitively, sequences of
instantaneous actions may be considered to occur during the same unit time interval. If the set
of possible interleaved sequences are all specified, this may be an adequate model of true paral-
lelism. These sequences will be separated from subsequent actions (i.e. which should occur at a
later time) by means of a special timed action, as presented later on in this paper.

3. Basic choices related to the timed extension
We decided to follow the approaches of TCCS, TPL and ATP to define TLOTOS, i.e. the

definition of a model which is not strictly asynchronous (like LOTOS, CCS, CSP, ACP, …)
nor strictly synchronous (like SCCS, CIRCAL, Meije).We think that an appropriate model
should be asynchronous for a large part, but should allow the expression of precise timing
constraints. An asynchronous model as a starting point is thus justified for two reasons: first,
an asynchronous model is in general simpler than a synchronous one; second, since we are
looking for an upward compatible extension of the asynchronous model of LOTOS, we think
that this approach is more natural and also simpler.

One problem remains however: the introduction of a “synchronous part” in the LOTOS
asynchronous model. The basic idea has been presented in TPL, ATP, ACP t

"# and PADS, and
consists in introducing a new basic action in the semantic model. This action, which will be de-
noted $ (like in ATP) in the sequel, is called a timed action. Its occurrence models the passing
of one unit of time. A process may thus either execute an observable action (i.e. a synchroniza-
tion with its environment), or execute an asynchronous internal action (the well-known i), or
execute a timed action $ modelling the passing of one unit of time.

This $ action is however a very low level construct which would, if introduced as such in
the language, unnecessarily complicate TLOTOS, as well as its use for the description of time-
dependent systems. Therefore, following ATP, we decided to make $ invisible at the syntactic
level of the language. This is quite similar to the introduction, in the semantic model only, of
the % action, modelling a successful termination: no % action ever appears in a LOTOS be-
haviour expression, it is hidden in a syntactic construct which is, in this case, the exit process.

We will follow the same approach, and define several new syntactic constructs whose se-
mantics refer to the $ action. Some additional axioms and inference rules of standard LOTOS
will also be defined and make use of this $ action.

We will adopt the same three basic timing constructs as in ATP. We only present two of
them in section 3 for illustration, the third one will be justified later on in section 4.

Notations
L is the alphabet of observable actions.
Li = L & {i}, L%= L & {%}, L$ = L & {$}, Li,% = L & {i,%}, Li,%,$ = L & {i,%,$}, …
P 'a( P’ where a ) Li,%,$, means that process P may engage in action a and, after doing so,

behave like process P’.
P 'a(/ where a ) Li,%,$, means that ¬ (* P’, such that P 'a( P’), i.e. P cannot accept (or

must refuse) the action a.
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The start delay operator (or time-out operator), +,d

 +P,d(Q) is a process which behaves like P provided P starts before d units of time, other-
wise it behaves like Q. Note that d is required to be strictly greater than 0, and that, when d = 1,
it may be omitted. Its operational semantics is defined by the following four inference rules [NS
90]:

(SD1)
P 'a(  P’

+P,d(Q) 'a(  P’
(a ) Li,%, d - 1) (SD3)

P '$(  P’
+P,d+1(Q) '$( +P’,d(Q)

(d - 1)

(SD2) +P,1(Q) '$( Q (SD4)
P '$(/   $

+P,d+1(Q) '$( +P,d(Q)
(d - 1)

The process  +P,d (Q) would advantageously replace the following imprecise construction
often used in standard LOTOS for modelling a time-out:

P [] (Time-out (d) >> Q) where Time-out (d:nat) := exit
As an example, the figure 1 gives the LTS§ associated with the process +a; stop,2(b; stop).

a $

+a; stop, (b; stop)
2

stop +a; stop, (b; stop)

b; stop

a

b
$

$

b

a

%

.+a; exit , (B)/ (b; stop)

.exit/ (b; stop) b; stop

.stop/ (b; stop) stop

2

Figure 1: the LTS of +a; stop,2(b; stop) Figure 2: the LTS of .+a; exit,2(B)/(b; stop)
When a well-defined semantics is given to stop in the next section, we will see that a simple

delay of d units of time before the start of a process Q will be introduced as follows:
+stop,d(Q)

The idea is that this process may only execute the trace $d and then behave like Q.
As mentioned in [NS 90], one might think (by looking at the union of their premises, and at

their common inferred part) that the rules SD3 and SD4 could be replaced by a single simpler
axiom such as +P,d+1(Q) '$( +P,d(Q). However, this is not intuitively satisfactory in the case
of nested delays as explained on the following example from [NS 90]: in such a semantics, the
process  ++a; P,1(b; Q),2(R) would not have the ability to execute b; in fact, it would be equiva-
lent to +a; P,2(R).

