
A Scheduler for Relative Delay Service Differentiation

G. Jennes, G. Leduc and M. Tufail
Guy.Leduc@ulg.ac.be

Université de Liège, Belgium.

Abstract

We propose a new delay-based scheduler called as RD-VC (Relative Delay VirtualClock). Since it performs
a delay-based service differentiation among flow aggregates, the quality at microflow level is the same as that at
aggregate level. This is not easily achievable when the service differentiation is bandwidth-based or loss-based.
Unlike the EDF (Earliest Deadline First) scheduler [1], our proposed scheduler self-regulates and adapts the
delays according to load changes. This characteristic permits us to implement it in an AF-like PHB providing the
relative quantification service in a DiffServ network. Finally, we compare our proposed RD-VC scheduler with
two important existing propositions: WTP (Waiting Time Priority) [2, 3] and Ex-VC (Extended VirtualClock)
[4]. Both these propositions are delay-based and have self-regulation property. All three schedulers (RD-VC,
WTP and Ex-VC) maintain the required service differentiation among aggregates and have comparable long
term average performance like mean throughput per aggregate and packet loss ratio etc. However, RD-VC
and WTP take an edge over Ex-VC at short-term performance like jitter. Both RD-VC and WTP have good
long term and short-term performance. Our proposed RD-VC, compared to existing WTP, has two additional
characteristics, i.e. unlike WTP which is limited to architectures with one queue per QoS class, it has no
limitation on implementation scope (with or without separate queues per class) and it has lower complexity.
This renders RD-VC an interesting proposition.

Key words: delay-based scheduler, self-regulation, DiffServ, AF PHB, relative quantification service.

1

1 Introduction

The role of a packet scheduler is to select a packet, among the backlogged ones, at each forwarding time slot. This
selection is based on the scheduler’s pre-defined policy which determines how differently the packets (belonging
to different classes) should be forwarded in order to obtain the required service differentiation among classes. A
class may contain one or more connections (or microflows). In case of more than one microflow in a class, the
quality at a microflow level might not be the same as that at class1 level. It depends upon the scheduler policy
of service differentiation. We will discuss it in detail in section 1.2. In this paper, we propose a scheduler which
has an important characteristic of ensuring the same quality at microflow as that at class level, we investigate it in
Differentiated Services network where a class (or aggregate) contains more than one microflow. We start with a
brief introduction to Differentiated Services in the following section.

1.1 What is Differentiated Services?

In Differentiated Services (DiffServ or DS) [5], service differentiation is performed at aggregate level rather than
at microflow level. The motivation is to render the framework scalable. The service differentiation is ensured by
employing appropriate packet discarding/forwarding mechanisms called Per Hop Behaviours (PHB) at core nodes
along with traffic conditioning functions (metering, marking, shaping and discarding) at boundary nodes.
The DiffServ working group has defined three main classes: Expedited Forwarding (EF), Assured Forwarding
(AF) and Best Effort (BE). The EF can be used to build a low loss, low latency, low jitter, assured bandwidth,
end-to-end quantitative service through DS domains. The AF class is allocated a certain amount of forwarding
resources (buffer and/or bandwidth) in each DS node. The level of forwarding assurance, for an AF class, however
depends on 1) the allocated resources, 2) the current load of AF class and 3) the congestion level within the class.
The AF class is further subdivided into four AF classes: AF1, AF2, AF3 and AF4 [6]. Each AF subclass may have
packets belonging to three drop precedences which eventually makes 12 levels of service differentiation under AF
PHB group. The AF encompasses qualitative to relative quantification services [7]. In qualitative service, the
forwarding assurance of the aggregates is not mutual-dependent, i.e. an aggregate may get forwarded with low
loss whereas other with low delay [8]. In relative quantification, the service given to an aggregate is quantified
relatively with respect to the service given to other aggregate(s). For example, an aggregate A would get time
better service than an aggregate B. We focus, in this paper, on the relative quantification service.
Despite of fact that the DiffServ proposition is simple and scalable, there is an important issue:

how would the service differentiation, which is performed at aggregate level, be at microflow level?

For an application, service differentiation at aggregate level is not sufficient. It is the service at microflow level
which is meaningful for it. For an EF class, an admission control is recommended which limits the number of
microflows in the class. On the other hand, an AF class might not have an admission control and service at
microflow level is at risk. The service differentiation policy of the scheduler plays a vital role in this regard. The
following section explains it in detail.

1We write alternatively a class, accommodating many micro-flows, as an aggregate also.

2

1.2 Different metrics for service differentiation

There are three quality metrics which might be used for defining a service differentiation among AF classes. These
are: bandwidth, loss and delay. In the following sections, we study each of these metrics individually.

1.2.1 Bandwidth

If service differentiation at aggregate level is bandwidth-based then one needs to know the number of included
microflows (for each aggregate) in order to determine the service differentiation at microflow level. For example,
an aggregate getting 50 Mbps would deliver 5 Mbps per microflow if they are 10 whereas it would be 25 Mbps if
there are just two microflows inside. Consequently, a microflow in an aggregate (supposed to give highest quality)
may get a worse service (than a microflow in any other aggregate) if the aggregate contains a big number of
microflows. This can be avoided by PHBs which are microflow aware. It’s typically that kind of complexity that
we want to avoid in Differentiated Services deployment.

