Advanced Computational Method in Engineering – ACOMEN Liege – May 2008

Simulation of the highly non linear properties of bulk superconductors: finite element approach with a backward Euler method and a single time step

<u>Gregory P. Lousberg^{1,*}</u>, M. Ausloos², C. Geuzaine¹, P. Dular¹, P. Vanderbemden¹, and B. Vanderheyden¹

¹Department of Electrical Engineering and Computer Science, University of Liege, Belgium ²SUPRATECS (B5a), University of Liege, Belgium *FRS – FNRS fellowship

Breaking the gravity....

...with the magnetic levitation

Electrical resistivity of HTS is modelled by a non linear power law

Analytical calculations available for comparison in specific geometries

Finite-element softwares are widely used for simulating HTS-based systems

Advantages

- Many more geometries can be treated
- No extensive writing of numerical codes is required
- Treatment of non-linear problems available in most commercial packages

Finite-element softwares are widely used for simulating HTS-based systems

Advantages

- Many more geometries can be treated
- No extensive writing of numerical codes is required
- Treatment of non-linear problems available in most commercial packages

Drawbacks

- Long calculation time on fine meshing or in 3D geometry
- Convergence problems when *n* is large

Finite-element softwares are widely used for simulating HTS-based systems

Advantages

Drawbacks

- Long calculation time on fine meshing or in 3D geometry
- Convergence problems when n is large

Proposed improvements

Single time step method implemented in an open-source solver, GetDP

- **Better control** of the algorithm parameters
- Used for simulating the **penetration of an external magnetic field** that varies linearly with time

• Finite-element formulation and implementation

A- ϕ formulation

Numerical resolution scheme

Validation and comparison of the FEM model on simple geometries

A - ϕ formulation - Variables

The Maxwell equations are solved for two independent variables

- the vector potential A
- the scalar potential ϕ

defined as

$$\mathbf{B} = \mathbf{B}_{react} + \mathbf{B}_{a} = \operatorname{curl} \mathbf{A} + \operatorname{curl} \mathbf{A}_{a}$$
$$\mathbf{E} = - d\mathbf{A}/dt - d\mathbf{A}_{a}/dt - \operatorname{grad} \phi$$

A - ϕ formulation - Variables

The Maxwell equations are solved for two independant variables

- the vector potential A
- the scalar potential ϕ

defined as

$$\mathbf{B} = \mathbf{B}_{\text{react}} + \mathbf{B}_{\text{a}} = \text{curl } \mathbf{A} + \text{curl } \mathbf{A}_{\text{a}}$$
$$\mathbf{E} = - d\mathbf{A}/dt - d\mathbf{A}_{\text{a}}/dt - \text{grad } \phi$$

Applied magnetic flux density (uniform)

A - ϕ formulation - Variables

The Maxwell equations are solved for two independant variables

- the vector potential A
- the scalar potential ϕ

defined as

A - ϕ formulation - Variables

The Maxwell equations are solved for two independent variables

- the vector potential A
- the scalar potential ϕ

approximated by

Edge function (1st order)

$$\mathbf{A} = \sum_{i} a_i \mathbf{A}_i$$

where \mathbf{A}_i and ϕ_i are known functions

ensures continuity of the tangential component of A

Node function (1st order)

$$\phi = \sum_j b_j \phi_j$$

• ensures continuity of ϕ

A - ϕ formulation – Equations and gauge condition

• The Maxwell equations are reduced to 2 equations

$$\begin{bmatrix} \nabla \times \nabla \times \mathbf{A} = \mu_0 \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \end{bmatrix}$$

Ampere's law (rot H = J)

Continuity equations (div J = 0)

A - ϕ formulation – Equations and gauge condition

• The Maxwell equations are reduced to 2 equations

$$\begin{bmatrix} \nabla \times \nabla \times \mathbf{A} = \mu_0 \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \\ Continuity equations (div J = 0) \end{bmatrix}$$

A is not expressed in the Coulomb gauge, gauge condition : A w = 0
 Set of meshing edges that connects all the nodes without closed contours

Examples

A - ϕ formulation – Boundary conditions

• The Maxwell equations are reduced to 2 equations

$$\begin{bmatrix} \nabla \times \nabla \times \mathbf{A} = \mu_0 \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \\ Continuity equations (div J = 0) \end{bmatrix}$$

• A is not expressed in the Coulomb gauge, gauge condition : $\mathbf{A} \cdot \mathbf{w} = 0$

• Boundary conditions

$$egin{array}{c} egin{array}{c} egin{array}$$

→ Use of Jacobian transformation for sending the outer surface of a spherical shell to infinity

A - ϕ formulation – Boundary conditions

• The Maxwell equations are reduced to 2 equations

$$\begin{bmatrix} \nabla \times \nabla \times \mathbf{A} = \mu_0 \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}_a} - \nabla \phi \right) \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}_a} - \nabla \phi \right) \right\} = 0 \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}_a} - \nabla \phi \right) \right\} = 0 \\ Continuity equations (div J = 0) \end{bmatrix}$$

