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INTRODUGTION 

The thymus is now recognized as the primary lym
phoid organ involved in the differentiation of T Iym
phocytes (1). In the human species, its physiolog
ical role seems to be mainly exerted along fetal de
velopment since congenital thymic hypo- or aplasia 
(Iike in the Di George's syndrome) is followed by a 
profound impairment of T cell functions, leading to 
the premature death of the child. On the contrary, 
ablation of the human thymus after birth is not fol
lowed by significant immune deficiency. T cell on
togeny is a highly complex process which can be 
divided in several distinct phases. Firstly, T cell pre
cursors originating from the fetal liver and bone 
marrow migrate through separate waves into the 
thymic rudiment, most probably under the influence 
of specific chemoattractants (2). Secondly, within 
the thymus, immature T cells undergo rearrange
me nt of the genes coding for the chains of their re
ceptor for antigen (TcR), and express differentia
tion markers (CDs) at their surface. These pro
cesses are not purely automatic, but are intimately 
controlled by the thymic microenvironment (ep
ithelial cells, macrophages, dendritic or interdigi
tating cells, and fibrobiasts) (3). Thirdly and impor
tantly, the thymus is the site for the negative selec
tion of self reactive T cells and this mechanism is 
basically responsible for the induction of T cell self 
tolerance (self/non-self discrimination) (4-6).Finally, 
the integration by target pre-T cells of the various 
differentiative signals (adhesion molecules, growth 
factors, and cytokines (7)) encountered in the thy
mus leads to the positive selection of mature im
munocompetent T Iymphocytes (8). 
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GELL-GELL INTERAGTIONS IN THE THYMUS 

