
Recovery management for a dial-a-ride system
with real-time disruptions

Célia Paquaya,b,∗, Yves Cramaa, Thierry Pironeta

aHEC Liège, Management School of the University of Liège, Liège, Belgium
bSchool of Business and Economics, Maastricht University, Maastricht, The Netherlands

Abstract

The problem considered in this work stems from a non-profit organization in charge of door-

to-door passenger transportation for medical appointments. Patients are picked up at home

by a driver and are then dropped at their appointment location. They may also be driven back

home at the end of their appointment. Some patients have specific requirements, e.g., they

may require an accompanying person or a wheelchair. Planning such activities gives rise to a

so-called dial-a-ride problem. In the present work, it is assumed that the requests assigned to

the drivers have been selected, and the transportation plan has been established for the next

day. However, in practice, appointment durations may vary due to unforeseen circumstances,

and some transportation requests may be modified, delayed or canceled during the day. The

aim of this work is to propose a reactive algorithm which can adapt the initial plan in order

to manage the disruptions and to take care of as many patients as possible in real-time. The

plan should be modified quickly when a perturbation is observed, without resorting to major

changes which may confuse the drivers and the patients. Several recourse procedures are

defined for this purpose. They allow the dispatcher to temporarily delete a request, to insert

a previously deleted request, or to permanently cancel a request. Simulation techniques

are used to test the approach on randomly generated scenarios. Several key performance

indicators are introduced in order to measure the impact of the disruptions and the quality

of the solutions.

Keywords: Transportation, dial-a-ride, reactive algorithm, real-time disruptions, health care

1. Introduction

The problem considered in this article stems from a non-profit organization in charge of

door-to-door transportation of patients for medical appointments. Patients are picked up

at home and are then dropped at their appointment location (outbound requests). Some

patients must also be picked up at the end of their appointment to be driven back home

∗Corresponding author
Email addresses: cpaquay@uliege.be (Célia Paquay), yves.crama@uliege.be (Yves Crama),

thierry.pironet@uliege.be (Thierry Pironet)

Preprint submitted to European Journal of Operational Research Thursday 1st August, 2019



(inbound requests). Each appointment has a predefined start time and end time, but in

practice, its duration may vary (most often, increase) unpredictably, and this information

becomes available for the dispatching office when the patient actually comes out.

This type of situation gives rise in the scientific literature to a so-called dial-a-ride problem

(DARP). The classic dial-a-ride problem mainly arises in door-to-door transportation services

for elderly or disabled people (Cordeau and Laporte (2007)). The DARP consists in planning

a collection of journeys, i.e., of routes and associated schedules, for a fleet of vehicles so as to

satisfy the patient outbound and inbound requests while meeting various constraints, such as:

time window constraints (the pickups and the deliveries must be performed within given time

intervals), maximum ride time for patients and drivers, and capacity constraints of vehicles.

The objective function of the DARP can differ from one application to the next, and may

include economic or service level considerations. For instance, it might be to maximize the

number of satisfied requests, to minimize the number of required vehicles, or to minimize the

waiting time of the patients (Paquette et al. (2009)). More details about the DARP features

are provided in Section 2.

In the application targeted in this work, the primary aim of the organization is to maximize

the number of requests that it can handle with its own fleet. Accordingly, every evening, the

dispatching office selects the transportation requests that will be served on the next day and

it establishes the route and corresponding schedule of each vehicle (Cappart et al. (2018); Liu

et al. (2018)). However, some events may occur and lead to unexpected changes when the

plan is actually implemented. For instance, the real duration of an appointment may differ

from the forecast; the physician may cancel the appointment; the patient may decide to go

home by her own means; and so forth. In practice, along the day, the dispatcher is informed

of each disruption either by a phone call announcing an appointment cancellation or because

a patient shows up later than initially planned. The dispatcher must make a decision as to

how to adapt the plan in response to this incoming information. The recovery decision can

be especially difficult due the fact that the schedules produced by the initial optimization

phase are usually tight, since the organization tends to maximize the number of requests to

be served. Our work aims at adapting the current plan in real time so as to manage the

disruptions while accounting for three potentially conflicting objectives, namely: satisfying

all patient requests, to the best possible extent; limiting the planning changes, so as to avoid

confusion for the drivers and patients; and minimizing the patient excess journey duration,

as a measure of service quality. Moreover, the dispatcher should be able to react quickly, so

as to give instructions to the drivers and to take care of the patients as soon as possible, and

to define the recourse action before the next disruption occurs.

The article is organized as follows. Section 2 positions our contribution with respect to

the DARP literature. In Section 3, the statement of the problem and the representation of

a solution are discussed in detail. Section 4 describes the nature of the real-time disruptions

and the associated recourse actions. Section 5 presents the simulation settings. The results

2



of the computational experiments are discussed in Section 6. Conclusions are finally drawn

in Section 7.

2. Literature review and positioning of the contribution

Dial-a-ride problems are motivated by real-life applications. This results in a broad variety

in the definition of constraints and of objective functions, as well as in the assumptions about

the nature of available information. These features are described in detail in recent surveys

by Molenbruch et al. (2017) or Ho et al. (2018). We only review them here very briefly, with

the goal to position our work with respect to earlier contributions.

2.1. Constraints

All versions of the DARP share common types of constraints: pickup and delivery opera-

tions have time windows (usually, short ones) in which the requests should be handled (e.g.,

Jaw et al. (1986); Coslovich et al. (2006)), all vehicles have a limited capacity (identical or

different for each vehicle if the fleet is heterogeneous) and sometimes several types of seats,

each patient may have a maximum ride time, and the drivers may have a maximum allowed

working time. The ride time may be limited to an identical predetermined value for all the

patients, or to a value which is proportional to the direct ride time (a detour may be ad-

missible for a long trip, but not for a short one) (Molenbruch et al. (2017)). Our problem

statement features most of the above constraints. More details will be provided in subsequent

sections (in particular, Section 3 and Section 5.2).

2.2. Objective functions

As explained in Molenbruch et al. (2017) and Ho et al. (2018), the objective function of the

problem varies with the application. According to Paquette et al. (2009), the service quality in

the DARP can be defined according to company specifications (technical approach), leading

to operational objectives, or according to customer perceptions (customer-based approach),

leading to quality-related objectives. Examples of both types of objectives are listed in Table 1.

In the DARP, both types of objectives must be taken into consideration, since vehicles

and patients are concerned. However, these different objectives can be conflicting with each

other: for instance, decreasing the patient waiting time may tend to increase the number of

vehicles needed, or maximizing the occupancy rate of the vehicles may tend to deteriorate

the patients’ ride time.

When combining several objectives, three strategies are observed in the literature (Molen-

bruch et al. (2017); Ho et al. (2018)). The first one is to consider a weighted sum of the

objectives. The difficulty is then to set the weights of the different elements of the sum. The

second strategy is to define a hierarchical (or lexicographic) objective function. This strategy

might be relevant when one objective has a higher priority than the other ones. The third

approach is to obtain the Pareto frontier of the problem. The decision maker should then

3



Table 1: Examples of objective functions in DARP

Operational Quality-related

Minimize fleet size Minimize users’ ride time

Maximize vehicle occupancy rate Minimize users’ excess ride time

Minimize vehicle idle time Minimize users’ waiting time

Minimize the time needed to complete all

requests

Minimize users’ total journey time (i.e., wait-

ing and riding time)

Maximize the total profit associated with

selected requests

Minimize number of requests served while a

user is on board

Minimize taxi costs to cover fleet shortages Maximize number of requests served

Minimize vehicle emissions

Minimize total vehicle distance

Minimize total driver wage

choose a preferred solution among the (sometimes huge) set of non-dominated solutions. Be-

cause of its complexity, this approach may not be suitable for problems requiring calculations

in real-time (Ho et al. (2018)).

In this paper, the problem we face is to generate recourse actions leading to new plans in

order to manage real-time disruptions. We do not compute the initial plan, which we assume

to be given to us (it is currently generated by a self-standing application), but we manage

a reactive plan as unexpected events unfold over time. Our main and foremost goal is to

maintain a feasible plan while considering the current system status and accounting for new

revealed information. Thus, we mostly strive to maximize the number of served requests (or

“throughput”, Pillac et al. (2013)). We favor, albeit in a more informal way, plans that do not

differ too much from the current one. This is achieved by relying on local search operators to

recover from disruptions. As a secondary objective reflecting the quality of the modified plan,

when feasibility is restored, we try to minimize the excess journey time ratio of the patients,

i.e., the ratio between the actual journey duration and the shortest possible journey duration.

However, as explained in Pillac et al. (2013) and already mentioned in Section 1, making

decisions in real time often enforces trade-offs between speed and quality of the responses.

2.3. Nature of the available information

Similarly to Pillac et al. (2013) and Psaraftis et al. (2016), a taxonomy for DARPs based

on the nature of the available information is proposed in Ho et al. (2018) :

1. the decisions are made a priori and cannot be changed later (static), or the decisions

can be modified due to new revealed information (dynamic);

2. the information, when received, is known with certainty (deterministic) or is unknown

or uncertain at the time when decisions are made (stochastic).

