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Aircraft design process

Conceptual Preliminary Detail

Concept (1%)
• Requirements & cost
• Aircraft configuration

Model (9%)
• Aircraft lofting
• Component optimization
• Global design

Prototype (90%)
• Manufacturing & certification
• Testing & final performance
• Flight simulators
• Local design

2Airbus “BLADE” © T. Laurent (airliners.net) 



Aeroelasticity in aircraft design
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Static aeroelasticity Dynamic aeroelasiticty

• Divergence speed
• Flight shape

• Flutter speed
• Buffeting

Enable aero-structural design and optimization

D. Thomas – ULiege



New code
• Fast
• Nonlinear
• Integrable
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Objective

Shock

Boundary 
layer

Context

Challenges

Early preliminary design
• Aerodynamic loads
• Fast linear solvers

Flow nonlinearities
• Shock 
• Boundary layer 

Aerodynamics for aeroelastic computations



Research project overview

Benchmark IntegrationDevelopment

Evaluate existing 
models & methods
that solve steady 
transonic flows

Develop a fast aerodynamic 
solver for transonic loads 

computation based on the 
most efficient flow model

Implement an interface 
to integrate the newly 

developed methodology 
into a design framework



Methodology Results

• Framework

• Flow

• CUPyDO

• Solvers and benchmark

• Aerodynamic computations

• Aeroelastic computations

Presentation overview



Framework – python wrappers
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Python C++

import flow
import gmsh

# Build mesh
msh = gmsh.meshLoader(rae.geo)

# Define problem
pbl = flow.Problem(msh) 
pbl.add(flow.Neumann(…))
pbl.add(flow.Kutta(…))

# Run solver
solver = flow.Solver(pbl)
solver.run()

# …

class FLOW_API Solver : public wObject
{
public:
Solver(std::shared_ptr<Problem> _pbl);
void run();
};

 CPU/memory efficient
 User friendly
 Flexible

SWIG



Flow – formulation
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𝛻 ⋅ 𝜌𝛻𝜙 = 0

𝛻𝜙 ⋅ 𝑛 = 0

𝛻𝜙 ⋅ 𝑛 = 𝛻𝜙∞ ⋅ 𝑛

𝛻𝜙∞ = {cos𝛼, sin𝛼}

𝛼

𝜙2

𝜙3𝜙1

𝑁2

𝜙 = 𝑁𝑖 𝑥 𝜉, 𝜂 , 𝑦 𝜉, 𝜂 𝜙𝑖

𝑥 = 𝑁𝑖 𝑥 𝜉, 𝜂 , 𝑦 𝜉, 𝜂 𝑥𝑖

𝑦 = 𝑁𝑖 𝑥 𝜉, 𝜂 , 𝑦 𝜉, 𝜂 𝑦𝑖

 
Ω

𝜌𝛻𝜙 ⋅ 𝛻𝜓 𝑑𝑉 −  
Γ

𝜌𝛻𝜙 ⋅ 𝑛 𝜓 𝑑𝑆 = 0
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Formulation

𝜌u𝛻n𝜙u = 𝜌l𝛻n𝜙l →  𝜓 𝜌𝛻𝜙 ⋅ 𝑛 𝑑𝑆 = 0

𝑝u = 𝑝l →  𝜓 +
ℎ

2
𝑈∞ ⋅ 𝛻𝜓 𝛻𝜙 2 𝑑𝑆 = 0

Flow – Kutta condition

𝜙TE

𝑛w

𝜙l
𝜌l

𝜙u
𝜌u
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Density upwinding

 𝜌 ~ 𝜌 − 𝜇
𝜕𝜌

𝜕𝑠
Δ𝑠

s

Newton-Raphson procedure

 Quadratic (3 points) line search

𝐹 𝜙 = 0 ⇒
𝜕𝐹

𝜕𝜙
Δ𝜙 + 𝐹 ≈ 0

 Adaptive viscosity ramping

𝜇 = 𝝁𝐂↓ 1 −
𝑴𝐜

𝟐
↑

𝑀2

 Analytical tangent matrix

Flow – shock treatment



CUPyDO – contributions
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David Thomas

Adrien Crovato Mariano Sanchez M.

Marco L. Cerquaglia

Romain Boman



CUPyDO – architecture
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Fluid solver

Core code (C/C++)

FluidInterface.py

Solid solver

Core code (C/C++)

SolidInterface.py
FSI coupler

import FluidSolver as f
import SolidSolver as s

l = f.run()
s.setLoads(l)
d = s.run() 
f.setDisplacements(d)
#...

 SU2 (FVM)
 PFEM
 Flow (FEM)
 VLM

 Metafor (FEM)
 Modal
 GetDP (FEM)

 Block Gauss Seidel or 
Interface Quasi Newton

 Radial Basis Functions 
or Thin Plate Splines

SWIG SWIG



Methodology Results

• Framework

• Flow

• CUPyDO

• Solvers and benchmark

• Aerodynamic computations
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Presentation overview



Solvers and benchmark case
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Tranair Full Potential

Panair/NASTRAN Linear Potential

Flow Full Potential

SU2 Euler Finite Volume

Finite Element

Finite Element

Boundary Element

𝑀

0.78

𝐶𝐿

0.53

FL

210

Embraer Benchmark Wing



Pressure distributions

Tranair 1 × 500 [s]

Panair 1 × 10 [s]

Flow 1 × 1500 [s]

SU2 6 × 9000 [s]

15

𝑦

𝑏
= 0.406 (   𝑐)



Lift distributions
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Flow 𝛼 = −1.3°

Tranair 𝛼 = −1.4°

SU2 𝛼 = −1.4°

Panair 𝛼 = −1.1°



Moment distributions

𝑋𝑟𝑒𝑓 = 𝑋𝑎𝑐
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Flow 𝛼 = −1.3°

Tranair 𝛼 = −1.4°

SU2 𝛼 = −1.4°

Panair 𝛼 = −1.1°



Deformed wing shape
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SU2
𝑛FSI = 5, 1 × 19 h
𝛼 = −0.4°, 𝐶𝐿 = 0.53, 𝐶𝑀 = −0.79

Flow
𝑛FSI = 9, 1 × 1.5 h
𝛼 = −0.3°, 𝐶𝐿 = 0.53, 𝐶𝑀 = −0.77

Δ𝑧t = 7.45%
Δ𝛼t = 5.4

Δ𝑧t = 7.68%
Δ𝛼t = 6.0



New lift distributions
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Flow 𝛼 = −0.3°

SU2 𝛼 = −0.4°

NASTRAN 𝛼 = 5.6°



New moment distributions
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𝑋𝑟𝑒𝑓 = 𝑋𝑎𝑐

Flow 𝛼 = −0.3°

SU2 𝛼 = −0.4°

NASTRAN 𝛼 = 5.6°



Conclusion and perspectives
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• Development of Flow and CUPyDO

• Full Potential equation offers a good tradeoff between accuracy 
and cost compared to Euler or Linear Potential equations

Summary

Next steps

• Optimize Flow (Quasi Newton and line search methods, other
inner solvers, Intel compilers, …)

• Enhance Flow (adaptive gridding, unsteady and viscous coupling 
capabilities)

• Investigate camber and transonic correction methods for 
NASTRAN

• Investigate multi-fidelity FSI computations
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https://github.com/ulgltas/waves
https://github.com/ulgltas/CUPyDO

https://github.com/ulgltas/waves
https://github.com/ulgltas/CUPyDO

