A Full Potential Static Aeroelastic Solver for Preliminary Aircraft Design

Adrien Crovato

Savannah, June 2019

Aircraft design process

Aeroelasticity in aircraft design

D. Thomas – ULiege

Enable aero-structural design and optimization

Aerodynamics for aeroelastic computations

Context

Early preliminary design

- Aerodynamic loads
- Fast linear solvers

Challenges

Flow nonlinearities

- Shock
- Boundary layer

Objective

New code

- Fast
- Nonlinear
- Integrable

Research project overview

Evaluate existing models & methods that solve steady transonic flows **Develop** a fast aerodynamic solver for transonic loads computation based on the most efficient flow model Implement an interface to integrate the newly developed methodology into a design framework

Presentation overview

Methodology

- Framework
- Flow
- CUPyDO

Results

- Solvers and benchmark
- Aerodynamic computations
- Aeroelastic computations

Framework – python wrappers

Flow – formulation

Flow – Kutta condition

Formulation

$$\rho_{\mathrm{u}}\nabla_{\mathrm{n}}\phi_{\mathrm{u}} = \rho_{\mathrm{l}}\nabla_{\mathrm{n}}\phi_{\mathrm{l}} \quad \rightarrow \iint \psi \left[\left[\rho \nabla \phi \cdot n \right] \right] dS = 0$$
$$p_{\mathrm{u}} = p_{\mathrm{l}} \qquad \rightarrow \iint \left(\psi + \frac{h}{2} U_{\infty} \cdot \nabla \psi \right) \left[\left[|\nabla \phi|^{2} \right] \right] dS = 0$$

Flow – shock treatment

Density upwinding

$$\tilde{\rho} \sim \rho - \mu \frac{\partial \rho}{\partial s} \Delta s$$

Newton-Raphson procedure

$$F(\phi) = 0 \Rightarrow \frac{\partial F}{\partial \phi} \Delta \phi + F \approx 0$$

- $\checkmark\,$ Analytical tangent matrix
- ✓ Quadratic (3 points) line search
- ✓ Adaptive viscosity ramping

$$\mu = \boldsymbol{\mu}_{\mathbf{C}\downarrow} \left(1 - \frac{M_{\mathbf{C}\uparrow}^2}{M^2} \right)$$

CUPyDO – contributions

Romain Boman

David Thomas

Adrien Crovato

Marco L. Cerquaglia

Mariano Sanchez M.

CUPyDO – architecture

Presentation overview

Methodology

- Framework
- Flow
- CUPyDO

Results

- Solvers and benchmark
- Aerodynamic computations
- Aeroelastic computations

Solvers and benchmark case

SU2	Euler	Finite Volume
Tranair	Full Potential	Finite Element
Flow	Full Potential	Finite Element
Panair/NASTRAN	Linear Potential	Boundary Element

Pressure distributions

Lift distributions

Moment distributions

Deformed wing shape

New lift distributions

New moment distributions

Conclusion and perspectives

Summary

- Development of **Flow** and **CUPyDO**
- Full Potential equation offers a good tradeoff between accuracy and cost compared to Euler or Linear Potential equations

- Optimize Flow (Quasi Newton and line search methods, other inner solvers, Intel compilers, ...)
- Enhance Flow (adaptive gridding, unsteady and viscous coupling capabilities)
- Investigate camber and transonic correction methods for NASTRAN
- Investigate multi-fidelity FSI computations

Next steps

IFASD 2019 Transonic Aerodynamic Modeling Adrien Crovato – Savannah, June 2019

https://github.com/ulgltas/waves https://github.com/ulgltas/CUPyDO