1.2.2 Loss

The loss is often determined in terms of percentage of total data transmitted. Therefore, defining a certain loss ratio
for an aggregate can easily be scaled down to all its microflows. Although the loss-based service differentiation
does not require microflow aware PHB, it is rendered tedious when combined with packet precedence levels within
an aggregate as explained below.
There are three packet drop precedences in an aggregate under DiffServ framework. The precedence of a packet
defines how much it is prone to be discarded in case of congestion. The precedence level of a packet may be
selected by the application or by an edge router. Introducing two levels of services differentiation (aggregates &
precedences within an aggregate) based on a same metric (i.e. loss) needs to implement extra control and intelligent
discard mechanisms. This is to manage all the thresholds (for aggregates & precedences) not only to respect the
relative quality of services, at all loads, among aggregates, but also to ensure the relative quality of services among
packets of different drop precedences within the same aggregate.

1.2.3 Delay

The delay is a parameter which provides numerous advantages. The delay metric itself is microflow independent
as ensuring better delays at an aggregate level also means ensuring better delays for all the included microflows.
If a class X should have lesser delay (i.e. better service) than class Y then the queue length of X should be kept
smaller than that of Y. It can be done either by discarding packets at a higher rate or by serving the queue at higher
rate. Discarding packets at higher rates, although keeps the delay shorter, does not offer a reliable service for
loss-sensitive applications. On the other hand, servicing a class with a higher rate, so as to limit its queue length,
offers a shorter delay as well as a better throughput to its applications. A delay-based service differentiation is thus
required to change the service rate for an aggregate. Note that this dynamic change of service rate should not be
microflow dependent and preserves the service differentiation at all loads.

3

1.3 Concluding remarks

We presented three metrics for service differentiation among aggregates. Bandwidth is dropped as it requires the
microflow aware PHB whereas the loss metric, when coupled with packet precedence level, is tedious to manage.
The delay-based service differentiation, on the other hand, is easy to self-regulate and is microflow independent.
We select the delay as a metric for service differentiation and investigate it further in coming sections.

2 State of the art on proportional delay-based schedulers

A proportional delay-based scheduler is a scheduler that ensures relatively quantified delays between service
classes. This relative quantification can be captured easily by some parameters that state the delay ratios between
classes. For example, if there are four classes, and if the delay in class j should be of the delay in class 1 (that
is times better), we will use a four-tuple of coefficients (1, 2, 3, 4) to parameterize the scheduler, and nothing else.

We will classify the existing propositions, performing delay-based service differentiation among classes, into
two categories: category A contains propositions which oblige having separate queues per class whereas in cate-
gory B, the algorithms do not require separate queues per class and can be implemented with a single queue buffer
(accommodating all the classes). We will present three propositions for category A.

These propositions are Proportional Queue Control Mechanism (PQCM) [9], Backlog Proportional Rate (BPR)
algorithm [3] and Waiting Time Priority (WTP) algorithm [2, 3]. As for category B, the only existing proposition,
as per our best knowledge, is Extended-VirtualClock (Ex-VC) algorithm [4].
Note that there are other delay-based schedulers too (e.g. EDF (Earliest Deadline First) [1]), but they do not
self-regulate and thus are not suitable for relative quantification service. That is why we do not describe them here.

2.1 Category A: multiple queues

This category contains the propositions requiring separate queues per class.

2.1.1 Proportional Queue Control Mechanism (PQCM)

The authors [9] consider two service classes, and design a scheduler with the objective to ensure relatively quan-
tified delays between them. A coefficient is used to express that the delay in one class should be times the
delay in the other class. In PQCM, the lengths of the two queues associated with the two classes are periodically
measured. From these values and the goal delay ratio , new service rates are computed for the two classes and
the scheduler will try and serve the two queues accordingly during the next period. In that sense, the scheduler is
a sort of Weighted Fair Queuing scheduler (although it works differently) whose weights may change periodically
in order to reajust the queue lengths according to the goal delay ratio.

4

2.1.2 Backlog Proportional Rate (BPR) algorithm

BPR is based on the same idea as PQCM, but the scheduler works differently. They first define a fluid version
which serves as a reference. This fluid BPR can be seen as an adaptive GPS scheduler. Then a packet BPR version
is developed to approximate it. The basic idea in the fluid BPR scheduler is to use the bandwidth distribution model
of a GPS server [10] but with the following modification: dynamically readjust (hereafter termed as self-regulation
property) the class service rates with respect to the class load and its quality index. The quality index is a service
differentiation metric and determines the delay ratio among classes. Let be the service rate that is assigned to
the class at time . If the corresponding queue is empty at time , . For two backlogged queues and ,
the service rate allocation in BPR satisfies the proportionality constraint:

(1)

where and are quality index and backlog at time of class respectively. Assuming that the server is
work conserving, the service rates of each class can then be calculated by knowing server speed i.e.
where are backlogged classes at time .
The packetised BPR scheduler [3] is based on a virtual service function for each queue . approximates
the service that the packet at the head of queue at time in the BPR packet scheduler would have received by that
time if it were serviced by the BPR fluid server. Let be the departure times from the BPR packet
scheduler. The service rate that is allocated to a queue is computed from equation 1 after each departure. Let

be the set of backlogged queues (i.e. classes) at . If , and . Otherwise, if
, the virtual service function is computed as follows:

if

else

where is the arrival time of the packet at the head of queue at . After computing the virtual service
function for all the queues, the BPR packet scheduler chooses the next packet to transmit as follows: if is the
length of the packet at the head of queue , the scheduler services the queue with:

(2)

It is necessary to maintain separate queues per class. Moreover, it calculates the priorities of queues every time
the next packet is to be selected for transmission.