$ This is called a negative premiss. This is the first time that we encounter one of them. This kind of transi-
tion system specification may create inconsistencies in general. In TLOTOS, these potential problems have been
analysed in [Led 91].

§ A precise definition of a LTS is given later on. Moreover, at this stage, without knowing the semantics of
action-prefix and stop in TLOTOS, it may seem too early to give the LTS associated with this process.
Therefore, this LTS should be considered only as a didactic aid to understand the operator. In fact, it will turn out
to be the correct LTS according to semantics that we will define. This note is also valid for the subsequent ex-
amples.
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The execution delay operator (or watchdog operator), ./d

.P/d (Q) is a process which behaves like P before the dth unit of time, and like Q afterwards
provided P has not terminated successfully before this dth unit of time (i.e. executed a % action).
When d = 1, it may be omitted. Its operational semantics is defined by the following four
inference rules:

(ED1)
P 'a(  P’

.P/d(Q) 'a( .P’/d(Q)
(a ) Li, d - 1) (ED3)

P '$(  P’
.P/1(Q) '$( Q

(ED2)
P '%(  P’

.P/d(Q) '%( P’
(d - 1) (ED4)

P '$(  P’
.P/d+1(Q) '$( .P’/d(Q)

(d - 1)

The process .P/d (Q) would advantageously replace the following imprecise construction
often used in standard LOTOS for modelling a watchdog:

P [> (Time-out (d) >> Q) where Time-out (d:nat):exit := exit
An example is presented in figure 2. In this case, it appears that B cannot be executed. The

reason is that B cannot start before time 2 and, on the other hand, the watchdog is programmed
to start at time 1. The LTS would have been the same for .+a; exit,1(B)/ (b; stop) since the
watchdog has the priority at time 1 according to the semantics.

ED1, ED3 and ED4 are given in [NS 90], whereas ED2 is different from its analogous rule
where the consequent is instead .P/d(Q) 'i( P’. This difference has the following interpreta-
tion: in ATP a % action1 is intended to cancel only one level of execution delay, whereas our
semantics cancels all the levels of execution delay. Our choice is justified because it is very
close to the semantics of the disabling operator where % cancels all the levels of disabling. It is
therefore interesting to keep this interpretation for cancellations of “pending watchdogs”.

4. Modelling urgency on action occurrences
We think that a timed model cannot be useful if it does not allow the expression that a given

synchronization must occur urgently, i.e. as soon as possible; which means, in our context, be-
fore the next $ action. This requirement is closely related to the ability to model timers: without
urgent actions, there is no way to specify the necessity for an action to occur at (or before) a
specific time instant, or to occur as soon as possible.

An interesting and easy way to provide this capability in our framework is achieved by
keeping unchanged the axioms of the action-prefix operator and exit process, i.e.

a; B 'a( B remains of course an axiom (remember that a 0 $),
but a; B does not allow a $ action, i.e. a cannot be delayed: a; B '$(/
In particular, in i; B the internal action i must occur before the next $ action.
Similarly, exit '%( stop remains valid,
but the successful termination cannot be delayed: exit '$ (/
This is the approach chosen in TCCS [MoT 89], ATP [NS 90] and ACP t

"# [Gro 90] which
contrasts with the one followed in Timed CSP [ReR 88, Ree 90], TPL [HeR 90] and TPCCS
[Han 91] where only internal actions occur urgently (the so-called maximal progress property).

1  % is denoted 1 in ATP and has a different semantics with respect to the parallel composition, i.e. all
parallel processes are not required to terminate simultaneously.
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By specifying carefully when a $ action is enabled by way of the two timed operators pre-
sented above, this allows the specification of processes which behave asynchronously most of
the time but resynchronize periodically on $ actions.

In order to allow a process to wait an arbitrary delay before starting its execution, we follow
the same approach as in [NS 90] and provide a third timed operator.

The unbounded start delay operator, +,2

+P,2  is a process which behaves like process P except that it may wait an arbitrary long
delay before starting. This operator disables the “as soon as possible” rule on the first possible
actions of P. Its operational semantics is defined by the following three inference rules [NS 90]:

(USD1)
P 'a(  P’

+P,2 'a(  P’
(a ) Li,%) (USD3)

P '$(/
+P,2 '$(  +P,2

(USD2)
P '$(  P’

+P,2 '$(  +P’,2

Examples are presented in figures 3 and 4.

