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Breaking the gravity....
...with the magnetic levitation
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Electrical resistivity of HTS is modelled by a non linear
power law
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Analytical calculations available for comparison in specific

geometries




Advantages

* Many more geometries can be treated
* No extensive writing of numerical codes is required

* Treatment of non-linear problems available in most commercial packages



Finite-element softwares are widely used for simulating
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Finite-element softwares are widely used for simulating
HTS-based systems

Advantages

Drawbacks

* Long calculation time on fine meshing or in 3D geometry

e Convergence problems when n is large

»Proposed improvements
Single time step method implemented in an open-source solver, GetDP
» Better control of the algorithm parameters

e Used for simulating the penetration of an external magnetic field that

varies linearly with time



e Finite-element formulation and implementation

A- ¢ formulation
Numerical resolution scheme

e Validation and comparison of the FEM model on simple

geometries



The Maxwell equations are solved for two independent variables

* the vector potential A

e the scalar potential ¢

defined as
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The Maxwell equations are solved for two independant variables

* the vector potential A

e the scalar potential ¢

defined as

Induced magnetic flux density
by the HTS

Applied magnetic flux density
(uniform)




The Maxwell equations are solved for two independant variables

* the vector potential A

- the scalar potential ¢

approximated by

Edge function (1st order) Node function (1st order)

A=) ah b= b,
i J
where A; and ¢, are known functions

e ensures continuity of the tangential component of A ® ensures continuity of ¢



* The Maxwell equations are reduced to 2 equations

VXV xA=p0(A ¢ (—A—A,— V)
B Ampere’s law (rot H = J)

V-{o(A ¢)(—-A—-A,—-Vp)} =0

Continuity equations (div J = 0)



* The Maxwell equations are reduced to 2 equations

VXV xA=p0(A ¢ (—A—A,— V)
B Ampere’s law (rot H = J)

V-{o(A ¢)(—-A—-A,—-Vp)} =0

Continuity equations (div J = 0)

* Ais not expressed in the Coulomb gauge, gauge condition: AWM =0

Set of meshing edges that connects all the
nodes without closed contours h

Examples



* The Maxwell equations are reduced to 2 equations

VXV xA=p0(A ¢ (—A—A,— V)
B Ampere’s law (rot H = J)

V-{o(A ¢)(—-A—-A,—-Vp)} =0

Continuity equations (div J = 0)

* A'is not expressed in the Coulomb gauge, gauge condition: A.w =0

* Boundary conditions
A=0
»=0
——> Use of Jacobian transformation

for sending the outer surface of a
spherical shell to infinity

]» at infinity



A - ¢ formulation — Boundary conditions

* The Maxwell equations are reduced to 2 equations

VXV XxA=puo(A ¢) (—A_AB_V(I))
Ampere’s law (rot H = J)

V-{o(A ¢)(-A—-A,—-Vp)} =0
Continuity equations (div J = 0)

e Ais not expressed in the Coulomb gauge, gauge condition: A.w =20

e Boundary conditions

Outer surface

A=0 at infinity sent to infinity
¢ =0
—> Use of Jacobian transformation Working
for sending the outer surface of a . R—

spherical shell to infinity

Dirichlet conditions



A - ¢ formulation — External field

* The Maxwell equations are reduced to 2 equations

VXV XxA=puo(A ¢) (—A—Aa—Vd‘J)
Ampere’s law (rot H = J)

V-{o(A ¢)(-A—-A,—-Vp)} =0
Continuity equations (div J = 0)

e Ais not expressed in the Coulomb gauge, gauge condition: A.w =20

e Boundary conditions A=20

b= 0 at infinity

Source field A, corresponds to a uniform magnetic flux density B,
The source field is a temporal ramp with a constant sweep rate (mT/s)

BM

a

~+v



* The equations are solved with a Galerkin residual minimization method

* We use the Backward Euler method at each time step

* Non linear terms are treated with a Picard iteration loop



Implicit time-resolution and non-linear Picard iteration
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Implicit time-resolution and non-linear Picard iteration

e The equations are solved with a Galerkin residual minimization method
* We use the Backward Euler method at each time step