2.1.3 Waiting Time Priority (WTP) algorithm

The WTP (originally studied by Kleinrock [2]) is a priority scheduler in which the priority of a packet increases
with its waiting time [3]. Every time the WTP scheduler has to select the packet, all backlogged queues are updated
with their priority values as:

5

(3)

where is the arrival time of packet which is at the head of queue (or class) at given instant. Then the
scheduler chooses the packet from the queue with the maximum priority value.
The WTP scheduler, like BPR, recomputes the priorities every time the next packet is to be selected for transmis-
sion and it is also necessary to stamp each arriving packet with its arrival time. However, the scheduler does not
take the packet size into account. Clearly, this algorithm requires to have separate queues per class.

2.1.4 Summary

No comparison has been performed between PQCM and BPR, but we may expect similar average performance
results, given their similarities. At a small grain of time, they could behave substantially differently though,
depending on the value chosen for the period in PQCM. A comparative study of BPR and WTP has been performed
in [3, 11]. Both studies conclude with similar findings. Although both schedulers are appropriate for delay-based
service differentiation, WTP, however, has been found to perform significantly better than BPR. Moreover, priority
calculation in BPR is more complex than that in WTP. We do not evaluate the BPR scheduler any more, instead
we proceed further with the implementation of the WTP scheduler and use it for comparative purpose with our
proposition.

2.2 Category B: single queue

It contains the algorithms which do not oblige having separate queues per class and can be implemented on a single
queue buffer accommodating all classes. The sole proposition, as per our knowledge, is Extended VirtualClock
and is described below.

2.2.1 Extended VirtualClock (Ex-VC)

The basic idea of Ex-VC [4] is similar to that of (fluid) BPR scheduler. It uses the bandwidth distribution model
but, unlike packetised BPR scheduler, does not try to follow GPS server model [10]. It has the self-regulation
property and the service rate of an aggregate is modified with respect to its current load, determined by its
current buffer occupation, . This self-regulation is weighted as it takes into account the aggregates quality index
also:

(4)

In order to maintain the scheduling server work conserving, where is the speed of the schedul-
ing server (or output link), we may rewrite the relation 4:

(5)

The above relation adjusts the service rate of an aggregate as its queue length changes but without violating
the relative service differentiation among aggregates. All packets are stamped once at their arrival as:

6

for an aggregate . The packets are then served in the increasing order of their
stamp values.

2.3 Motivation

Notice that both propositions of category A (BPR and WTP) oblige to maintain separate queues per class and cal-
culate priorities of all packets at the head of their respective queues every time the next packet is to be selected for
service. These may restrict their implementation, for example switches/routers not maintaining separate queues
per class will not be able to use them except if they have some pointers in their global queue to indicate the pack-
ets at the class-heads. Every time a packet is serviced2, the whole global queue might need to be readjusted and
consequently the pointers will need to be replaced to new appropriate positions. This leads to a very complex im-
plementation. Moreover, the priority of a packet is calculated as many times as it enters into the service selection
competition, hence more operational costs for packets staying there longer.
On the other hand, the sole algorithm (Ex-VC) of category B is not handicapped by the above mentioned two
limitations. It does not oblige having separate queues per class so that their implementation is not restricted to
some specific switch/router architectures and its operational cost per packet (for calculating its priority, hereafter
will be termed as stamp) is constant. The latter point means that the stamp value of a packet will be calculated
once and will not be changed or updated till service. However, it has been observed in [12], that Ex-VC algorithm
does not react accurately to load changes and causes jitter. The reason is that it takes queue lengths into account
for calculating the service rates whereas the queue length is not a precise representation of the per packet delay.
Our motivation to this work is to develop a new delay-based scheduler of category B which performs better than
Ex-VC and that too with reduced complexity. Moreover, it does not have the two limitations of category A propo-
sitions.

3 The proposed delay-based scheduler

We are looking for a low-cost-per-packet scheduler, which can possibly be implemented with a single ouput queue
per interface.

The principle consists of adding a stamp to packets only once at packet arrival. Then packets will be served
in increasing stamp order. The difficulty lies in the algorithm in charge of allocating stamps so that the relative
queuing delays between classes are fulfilled.

This scheduler will be called RD-VC (Relative Delay Virtual Clock).

3.1 Mathematical derivation of RD-VC

Let us consider the general case of active classes. Let be the quality index of class and let us fix a ordering
among these indices as follows:

(6)
2This might not be the one at the head of global queue rather somewhere in the middle of the queue.

7

This relation 6 defines class as the class with the highest quality index; which means that this class will
have to receive the best quality of service.

Considering that the quality index represents the relative service of class , and that represents the per
packet queuing delay in this class , our goal is to fulfill the following constraint:

(7)

For the sake of clarity, we will suppose that each class has its own queue, even though such an implementation
is not necessary, as we will see later.