+a; stop,
2 $

a

stop

++a; stop, (b; stop),
2

a $

b
stop

$

+b; stop, 2

Figure 3: the LTS of +a; stop,2 Figure 4: the LTS of ++a; stop,(b; stop),2

In conclusion, unless specifically disabled by an unbounded start delay operator, all actions
(observable or not) are required to occur as soon as possible, i.e. before the next $ action. As
previously explained, another fundamental exception is when these actions are in the scope of
one of the other two timed operators (see rules SD2, SD3, SD4, ED3, ED4).

5. Possible semantics for the timed extension
In this section, we will try to survey all the possible ways to define the semantics of the

TLOTOS basic operators, taking account of the requirements and basic choices of the previous
sections.

A first basic decision is the semantics of process stop, i.e. does it allow a $ action or not ?
The two approaches exist. In TPL [HeR 90], ATP [NS 90], PADS [Azc 90] and TPCCS

[Han 91], the process which plays the role of stop allows a $ action, and stop satisfies the fol-
lowing axiom: stop '$( stop. In TCCS [MoT 89] and ACP t

"# [Gro 90] the opposite decision
has been taken; in this case, stop not only refuses any action, but also stops the progression of
time. Even if it may seem to be an undesirable effect at first glance, we may argue in favour of
this second approach. First, when stop is used explicitly in a specification, it is intended to
model that the process has reached a final state where nothing more will happen; therefore, the
fact that time is also stopped does not matter any more, since time is no more needed. Second,
if stop is not modelled explicitly, but results from a synchronization deadlock between pro-
cesses, this is an error situation which is certainly not wanted; therefore, in this case too, the
fact that time is stopped does not matter. An additional argument in favour of the second se-
mantics is the upward compatibility with LOTOS: the LTS associated with stop remains the



An upward compatible timed extension to LOTOS 223

same, i.e. a unique node without transition. In the first semantics, the LTS associated with stop
becomes a LTS with a unique node, but with a loop labelled by $. Therefore, in order to pre-
serve an upward compatibility with LOTOS in this case, we have to be sure that the semantics
of any process equivalent to stop in standard LOTOS (e.g. a; stop || b; stop) is also this LTS
with a $ loop. In other words, in order to remain consistent in this case, we must be sure that
any process may never refuse the whole alphabet  Li,%,$ (since even stop cannot). In ATP,
when a process may reach a state where it refuses Li,%,$, this is a particular case of a so-called
non well-timed process.

Let us summarize this by giving the two possible semantics for stop:
(A1) no axiom for stop, or
(A2) stop '$( stop
The second basic LOTOS construct is the choice operator. We have to preserve the usual in-

ference rules of choice, but some alternatives exist to define the semantics of this operator
w.r.t. the $ action. For instance, if $ would be considered as an ordinary action, like in ACP t

"#
[Gro 90], we would have the following inference rule (nondeterminism of choice w.r.t. time):

(B)
P '$(  P’

P [] Q '$(  P’
and its symmetric

However, this rule contradicts our ASAP criterion: suppose that Q 'a( Q’ (with a ) Li,%),
then P [] Q would allow $, which is in contraction with the ASAP criterion stating that, in this
case, a must occur before $. The ASAP criterion appears as a way to restrict the occurrence of
$ actions in a very simple way: give $ a lower priority than other actions in Li,% in the scope
of a choice operator.

Note that the absence of such a rule allows anyway the modelling of a process which may
(or may not) execute the action a of Q before the next $ action; it suffices to use the unit delay
operator which has been specifically designed for that purpose: +Q,(P’) in this case.

Being aware of this difficulty, we come naturally to the question of replacing the classical
choice rule by (an)other one(s). Several possibilities will be described and their consequences
analysed, and finally our proposal will be derived.

Two basic questions that we have to consider when dealing with choice and time are the
following:

- may time resolve a choice ?
- may time pass differently for both sides of a choice ?
The first question may also be expressed as: is the choice operator nondeterministic with re-

spect to time ?
In addition to the classical choice rules, let us provide possible answers for the treatment of

$ actions in terms of inference rules (the symmetric rules are implicit in the sequel).

(B1)
P '$(  P’, Q 'a(/   3  a  )  L i,%

P [] Q '$(  P’
(B3)

P '$(  P’, Q '$(   Q’
P [] Q '$(  P’ [] Q’

(B2)
P '$(  P’, Q 'a(/   3  a  )  L i,%

P [] Q '$(  P’ [] Q
(B4)

P '$(  P’, Q 'a(/   3  a  )  L i,% ,$

P [] Q '$(  P’

B1 expresses that time may resolve a choice, i.e. when no observable action can be executed
in Q (however $ may be offered by Q), a $ action from P may be executed and thereby resolve
the choice in favour of P.
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B2 expresses that time may pass differently on both sides of a choice, i.e. when no observ-
able action can be executed in Q (however $ may be offered by Q), a $ action from P may be
executed without resolving the choice (i.e. Q remains enabled afterwards but time has not
passed for Q).