Thymic epithelial cells (TEC) constitute the major 
component of the environment controlling T cell dif
ferentiation (9). They have a mixed, ectodermal and 
endodermal, origin (10, 11). The endoderm derives 
from the third pharyngeal pouch, while the ecto
derm originates from the cervical and from the third 
branchial cleft. The majority of cortical TEC seem 
to derive from the endoderm, whereas the ecto
derm would contribute to the subcapsular cortical 
epithelium, some stellate cortical cells, the 
medullary epithelium and the Hassall's corpuscles. 
Since Le Douarin's pioneering studies (12), it is weil 
acknowledged that the cephalic neural crest exerts 
an important influence upon thymic organogene
sis, even if the exact contribution of neural crest mi
grants in the thymus is still discussed. TEC of the 
subcapsular cortex and medulla also share com
mon immunocytochemical characteristics, like their 
labelling with antisera directed against thymic pep
tides (anti-thymosin a1 (13) and anti-thymulin (14)) 
or with monoclonal antibody (mAb) A2B5 (wh ich 
reacts with complex gangliosides found in the brain 
and the diffuse neuroendocrine system) (15). We 
have also demonstrated that the same subsets of 
TEC contain neurohypophysial (NHP)-related pep
tides and immunoreactive (ir) interleukin-1 ß (IL-1 ß) 
(16, 17). Thymic nurse cells (TNC) are large ep
ithelial cells which can be isolated by 1 9 sedimen
tation from murine thymuses after enzymatic di
gestion (18), and which have been identified in situ 
in the thymic subcapsular and outer cortex (19,20). 
TNC were also shown to synthetize NHP-related 
peptides, and to express the same immunopheno
type as cellular elements belonging to the diffuse 
neuroendocrine system (21). 
Even if the thymus has been considered for many 
years to be an intrinsic component of the endocrine 
system, the pattern of secretion in TEC is rather dif
ferent from the classical endocrine secretory pro
cess (22). We have also demonstrated that the c1as
sical scheme of neurosecretion established for the 
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hypothalamo-NHP axis could not be applied to the 
thymic cell-to-cell signalling. The concept of cryp
tocrine signalling (23) was recently introduced by 
J.w. Funder to describe the exchange of informa
tions in secluded microenvironments created by 
large epithelial cells enclosing migratory develop
ing cells. Two examples at least of cryptocrine sig
nalling exist in the human body: one in the thymus, 
between TEC/fNC and immature T cells (pre-T cells 
or thymocytes); another in the testis, between Sertoli 
cells and spermatids. Interestingly, Sertoli cells have 
already been described in 1899 as "nurse" cells es
sential for the germinal cell and the process of sper
matogenesis (24). In the thymus, the mitotic index of 
TNC-engulfed thymocytes is rather high and recent 
studies have evidenced that TEC/fNC can present 
antigen+self major histocompatibility complex 
(MHC) (25). Consequently, it seems highly proba
ble that TNC display the biochemical machinery to 
actively intervene in the selective process of T cells 
(26). The tolerogenic properties of TEC have also 
been illustrated in several experimental paradigms 
(27-29). On the basis of our observations, we have 
proposed that thymic NHP-related peptides could 
serve as functional signals in cryptocrine commu
nication between TEC/fNC and pre-T cells (30). The 
analogy between TNC and testicular Sertoli cells is 
further supported by the recent observation of the 
expression of an oxytocin (OT) gene in cattle Sertoli 
cells (31), as weil as by the immuno-Iabelling of hu
man Sertoli cells with mAbs A2B5 and 033 (direct
ed against the cyclic part of OT (32)) (unpublished 
observations). If the molecular mechanisms under
Iying the intrathymic expression of NHP-like pep
tides remain to be further characterized, separate 
studies have confirmed the presence in the thymus 
of immunoreactive and bioactive OT-like peptide 
(33-35). Furthermore, the expression of functional 
NHP peptide receptors by rat thymocytes (36) and 
by murine immature and differentiated T cells is a 
prerequisite in favor of this working hypothesis (37). 
Since the intrathymic concentrations of NHP-relat
ed signals are in good concordance with the high 
affinity Kd of NHP receptors expressed by pre-T 
cells, the physico-biochemical conditions are en
countered to render effective in vive a thymic cryp
tocrine signalling through NHP peptides and their 
cognate receptors. This is obviously not the case 
for circulating neurohormones OT and VP, due to 
their low blood concentrations. The pre-T cell NHP 
receptors were shown to mediate mitogenic prop
erties of NHP-related signals upon human and 
murine pre-T cells. Their transductory properties in
volve a T cell phosphoinositide breakdown and 
were similar to those described for other V1/0T re-
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ceptors. This effect was specifically inhibited by a 
V1 antagonist in pre-T cells and by an OT antagonist 
in cytotoxic T cells (37). This shift in the type of T 
cell NHP receptor may suggest a dynamic phe
nomenon of molecular maturation parallel to the 
progress of T cells in their differentiative pro
gramme. As evidenced by our previous radiobind
ing studies (38), the V1 receptor expressed by pre
T cells is probably an immune-specific V1 subtype 
different from the recently cloned V1 a receptor (39). 
In the murine species, other authors have also re
ported the expression of a novel V1 subtype by 
splenic cytotoxic Iymphocytes (40). Of course, the 
TNC-derived NHP signals are not the only growth 
factors implicated in T cell differentiation, but their 
mitogenic properties evidenced on pre-T cells may 
provide an explanation to the high mitotic index of 
TNC-engulfed thymocytes. They also demonstrate 
an implication of thymic NHP-related peptides in the 
process of T cell positive selection, in accordance 
with previous observations (41). Molecular distur
bances of cryptocrine signalling might also inter
vene in pathologic states, either at the level of NHP 
signal (thymoma are the third cause of inappropriate 
VP secretion (42, 43)), or at the level of NHP recep
tor (with potential implication in T cell lymphoma 
oncogenesis). Interestingly, the intervention of TNC 
in leukemogenic process have al ready been 
demonstrated before (44). The expression of NHP 
peptide receptors by immune cells also opens nov
el immunomodulatory strategies through the molec
ular design of neuropeptide immune-specific re
ceptor antagonists or agonists. We recently de
scribed a significant inhibition by novel OT non
peptide antagonists (Merck Sharp & Dohme 
Research Laboratories, West Point) of IL-1 ß, IL-6 
and TNFa productions in human whole blood cell 
cultures stimulated by anti-CD3 mAb (45). This in
hibition was significantly more important in whole 
blood cell cultures derived from human female vol
unteers, suggesting an influence of the gonadal 
steroid hormonal environment. The future knowl
edge of the precise NHP receptor subtypes ex
pressed by immunocompetent cell populations 
should help computer modelling and molecular en
gineering of speciflc immunomodulatory com
pounds based on the basal structure of these OT 
cyclic hexapeptide antagonists. This approach 
could lead to selective immunotherapy in cruciallife 
periods, such as the postpartum, during which an 
immune disequilibrium is determined byan increase 
of the oestrogen/progesterone ratio and by a rise in 
immunostimulatory lactogenic hormones prolactin 
and OT. 
Within cryptocrine microenvironments, the sense of 