Let us consider the state of the system at time : let be the queue size of class , and let

(8)

The delay associated with the last packet of queue is given by

(9)

where is the average (future) service rate of queue measured during the time period which is necessary
to serve all packets present in queue at time .

From equations 8, 9 and 7, we can deduce that

(10)

This relation allows us to extract the delay associated with the last packet of queue , and thus also the stamp
value to be assign to a packet of this class: .

More generally, we have:

(11)

These equations are not usable yet, because the ’s are unknown. Hopefully, it is possible to approximate
them.

If no other packet would later arrive in the system, and if the stamps of every last packet in each queue were
equal, we would immediately have where is the bandwidth capacity of the output link. Indeed, all queues
would become empty (almost) at the same time and the average service rate of any queue would be proportional
to their size.

Now suppose that every class receives a packet (almost) at the same time, the stamp of the (last) packet arriving
in class will necessarily have a smaller value than those of packets arriving in other classes, since the scheduler
will favour class . Moreover, some future packets from class will even be served before some packets already
present in other queues, for the same reason.

Let be the number of packets present in queue at time , and let us consider class . During the time period
which is necessary to serve all its packets present at time (packets), only packets from class will be

8

served if the scheduler serves these two classes according to their quality indices. More generally, during this
period, the scheduler will serve packets from class . This implies that rather than .

Similarly, let us consider class . The above reasoning is still valid with respect to classes et , but not
regarding class . During the time period necessary to serve all packets present in class at time (packets), not
only will all packets of class be served, but also some more packets, not yet arrived at time . If we suppose, by
extrapolation, that the arrival rates in a very near future will be the same as the arrival rates in the recent past, we
get that packets from class will be served, which is logically more than its content at time . This reasoning
can be repeated for classes and , and leads to the following general formula:

Which can be written as:

(12)

From 11 and 12, we derive:

(13)

So, every arriving packet from class will be stamped as follows: , where is the
arrival time of this new packet. These times are virtual, in the sense that a virtual clock is used by the scheduler as
follows: the virtual clock is initially 0 and is updated at every packet transmission with the timestamp value of the
transmitted packet.

Also, given the dynamicity of the system and in order to avoid situations where two successive packets from
the same class get decreasing stamp values, we add the constraint that, in each class, stamps are always increasing
or remain equal.

Serving packets in the increasing order of stamps will thus ensure that no reordering takes place within a class.
Note also that formula 13 can be implemented in an incremental way, thus reducing the packet overhead.

To this end, it suffices to keep one counter per class, initialized to 0, and updated at every packet arrival and
transmission as follows.

When a packet of class j and of size bits arrives, the ’s are updated as follows (C is in bps):

(14)

(15)

and the packet is stamped with VC (the current virtual time) + .
Note also that can be computed once and for all.
Similarly, when a packet of class j and of size bits is transmitted, the ’s are decremented as follows:

(16)

(17)

9

and the virtual clock time VC is updated with the stamp of the transmitted packet.

So, it is not even needed to keep track of the individual queue sizes.

We have carried out a series of simulations in order to assess this algorithm. We have assigned the following
values to the ’s:

, , et .
The graph on the left of figure 1 shows the arrival rates used for all classes. Every 500 time units3, the traffic

characteristics change in order to have severe simulation conditions.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

500 1000 1500 2000 2500

Ar
riv

al
 ra

te

Simulation time

Packet arrival rates

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000

Pa
ke

t’s
 D

el
ay

Packet’s arrival time

Aggregate’s packets delay with RD-VC

AF1 class
AF2 class
AF3 class
AF4 class

Packet arrival rates Delay curves
Figure 1: Per class delay curves for the RD-VC algorithm based on equation 13.

The right part of figure 1 shows the delays for each class for a stamp allocation based on equation 13. We note
that the relative delays are assured and that delay curves are smooth4; which means that the delay variation, or
jitter, is low for every class, while there are very important variations in the traffic loads in every class.

In the following section, we will show on other simulation results that the scheduler has an excellent behaviour,
especially if we take into account that the stamps are fixed once and for all at packet arrival.

Moreover, this algorithme does not require one queue per class. When a single queue is used, it suffices to sort
it by increasing stamp values, and to have two registers per class to store the size of the (logical) queue and the last
stamp value assigned to a packet of this (logical) queue.

4 Simulations with fluid flows

The simulations in this section are carried out with fluid flows. The flows are termed as fluid because they have
constant packet arrival rates i.e. the inter-packet time gap is uniform. Such flows are unrealistic for packet switched
networks. The goal of these simulations is to investigate the performance of a delay-based scheduler under dif-
ferent buffer loadings. In the next section 5, simulations will be performed using TCP flows yielding a realistic
environment.
We simulate three schedulers: Ex-VC (section 2.2.1), WTP (section 2.1.3) and RD-VC (section 3). Our proposi-
tion (RD-VC) is investigated for its performance under different loads and is compared with the existing Ex-VC

3A time unit represent the fixed-size packet transmission time.
4Delay variations are unavoidable given the variations in the traffic loads every 500 time units.

10

and WTP algorithms. We simulate four AF classes: AF1, AF2, AF3 and AF4. These classes have relative quality
indices as: , , and . We define a warm-up period during which the rate of packet
arrival is twice the packet service rate (i.e. the scheduler speed). This makes the queue lengths grow. Once the
warm-up period is over, the total rate of packet arrival becomes equal to the scheduler speed. Moreover, we define
three scenarios of packets arrival: symmetrical, equal and asymmetrical (refer to figure 2).