* Non linear terms are treated with a Picard iteration loop

Solution (A,¢) @ t — At

Update of o (A, ¢) Solution of implicit linear systems with GMRES

Convergence criteria satisfied

Solution (A,¢) @ t




e Finite-element formulation and implementation

e Validation and comparison of the FEM model on simple

geometries

Magnetic field penetration in :

- a HTS tube of infinite extension

- a HTS tube of finite height



HTS tube of infinite height

B.o HTS tube

>
Scan direction

Bean model




Bean critical-state is solved with the E(J) model taking
n=100

HTS tube of infinite height
Magnetic flux penetration

B, HTS tube Magneticflux ,q, [ . | :
© density (mT)

Superconductor walls

e AL
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Scan direction

100
50
Bean model —\
linear decay of the magnetic ob—
flux density in the wall Radial distance (mm?

‘ FEM results are consistent with the Bean model



Choice of the time step

For solving the problem with B, = 200 mT with a sweep rate of 10 mT/s:

1. 20 time steps of 1s
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System is solved @ t =1s, 2s, ..., 20s



Choice of the time step

For solving the problem with B, = 200 mT with a sweep rate of 10 mT/s:

1. 20 time steps of 1s

2.@e step o@——) Single time step method

B, A
200 mT _—

0T _/'

\ )
|

System is solved @ t = 20s

i 4




Magnetic field penetration of an external field increasing from 0 mT to 200 mT
(10mT/s)

Comparison of two methods

1. in a single simulation with 20 time steps of 1s

2. in 20 different simulations with time steps of 1s, 2s, ..., 20s



Single time step method produces more accurate results in
a smaller calculation time

Magnetic field penetration of an external field increasing from 0 mT to 200 mT

Comparison of two methods
1. in a single simulation with 20 time steps of 1s

2. in 20 different simulations with time steps of 1s, 2s, ..., 20s

Analysis of the error
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Applied magnetic field (mT)



Single time step method produces more accurate results in
a smaller calculation time

Magnetic field penetration of an external field increasing from 0 mT to 200 mT
Comparison of two methods
1. in a single simulation with 20 time steps of 1s

2. in 20 different simulations with time steps of 1s, 2s, ..., 20s

Analysis of the error Calculation time
Average deviation 5 T T " T " T ) T fOI’ solving Ba =200 mT
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Applied magnetic flux density (mT)



3D FEM simulations on tubes with finite height are
consistent with previous observations

HTS tube of finite height Simulation parameters

n =100

B, =0-200 mT (10 mT/s)
Beenter Single time step method
LECE 3D geometry

—_— — — —

—_— — —

Magnetic fux density  Vlagnetic flux penetration

in the center of the tube (MmT)
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140
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with single time step method 100

0
Brandt method (semi-analytical)
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HTS tube of finite height

Error =

Bcenter

Bcenter,Brandt o Bcenter,FEM

Principle

* Applied magnetic flux density : 200 mT
* FEM single time step compared with Brandt

method with the help of B .,

Brandt (semi-analytical)

B

center,Brandt

multiple time step method (At=5.107s)

FEM
single time step method



Single time step method is more accurate with large critical
exponent

HTS tube of finite height Principle
* Applied magnetic flux density : 200 mT

B
’ /;b\ * FEM single time step compared with Brandt
' Beenter | method with the help of B_, .,
1< _+_Zf
J_ [ Supra
= j,——_—_-il = Difference between FEM-single step and Brandt for the
e NS magnetic flux density @ center of the tube (%)

8
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: 5 B ;
n ~ 20 : experimental value for A :

the critical exponent N

Single time step method is valid \3

N

Critical exponent n



Implementation of a finite-element formulation in GetDP with high non linearity

A-¢ formulation in 3D geometry for calculating the magnetic field penetration

Single time step method in the case of linearly time varying excitation is fast and

accurate



e Finite-element formulation and implementation

e Validation and comparison of the FEM model on simple geometries

e Optimization of the magnetic properties of drilled samples

Influence of the lattice types



Polar triangular lattice wins ...

HTS tube of infinite height
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Polar triangular lattice wins ...

HTS tube of infinite height

Difference from the
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