B3 expresses that time may pass in both P and Q without resolving a choice. This rule is
present in TPL and ATP.

B4 is only relevant when combined with A1, it expresses the same idea as B1. Moreover,
B4 is useless in the presence of B1, i.e. B1 = B1 + B4.

With respect to these axioms and rules, stop and choice in TPL and ATP are defined by A2
+ B3 + the classical rules for choice.

Let us consider how these rules B1,… B4 may be combined together with A1 and A2 while
preserving well-known and desirable properties of LOTOS operators, such as the strong
bisimulation equivalence between B [] stop and B, or between B [] B and B, or between (A |[4]|
B) |[4]| C and A |[4]| (B |[4]| C), …

Before going further in this discussion, we give the classical definitions of a LTS and the
strong bisimulation equivalence. Note that in this last definition, the $ action is considered like
any other action.

Definition (strong bisimulation)
Consider a LTS = <S, Li,%,$, T, s0> . A relation R 5 S x S is a strong bisimulation iff :

3 <B1, B2> ) R ,3 a ) Li,%,$, we have
(i) if B1 'a( B1’,  then  * B2’ such that B2 'a( B2’ and <B1’, B2’> ) R
(ii) if B2 'a( B2’,  then  * B1’ such that B1 'a( B1’ and <B1’, B2’> ) R

This is the classical definition of a strong bisimulation, where $ is considered as any other
action.

Now we define the strong bisimulation equivalence between two LTS’s.
Two LTS’s Sys1 = <S1, Li,%,$, T1, s01

>  and Sys2 = <S2, Li,%,$, T2, s02
>  are strong

bisimulation equivalent, denoted Sys1 ~ Sys2, iff
* a strong bisimulation relation R  5 S1 x S2, such that <s01

, s02
> ) R

The weak bisimulation would be defined similarly by replacing, in the definition of the
strong bisimulation, the action a ) Li,%,$ by the sequence 6 ) (L%,$)7. Note that the $ action is
considered, like % and unlike i, in the sequences.
Possible associations of axioms and rules

Since A1 and A2 are inconsistent, let us first examine the case where A2 is selected.
A2 + B1 or A2 + B2

It is shown in [Led 91] that B [] stop ~ B is not preserved. Take B := +stop,(b; Q).
In addition, for A2 + B2, it is also shown in [Led 91] that B [] B ~ B is not preserved either.

Take B := +stop,2(b; Q).
A2 + B3

This combination is more subtle. It has been investigated in [Led 91] where it was shown
that it makes it impossible to preserve the properties of the parallel composition, e.g. a; stop |[a]|
stop ~ stop together with the associativity of |[4]|. This problem is not discussed in [NS 90]
where the combination A2 + B3 was chosen for ATP, but let us note that this problem might
have a different nature because their parallel composition is defined differently, i.e. like in ACP
[BeK 84].
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A2 + B4
This combination has no interesting expressive power since B4 is only applicable when one

of the alternatives cannot execute any action (even $), whereas even stop may execute a $ ac-
tion according to A2.
A1 + B2

It is shown in [Led 91] that B [] B ~ B is not preserved. Take B := +stop,(b; Q).
A1 + B3 + ¬ B1 + ¬ B2 + ¬ B4

It is shown in [Led 91] that  B [] stop ~ B is not preserved. Take B := +stop,(b; Q).
Remaining possible combinations of inference rules

A1 + B1     or      A1 + B4     or      A1 + B1 + B3     or     A1 + B3 + B4
We can see that A2 and B2 are naturally rejected.
Among the four remaining possibilities, we have selected A1 + B3 + B4 for the following

reasons.
The second case A1 + B4 is not expressive enough since it only allows the passing of time

when one process in the alternative behaves like stop.
In addition, rule B1, when combined with A1, means that time may resolve a choice; which

is not intuitively appealing, e.g. if P '$( P’ and Q '$( Q’, then P [] Q may lead by $ either
to P’ or to Q’. The pair A1 + B4 has not this drawback even if B4 is very similar to B1. These
considerations reject cases 1 and 3.