In the symmetrical packets arrival scenario, the queues are loaded proportionally to their delay guarantees.
That is to say that aggregate AF4 will receive packets at rate half of that at which aggregate AF2 would
receive the packets. Recall that aggregate AF4 experiences half the delay of AF2.

In the equal packets arrival rate scenario, all aggregates receive packets at equal rates regardless of their
quality indexes (i.e. delay guarantees).

The third scenario, asymmetrical packets arrival, tests an algorithm in tending-to-worst buffer loading con-
figuration and algorithm self-regulates at a hard-going pace. Here, queues are loaded inversely proportional
to their delay guarantees. In other words, the aggregate AF4 will receive packets at rate double of that at
which aggregate AF2 would receive.

AF4

AF3

AF2

AF1

3r/25

4r/25

6r/25

12r/25

4r/10

3r/10

2r/10

r/10

r/4

r/4

r/4

r/4

AsymmetricalEqualSymmetrical

Figure 2: The rate of packet arrivals in three scenarios of buffer loadings

With three types of buffer loading during warm-up and post warm-up periods, we simulated nine scenarios for
each of the three algorithms (Ex-VC, WTP, RD-VC). However, we present the simulation results only with equal
packets arrival during the warm-up period. All results are shown on the same scale. The simulation parameters
are: warm-up period is 500 packet slots, simulation time is 10000 packet slots, buffer over-loading factor during
warm-up is 2 and service scheduler speed is 1 packet/time-slot.

4.1 Comparative study of delays per packet with three algorithms (Ex-VC, WTP, RD-VC)

An important common point to notice, in figure 3, is that all the three algorithms tend to respect the relative delay
differentiation in all three post warm-up buffer loadings. Another common observation is that aggregates suffer,
individually, more delays as the post warm-up loading changes from symmetrical to asymmetrical (horizontal
move on each row of figure 3). However, the average delay per packet on the whole buffer is the same under all
loads. The algorithms adapt themselves differently while reaching a stability. Though WTP takes shorter, it has
certain implementation limitations, refer to section 2.3 for details. Moreover, it has some difficulties to respect

11

the delay differentiation during the warm-up period. This specificity will be detailed later in the WTP algorithm
results analysis.

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Pa

ck
et

’s
de

la
y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

Warm-up: equal load, Post warm-up: symmetric load Warm-up: equal load, Post warm-up: equal load Warm-up: equal load, Post warm-up: asymmetric load

a) Extended VC algorithm (EX-VC)

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

Warm-up: equal load, Post warm-up: symmetric load Warm-up: equal load, Post warm-up: equal load Warm-up: equal load, Post warm-up: asymmetric load

b) Waiting Time Priority algorithm (WTP)

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

0

200

400

600

800

1000

1200

1400

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Pa
ck

et
’s

de
la

y

Packet’s arrival time

Delay Curves

AF1 class
AF2 class
AF3 class
AF4 class

Warm-up: equal load, Post warm-up: symmetric load Warm-up: equal load, Post warm-up: equal load Warm-up: equal load, Post warm-up: asymmetric load

c) Relative Delay VC algorithm (RD-VC)

Figure 3: Simulation results for delay per packet with the three algorithms

The Ex-VC algorithm: With equal rates of packet arrivals during the warm-up time, queues do not grow in
required relative sizes and the algorithm self-regulates significantly and takes a longer time to reach stabili-
sation. We observe that Ex-VC is a little bit poor in performance as it takes more time to reach the stability
and is more fluctuating [12]. This lack of performance is mainly due to the fact that the Ex-VC algorithm
controls the delay per packet for an aggregate by adapting its service rate. This self-regulation is based on
queue size of the aggregate rather than directly on delay. Moreover, packets are stamped at their arrivals.
The state of the system at this time is not exactly the same as at the departure time of the packet.
However the algorithm is very simple because it does not need a separate queue per class but only one global
queue. Only simple register are needed to memorize some values such as class queue size and class index.

12

The simplicity of the scheduler is considerable in the case of high speed networks with high speed routing
systems.

TheWTP algorithm: We see directly that this approach has the best performance among three algorithms.
Recall that mq-WTP is more complex and has limited implementation scope. It reaches rapidly to the sta-
bility in all three post warm-up buffer loadings. The contributing factors are: 1) it controls the aggregate’s
packet delays by considering the actual delays the packets are suffering, and 2) the packet stamp values are
updated as they stay longer in the buffer to reflect the actual system state.
On the other hand, this approach does not respect the delay differentiation during the warm-up period. This
phenomenon is observed on figure 3b, during the first 500 time periods of the simulation (the warm-up
period). Typically, during high loads of the system, the WTP scheduler has to support too many classes
requiring the best qualities, leaving of classes requiring lesser quality. Moreover, this approach suffers of
two more disadvantages. The first one is the complexity. Indeed, the WTP algorithm needs a physical queue
per traffic classes. The second one is the high processing cost, because each packet is treated twice: first the
packet is stamped by the scheduler at its arrival, and second, when it arrives at the head of the queue, it is
treated again to assign its priority.