4



This taxonomy leads to four basic DARP categories represented in Table 2. In this table

is also indicated the number of articles studying each category among 86 published mainly

since 2007 and surveyed by Ho et al. (2018).

Table 2: Taxonomy of dial-a-ride problems from Ho et al. (2018) and number of articles studying each category

among 86 published mainly since 2007

Information is known with certainty?

Yes No

Decisions can be modified in

response to new information

revealed after time 0?

No Static and deterministic Static and stochastic

64 3

Yes Dynamic and deterministic Dynamic and stochastic

10 9

In our targeted application, information is available at the beginning of the day, but

some disruptions (delays, cancellations) are observed in real-time and require changes in the

plan. Thus, the DARP considered in this work is dynamic and deterministic. As explained in

Berbeglia et al. (2010), two approaches can be distinguished to deal with the dynamic case: (1)

solving the static problem each time a disruption occurs, meaning a complete reoptimization

of the transportation plan, or (2) applying the static algorithm only once to obtain the initial

plan, then using fast heuristic techniques to update the plan each time a disruption occurs.

(Note that the objectives of the algorithms used to create the initial plan and those of the

reactive heuristics may be different.) In practice, the first approach can be time consuming

and tends to deeply modify the current plan, which can confuse or disturb the drivers and the

patients. For these reasons, we have adopted the second approach. The present work mainly

focuses on a reactive process which can be used to quickly adapt the initial plan in response

to real-time disruptions.

2.4. Positioning and contribution of the paper

Even though the constraints and the objective function considered in the present work are

classic for a DARP, the contribution of this work is threefold. First, we show how to effectively

and efficiently handle the information dynamics of the application. The development of

disruption management methods is one of the promising areas for future research highlighted

in Ho et al. (2018). The decision maker, in this case the dispatching office, needs to be able

to quickly identify a new plan, in particular before the next disruption occurs. This explains

why we focus on heuristic methods. A second reason for the adoption of heuristics is that

the changes to be brought to the current plan have to be as small as possible in order to

avoid unpleasant disturbances for the drivers and the patients. (This is similar in spirit to the

concept of “limited recovery possibilities” introduced by Liebchen et al. (2009).) We achieve

this goal by exploring small neighborhoods of the current solution and very progressively

enlarging these neighborhoods in order to restore feasibility when a perturbation occurs. We

5



will show in the experiments that the use of simple operators is often sufficient to handle the

disruptions, without considerably affecting the quality of the plan. Finally, a third advantage

of the heuristic proposed here is its flexibility. Each DARP has its own specific features, and

thus being able to easily tailor the algorithm in order to account for these features represents

a considerable benefit.

Our second main contribution is related to the different types of disruptions taken into

consideration for the initial requests. As explained in Ho et al. (2018), most of the articles

dealing with dynamic and deterministic DARPs only focus on inserting new user requests. In

our study, the variation of the appointment duration for some patients may cause conflicting

situations. In particular, a large delay may lead the driver to depart from the pickup point

without the patient, so as to limit the consequences for the other patients. From an operational

point of view, this decision results in a temporary removal of two subrequests (one pickup

and one delivery for the delayed patient); but later in time (when the delayed patient finally

completes the appointment), the reinsertion of these two subrequests in a route must be

attempted. Removals and reinsertions of requests have been previously used as local search

operators in the design of heuristic algorithms for DARP or VRP problems; see, e.g., Cordeau

and Laporte (2003). In our context, however, the removals and reinsertions are not algorithmic

ingredients, but are the results of disruptions. As such, they modify the set of requests and

the time windows defining the instance itself.

Finally, the last contribution of our work lies in the different key performance indicators

introduced to analyze the experiment results in Section 6. In particular, the frequency and

the severity of the risks are analyzed when the probabilities of cancellations and the delays

vary.

3. Problem description

In this section, we provide a formal description of the problem at hand and we discuss

conditions for the existence of a feasible schedule.

3.1. Notations and solution representation

The aim of the procedures proposed in this paper is to be able to react quickly and

effectively in case of real-time disruptions. As explained above, we assume that the requests

to be served have been selected beforehand and that a feasible plan is provided as input.

Hence, the input of the problem consists of a set of vehicles, a set of patient requests, and an

initial plan. Here, a plan is a collection of routes and their associated schedule of activities

(Mitrović-Minić et al. (2004)). Each route is an ordered sequence of pickup and delivery

locations to be visited by a vehicle. The schedule associated with a route is the list of arrival

and departure times for each location in the route. In the sequel, the terms plan and solution

will be used indifferently. We now detail the data and decisions of the problem. Each vehicle

6



j ∈ J = {1, ..., J} is characterized by a number of seats, a number of places for wheelchairs,

and the driver working hours [αj , βj ].

Each request consists of two associated subrequests: a pickup (or loading) subrequest and

a delivery (or unloading) subrequest. The route ρj associated with a vehicle j is described by

a sequence (lj,0, rj,1, . . . , rj,k, . . . , rj,Kj , lj,Kj+1), where lj,0 is the location of the starting depot,

rj,1, . . . , rj,k, . . . , rj,Kj are the subrequests served along the route, and lj,Kj+1 is the location

of the final depot, which can be identical or not to lj,0. (All these parameters depend on

the route ρj , but when no confusion can arise, we will often omit the index j for the sake of

simplicity.) The earliest departure time from the starting depot is equal to αj , and the latest

arrival time at the final depot is equal to βj .

Each subrequest rk has the following features: a location lk, a time window [ak, bk] during

which the execution of the subrequest (loading or unloading the patient under consideration)

must be started, and a service duration sk which represents the time needed for loading or

unloading the patient (sk is also called dwell time in Jaw et al. (1986); Psaraftis (1986);

Savelsbergh and Sol (1995)). Additional parameters may specify whether the patient requires

a wheelchair or an accompanying person. Two consecutive subrequests rk, rk+1 can take place

at different locations (lk 6= lk+1) or at the same location (lk = lk+1). Between the execution

of two consecutive subrequests, there can be waiting time (if the locations are identical) or

travel time (if the locations are different). The driving time from location l to location l′ is

denoted as tl,l′ . The subrequest time window [ak, bk] depends on the appointment time of

the patient and on the travel time between her pickup location and her delivery location. It

essentially expresses that the patient should be on time for her appointment and should be

brought back home within a maximum time limit after the end of her appointment. (For our

particular case study, more details about the construction of the subrequest time windows

are provided in Section 5.2 – see Table 5.)

Two associated subrequests (pickup and delivery) should obviously be assigned to the

same vehicle, and the pickup should precede the corresponding delivery. For each subrequest

rk performed at location lk, we define a schedule by three time instants: the arrival time Ak

at lk, the start time Hk of the execution of rk (load or unload), and the departure time Dk

from lk. By extension, D0 is the departure time from the starting depot location l0 (D0 ≥ αj),

and AK+1 is the arrival time at the final depot location lK+1 (AK+1 ≤ βj). Note that the

time-related decision variables are represented by capital letters. Table 3 summarizes the

notations.

The associated schedule of a route (say l0, r1, r2, . . . , r6, l0) can be graphically represented

in a time-space coordinate system as illustrated in Figure 1. The filled rectangles in this

representation are associated with the subrequests performed in each route; the length of

each rectangle corresponds to the subrequest service duration. Horizontal line segments mean

that the vehicle remains motionless for a while (so, for instance, the first three subrequests

take place at the same location l1 = l2 = l3). Line segments with a non-zero slope indicate

7



Table 3: Notations

Notation Definition

[αj , βj ] Working period of the driver of vehicle j

tl,l′ Travel time from location l to location l′

ρj Route of vehicle j

rk Subrequest k

lk Location of subrequest k

sk Service duration of subrequest k

[ak, bk] Time window for the start of the execution of subrequest k

Ak Arrival time at lk for the execution of rk

Dk Departure time at lk for the execution of rk

Hk Start time of execution of rk

that the vehicle moves from one location to the next.

time

locations

-

-

-

-

-l0

l1 = l2 = l3

l4

l5

l6

A1 D1

=

H1

|

A2

D2

=

H2

|
H3

|

A3

D3 A4 D4

H4

|

A5D5

H5

|

A6D6

H6

|

Figure 1: Schedule representation and time-related variables

3.2. Feasible solutions

A solution is feasible if the routes and the schedules are feasible. The feasibility of the

routes consists in satisfying the following constraints:

(RF1) the capacity of the vehicles must be respected at anytime in any route;

(RF2) the pickup and the delivery of a same request are assigned to the same vehicle;

(RF3) the pickup of a request must precede its delivery.

In terms of time, a schedule is feasible if:

(SF1) each vehicle j leaves its starting depot not earlier than time αj and returns to its final

depot not later than time βj ;

(SF2) the time windows for picking up and delivering each patient are respected (Hk ∈ [ak, bk]

for both subrequests);

8



(SF3) there is enough time for the vehicle to move from one location to the next (Dk+tlk,lk+1
=

Ak+1);

(SF4) the execution of a subrequest starts after the arrival at the required location (Ak ≤ Hk)

and ends before the departure from the location (Dk ≥ Hk + sk).