Therefore, it remains A1 + B3 + B4.
As a conclusion to this section, we may say that, on the basis of an ASAP principle (viz. $

has a lower priority than other actions with respect to choice) and the objective of an up-
ward compatibility with standard LOTOS, we have been able to reject many inference systems
for the choice operator. Theoretically, four of them remained. Finally, we have selected one of
them on two bases: expressive power and intuitive understanding of time.

6. The proposed operational semantics of TLOTOS
Based on the preliminary study of section 5, our proposed TLOTOS is thus the following.

Stop
(S) No axiom for stop, i.e. axiom A1 above, or stated otherwise stop 'a(/  3 a ) Li,%,$

Action prefix
(AP) a; P 'a( P (a ) Li)

This semantics expresses the ASAP criterion, i.e. action a should occur before the next $
action since no $ action is enabled. As mentioned earlier, at the syntactic level, no $ action (as
well as no % action) may appear in an action-prefix construction. A $ action is transparently in-
troduced however when one uses the timed operators presented in sections 3 and 4. This is
similar to the introduction of a % action by way of the exit construct.
Termination
(Ex) exit '%( stop

This semantics also expresses the ASAP criterion, i.e. % should occur before the next $ ac-
tion since no $ action is enabled.
Idling
(Id) idle '$( idle
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This process, already introduced in PADS, plays the role of the stop process of ATP (where
it is denoted %). It may be considered as a shorthand notation for +stop,2.
Choice

The choice operator has been discussed in length in section 5. The rules B3 and B4, as well
as the classical choice rules are reproduced hereafter for completeness.

(Ch1)
P 'a(  P’

P [] Q 'a(  P’
(a ) Li,%) (Ch3)

P '$(  P’, Q 'a(/   3  a  )  L i,% ,$

P [] Q '$(  P’

(Ch2)
P '$(  P’, Q '$(   Q’

P [] Q '$(  P’ [] Q’
Plus the symmetric rules Ch1’ and Ch3’

Parallel composition
The rules for parallel composition are the well-known rules, except that they have been ex-

tended to express transitions in the presence of $ actions. We have decided not to allow the in-
troduction of a $ action in the list of gates of the parallel composition operator in order to keep
$ actions hidden at the syntactic level (again this is also the case for %). Formally, if 4 is the list
of gates of the parallel operator, we have the requirement that 4 8 (%, $} = 9. However, we
have to decide whether the parallel composition enforces or not an implicit synchronization on $
actions. This is again related to the ASAP criterion: if one of the processes running in parallel
may execute alone a $ action, this makes it impossible to impose that some actions of the other
process occur ASAP, i.e. before this $ action. A way to achieve this is to enforce an implicit
synchronization on $, as for % actions. Furthermore, this synchronization means that time must
pass at the same pace in both processes; which is intuitively appealing.

(PC1)
P 'a(  P’

P|[4]|Q 'a( P’|[4]|Q
(a ) Li ' 4) (PC2)

P 'a(  P’, Q 'a(  Q’
P|[4]|Q 'a( P’|[4]|Q’

(a ) 4 & {%, $})

Plus the symmetric rule PC1’
Note that the parallel operator has the so-called “must-timing” semantics (in the sense of

[QAF 89]). It can be argued that this semantics is counter-intuitive for the interleaving operator,
and that a “may-timing” semantics (in the sense of [QuF 87]) is more intuitive. Let us first recall
the usual argument against “must-timing” on the following example: consider the interleaving B
||| C, and suppose that B := b; B’. With a “must-timing” semantics, such as the TLOTOS
semantics, if the environment does not offer b, then C will only be allowed to proceed until it
comes to a state where a timed action is required to occur. Therefore, C is not independent from
B because a deadlock of B may induce a deadlock of C at the next time instant. This is a priori
counter-intuive because it violates the independence between B and C.

Let us try to explain why we are anyway in favour of a “must-timing” semantics. Let us first
note that, even in standard LOTOS, processes B and C are not independent since they are re-
quired to synchronize on termination. In TLOTOS, this synchronization is stronger because it is
extended to the point that B and C have to synchronize “periodically” on every timed action.
Therefore, a special care is required in the design of B and C in order to avoid such unwanted
propagation of local deadlocks from B (or C) to the whole combined process B ||| C. This is up
to the designer to specify this or not. For instance, such deadlock of C by B is avoided if the
designer accepts to specify the system as  +b; B’,(idle) ||| C : if action b does not occur before
the next timed action then B becomes idle, and does not block C. This way of doing offers the
possibility to simulate a “may-timing” behaviour on top of the basic “must-timing” semantics.
We think that the opposite is not feasible.
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In conclusion, a “must-timing” semantics is necessary in TLOTOS to express urgency of
actions in composed processes. Of course, requiring such strong requirements may have dan-
gerous consequences such as time deadlocks when the environment is not ready to participate in
these urgent actions. But this is the normal price to pay. The designer may always specify a
“may-timing” behaviour if it is the intended behaviour. The only drawback is an additional
complexity in the resulting behaviour expression.
Hiding

The rules for hiding are the classical LOTOS rules. Again we require that no $ action be al-
lowed in the list of hidden gates (as for i and %) for two reasons. First, $ does not appear at the
syntactic level, and second it would be counter-intuitive to hide the passing of time. Formally,
if 4 is the list of hidden gates, we have the requirement that: 4 8 {i, %, $} = 9.