chemical information mayaiso be directed from the 
engulfed developing cells to the large epithelial 
"nursing" cell. This seems to be the case with nerve 
growth factor (NGF) since this was shown to be 
synthesized by male germ cells (46), whereas NGF 
receptor was shown to be expressed by Sertoli 
cells (47). An analogous situation may exist within 
thymic microenvironment as NGF receptor mRNA 
was also detected in chick and rat thymus extracts 
(48), but the precise source of the thymic NGF sig
nal remains to be further defined. Of high relevant 
interest with regard to the role of NGF in thymic 
physiology is the recent observation that this neu
rotrophic factor markedly enhances the molecular 
and phenotypic neuronal-like features of cultured 
murineTEC (49). 

T GELL REGOGNlTlON OF SELF 
NEUROENDOGRINE FUNGTIONS 
Neurohypophysial (NHP) peptide family 

Through the use of several well-characterized poly
clonal and mAbs, we have defined the immu
nodominant epitopes representative of the NHP 
peptide family expressed by TEC{TNC of several 
animal species (50). The first epitope is located, at 
least partially, in the six amino acid cyclic part 
shared by OT and by vasotocin (VT), the ancestral 
peptide precursor of the NHP family constituted by 
the cyclic part of OT and the three amino acid lat
eral chain of VP. The second epitope is present in 
the central "constant" part of the neurophysin do
main. This part is encoded by the second exon of 
NHP genes and show a high degree of conserva
tion (> 90%) throughout the evolution of species 
whichever the nonapeptide associated (51). In the 
overall evolution of intercellular communication, the 
cryptocrine stage evidenced in the thymus intro
duced an obligatory step which is the recognition of 
the self molecular structure by developing T cells. 
This would logically follow the presentation by 
thymic MHC molecules of self epitopes represen
tative of larger proteins. The size of the MHC groove 
allows the binding of peptide sequences ranging 
from a minimum of five (52) to seventeen amino 
acids in length (53). If demonstrated, the presen
tation by thymic MHC molecules of the NHP self 
epitopes could therefore induce the central immune 
tolerance of hypothalamo-NHP functions. This 
tolerogenic effect would result from the clonal dele
tion of highly reactive T cells harboring a random
Iy rearranged TcR specific for the association 
MHC/self NHP epitope(s). The large involvement of 
OT-like peptides at different levels of the repro
ductive processes implies that they are strongly tol-
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erated by the immune system. This high tolerance 
of OT lineage protects it from a potential autoim
mune aggression and would therefore contribute 
to the preservation of the species. Since VP differs 
from NHP self epitope by one single amino acid in 
its cyclic part, it is less "protected" from autoim
mune process. Indeed, some authors have previ
ously reported "idiopathic" diabetes insipidus re
sulting from autoimmune aggression directed 
against hypothalamic magnocellular neurones (54). 
In the same view, experimental breakdown of NHP 
immune tolerance by active immunization against 
VP was also shown to induce inflammatory lesions 
in the hypothalamo-NHP axis (55). It is also inter
esting to note that the frequence and the titers of 
antisera against VP are usually higher than those 
of anti sera developed against OT or VT. 
So, the deep investigation of our original observa
tions (56) led us to shift from the classical neu
rosecretion model to the novel pathways underlying 
cryptocrine cell-to-cell signalling and self antigen 
presentation by MHC molecules. At the molecular 
level, the "neuropeptide" model was replaced by 
the working concept of NHP "self peptide" (57, 58). 
As discussed before, thymic NHP-related self pep
tides exert a dual role in T cell differentiation ac
cording to the type of intercellular dialogue in wh ich 
they are engaged (cryptocrine signalling or NHP 
self antigen presentation by thymic MHC). 