3.3. Earliest and latest arrival and departure times

Consider a feasible route ρj = (l0, r1, . . . , rK , lK+1). As explained by Savelsbergh (1992)

and Mitrović-Minić and Laporte (2004), and as suggested by conditions (SF1)–(SF4), the

scheduled arrival time Ak at location lk must be in an interval [Ak, Ak], where Ak is the

earliest arrival time and Ak is the latest arrival time at location lk. Similarly, the scheduled

departure time Dk from location lk must be between an earliest departure time Dk and a

latest departure time Dk.

A forward pass through the requests served along the route determines the earliest arrival

and departure times at each location, while a backward pass determines the latest arrival

and departure times (this is akin to critical path computations in project scheduling). The

computations are initialized using the driver working hours [αj , βj ]: D0 = αj and AK+1 = βj

(see condition (SF1)). Next, taking into account the time windows [ak, bk], k = 1, . . . ,K, the

recursive definitions of Mitrović-Minić and Laporte (2004) can be adapted as follows:

� Earliest arrival and departure time with a forward pass:Ak = Dk−1 + tlk−1,lk ∀k = 1, ...,K + 1

Dk = max{ak, Ak}+ sk ∀k = 1, ...,K

(the earliest arrival time at the k-th subrequest location, Ak, is the earliest time when the

k-th location may be reached considering that the k− 1 previous locations have been visited;

the earliest departure time from the k-th subrequest location, Dk, is then derived from Ak

and from the subrequest time window [ak, bk]).

� Latest arrival and departure time with a backward pass:Dk = Ak+1 − tlk,lk+1
∀k = 0, ...,K

Ak = min{Dk − sk, bk} ∀k = 1, ...,K

(the latest departure time from the k-th subrequest location, Dk, is the latest possible time

when the vehicle can leave the location to be on time for the following subrequests; the latest

arrival time at the k-th subrequest location, Ak, is then derived from the latest departure

time Dk and from the subrequest time window [ak, bk]).

Given a feasible route (in the sense of conditions (RF1)–(RF3)), necessary and sufficient

conditions for the existence of a feasible schedule are: for all subrequests rk,

[Ak, Ak] 6= ∅, [Dk, Dk] 6= ∅, [max{ak, Ak},min{Dk − sk, bk}] 6= ∅, (1)

9



where the last condition implies that one can find a starting time Hk for the execution of

subrequest rk that lies in both intervals [Ak, Dk− sk] and [ak, bk]. By default, when (1) holds

for all k, we generate a feasible plan by considering that every action is performed as soon as

possible, that is, Ak = Ak, Dk = Dk and Hk = max{ak, Ak}. This strategy is very natural in

practice: the driver does not keep a patient waiting more than necessary, and once the patient

is on board, the driver can leave straight away. Intuitively, the strategy aims at minimizing

the excess journey time of the patients.

Similarly to project scheduling, the slack time of subrequest rk on a route can be defined

as the difference between the latest departure time and the earliest arrival time at location lk,

i.e., the maximum amount of time that a driver can spend at the location:

slack(k) = Dk −Ak. (2)

The larger the slack time, the easier it is to find a feasible solution with respect to time

constraints. For this reason, the average slack of a solution will be used as selection criterion

in Section 4.3.

In everyday operations, the initial routes and the initial schedules Ak, Dk and Hk (for each

subrequest rk) are provided to the drivers, as well as the latest departure times Dk. So, the

drivers know how long they can wait for a late patient without violating the time constraints

of the following subrequests (i.e., so that no changes must be brought to the current routes).

Since Ak, Ak, Dk, Dk only depend on the routes and on the driver working hours, they can

be calculated for every route of the initial plan from the outset. Along the day, disruptions

occur, and the ensuing recovery actions may impact the routes in various ways. Therefore,

the values of Ak, Ak, Dk, Dk will need to be accordingly updated.

4. Real-time disruptions and recourses

This work aims at dealing with disruptions that occur along the day, by modifying the

current plan when necessary. Every disruption is characterized by a type, a revealed time and

an associated recourse.

4.1. Disruption types

The disruptions to be managed are classified into three types, to be further described in

the next subsections: (1) increase of the duration of an appointment, (2) reinsertion of a

request (due to a previous delay), and (3) cancellation of an appointment. The second type

can only be met as a consequence of the first type. We do not consider the insertion of new

requests in this work.

4.1.1. Increase of the duration of an appointment

Suppose that in order to fulfill subrequest rk, a patient p is supposed to be picked up at

time Hk at location lk, but her medical appointment lasts longer than expected. If the patient

10



terminates her appointment before time Hk, then this delay has no impact on the schedule

(actually, the driver may not even observe the delay). On the other hand, if the patient is

not present at time Hk, then the driver has to decide whether to wait for the patient (handle

a delay) or to leave for the next location on the route (handle a no-show).

Typically, in such a case, the driver and the dispatcher have no information about the time

(say, Hk +xk, with xk unknown) when patient p will actually be available for transportation.

However, thanks to the information computed in Section 3.3, the driver knows that he can

wait until Dk − sk without modifying his route and still be on time to serve the following

subrequests as defined by (SF2). (Observe that, contrary to intuition, there is no reason for

the driver to wait until time Dk: indeed, if patient p becomes available later than Dk − sk,

then her service duration sk will prevent the driver from leaving by the latest departure time

Dk, and hence, some of the subsequent subrequests will be infeasible.) If patient p shows up

at time Hk +xk ≤ Dk−sk, therefore, she can get on board and her delay has no consequences

for the remaining sequence of subrequests on route ρj . Nonetheless, the schedule Ak+1, Hk+1,

Dk+1, . . . , AKj , HKj , DKj of the subsequent subrequests must be adapted. The driver sends

a notification to the dispatching office when leaving location lk at time Dk for this purpose.

If patient p has not arrived at time Dk − sk, yet, then the driver will not be able to take

care of this patient without being late for at least one of the following subrequests of his

route. Since the magnitude xk of the patient’s delay is not known, it is impossible to predict

its impact on the next subrequests (rk+1, . . . , rKj ). Therefore, in this case, we adopt the

dispatching rule that the driver leaves at time Dk − sk without patient p, who is temporarily

considered as a no-show. The driver notifies the dispatching office of this action at time

Dk − sk. Both the pickup subrequest and the associated delivery subrequest of patient p

are thus removed from the route at time Dk − sk, with the implications that the remaining

subrequests of the route have to be rescheduled, and that the decisions regarding the inbound

trip of patient p are postponed. This pair of postponed subrerequests of patient p will reappear

in the future, once her appointment will actually be over. We next turn a discussion of this

event.

4.1.2. Reinsertion of a request

When the appointment of a patient p finishes later than expected and the driver has

already left the pickup location lk, the patient informs the dispatching office of the company

as soon as she is ready for her inbound trip, say, at time Hk + xk > Dk − sk. This leads to

a shift of the pickup and delivery time windows of patient p by xk + (Hk − ak) time units.

The dispatching office then tries (at time Hk + xk) to reinsert this pair of subrequests in the

route of one of the vehicles. The main goal is to find a feasible reinsertion so as to avoid

calling upon external companies to take charge of the patient. A single appointment duration

increase can thus lead to two actions (removal and reinsertion of two subrequests) at two

distinct moments. To the best of our knowledge, this situation has not been considered in

11



the DARP literature. The reinsertion recourse procedures are described in Section 4.3.

4.1.3. Cancellation of a request

Appointments and requests may be canceled for various reasons. For instance, a patient

may be too weak to travel, or the machine used for a medical treatment may be unexpect-

edly unavailable. Such events result in a cancellation of the appointment and hence, in the

cancellation of the patient’s outbound and inbound journeys. In other cases, the patient may

decide to cancel one of her trips only (e.g., because a relative takes care of it). All such

situations affect one or several pairs of subrequests, namely, both the pickup subrequest and

the associated delivery subrequest must be removed from the route.

4.2. Revealed time

The revealed time of a disruption is, by definition, the time at which the dispatching office

becomes aware of the disruption. Note that the revealed time may differ from the time at

which the disruption has actually started. The revealed time is used as a time stamp for the

simulation clock in the discrete event algorithm in Section 5.3.

In case of an increased appointment duration (associated with pickup subrequest rk for

patient p), the revealed time may be the moment Hk + xk ≤ Dk − sk when patient p boards

the vehicle that was initially assigned to her, if the vehicle kept waiting long enough, or

otherwise it is the moment Dk− sk when the driver leaves lk without patient p. For a request

reinsertion, the revealed time is the moment Hk + xk > Dk − sk at which patient p calls the

dispatching office to inform them that she is available for her inbound trip. For a request

cancellation, the revealed time is the moment at which the dispatching office is informed of

the cancellation.

4.3. Associated recourses

In order to deal with a disruption affecting subrequest rk, an action has to be undertaken.

This action, called a recourse, is determined by an appropriate algorithm (akin to a “recovery

algorithm” in the framework of Liebchen et al. (2009)). The recourse to be applied depends

on the type of the disruption and on the current solution.

A. [No impact delay] As discussed earlier, if the end of an appointment associated with rk

is postponed but the patient still comes out before her planned pickup time Hk, then no

change is notified and the planning does not require any modification. This situation is

labeled as a no impact delay in the sequel.