(H1)
P 'a(  P’

hide 4 in P 'a(  hide 4 in P’
(a ) Li,%,$ ' 4) (H2)

P 'a(  P’
hide 4 in P ' i(  hide 4 in P’

(a ) 4)

Enabling
For the enabling operator, a $ action is considered as another non-% action, and the classical

rules remain unchanged.

(En1)
P 'a(  P’

P >> Q 'a(  P’ >> Q
(a ) Li,$) (En2)

P '%(  P’
P >> Q ' i(  Q

Disabling
The three usual rules Di1, Di2 and Di3 hereafter are the classical inference rules for dis-

abling. Di4 and Di5 have been added to provide $ transitions and follow the same spirit as the
choice operator in order to preserve the expansion theorem of the disabling operator.

(Di1)
P 'a(  P’

P [> Q 'a(  P’ [> Q
(a ) Li) (Di4)

P '$(  P’, Q '$(   Q’
P [> Q '$(  P’ [> Q’

(Di2)
P '%(  P’

P [> Q '%(  P’
(Di5)

P '$(  P’, Q 'a(/   3  a  )  L i,% ,$

P [> Q '$(  P’

(Di3)
Q 'a(  Q’

P [> Q 'a(  Q’
(a ) Li,%) Plus the symmetric rule Di5’

Instantiation

(In)
P [g1/h1, …gn/hn] 'a(  P’, Q [h1, …hn] := P

Q [g1, … gn] 'a(  P’
(a ) Li,%,$)

Timed operators
The timed operators have been defined in sections 3 and 4: SD1, SD2, SD3, SD4, ED1,

ED2, ED3, ED4, USD1, USD2 and USD3. It can be seen that:
- all the axioms and rules of LOTOS are preserved;
- when new axioms and rules are added, the operators are nevertheless defined such that no

new transitions are created in the LTS when the operands are untimed processes.
These two criteria imply the upward compatibility: untimed TLOTOS processes have the

same semantics as their corresponding (i.e. equal) standard LOTOS version.
In section 5, the semantics of stop and choice have been selected on an additional require-

ment: usual equivalence laws should be preserved in order to facilitate as much as possible the
use of TLOTOS by those who were trained on standard LOTOS.



An upward compatible timed extension to LOTOS 228

With these axioms and rules, it has been shown in [Led 91] that the usual strong bisimula-
tion laws are preserved, e.g. P [] stop ~ P, P [] P ~ P, P |[4]| (Q |[4]| R) ~ (P |[4]| Q) |[4]| R, …

Some interesting laws related to the three timed operators are also provided in [Led 91].

7. Examples
We just provide two small examples of the use of the start delay and the unbounded start

delay operators on the transmitter of the alternating bit protocol, as well as on a possible
medium.

We first present the usual standard LOTOS specification (figure 5) and then the specification
in TLOTOS.

In this example, nat0 is a positive natural number, sdu is the service data unit that the proto-
col must transfer, pdu is an operation which builds a protocol data unit from a sdu and a bit, bit
is a renaming of bool with 0 for false, 1 for true and compl for not.

Process Transmitter [in,s,r] (time:nat0) :noexit := T [in,s,r] (0 ofsort bit,time)
where process T [in,s,r] (b:bit,t:nat0) :noexit :=

in?x:sdu; Send [s,r] (x,b,t) >> T [in,s,r] (compl(b),t)
where process Send [s,r] (x:sdu,b:bit,t:nat0) :exit :=

s!pdu(x,b);
(r?ack:bit [ack=b]; exit
[] r?ack:bit [ack ne b]; Send [s,r] (x,b,t)
[] (Time-out (t) >> Send [s,r] (x,b,t)))
where process Time-out (t:nat0) :exit := exit endproc

endproc (* Send *)
endproc (* T *)

endproc (* Transmitter *)
Figure 5: The transmitter in standard LOTOS

The difference between this specification and the next one (figure 6) is twofold.
Process Transmitter [in,s,r] (time:nat0) :noexit := T [in,s,r] (0 ofsort bit,time)
where process T [in,s,r] (b:bit,t:nat0) :noexit :=