• A is not expressed in the Coulomb gauge, gauge condition : $\mathbf{A} \cdot \mathbf{w} = 0$

A - ϕ formulation – External field

• The Maxwell equations are reduced to 2 equations

$$\begin{bmatrix} \nabla \times \nabla \times \mathbf{A} = \mu_0 \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \\ \nabla \cdot \left\{ \sigma(\mathbf{A}, \phi) \left(-\dot{\mathbf{A}} - \dot{\mathbf{A}}_a - \nabla \phi \right) \right\} = 0 \end{bmatrix}$$

$$Continuity equations (div J = 0)$$

• A is not expressed in the Coulomb gauge, gauge condition : $\mathbf{A} \cdot \mathbf{w} = 0$

Boundary conditions

Source field A_a corresponds to a **uniform magnetic flux density** B_a The source field is a temporal **ramp** with a **constant sweep rate** (*mT/s*)

- The equations are solved with a Galerkin residual minimization method
- We use the Backward Euler method at each time step
- Non linear terms are treated with a **Picard iteration** loop

- The equations are solved with a Galerkin residual minimization method
- We use the **Backward Euler method** at each time step
- Non linear terms are treated with a **Picard iteration** loop

Solution (A, ϕ) @ t – Δ t

- The equations are solved with a Galerkin residual minimization method
- We use the Backward Euler method at each time step
- Non linear terms are treated with a **Picard iteration** loop

- The equations are solved with a Galerkin residual minimization method
- We use the Backward Euler method at each time step
- Non linear terms are treated with a Picard iteration loop

- The equations are solved with a Galerkin residual minimization method
- We use the Backward Euler method at each time step
- Non linear terms are treated with a **Picard iteration** loop

- The equations are solved with a Galerkin residual minimization method
- We use the Backward Euler method at each time step
- Non linear terms are treated with a Picard iteration loop

- The equations are solved with a Galerkin residual minimization method
- We use the Backward Euler method at each time step
- Non linear terms are treated with a **Picard iteration** loop

- Finite-element formulation and implementation
- Validation and comparison of the FEM model on simple geometries

Magnetic field penetration in :

- a HTS tube of infinite extension

- a HTS tube of finite height

Bean critical-state is solved with the E(J) model taking n = 100

HTS tube of infinite height

Bean model

linear decay of the magnetic flux density in the wall

Bean critical-state is solved with the E(J) model taking n = 100

HTS tube of infinite height

Magnetic flux B_a⊙ **HTS tube** 200 density (mT) Air Superconductor walls 150 Air Scan direction 100 50 Bean model **linear decay** of the magnetic 0 -10 5 Radial distance (mm) 10 -5 flux density in the wall

Magnetic flux penetration

FEM results are consistent with the Bean model

Choice of the time step

For solving the problem with $B_a = 200 \text{ mT}$ with a sweep rate of 10 mT/s:

1. 20 time steps of 1s

System is solved @ t =1s, 2s, ..., 20s

Choice of the time step

For solving the problem with $B_a = 200 \text{ mT}$ with a sweep rate of 10 mT/s:

Magnetic field penetration of an external field increasing from 0 mT to 200 mT (10mT/s)

- Comparison of two methods
 - 1. in a single simulation with 20 time steps of 1s
 - 2. in 20 different simulations with time steps of 1s, 2s, ..., 20s

Magnetic field penetration of an external field increasing from 0 mT to 200 mT Comparison of two methods

1. in a single simulation with 20 time steps of 1s

2. in 20 different simulations with time steps of 1s, 2s, ..., 20s

Analysis of the error

Magnetic field penetration of an external field increasing from 0 mT to 200 mT Comparison of two methods

- 1. in a single simulation with 20 time steps of 1s
- 2. in 20 different simulations with time steps of 1s, 2s, ..., 20s

3D FEM simulations on tubes with finite height are consistent with previous observations

Applied magnetic flux density (mT)

Single time step method is more accurate with large critical exponent

HTS tube of finite height

Principle

- Applied magnetic flux density : 200 mT
- FEM single time step compared with Brandt method with the help of B_{center}

Brandt (semi-analytical) multiple time step method ($\Delta t=5.10^{-4}s$) **FEM** single time step method

Single time step method is more accurate with large critical exponent

Principle

- Applied magnetic flux density : 200 mT
- FEM single time step compared with Brandt method with the help of B_{center}

Difference between FEM-single step and Brandt for the magnetic flux density @ center of the tube (%)

Conclusion

- Implementation of a finite-element formulation in GetDP with high non linearity
- A- ϕ formulation in 3D geometry for calculating the magnetic field penetration
- Single time step method in the case of linearly time varying excitation is fast and accurate

Outline

- Finite-element formulation and implementation
- Validation and comparison of the FEM model on simple geometries
- Optimization of the magnetic properties of drilled samples

Influence of the lattice types

Polar triangular lattice wins ...

HTS tube of infinite height

Polar triangular lattice wins ...

HTS tube of infinite height