B. [Delay] If the appointment ends at time Hk + xk (xk ≥ 0), but before the limit

Dk − sk, then the route is not modified, only the schedule is. The time windows

of the pickup rk and the associated delivery subrequests are shifted further in time

(by xk + (Hk − ak) time units), and consequently, the earliest and latest arrival and

departure times of the subsequent subrequests rk+1, . . . , rKj are updated, as well as

Ak+1, Hk+1, Dk+1, . . . , AKj , HKj , DKj . This recourse is labeled as a delay.

12



C. [Postponed action] If the appointment ends too late (Hk + xk > Dk − sk), then the

route must be modified by temporarily canceling the pickup and delivery of this pa-

tient. This recourse is labeled as a postponed action in the sequel. An additional

disruption corresponding to the reinsertion of these subrequests will be later revealed

at the (unpredictable) time Hk + xk, and will be handled by the next type of recourse.

D. [Reinsertion] When an action is postponed as in recourse C, the delayed patient submits

a request for her inbound trip at time Hk +xk. As a result, two subrequests (pickup and

delivery) need to be reinserted in a route as explained in Section 4.1.2. This recourse is

labeled as a reinsertion.

E. [Definitive cancellation] Due to a cancellation by the patient or by the health center,

a request may have to be removed from the plan as explained in Section 4.1.3. This

recourse is labeled as a definitive cancellation in the following sections.

The most difficult recourse to handle is the reinsertion of a request. The reinsertion

procedure must take care of two subrequests: the patient needs to be picked up at a given

location and then delivered at another location. These two subrequests, say r+ for the pickup

and r− for the delivery, should be both reinserted in the same route to take care of the patient’s

inbound trip. As noted by Berbeglia et al. (2011), checking the feasibility of a DARP instance

is NP-complete, as a consequence of the NP-completeness of the traveling salesman problem

with time windows (Savelsbergh (1985); see also Berbeglia et al. (2012) for related results).

Berbeglia et al. (2011) provide a constraint programming algorithm to assess the feasibility of

inserting a new request in a feasible plan. Their algorithm either returns a feasible plan that

includes the new request without modifying the existing routes, or proves that there is no

such feasible plan. While this algorithm answers some of the questions arising in our setting,

its implementation is quite complex and does not offer the flexibility to “fix” a route when the

reinsertion fails. Moreover, its running time is relatively high (at least, when compared with

the running times of our algorithms). So, we rather choose to introduce four distinct simple

reinsertion operators in order to successfully reinsert each pair of subrequests.

4.3.1. Reinsertion operator O1: pure reinsertion

The first operator, O1, is a pure reinsertion operator. First, O1 attempts to insert the

pickup subrequest r+ in every position of every route of the current solution which is com-

patible with the subrequest time window. The insertion is feasible if the conditions (1) are

satisfied for all subrequests rk in the route where the insertion is attempted. If one or several

insertions are feasible for r+, then for every possible choice, the operator tries to insert the

associated delivery r− in the same route as the pickup. Each feasible delivery insertion leads

to a feasible solution for the request reinsertion. When several feasible solutions still exist,

the operator O1 selects the one that maximizes the average slack (as defined in (2)) over all

subrequests (average slack criterion).

13



4.3.2. Reinsertion operator O2: destroy-and-repair

If no solution for the two unassigned subrequests r+, r− can be found with the first oper-

ator, then a second reinsertion operator, O2, based on a destroy-and-repair strategy is con-

sidered. In every route ρj independently, O2 first selects the set of subrequests “competing”

either with the unassigned pickup r+ or with the unassigned delivery r−: here, a subrequest

rk∗ is said to be “competing” with r± with time window [a±, b±] if [ak∗ , bk∗ ] ∩ [a±, b±] is non

empty. Say, e.g., that subrequest rk∗ is a pickup (respectively, delivery) subrequest competing

with either r+ or r−. Let ri∗ be the delivery (respectively, pickup) subrequest paired with rk∗ .

Then, rk∗ and ri∗ are removed from their current route ρj , and the operator O1 is used to

reinsert the pair (rk∗ , ri∗) either later in the same route or in another route. If the reinsertion

of the pair (rk∗ , ri∗) succeeds, then O1 attempts to reinsert the pair (r+, r−) in the route ρj . If

several feasible reinsertions exist with this destroy-and-repair operator O2, then the solution

that maximizes the average slack over all subrequests is selected.

The two reinsertion operators O1, O2 are hierarchically applied since we target feasible

reinsertions which least affect the current routes, so as to avoid confusion. It may happen,

however, that no feasible reinsertion can be found for a request with either of the two operators

O1 and O2. In this case, we allow slight relaxations of the problem, as described next.

4.3.3. Reinsertion operator O3: relaxed time windows

The third reinsertion operator, O3, is based on a relaxation of the subrequest time win-

dows. This relaxation must be consistent: all patients should still be on time for their ap-

pointments, therefore only the beginning of the pickup time window of an outbound trip (to

the health center) can be shifted earlier in time (a patient can be loaded earlier than initially).

As for the inbound trip (back home), a patient cannot be picked up before the end of her

appointment, but the maximum journey duration may be extended. Consequently, we allow

the extensions of time windows displayed in Table 4. The parameters η and ζ control the

magnitude of the extensions: the larger η or ζ, the more likely a successful reinsertion. (The

initial parameterization of the subrequest time windows will be discussed in Section 5.2.)

Table 4: Allowed extensions of a subrequest time window [a, b] (η, ζ > 0)

Pickup Delivery

Outbound [a− η, b] [a− η, b]

Inbound [a, b+ ζ] [a, b+ ζ]

In practice, when O1 and O2 fail, we try again to apply O1 while allowing the extension

of the time windows of the subrequests to be reinserted (i.e., r+ and r−), as well as those of

all subrequests in the route where the reinsertion takes place. If several feasible insertions are

found with this third operator O3, the solution minimizing the total extension with respect

to the initial subrequest time windows is selected. Ties are broken using the average slack

criterion.

14



Note that (contrary to what is assumed by Schilde et al. (2011), for example) the time

windows can be extended only within limits defined by η and ζ, so that O3 is not guaranteed

to find feasible reinsertions.

4.3.4. Reinsertion operator O4: extended working hours

If the reinsertion operator O3 is not sufficient to find a feasible solution, we attempt again

to apply O1 while allowing to extend the drivers’ working hours in addition to the subrequest

time windows. This means that for every route j, βj is increased to βj + ξ with ξ > 0. As

in the case of O3, the value of ξ controls the magnitude of the extension: the larger ξ, the

more likely a successful reinsertion. (Note, however, that the extension is never applied to a

driver who is already back to the final depot.) If several feasible solutions are found with this

reinsertion procedure, the solution minimizing the total driver overtime is selected. Ties are

broken based on the total extension of the subrequest time windows and, if necessary, on the

average slack criterion. This defines a fourth reinsertion operator O4.

4.3.5. Buffered reinsertions and failures

If none of the four operators O1, O2, O3, O4 can identify a feasible reinsertion at the

time when a disruption is revealed, then the unassigned request is stored in a buffer list.

The requests in this buffer list receive another chance to be reinserted in the planning during

a predetermined buffer period after their revealed time, whenever a new disruption occurs.

(Indeed, a reinsertion is likely to be successful only if the schedule changes.) The buffer

contains a list of unassigned requests sorted by chronological revealed times. When a new

disruption is successfully handled, each request of the buffer list is examined in turn: if the

request has been in the buffer list for less than the maximum authorized period, then a

reinsertion for this request is attempted; if the buffer period is over, the request is removed

from the buffer list, meaning that this request will never be reinserted and thus, that the

patient has to be taken back home by other means (taxi, volunteer driver, etc.). Such a

lost request is called a failure. Note that some failures may be due to the limitations of our

procedures, while others may be unavoidable: in particular, if a patient is ready for pick-up

after the end of the workday of the last driver, then a failure necessarily occurs.

5. Computational experiment settings

In this section, we describe the set of instances, the parameters related to the specific

application setting, and the scenarios generated for our computational experiments. All time-

related quantities are expressed in minutes, for simplicity.

5.1. Instances

As mentioned in Section 2, most of the scientific work on the DARP is motivated by

practical problems and therefore, the algorithms are mainly tested on case-specific real-life

15



instances (Molenbruch et al. (2017); Ho et al. (2018)). Two sets of artificial benchmark

data have been proposed to perform comparisons between developed algorithms (Cordeau

and Laporte (2003); Cordeau (2006); Ropke et al. (2007)). However, none of these two

data sets presents disruptions enabling us to compare our algorithm with other previously

published techniques. For this reason, we chose to use an existing collection of realistic

instances (Thomas et al., 2018) based on the case of our non-profit partner and to create

disruption scenarios as explained in Section 5.3. The original (deterministic) DARP instances

are available online at http://www.csplib.org/Problems/prob082. The first ten instances

of each of the three categories (easy, medium and hard) are selected, and we use as initial plans

the solutions computed by Thomas et al. (2018). This yields a set of 30 distinct instances,

where each instance is associated with an initial collection of routes and schedules. The total

number of requests in the instances varies from 14 to 274, with a mean equal to 101.93, and

the number of inbound requests varies from 8 to 139, with a mean equal to 51.53. The number

of routes is between 2 and 16.