Tachykinin (TK) peptide family 

This model of a dual physiological role for thymic 
self peptides also applies to this family whose in
trathymic expression was investigated in collabo
ration with the Laboratory of Molecular 
Neurobiology at the Karolinska Institute 
(Stockholm). Neurokinin A (NKA) is the TK peptide 
encoded by preprotachykinin-A (PPT-A) gene in 
the rat thymus (59) and is thus the first member of 
the TK family encountered by developing T cells. 
Mitogenic activities have been described for NKA 
and physalaemin upon murine cultured thymocytes 
(IL-1-like bioactivity), while substance P (SP) and 
other TK-related peptides did not exert any signif
icant effect (60). These observations strongly sup
port the involvement of thymic NKA in T cell positive 
selection. Since NKA shares with other TKs the 
same C-terminal immunodominant epitope, it might 
represent the tolerogenic TK peptide that is ex
pressed in the thymus and is facing the develop
ing T cell system. The other TK peptide SP detect
ed in rat and human thymic extracts is associated 
with sensory nerve fibers and seems to be impli
cated in the regulation of thymic blood flow (61, 62). 
This does not exclude that SP exerts peripheral 
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proinflammatory properties, however through spe
cific immune TK receptors since potential TK au
toreactive T cells would have been deleted in the 
thymus. 

Insulin peptide family 
Insulin-like growth factors (IGFs) were also identi
fied within the human fetal thymus, both at the pep
tide and mRNA levels (63,64). 
However, these studies could not really discrimi
nate between IGF-I or IGF-II, and the thymic sub
cellular localization remains to be further defined 
because of the discrepancies observed between 
the localizations of IGF mRNAs and immunoreac
tivities. The fact that thymic IGFs are implicated as 
accessory signals in T cell positive selection is in
directly suggested by the mitogenic properties of 
IGF-I on pre-T thymic lymphoma cells (65). The ac
tivation of human T Iymphocytes by anti-CD3 also 
leads to their expression of IGF-I and IGF-II recep
tors (66). Due to the high homology (± 60%) of 
proinsulin and IGFs primary amino acid sequences, 
the tolerance of pancreatic endocrine function 
could result from the intrathymic deletion of T cells 
harboring a rearranged TcR specific of the associ
ation thymic MHC/insulin family self epitopes. The 
IGF-II region on chromosome 11 p seems also to 
be involved in HLA-DR4-dependent diabetes sus
ceptibility by a still undefined molecular mechanism 
(67). So, further characterization of the precise in
sulin/IGF-derived self immunodominant epitope ex
pressed in the human thymus should lead to the 
identification of the primary self antigen implicated 
in the autoimmune cascade leading to overt insulin
dependent diabetes. In another connection, sev
eral antigenic markers are shared between 
TEC/TNC, and pancreatic islet ß-cells, among 
which A2B5 and HISL (68). This cellular phenotyp
ical relationships may suggest a common embry
onic origin in the neurectoderm or in the neural 
crest (69). 

Other members of the thymic peptide repertoire 

Several neuroendocrine peptides have been de
tected in the thymus from various species, at the 
peptide or the mRNA level (70-75). In two of these 
studies, neuropeptides were ultrastructurally de
tected in perinuclear space, vesicular structures 
and rough endoplasmic reticulum, but not in clas
sical secretory granules. Since an atrial natriuretic 
peptide (ANP) signal is found in thymic stroma and 
that ANP receptors are also expressed by rat thy
mocytes, a functional accessory signalling through 
this peptide should also be further investigated in 
the process of T cell development (76). An au-
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tocrine/paracrine signalling through luteinizing hor
mone-releasing factor (LHRH) seems also to inter
vene in the modulation of the T cell differentiation 
pathways (77, 78). Parathormone-related peptide 
(PTH-RP), as weil as calcitonin gene-related pep
tide (CGRP) were also recently found to be includ
ed in the thymic self peptide repertoire (79, 80). 
Both of these polypeptides shared common amino 
acid sequences with the hormonal members (PTH 
and CT) of their corresponding family and could 
therefore induce T cell tolerance of PTH- and CT
mediated endocrine functions. 

NEURAL AND ENDOCRINE CONTROLS OF 
THYMIC FUNCTION 

Like all peripheral organs, the thymus receives au
tonomic sympathetic and parasympathetic inner
vation (81, 82). A number of neuropeptides have 
also been identified in sensory nerve fibers of the 
thymus (83). At the present time, it is however still 
difficult to establish whether these innervations ex
ert a control upon thymic stromal cells, thymic 
blood flow or may directly act upon differentiating T 
cells. 
The thymic physiological role is also closely influ
enced by the endocrine environment, in particular 
by thyroid (84) and antehypophysial hormones (85), 
as weil as by gonadal steroids and glucocorticoids 
(86, 88). There is increasing evidence that these 
hormonal influences may be relayed by intrathymic 
factors (i.e. the trophic role of growth hormone up
on the thymus (89) is most probably mediated by 
local actions of thymic IGF-I). To our knowledge, 
the existence of a specific antehypophysial thy
motrophin has never been investigated but this 
question deserves further attention given the inti
mate relationships between the thymus and the pi
tuitary (90). 