The RD-VC algorithm: Our new approach is distinguished by its simplicity and its good performance.
Indeed, contrary to WTP, during the warm-up period, the relative delay differentiation is perfectly respected
in relation with quality indices. When the period changes from the warm-up to post warm-up and after a
short adaptation time, the algorithm becomes stable and provides again the required delay differentiation. It
is not surprising that the transient phase is longer than with the WTP approach. RD-VC, like Ex-VC, stamps
packets at their arrival depending on the current state of the system. Once packets are ready to be served,
the state of the system has changed, and, contrary to the WTP algorithm, packet stamps are not recomputed.
It is important to notice that, despite the non recalculation of the packet stamp and the strong input load
variation, the RD-VC approach gives very good results.

4.1.1 Concluding remarks

The WTP scheduler seems to be the best among the three propositions (except under high load) but is restricted
to switches with separate queues per aggregate architectures. On the other hand, the proposed RD-VC scheduler
does not have this limitation and still has a performance which stays very close to WTP and is much better than
the Ex-VC scheduler. Though Ex-VC does not seem to perform equally well, it has an advantage over WTP
and RD-VC. If self-regulation is disabled, the Ex-VC scheduler would then perform the bandwidth based service
differentiation among aggregates. Thus Ex-VC can easily be made to work in two modes of service differentiation
which is not the case with WTP and RD-VC. Finally, selecting a scheduler among these three entirely depends
upon the available switch architectures and service modes.

13

5 Simulations with TCP flows

In the last section, we showed, by using fluid flows, that all three schedulers (Ex-VC, WTP and RD-VC) maintain
the service differentiation among aggregates at all loads. We now proceed further in our studies by using realistic
flows and use the STCP [13] simulator, which has a very accurate model of TCP. We implement an AF-like PHB
which comprises a packet accept/discard algorithm and a packet scheduler.

5.1 Implementing Relative Quantification Services in DiffServ

A relative quantification service [7] quantifies the forwarding assurance of an aggregate with respect to the service
given to other aggregates. For example, an aggregate A gets times the service given to the aggregate B. We
define an AF-like PHB to provide this service in a simulated DiffServ domain. This PHB constitutes a packet
accept/discard algorithm and a packet scheduling algorithm. In the sequel, we show results with RED as packet
discard algorithm and Ex-VC, WTP and RD-VC as schedulers.

5.2 Simulating parameters of STCP

The simulations were performed with the STCP simulator [13]. The TCP workstations are connected to IP routers
which are then interconnected by an ATM backbone. The TCP sources transmit short files of 200Kbytes without
inter file delay. The slow time-out is 200ms (the maximum delay between two consecutive delayed ACKs) whereas
fast time-out is 50ms (instead of traditionally used 500ms timer). The Maximum Segment Size (MSS) is 1460
bytes and maximum window size is 64Kbytes. The Selective ACKnowledgement (SACK) option is enabled. The
simulation duration is fixed to 102 seconds. We use RED as packet accept/discard with min th=1000, max th=7000
(cells), and .
Among eight simulated configurations of four scenarios, we present here only one scenario configuration described
in the following section.

14

5.2.1 Basic simulation scenario

AF1 Ws

Ethernet, 10 Mbps, 1 ms
E3, 34 Mbps, 2.5 ms
ATM Backbone, 50 Mbps, 10 ms

AF3 Ws

AF4 Ws

router 1

router 2

router 3

router 4

Quality index
q1=1
q2=2
q3=3
q4=4

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

Ws

router 1

router 2

router 3

router 4

Source Workstations Destination Workstations

AF1 dedicated

AF2 dedicated

AF3 dedicated

AF4 dedicated

AF2 Ws ATM Switch ATM Switch

Figure 4: The basic simulation scenario.

In this scenario, as shown in figure 4, 200 pairs of TCP sources are interconnected via four routers and two
ATM switches forming the backbone. Each of the four routers is dedicated to a certain AF class as shown. The
backbone is at 50Mbps and has a transmission delay of 10ms. The ATM switch performs service differentiation
among aggregates in accordance with their respective quality indices. We perform three types of loadings per
aggregate:

Symmetrical loading: The aggregates are loaded proportionally to their (relative) delay guarantees. That
is to say that aggregate AF4 will receive packets, on the average, at rate half of that at which aggregate AF2
would receive the packets. Recall that aggregate AF4 experiences half the delay of AF2. The symmetric
loading is simulated by having 80 workstations (1 TCP flow per workstation) for AF1 (i.e. attached to router
1), 60 for AF2, 40 for AF3 and 20 for AF4.

Equal loading: All aggregates are loaded with equal rates regardless of their quality indexes. Here, the
basic scenario contains 50 workstations for each AF class.

Asymmetrical loading: Aggregates are loaded inversely proportionally to their delay guarantees. In other
words, the aggregate AF4 will receive packets, on the average, at rate double of that at which aggregate AF2
would receive. The class AF1 is fed with 20 TCP flows, AF2 with 40, AF3 with 60 and AF4 with 80 flows.

The purpose of having three different buffer loadings in basic scenario is to verify the following two points:

1. The service differentiation among the aggregates is respected at all loads.

2. The packet loss ratio (PLR) is the same for all the aggregates as RED is implemented at head queue, not on
individual queues.

15

We use three schedulers (Ex-VC, WTP and RD-VC) alternatively and present the results in three different
tables.