5.2. Case details

In Section 3, the subrequest time windows were described in a generic framework. We

now provide more details about their parametrization in our specific application. Of course,

all these values could easily be modified to account for different real-world environments.

As explained already, each patient may have two types of requests: one outbound request

(taking the patient to the medical appointment) and one inbound request (taking the patient

back home after the appointment). Each type of request has its own constraints. For instance,

the inbound trip may have a maximum duration, say, m minutes. This is typically the case

after a tiring medical appointment, such as a dialysis. More details about the value of m will

be provided below. As for the outbound request, the patient should reach the appointment

location on time, but can arrive earlier. The appointment start time (at) and the projected

appointment duration (d) are provided. When a patient asks for outbound transportation, the

earliest pickup time is automatically set f minutes before the appointment time at. According

to Paquette et al. (2009), in the DARP literature, the subrequest time windows are usually

15 minutes long and the maximum trip time is set to 90 minutes. In our application, f is set

to 30 minutes for all the patients, due to the very local area served by the organization. As

a reminder, s is the service duration, that is the time required for loading or unloading the

patient in a vehicle. For the sake of simplicity, here the service durations are assumed to be

equal for loading and unloading but they could easily be set to different values.

Time windows for both pairs of subrequests can then be calculated on the basis of the

previous parameters: Table 5 displays the feasible time windows for the start of each pickup

or delivery subrequest. The patient is assumed to be picked up at location l1 and delivered

at location l2 on the outbound trip, and brought back from location l2 to location l3 at the

end of the inbound trip.

16

http://www.csplib.org/Problems/prob082


Table 5: Construction of the subrequest time windows for a given patient

Start of the pickup Start of the delivery

T.w. beginning T.w. end T.w. beginning T.w. end

Outbound [at− f, at− 2s− tl1,l2 ] [at− f + s+ tl1,l2 , at− s]

Inbound [at+ d, at+ d+m− s− tl2,l3 ] [at+ d+ s+ tl2,l3 , at+ d+m]

We only define the maximum time limit m for inbound requests. It is considered as the

maximum journey duration, that is, from the moment (at+ d) when the patient is available

after her appointment until her delivery at home, including the possible waiting time before

pickup, the ride time and the service time at the delivery location. In our experiments, the

maximum journey duration is proportional to the direct journey duration, that is, tl2,l3 + 2s,

unless this duration is very small. Thus, similarly to Häll et al. (2012), we define m as follows:

m =

θ(tl2,l3 + 2s) +A if (tl2,l3 + 2s) < M

θ(tl2,l3 + 2s) if (tl2,l3 + 2s) ≥M.
(3)

The values of the parameters θ,M and A are set to 2, 15 minutes and 30 minutes, respectively.

The constraint on the maximum journey duration is ensured through the definition of the

subrequest time windows from Table 5.

Consider now the possibility of extending some subrequest time windows, as explained in

Section 4.3. The values of parameters η and ζ in Table 4 are set so as to allow an increase of

the subrequest time windows by 50%. As for the drivers’ working hours, an extension of up

to 120 minutes is allowed, i.e., ξ = 120.

Finally, the buffer period (see Section 4.3.5) is set to 15 minutes in order to prevent the

patients from waiting too long for an answer from the company.

5.3. Simulated disruptions

In order to create different situations, we create random scenarios of real-time disruptions.

For a given instance, a scenario is defined as a set of disruptions that apply to the associated

plan. It can be seen as the sequence of events occurring on a given day. The random elements

are the following.

Increase of appointment duration. This type of disruption only concerns the inbound request

of a patient. A Gamma random variable is used to define the actual duration of the patient

appointment. The parameters of the distribution are chosen so that the mean is equal to

the (deterministic) appointment duration (say, d) used in the original instance, while the

standard deviation is equal to δd, for a given parameter δ ∈ [0, 1]. If the value generated

for the Gamma variable is γ, then the actual duration of the appointment is set equal to

max{d, γ} in the scenario under consideration. So, we assume that an appointment cannot be

shorter than initially planned: this assumption reflects the fact that shorter durations rarely

17



occur in reality, and that, even when they occur, the patient is unlikely to communicate the

information to the dispatching center. Therefore, we only consider disruptions leading to

appointment durations that are larger than expected and that follow a truncated Gamma

distribution.

Request cancellation. Cancellations can apply to only one request (either outbound or in-

bound, if the patient finds another transportation means), or to a pair of requests (for ex-

ample, in case of an appointment cancellation). In order to create the scenarios, for each

patient, a Bernoulli random variable is first generated to determine whether the appointment

is maintained (with probability 1− p) or is canceled (with probability p). If the appointment

is maintained, then another Bernoulli trial is used for each existing request (outbound and

inbound), independently, with the same cancellation probability p.

Cancellations are typically known in advance of the request planned time, and thus, the

moment at which the dispatching office becomes aware of the cancellations must also be

determined. If the appointment or a single journey is canceled, then a Gamma random

variable is used to determine how long in advance the cancellation is announced. On average,

the disruption is announced 60 minutes before the pickup time window, with a standard

deviation equal to 15 minutes.

Set of scenarios. For every instance and for certain values of (p, δ), a set of 50 random

scenarios is generated. The pairs (p, δ) that we consider are

� (p, δ) = (0.05, 0.25),

� (p, δ) ∈ {(0.05, 0.01), (0.05, 0.10), (0.05, 0.40)}, with p = 0.05 fixed, and

� (p, δ) ∈ {(0.01, 0.25), (0.1, 0.25), (0.2, 0.25), (0.4, 0.25)}, with δ = 0.25 fixed.

Note that each of the reference values p = 0.05 and δ = 0.25 is kept fixed for comparison

when the second parameter varies. The smallest and largest values of p and δ are unlikely to

be observed in practice, but will allow us to validate the behavior of our procedures under

rather “extreme” conditions.

In total, this produces a collection of 12 000 scenarios (30 instances × 8 pairs of parameters

× 50 scenarios) to be handled by the procedures described in Section 4.

The disruptions in each scenario are successively handled by the recourse procedures

described in Section 4.3 at the time when they are revealed, in a discrete event simulation

fashion, as they would be by the dispatching office in a real-life application. A schematic

description of the simulation process is summarized by Algorithm 1.

6. Results

The aim of the computational experiments is to establish the effectiveness of the algo-

rithm approach in handling the real-time disruptions, but also to evaluate the impact of the

18



Algorithm 1 Discrete event algorithm

1: while the day is not over do

2: Wait for a disruption dis revealed at time tdis

3: Generate the recourse for dis

4: if recourse(dis) is postponed action then

5: Create later reinsertion disruption

6: end if

7: Deal with generated recourse

8: end while

disruptions on the quality of the solutions.

The algorithm was implemented in Java. All calculations were performed on a personal

laptop with 16.0 GB RAM and an Intel Core i5-7300U (2.6 GHz) processor running 64-bit

Windows 10 Pro. The algorithm was executed on the 12 000 scenarios described in the

previous section. Each run took less than two seconds for a complete scenario. This speed

confirms that the proposed procedures are in line with the purpose of the work and are

appropriate for use in real time.

In the sequel, several solution quality measures and algorithmic performance measures are

collected for different values of p and δ. We rely on boxplots (Tukey, 1977) to visualize these

observations. A boxplot, as illustrated in Figure 2, is a graphical representation of a sample

of numerical data through their quartiles. The box represents the 50% of data lying between

the first and third quartiles (i.e., the interquartile range IQR = Q3 − Q1), the band inside

the box indicates the median. The lower whisker end (min) is the smallest observation within

1.5 IQR of the lower quartile Q1, and the upper whisker end (max) is the largest observation

within 1.5 IQR of the upper quartile Q3. Any data point that is not included between the

whiskers is viewed as an outlier and is plotted as a small circle. Boxplots enable the reader,

with a simple glance, to perceive the degree of dispersion and skewness in the data.

1.5 IQR

1.5 IQR
min

max

IQR

Q1

median
Q3

◦ outlier

Figure 2: Data represented by a boxplot

19



6.1. Quality measures

The quality of a solution relates to two dimensions. First, the objective function of the

initial plan creation, that is, satisfying the maximum number of requests, must be taken into

account, as it most directly relates to the mission of the organization. In the present case,

it means that most, if not all of the requests initially placed in the routes should be served

and thus, that the number of reinsertions should be maximized. Second, patient satisfaction

should be optimized as well. Reinserting certain requests may impact the service level, as

measured through the excess journey duration ratio. Some reinsertions can come at the cost

of time constraints violation and driver overtime. These different dimensions are analyzed

next.

6.1.1. Failed scenarios and unassigned requests

The main focus of this work is on managing all the disruptions, that is, on taking care of

all the patient requests selected in the initial plan. The only disruption potentially leading

to an infeasibility is the reinsertion of a request following a postponed action (recourse D in

Section 4.3), since delays and cancellations can always be tackled. Note that reinsertions may

be especially troublesome in our framework, because the selection of requests performed in

order to generate the initial plan aims at maximizing the number of patients served among

a larger demand pool (Thomas et al., 2018) and hence, the associated schedules are likely to

be tight.