CONCLUSIONS 

The ontogenetical and phylogenetical evolutions of 
the endocrine system have seen the emergence of 
various forms of intercellular communication, from 
the most primitive stages of autocrine signalling 
(when a cell is alone) and adhesion (wh ich follows 
the division of one cell) to the most complex neu
rocrine networks underlying cognitive processes in 
the central nervous system. Parallel to the succes
sive structural levels of the evolution of intercellu
lar communication, it appeared some hierarchy in 
the genomic organisation responsible for the trans
fer of biochemical information between cell popu
lations (91). In recent years, new members of en-



docrine families were identified through the use of 
molecular techniques. These factors were not clas
sical "hormones" vehiculated by bloodstream, but 
rather exerted local growth-promoting "paracrine
autocrine" activities. It also appeared that these tis
sue peptide growth factors were predominantly ex
pressed during fetal life and were playing an im
portant role in embryo development and organo
genesis. Their etiopathogenic involvement in neo
plasic processes is more and more documented, 
and their gene overexpression is sometimes fol
lowed by a massive release in bloodflow. A para
neoplasic syndrome may then follow, due to the 
usual cross-reactivity of these tissue growth-factors 
with the relative hormone receptors. On the other 
side, the immune system has evolved, the primary 
characteristic of which is the protection of the self 
molecular structure against foreign infectious in
vaders (non-self). The thymus is one crucial privi
leged site for which appears as an obligatory step 
in the parallel evolutions of neuroendocrine and im
mune systems: the education of T cells to discrim
inate self antigens and foreign (non-self) antigens. 
In the line of that highly simplified perspective, the 
incidental breakdown of self immune tolerance as 
seen in autoimmune pathologies may be consid
ered as the global tribute paid by one given 
species for its protection against infectious non-self 
antigens. 
In the actual stage of our research on the neuroen
docrine self peptide repertoire expressed in the thy-
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Fig. 1 - Thymic education of T cells in self neuroendocrine prin
ciples.· model of the dual physiological role of thymic self pep
tides in T cell differentiation. 
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mus, this primary lymphoid organ appears more and 
more as a highly specialized school for the education 
of T cells in self neuroendocrine principles (Fig. 1). In 
the human species,that school is mainly working 
du ring fetal development and its highest education
al degree is the apoptosis of the autoreactive T cells 
(92). A failure in the educational programme would 
result in the emergence of T cells with autoreactivity 
directed against neuroendocrine self antigen(s), and 
this point could play an important pathogenetic role 
in endocrine autoimmune diseases. Of course, the 
appearance of autoreactive T cells is not the only 
etiopathogenic factor in autoimmunity (93) and the 
thymic T cell negative selection is not a perfect 
mechanism (94). Nevertheless, it is the only one for 
which the precise description of the underlying 
molecular mechanisms should allow novel diagnos
tic and preventive therapeutic intervention. Another 
important conclusion which can be drawn from our 
work is the fact that the thymus is not the site for the 
expression of all neuropeptide genes, but apparently 
only of the genes coding for representative mem
bers of neuroendocrine families. Although funda
mental, the central immune tolerance of neuroen
docrine functions does not of course exclude the 
possibility of other peripheral tolerogenic mecha
nisms, as recently demonstrated by the inhibition of 
the diabetogenic process in NOD mice fed with het
erologous insulin (95). This observation is another 
indication that the whole peripheral T cell repertoire 
is not shaped by self antigens alone, but that envi
ronmental factors mayaiso contribute to this funda
mental process. This latter point has already been 
shown for non-inherited maternal HLA antigens (96). 
As already shown, new immunomodulating strate
gies may be designed on the pharmacological ma
nipulation of the cryptocrine signalling (45). 
Innovative testing procedures for the detection of 
high-risk patients and preventive therapeutics of en
docrine autoimmune disorders mayaiso be con
structed on our model of the thymic repertoire of neu
roendocrine self antigens. 
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