Table 1: Results table for basic scenario: Ex-VC Scheduler.

Ex-VC Scheduler
Class AF1 Class AF2 Class AF3 Class AF4

Symmetrical Mean delay at first switch (msec) 119.8 61.5 42.6 34.6
Load Delay Ratio at first switch 1.0 1.94 2.81 3.5

Mean PLR (%) 7.5 7.5 7.7 8.0

Equal Mean delay at first switch (msec) 154.6 77.7 53.0 40.5
Load Delay Ratio at first switch 1.0 1.99 2.9 3.9

Mean PLR (%) 7.5 7.6 7.8 7.7

Asymmetrical Mean delay at first switch (msec) 201.2 99.4 66.7 50.0
Load Delay Ratio at first switch 1.0 2.0 3.0 4.0

Mean PLR (%) 7.6 7.5 7.6 7.6

Table 2: Results table for basic scenario: WTP Scheduler.

WTP Scheduler
Class AF1 Class AF2 Class AF3 Class AF4

Symmetrical Mean delay at first switch (msec) 130.7 63.4 41.6 31.2
Load Delay Ratio at first switch 1.0 2.1 3.1 4.2

Mean PLR (%) 7.9 7.5 7.3 7.3

Equal Mean delay at first switch (msec) 163.2 79.2 53.0 39.5
Load Delay Ratio at first switch 1.0 2.1 3.1 4.1

Mean PLR (%) 8.0 7.8 7.5 7.3

Asymmetrical Mean delay at first switch (msec) 199.7 97.6 66.1 48.9
Load Delay Ratio at first switch 1.0 2.0 3.0 4.1

Mean PLR (%) 8.0 7.9 7.7 7.5

16

Table 3: Results table for basic scenario: RD-VC Scheduler.

RD-VC Scheduler
Class AF1 Class AF2 Class AF3 Class AF4

Symmetrical Mean delay at first switch (msec) 124.4 60.6 41.4 31.5
Load Delay Ratio at first switch 1.0 2.1 3 3.9

Mean PLR (%) 7.4 7.5 7.8 7.9

Equal Mean delay at first switch (msec) 163.5 79.2 53.1 40.1
Load Delay Ratio at first switch 1.0 2.1 3.1 4.1

Mean PLR (%) 7.4 7.5 7.5 7.4

Asymmetrical Mean delay at first switch (msec) 195.7 97.3 65.8 49.8
Load Delay Ratio at first switch 1.0 2.0 2.9 3.9

Mean PLR (%) 7.6 7.5 7.8 7.8

The tables 1, 2 and 3 show the mean local delays at the left backbone switch and the ratio between these delays
for each scheduler. With the ratio information, we can conclude that the delay differentiation follows closely the
aggregate’s quality indices under all loading configurations for all three schedulers. However, Ex-VC does not
seem to perform very well under symmetrical loading, see table 1. The aggregate AF4 is lightly loaded and its
queue length does not grow significantly. Since Ex-VC works on queue length (self-regulation), the aggregate AF4
(and AF3 also to some extent) does not fully attain their deserved service.
In case of a scheduler, say the Ex-VC algorithm, the values of mean global buffer (sum of four AF aggregates)
occupancy, at switch, in symmetrical, equal and asymmetrical loading configurations are (in cells): 9.06K, 9.08K
and 9.05K respectively. Since the mean buffer occupancy at switch is the same for all the configurations and the
server is work conserving, the average delay per packet per global buffer is the same for all the configurations.
However, we notice in table 1, that aggregates suffer, on the average, individually more delays as we move from
symmetrical to asymmetrical buffer loading. The same is observed for the other two schedulers too.
The same tables 1, 2 and 3 present also the mean Packet Loss Ratio (PLR) per aggregate.

These PLR values are approximately the same for all the aggregates under a given loading configuration. For
example under equal load and for the EX-VC scheduler (table 1), the PLRs are 7.5, 7.6, 7.8 and 7.7 for AF1, AF2,
AF3 and AF4 respectively. This is due to having a packet accept/discard algorithm (RED) on the head queue.

In conclusion, we can see that the expected discrimination over delays is obtained, while maintaining the same
loss rates. Therefore, TCP flows in classes with lower delays will get more throughput, independently from the
load in their class, since the TCP throughput is inversely proportional to the RTT and to the square root of the
packet loss rate.

5.2.1.1 Jitter evaluation: It seems from the tables 1, 2 and 3 that all three schedulers have comparable per-
formance. It should be noted that tables present an average performance based on a long-term observation. Let us
look at the jitter performance of three schedulers in the basic simulation scenario of figure 4. The jitter reflects the

17

instantaneous packet delay variation and helps compare the short-term performance of schedulers. Note that all
three schedulers provide the required service differentiation among aggregates, though they yield different jitters.
It means that average values of delay per packet for each aggregate are very close in all three schedulers but the
variation from these average values per aggregate will differ from one scheduler to other. Jitter is measured as:

(18)

We plot jitter as percentile for each AF aggregate with three schedulers. The plots show that WTP and RD-VC
have comparable jitter performance whereas Ex-VC does not perform well in some cases, for example look at
figure 5 for AF4 aggregate and at figure 7 for AF1 aggregate. This jitter-focused study proves that the WTP and
RD-VC schedulers take an edge over Ex-VC especially for applications where performance at short scale is also
important in addition to that at larger scale (the average service differentiation).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF1 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF2 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF3 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF4 aggregate