A first key performance indicator (KPI), denoted KPI1, is provided by the proportion

of failed scenarios, that is, the number of scenarios with at least one unsuccessful reinsertion

(= failure, see Section 4.3.5), divided by the total number of scenarios (i.e., 50 in these

simulations) for a given instance. A failed scenario means that, over the whole day, there is

at least one unserved inbound request during the drivers’ working hours (unavoidable failures

due to a patient delay extending beyond the latest driver’s end of the day are not taken into

consideration for this KPI). So, for a given instance, KPI1 is defined as:

KPI1 =
#failed scenarios

#scenarios
.

In Figure 3, each boxplot corresponds to a pair of parameters (p, δ). Within a boxplot, each

observation corresponds to the value of KPI1 associated with one instance. Therefore, each

boxplot in Figure 3 holds 30 observations.

20



p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

0
20

40
60

80

Simulation parameters 

 P
ro

po
rt

io
n 

of
 fa

ile
d 

sc
en

ar
io

s 
[in

 %
]

p=0.01;δ=0.25 p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

0
20

40
60

80
Simulation parameters 

 P
ro

po
rt

io
n 

of
 fa

ile
d 

sc
en

ar
io

s 
[in

 %
]

Figure 3: Proportion of failed scenarios for different values of δ (left) and p (right)

On the left-hand side of Figure 3, one can see that when δ is small, that is, when the

delays are rather small, then the proportion of failed scenarios is small as well. When the

magnitude of the delays increases (larger values of δ), however, the ratio of failed scenarios

tends to increase as well. For δ = 0.4, 75% (below the third quartile) of the instances have

fewer than 40% of failed scenarios, but some instances can reach 74% of failed scenarios.

As shown on the right-hand side of Figure 3, there is no obvious trend for the values of

p between 0.01 and 0.10. Here again, some instances may be associated with a rather high

percentage of failed scenarios, even though 75% of the instances show fewer than 50% of failed

scenarios. For larger values of p, the number of failed scenarios decreases. This behavior may

be expected: when more appointments are canceled, there is more slack in the schedules and

reinsertions are more likely to become feasible, thus resulting in fewer failed scenarios.

These comments regarding KPI1 should be interpreted with caution since a failed scenario

may either contain a single unserved request, or several ones. In risk management parlance,

we would say that KPI1 focuses on the frequency of failures, but not on their severity. In

order to take the latter criterion into account, we introduce a second indicator, KPI2, which

represents the average number of unserved requests among the failed scenarios. More precisely,

for a given instance with at least one failed scenario, KPI2 is defined as:

KPI2 =

∑
failed scenarios s

#failures in s

#failed scenarios
.

Clearly, KPI2 cannot be smaller than 1. The boxplots in Figure 4 display the value of KP2

for all instances with at least one failed scenario. The number of observations is indicated for

each pair of parameters (p, δ).

21



p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Simulation parameters 

A
v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
fa

ilu
re

s
 i
n
 f
a
ile

d
 s

c
e
n
a
ri

o
s

#obs=18#obs=1 #obs=25 #obs=26

p=0.01;δ=0.25p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

1
.0

1
.2

1
.4

1
.6

1
.8

2
.0

Simulation parameters 
A

v
e
ra

g
e
 n

u
m

b
e
r 

o
f 
fa

ilu
re

s
 i
n
 f
a
ile

d
 s

c
e
n
a
ri

o
s

#obs=26 #obs=25 #obs=24 #obs=18 #obs=12

Figure 4: Average number of failures for different values of δ (left) and p (right)

The left-hand part of Figure 4 shows that if the appointments last just a little longer than

expected (small values of δ), there is on average at most one lost request per scenario. For

larger delays, KPI2 tends to increase, but never exceeds two unserved requests per scenario.

Similar conclusions apply to the right-hand side of Figure 4. So, considering the severity

indicator KPI2 suggests that, from a practical point of view, the performance of our simple

recourse procedures is quite satisfactory, as the number of lost requests is extremely small.

(Recall that there are, on average, more than 100 requests per instance.)

Note again that the number of unserved requests tends to decrease with the value of δ

and to increase with the value of p. This corroborates the observations already made about

KPI1, and confirms that the algorithm behaves as expected.

6.1.2. Excess journey duration ratio

A relevant indicator for patient satisfaction is the excess journey duration ratio (EJDR),

defined as the ratio of the actual journey duration, including service duration and waiting

time before pickup, over the direct journey duration Paquette et al. (2009). More precisely,

for a pair r = (rk1 , rk2) of associated subrequests, where rk1 is the patient pickup and rk2 the

patient delivery, with k1 < k2,

EJDR(r) =

end of delivery︷ ︸︸ ︷
(Hk2 + sk2)−

start of availability︷︸︸︷
ak1

sk1 + tk1,k2 + sk2︸ ︷︷ ︸
direct journey duration

.

The closer to 1 this ratio, the more satisfied the patient. (Note that our policy to set the values

of Ak, Dk, Hk to the earliest possible times, as explained in Section 3.3, tends to minimize the

value of EJDR.)

22



In our experimental framework, the aim is to measure the difference between the EJDR

of the initial solution and the EJDR in the final solution (that is, considering the shifted time

windows and the Ak, Hk, Dk that actually happened a posteriori), in order to quantify the

changes due to the disruptions. Therefore, for each pair r of subrequests in the final solution,

we compute the EJDR difference, ∆EJDR(r):

∆EJDR(r) = EJDRfinal(r)− EJDRinitial(r)

=
((Hk2 + sk2)− ak1)final − ((Hk2 + sk2)− ak1)initial

sk1 + tk1,k2 + sk2

If the difference is positive, it means that for this request, the journey is longer than

initially planned. If the difference is negative, then the journey is shorter than initially

planned, for instance because a detour initially planned for another request has been removed.

For a scenario s, the average EJDR difference is computed over all requests (i.e., pairs of

associated subrequests) occurring in the final solution sol(s) obtained for this scenario. For

a given instance, the average (over 50 scenarios) of the average EJDR differences (over all

requests) is considered as a third KPI:

KPI3 =
1

#scenarios

∑
scenarios s

 1

#requests in sol(s)

∑
requests r in sol(s)

∆EJDR(r)

 .

Each instance has a value for KPI3 and each boxplot in Figure 5 thus holds 30 observations.

p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

−
40

−
30

−
20

−
10

0
10

20

Simulation parameters 

 E
xc

es
s 

jo
ur

ne
y 

tim
e 

ra
tio

 d
iff

er
en

ce
 [i

n 
%

]

p=0.01;δ=0.25 p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

−
40

−
30

−
20

−
10

0
10

20

Simulation parameters 

 E
xc

es
s 

jo
ur

ne
y 

tim
e 

ra
tio

 d
iff

er
en

ce
 [i

n 
%

]

Figure 5: Average EJDR difference for different values of δ (left) and p (right)

On the left-hand side of Figure 5, one can see that for small delays, KPI3 is negative,

probably because of the nonzero value of p. Indeed, the delays are small (δ = 0.01) and

several requests are canceled (p = 0.05), the drivers have thus less subrequests to serve and

some detours (from the patients’ point of view) are likely to be canceled. For larger values

of δ, KPI3 increases and becomes positive, meaning that the patients wait or stay on board

23



for a longer time. This observation is as expected: if delays grow larger, the driver is likely

to wait more frequently for late patients, possibly with other patients on board. We will also

see in Section 6.2 that the number of reinserted requests increases with the magnitude of the

delays; then, the patients are more likely to wait, and possible detours are also more likely to

be introduced in the route to serve the delayed patients.

On the right-hand side of Figure 5, one observes that the larger p, the smaller KPI3.

Indeed, cancellations tend to decrease the number of detours in the routes; moreover, the

drivers are more likely to be present when the patients terminate their appointments, thus

creating less driving time and waiting time for the patients.

6.1.3. Time window extensions

As explained in Section 4.3, when trying to reinsert a request, the third operator O3 is

based on a relaxation of the time window constraints. Once again, this extension may impact

the patient satisfaction: the larger the extension, the worse the service quality. Like for

the reinsertion analysis here above, we will first analyze the frequency of these time window

extensions using an indicator KPI4, and next their severity through an indicator KPI5.

Let S be the set of all scenarios (in this case, of the 50 scenarios) for a given instance.

For a scenario s ∈ S, let TW ext(s) denote the number of subrequests whose time window is

extended in the final solution sol(s) for this scenario. We compute the proportion of extended

time windows over all the subrequests included in sol(s). For each instance, KPI4 is defined

as the average of these proportions over all the scenarios in S:

KPI4 =
1

#S
∑

scenarioss∈S

(
TW ext(s)

#subrequests in sol(s)

)
Each instance has a value for KPI4 and hence, each boxplot of Figure 6 holds 30 observations.

p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

0.
0

0.
5

1.
0

1.
5

Simulation parameters 

P
ro

po
rt

io
n 

of
 e

xt
en

de
d 

t.w
.[i

n 
%

]

p=0.01;δ=0.25 p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

0.
0

0.
5

1.
0

1.
5

Simulation parameters 

 P
ro

po
rt

io
n 

of
 e

xt
en

de
d 

t.w
. [

in
 %

]

Figure 6: Average proportion of extended time windows for different values of δ (left) and p (right)

Figure 6 shows that the proportion of extended time windows increases with the value

of δ and decreases with the value of p: this confirms that the third operator is sometimes

24



useful in order to find a feasible solution when the delays are large and when the number of

cancellations is small. Most importantly, however, the average proportion of extended time

windows never exceeds 1.5% for any instance, whatever the parameter values. From this

perspective, the quality of the service to the patients is rarely degraded.