+in?x:sdu; Send [s,r] (x,b,t),2 >> T [in,s,r] (compl(b),t)
where process Send [s,r] (x:sdu,b:bit,t:nat0) :exit :=

s!pdu(x,b);
+r?ack:bit [ack=b]; exit [] r?ack:bit [ack ne b]; Send [s,r] (x,b,t), t

 (Send [s,r] (x,b,t))
endproc (* Send *)

endproc (* T *)
endproc (* Transmitter *)

Figure 6 : The transmitter in TLOTOS
First, in TLOTOS we have to disable at some places the ASAP criterion on the occurrence of

actions, e.g. when the transmitter is waiting at in for a sdu to transfer. Without the introduction
of an unbounded time delay, the action in would be required to occur before the next $ action.
This is not reasonable because we do not know anything about the behaviour of the external
user who can deliver its sdu’s at any time. The unbounded delay operator allows the transmitter
to idle until the matching at in between this user and the transmitter, which is the expected
behaviour in this case.

Second, we have to quantify correctly the time-out mechanism by replacing the imprecise
process time-out by an adequate start delay operator. The overall structure is preserved: the
branch time-out (t) >> send is just (simplified and) placed as a second argument of the start de-
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lay operator, while the other alternatives are embedded in the first argument of this operator.
The parameter t is then simply added to quantify the time-out delay.

It can be seen that the action at s is not embedded in an unbounded start delay operator. This
is because we want to enforce that this sending occur immediately (i.e. before the next $ action)
after the reception at in of a sdu. This should be used with care, because it may create unex-
pected time deadlock when the transmitter is synchronized with the medium. However, when
designing a protocol, one knows exactly the underlying medium (or service), and we suppose
here that this medium is always in a state where it may receive the pdu.

The ASAP principle is very useful to model that no time passes for instance between an r
action and the subsequent exit or call to process send, as well as during the relay between send
and T.

As another small example, we provide the specification of a unidirectional underlying
medium (figure 7), which is always ready to receive, may loose pdu’s and introduces a con-
stant delay d.

Process Medium [in,out] (d:nat0) :noexit :=
+in?x:pdu; exit,2 >>

(+i; idle,d (out!x; idle)
  |||
  +stop, (Medium [in,out] (d)))

endproc (* Medium *)
Figure 7: A medium in TLOTOS

In this specification, the medium cannot accept two successive in actions within the same
unit of time (see last line of the specification). This choice is arbitrary, but illustrates a means to
preserve the FIFO ordering of pdu’s. Of course, as a consequence, this simple medium does
not allow more than d pdu’s in transit.

Again, the action out is required to occur immediately after the delay d, which may be prob-
lematic if the receiver is not ready to receive at any time. In this case, out should be embedded
in an unbounded delay operator as usual.

Finally, let us note the use of process idle. It cannot be replaced by stop because this would
create a time deadlock. This is due to the semantics of the parallel composition which requires
that all processes in parallel execute their $ actions simultaneously in order to proceed.

8. Comparison with other works
In this section, we will briefly compare our proposal with previous works on timed exten-

sions in several process algebras, including LOTOS. We will start with the approaches which
are the closest to ours (ATP [NS 90], TPL [HeR 90b], ACP t

"# [Gro 90], TCCS [MoT 89],
PADS [Azc 90], Timed CSP [ReR 88, Ree 90], Timed CCS [Wan 90, Wan 91] and TPCCS
[Han 91]), and compare the differences between the basic choices in the semantics of the opera-
tors (see table below).

The LOTOS parallel composition operator is specific, and our work cannot be strictly com-
pared with others. For instance, in TPL and TCCS, the parallel operators are binary. In ATP
and ACP t

"# they are multiway but with a different semantics, viz. the ACP one.
Some other works are also worth mentioning here even if they are based on other principles:

ACP! [BaB 89], TIC [QuF 87, QAF 89] and Timed-Interaction LOTOS [BLT 90]. All these
models have chosen to work with timestamps associated to the actions, either directly in the
language syntax or at the semantic level.
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Our options Choices similar to ours Choices different from ours
Presence of a distinct
timed action $

6 in TPL, $ in ATP and TPCCS,
t  in ACP t

"# and PADS

No equivalent in TCCS, Timed
CCS and Timed CSP which are
based on delays

Timed action not al-
lowed in action-prefix

ATP, TPCCS Allowed in TPL, ACP t
"#, PADS

Stop is a time dead-
lock TCCS, ACP t

"#, PADS in ATP, TPL, Timed CCS and
TPCCS, stop (or NIL) is like our
idle.