Ex-VC
WTP

RD-VC

Figure 5: Jitter evaluation for the basic scenario: symmetric load

18

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF1 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF2 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF3 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF4 aggregate

Ex-VC
WTP

RD-VC

Figure 6: Jitter evaluation for the basic scenario: equal load

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF1 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF2 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF3 aggregate

Ex-VC
WTP

RD-VC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Jit
te

r (
 s

ec
)

percentile

Jitter plot for AF4 aggregate

Ex-VC
WTP

RD-VC

Figure 7: Jitter evaluation for the basic scenario: asymmetric load

19

6 Conclusion

The role of a packet scheduler becomes more important when the service differentiation is performed at aggregate
level. The service differentiation needs to be done in a way that the same quality is delivered at microflow level as
that at aggregate level. Among the three possible quality metrics for service differentiation namely bandwidth, loss
and delay; bandwidth requires microflow aware management, loss-based differentiation is too tedious to manage
and delay appears as a good candidate. A better delay at aggregate level means better delay for all its microflows.

Three existing approaches (BPR, Ex-VC and WTP) were presented and compared. Afterwards, we proposed
our new approach named RD-VC and it was compared to all other algorithms graphically and numerically.

It arises that WTP approach adapts itself more rapidly than BPR, EX-VC or RD-VC. However, WTP has
some difficulties to respect relative delay differentiation during high load and is more complex to implement in
high speed devices. RD-VC seems to be the best compromise between performance and simplicity. It has two
important characteristic: 1) it does not require to maintain separate queues per class and can be implemented with
a single queue buffer accommodating all classes, 2) packet are stamped once at their arrival and their stamp values
are not changed or updated, hence its operational cost per packet is constant. This second characteristic is the most
important to us.

We implement these three schedulers (RD-VC, WTP and Ex-VC) as a part of an AF PHB in a Differentiated
Services network. We perform a comparative study and find that the three schedulers maintain the required service
differentiation among Aggregates. However, WTP and RD-VC take an edge over Ex-VC at short-term perfor-
mance like jitter. Both WTP and RD-VC have good long term and short-term performance.

7 Acknowledgements

We would like to thank Olivier Bonaventure for interesting comments on an earlier version of this paper. This
work has been carried out within the IST ATRIUM project partially funded by the European Commission.

20

References

[1] R. Guerin and V. Peris, “Quality of Service in Packet Networks - Basic Mechanims and Directions,”Computer Networks
and ISDN Systems, special issue on multimedia communications over packet based networks , 1998.

[2] L. Kleinrock, “A Delay Dependent Queue Discipline,” Nav. Res. Log. Quart. 9, pp. 31–36, 1962.

[3] C. Dovrolis and D. Stiliadis, “Proportional Differentiated Services: Delay Differentiation and Packet Scheduling,”
Proceedings of ACM SIGCOMM-99, (http://www.cae.wisc.edu/ dovrolis/) , 1999.

[4] M. Tufail, G. Jennes, and G. Leduc, “A scheduler for delay-based service differentiation among AF classes,” Proc. of
IFIP Fifth International Conference on Broadband Communications’99, Boston, Kluwer Academic Press , pp. 93–102,
Nov. 1999.

[5] S. Blake, D. Black, M. Carlson, E. Davis, Z. Wang, and W. Weiss, “An Architecture for Differentiated Services,” Internet
RFC 2475 .

[6] J. Heinanen, T. Finland, F. Baker, W. Weiss, and J. Wroclawski, “Assured Forwarding PHB Group,” Internet RFC 2597
, 1999.

[7] Y. Boram, J. Binder, S. Blake, M. Carlson, B. E. Carpenter, S. Keshave, E. Davies, B. Ohlman, D. Verma, Z. Wang, and
W. Weiss, “A Framework for Differentiated Services,” Internet draft: draft-ietf-diffserv-framework-02.txt , Feb. 1999.

[8] P. Hurley and J. Y. L. Boudec, “A proposal for an Asymmetric Best-Effort Service,” Proceedings of 1999 Seventh
International Workshop on Quality of Service (IWQoS’99), also available as SSC technical report SSC/1999/003 at
http://icawww.epfl.ch , pp. 132–134, London, England, May 1999.

[9] Y. Moret and S. Fdida, “A proportional Queue Control Mechanism to Provide Differentiated Services,” International
Symposium on Computer System, Belek, Turkey , Oct. 1998.

[10] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing Approach to Flow Control in Integrated Services
Networks: The Single-Node Case,” IEEE/ACM Transactions on Networking, Vol. 1 , pp. 344–357, June 1993.

[11] S. D. Cnodder and K. Pauwels, “Relative delay priorities in a differentiated services network architecture,” Alcatel
Alsthom CRC (Antwerp, Belgium) deliverable , 1999.

[12] M. Tufail, G. Jennes, and G. Leduc, “Providing a DiffServ like service in ATM networks,” Alcatel Alsthom CRC
(Antwerp, Belgium) IWT Deliverable , Oct. 1999.

[13] S. Manthorpe, “STCP 3.2.6: TCP/ABR/ATM network simulator,” http://lrcwww.epfl.ch/ manthorp/stcp/stcp.html , 1997.

21