We now focus on the severity of the extensions. For this purpose, we consider only the

scenarios with at least one extended time window. For a given instance, let STW be the subset

of scenarios with at least one extended time window, that is, STW = {s ∈ S : TW ext(s) > 0}.
The magnitude of an extended time window is defined as max{Hk − bk, ak − Hk}. For a

given instance, KPI5 is then defined as the average, over all scenarios in STW , of the average

extension magnitude over all the extended time windows:

KPI5 =
1

#STW

∑
scenarios s∈STW

 1

TW ext(s)

∑
extended t.w. k in sol(s)

max{Hk − bk, ak −Hk}

 .

If the instance has no scenario with at least one extended time window (meaning that STW is

empty), the instance is not considered in the boxplot in Figure 7. The number of observations

in each boxplot represented is indicated for each pair of parameters (p, δ).

p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

0
5

1
0

1
5

Simulation parameters 

#obs=3 #obs=19 #obs=22 #obs=26

A
v
e
ra

g
e
 e

x
te

n
s
io

n
m

a
g
n
it
u
d
e

p=0.01;δ=0.25p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

0
5

1
0

1
5

Simulation parameters 

A
v
e
ra

g
e
 e

x
te

n
s
io

n
 m

a
g
n
it
u
d
e

#obs=25 #obs=22 #obs=21 #obs=18 #obs=14

Figure 7: Average time window extension in minutes for different values of δ (left) and p (right)

Figure 7 does not show any clear trend for the extension magnitude. But we observe that

the average extension rarely exceeds 10 minutes, which is a very reasonable value in terms

of service quality, especially in view of the low frequency of the recourse to extensions (cf.

Figure 6). Note also that KPI5 is a rather pessimistic indicator: indeed, it disregards the case

of those patients who get home earlier than initially planned and hence, whose satisfaction

increases due to the occurrence of the disruptions and to our way of handling them.

6.1.4. Drivers’ overtime

The fourth operator O4 designed for reinserting a request is based on the extension of

the working hours of the drivers. This recourse affects the drivers’ satisfaction and entails

25



additional costs for the company. Here again, the analysis is split into two parts: we first

analyze the frequency of driving hours extensions, then the severity of the extensions.

Let J(s) denote the number of routes in the final solution sol(s) for scenario s. A route

ρj of sol(s) is in overtime if the arrival time AKj+1 at the final depot exceeds the normal end

of the working day for the driver, i.e., if AKj+1 ∈ ]βj , βj + ξ]. Let Rover(s) denote the number

of routes in overtime. For each instance, KPI6 is the average, over all the scenarios in S, of

the proportion of routes in overtime over the total number of routes:

KPI6 =
1

#S
∑

scenarios s∈S

(
Rover(s)

J(s)

)
This KPI is well-defined for each instance, and hence each boxplot in Figure 8 holds 30

observations.

p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

0
2

4
6

8
10

12

Simulation parameters 

P
ro

po
rt

io
n 

of
 r

ou
te

s 
in

 o
ve

rt
im

e 
[in

 %
]

p=0.01;δ=0.25 p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

0
2

4
6

8
10

12

Simulation parameters 

P
ro

po
rt

io
n 

of
 r

ou
te

s 
in

 o
ve

rt
im

e 
[in

 %
]

Figure 8: Average proportion of routes in overtime for different values of δ (left) and p (right)

Figure 8 suggests that few drivers have to work overtime (fewer than 5 or 6 percent of

them on average for most instances). Thus, even though this recourse is helpful in order to

find feasible solutions when facing large delays, it does not lead to an excessive occurrence

of overtime. The behavior of KPI6 in relation with δ and p is, once again, in line with our

intuition.

To better apprehend the importance of the phenomenon, we next focus on the routes ρj in

overtime. For this purpose, we introduce the subset Sover that encompasses all the scnenarios

in S with at least one route in overtime, that is Sover = {s ∈ S : Rover(s) > 0}. The

magnitude of the overtime for ρj is the (positive) difference AKj+1 − βj . For each instance,

KPI7 is defined as the average, over all the scenarios in Sover, of the average overtime among

the routes in overtime:

KPI7 =
1

#Sover

∑
scenarios s∈Sover

 1

Rover(s)

∑
route j in overtime in sol(s)

[
AKj+1 − βj

] .

26



If an instance has no route in overtime for any scenario (i.e. Sover is empty), this instance

is not considered in the boxplot in Figure 9. The number of observations in each boxplot is

indicated for each pair of parameters (p, δ).

p=0.05;δ=0.01 p=0.05;δ=0.1 p=0.05;δ=0.25 p=0.05;δ=0.4

0
1

0
2

0
3

0
4

0

Simulation parameters 

O
v
e

rt
im

e
 m

a
g

n
it
u

d
e

 a
v
e

ra
g

e
 [

in
 m

in
.]

 a
m

o
n

g
 o

v
e

rt
im

e
 r

o
u

te
s

#obs=2 #obs=13 #obs=28 #obs=29

p=0.01;δ=0.25 p=0.05;δ=0.25 p=0.1;δ=0.25 p=0.2;δ=0.25 p=0.4;δ=0.25

0
1
0

2
0

3
0

4
0

Simulation parameters 

O
v
e
rt

im
e
 m

a
g
n
it
u
d
e
 a

v
e
ra

g
e
 [
in

 m
in

.]
 a

m
o
n
g
 o

v
e
rt

im
e
 r

o
u
te

s

#obs=28 #obs=28 #obs=28 #obs=23 #obs=19

Figure 9: Average overtime duration in minutes for different values of δ (left) and p (right)

One can see in Figure 9 that the average overtime rarely exceeds 30 minutes, which

appears to be an acceptable value in practice (especially, in view of the low frequency of

such extensions). Here again, we observe that this overtime is partially “compensated” by a

decrease of the route length for other drivers, but KPI7 does not take this compensation into

consideration.

6.2. Algorithm analysis

In this section, we focus on the behavior of the algorithmic approach itself, rather than

on the quality of the solutions that it delivers. We first examine how the delays are handled

in the scenarios and next, we discuss the effectiveness of each recourse operator.

6.2.1. Recourse utilization

As explained in Section 4.3, the increase of an appointment duration may lead to three

different types of recourse: recourse A - no impact delay, recourse B - delay, recourse C

- postponed action. (We do not explicitly mention recourse D here, since the number of

applications of recourse D is always equal to the number of applications of recourse C, each

postponed action giving rise to a subsequent reinsertion). We now analyze the usage frequency

of each type of recourse as a function of the simulation parameters. More precisely, for a

given pair (p, δ), we compute the frequency of cases where each type of recourse is used, as a

proportion of all occurrences of increased appointment durations generated in all the scenarios

for all the instances. The resulting statistics are displayed in Figure 10.

27



Increasing delay magnitude

R
ec

o
u
rs

e
u
sa

ge
fr

eq
u
en

cy

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p=0.05;

δ=0.01

p=0.05;

δ=0.1

p=0.05

δ=0.25

p=0.05;

δ=0.4

recourse A

recourse B

recourse C

Increasing cancellation probability

R
ec

o
u
rs

e
u
sa

g
e

fr
eq

u
en

cy

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p=0.01;

δ=0.25

p=0.05;

δ=0.25

p=0.1;

δ=0.25

p=0.2;

δ=0.25

p=0.4;

δ=0.25

Use p=0.05

δ=0.01 δ=0.1 δ=0.25 δ=0.4

Rec. A 37.61% 27.15% 18.32% 14.61%

Rec. B 60.37% 58.69% 49.82% 41.30%

Rec. C 2.02% 14.16% 31.86% 44.09%

Use δ=0.25

p=0.01 p=0.05 p=0.1 p=0.2 p=0.4

Rec. A 24.22% 18.32% 20.58% 13.58% 10.35%

Rec. B 43.17% 49.82% 48.22% 62.43% 75.07%

Rec. C 32.61% 31.86% 31.19% 23.99% 14.59%

Figure 10: Frequency of recourse usage for different values of δ (left) and p (right)

On the left-hand side of Figure 10, one can see that for small values of δ, recourse B

is the most frequent one, and very few delays lead to a postponed action (and thus to a

reinsertion attempt). When δ increases, the use of recourse C increases while recourse B

is less frequently used. Indeed, as expected, when the delays get larger, it is more likely

that a delayed subrequest cannot be served as initially planned, but will require a reinsertion

and thus a subsequent route modification. An interesting observation is that even when the

delays are large, more than 55% (frequency of recourses A and B) of them can be handled

without modifying the routes, and more than 10% (recourse A) do not even require a schedule

adjustment. Regarding the right-hand side of Figure 10, one can see that when p increases, the

proportion of recourse B increases as well, while the other two recourse proportions decrease.