ASAP Action-prefix ATP, TCCS, ACP t
"#, synchronous

actions of PADS
Only internal actions in TPL,
Timed CCS, Timed CSP and
TPCCS occur ASAP

Choice is determinis-
tic w.r.t. time

ATP, TPL, “+” in TCCS1, Timed
CSP, Timed CCS, PADS and
TPCCS

Nondeterministic in ACP t
"#

Non-urgent actions
via +,2

+,2 in ATP % in TCCS, “nolimit value” in
PADS, implicit in TPL, Timed
CCS, Timed CSP and TPCCS,
no equivalent in ACP t

"#

9. Conclusion
We have presented TLOTOS which is an upward compatible extension of LOTOS. Its op-

erational semantics has been given. The use of TLOTOS has been illustrated on two small ex-
amples which prove that TLOTOS is powerful and easy to use. LOTOS specifications may be
easily adapted to TLOTOS when one wants to formalize some time-dependent parts which were
specified in an imprecise way in LOTOS.

Finally, we would like to recall all the basic choices of TLOTOS:
- The existence of a distinct action $ to model the passing of one unit of time. Therefore, time is

discrete and abstract.
- The ASAP principle on non-$ actions in an action-prefix construction, which means that these

actions should occur before the next $ action.
- The determinism of the choice operator with respect to time, which means that $ actions can-

not resolve a choice.
- The absence of $ actions at the syntactic level, i.e. as a first argument of an action-prefix or in

the gate lists of the parallel composition or hiding operators.
- The introduction of timed behaviours by way of three timed operators instead of timestamps in

actions.
- The synchronization on $ actions imposed by the parallel composition, in order to model that

time progresses at the same pace in all the components of a system.
- The priority of the outermost $ action in nested delay operators.
- The disabling of all levels of execution delay operators by way of %.
- The timelock behaviour of stop, and the introduction of a new idle process which allows time

to pass.
One may argue that the modelling of time by a distinct action which is not always enabled is

counter-intuitive, since this means that time may be stopped at some places when actions cannot
proceed, e.g. a; P may stop time if action a cannot be matched by the environment. This prob-

1 In TCCS, : is closer to our +, operator
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lem may yet be presented in another way. If a process proposes a long (possibly infinite) se-
quence of actions before offering a $ action by way of one of the timed operators, this can be
considered as a non implementable system, because the execution of so many actions is im-
possible in one unit of time. In our model, where actions take no time, this is of course a non
problem, but this approximation may be questionable. In conclusion, time is considered here as
an abstract time (by contrast to physical time). It is a convenient assumption at a conceptual
level, and timed actions should be considered here as an abstract time reference which is not
strongly bound to a physical time by a kind of “periodic” sequence of clock ticks.

TLOTOS expresses naturally urgency on observable actions, but cannot express ade-
quately urgency on observable interactions, i.e. that an action should occur as soon as all the
partners involved in an interaction are ready to do so. This problem is presented in depth in
[BLT 90] and considered as a basic expressive power limitation. Note that this is not a lack of
(theoretical) expressive power, but a lack of flexibility. Theoretically, there is no difference
between an observable action and an observable interaction in LOTOS. However expressing
urgency on interactions is closely related to the ability of expressing urgency in a modular way,
which is essential in practice. The more general approach we know of has been proposed in
Timed-Interaction LOTOS [BLT 90] where an “asap” operator (and the more general “timer”
operator) is defined which solves this problem and allows the expression of urgency on inter-
actions. This lack of flexibility in TLOTOS to express urgency on interactions is probably its
main shortcoming. A simple way to add this flexibility in TLOTOS would be to include this
“asap” operator. However we are currently working on another kind of extension.

Section 7 illustrates how a standard LOTOS specification (containing imprecise and un-
quantified timed behaviours) may be rewritten in TLOTOS. It appears that in many places, the
LOTOS “action-prefix” needs to be changed into a careful combination of TLOTOS (asap)
“action-prefix” and the unbounded start delay operator. This is somehow unsatisfactory be-
cause we would like to keep the major part of a standard LOTOS specification unchanged. This
problem is also under study in the above-mentioned extension of TLOTOS.

Finally, let us recall that, in [Led 91], we have proved that the operational semantics of
TLOTOS is consistent, and that strong bisimulation is a congruence. Examples of equivalence
laws associated with the three timed operators, and the details of the rejection of the combina-
tion A2 + B3 in section 5 are also included in this report.
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