The proportion of recourse A probably decreases because if there are more cancellations, then

there is more time between consecutive subrequests, and thus the driver can arrive early at

the next subrequest location, say lk. This implies that Hk (the planned pickup time) tends

to decrease, and hence, a delayed patient is more likely to terminate her appointment after

Hk. Such an event typically gives rise to a recourse of type B rather than one of type A: the

patient delays are more likely to be perceived even if they do not require adaptations of the

remaining part of the routes. The proportion of recourse C also decreases when p increases

because if there are fewer subrequests in the routes, the driver can wait longer for delayed

patients. Finally, for large values of p, one can see that more than 80% of the delays do not

require a modification of the routes.

28



6.2.2. Effectiveness of reinsertion operators

Let us now analyze the effectiveness of the individual operators in two different ways: first,

we consider the contribution of each operator to successful reinsertions; next, we measure the

success rate of the operator when an attempt is made to apply it.

Absolute success rate of operators. For each pair of parameters and for each reinsertion oper-

ator, Figure 11 displays the proportion of successful reinsertions performed by the operator

over the total number of successful reinsertions, that is, the absolute success rate of the oper-

ator. In other words, it represents the part of success due to each of the reinsertion operators.

For example, among all successful reinsertions achieved when (p, δ) = (0.05, 0.25) (for 50

scenarios ×30 instances), 83.41% have been performed with O1, 9.82% with O2, 3.47% with

O3, and 3.29% with O4. One can observe that most of the time, the successful reinsertions

are achieved with the simple reinsertion operator O1 (more than 78%). This first operator

is especially effective when p is large (right-hand side of Figure 11), while its performance is

stable for varying values of δ (left-hand side of Figure 11). Since the operators are called in

hierarchical order, fewer reinsertions are attempted with the last operator O4 and moreover,

only the most complicated reinsertions remain at that point. However, for large delays (that

is, for large values of δ), more than 4% of feasible reinsertions are achieved with operator O4.

As a conclusion of this analysis, all four operators prove useful and are able to identify feasible

reinsertions in certain situations.

Increasing delay variation

O
p

er
at

o
r

ab
so

lu
te

su
cc

es
s

ra
te

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p=0.05;

δ=0.01

p=0.05;

δ=0.1

p=0.05

δ=0.25

p=0.05;

δ=0.4

O1

O2

O3

O4

Increasing cancellation probability

O
p

er
a
to

r
ab

so
lu

te
su

cc
es

s
ra

te

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p=0.01;

δ=0.25

p=0.05;

δ=0.25

p=0.1;

δ=0.25

p=0.2;

δ=0.25

p=0.4;

δ=0.25

Success p=0.05

δ=0.01 δ=0.1 δ=0.25 δ=0.4

O1 79.90% 81.41% 83.41% 83.94%

O2 10.30% 11.93% 9.82% 8.71%

O3 9.30% 4.16% 3.47% 3.23%

O4 0.50% 2.50% 3.29% 4.12%

Success δ=0.25

p=0.01 p=0.05 p=0.1 p=0.2 p=0.4

O1 78.40% 83.41% 80.26% 91.33% 93.37%

O2 13.41% 9.82% 11.05% 2.76% 0.78%

O3 4.26% 3.47% 4.45% 2.26% 1.67%

O4 3.93% 3.29% 4.24% 3.65% 4.18%

Figure 11: Operator absolute success rate for different values of δ (left) and p (right)

As a side-remark, one can notice the connections between the analysis of KPI4 in Figure 6

and the frequency of O3 in Figure 11. The left-hand sides of these figures show that, when

29



δ increases, the proportion of extended time windows increases (KPI4), but in Figure 11,

the absolute success rate of O3 actually decreases. It means that even if there is a larger

proportion of extended time windows when δ increases, O3 is less able to successfully reinsert

the requests. This opposite trend is likely to be due to the fact that several time windows may

have been extended in order to reinsert only one request. When p increases, the proportion

of extended time windows decreases in Figure 6, which is reflected in the decrease of the

proportion of successful reinsertions brought by O3 in Figure 11.

A similar connection can be established between KPI6 in Figure 8 and the frequency of

O4 in Figure 11. The increasing values of KPI6 for increasing values of δ are indeed reflected

in the left-hand side of Figure 11, since a larger proportion of successful reinsertions are due

to O4.

Relative success rate of operators. For each pair of parameters and for each reinsertion opera-

tor, Figure 12 displays the proportion of successful reinsertions over the number of reinsertions

attempted with this operator, i.e., the relative success rate of the operator over all the sce-

narios and all the instances. In other words, it represents how effectively each reinsertion

operator performs when an attempt is made to apply it.

On the left-hand side of Figure 12, one can see that the first operator succeeds in more

than 79% of the attempted reinsertions with this operator. This number seems quite stable

with respect to variations of δ. The destroy-and-repair operator O2 seems to be slightly

less effective when the delays are large. However, as explained already, because of their

hierarchical use, all the operators are not tested on the same instances: O2 is tested only on

the scenarios that failed with O1, O3 only on the scenarios that failed with O2 (and thus,

O1), and similarly for O4. Therefore, the last three operators are tested on fewer occasions

(i.e., the denominator is smaller) and on these occasions, the reinsertions are likely to be

quite difficult. The third operator O3 gives really high relative success rate for small value

of δ but this rate decreases when the delays increase. The limitations imposed on the time

window extensions (values of η and ζ in Table 4) are probably responsible for this behavior.

The relative success rate of the fourth operator O4 tends to slightly decrease with δ as well.

However, O4 is still able to perform 40% of the attempted reinsertions when δ = 0.4. This

observation is particularly important since O4 is the last operator applied before declaring a

failure, i.e., before denying service to a patient.

The right-hand side of Figure 12 shows that O1 is able to achieve a success rate of 91.14%

when the cancellation probability is large. As a consequence, less reinsertions have to be

attempted with the other three operators. One can observe that operators O2 and O3 have

a decreasing relative success rate while O4 seems to be more efficient when p increases. This

observation may be due to the features of the solutions. When p gets large, there are fewer

subrequests in the routes and thus more time between consecutive subrequests (on average).

This explains the high success rate of O1. For the reinsertions that O1 is not able to manage,

30



Increasing delay variation

O
p

er
at

or
re

la
ti

ve
su

cc
es

s
ra

te

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p=0.05;

δ=0.01

p=0.05;

δ=0.1

p=0.05

δ=0.25

p=0.05;

δ=0.4

O1

O2

O3

O4

Increasing cancellation probability
O

p
er

at
or

re
la

ti
ve

su
cc

es
s

ra
te

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

p=0.01;

δ=0.25

p=0.05;

δ=0.25

p=0.1;

δ=0.25

p=0.2;

δ=0.25

p=0.4;

δ=0.25

Success p=0.05

δ=0.01 δ=0.1 δ=0.25 δ=0.4

O1 79.70% 79.29% 80.17% 79.75%

O2 50.62% 56.13% 47.63% 40.87%

O3 92.50% 44.60% 32.15% 25.62%

O4 66.67% 48.31% 44.90% 43.95%

Success δ=0.25

p=0.01 p=0.05 p=0.1 p=0.2 p=0.4

O1 74.57% 80.17% 76.08% 89.26% 91.14%

O2 50.14% 47.63% 43.80% 25.09% 8.59%

O3 31.99% 32.15% 31.38% 27.48% 20.13%

O4 43.36% 44.90% 43.59% 61.15% 63.03%

Figure 12: Operator relative success rate for different values of δ (left) and p (right)

the difficulty is not due so much to the tightness of the sequence of subrequests (that O2 and

O3 directly address), but rather to the end of the driver working hours. This would explain

why O4 is able to achieve 60% of the remaining reinsertions. Modifying the value of ξ in

Section 4.3 may potentially lead to even higher success rates for O4.

In any case, a conclusion of this analysis is again that all four operators perform quite

effectively when a reinsertion is attempted. This suggests that they are all relevant under

different circumstances.

7. Conclusion

This article presents a reactive algorithm for recovery management in a dial-a-ride prob-

lem with real-time disruptions. Starting from an initial plan to serve the patient requests,

a collection of procedures are proposed to manage the disruptions occurring along the day,

namely, the patient delays and cancellations. In real-world settings, such an algorithm must

quickly provide a solution in order to enable the dispatcher to react efficiently and to recover

from the disruptions. Moreover, relatively minor disruptions created by a last-minute can-

cellation or by a delayed appointment should not have global repercussions on all the drivers

and patients. For these reasons, our approach favors simple, local modifications of the current

plans, rather than, say, a complete reoptimization of the plans whenever a disruption occurs.

The approach is accordingly built upon several types of recourses that can handle the

disruptions when they are revealed. In particular, when a patient is too late for the driver to

be on time for the following patients, then the request of the delayed patient is temporarily

31



postponed until she is ready for her inbound journey. In the algorithm, this situation is

handled as a reinsertion of the request. Reinserting a request can be difficult and therefore,

four operators are developed to maximize the possibility of identifying successful reinsertions.

When several reinsertions are available, then the selection is based on the slack time (so as

to facilitate later reinsertions) or service quality factors, such as the minimization of the time

windows.

The computational experiments, based on discrete event simulations, show that the algo-

rithm is very fast (less than 2 seconds for a whole day simulation) and that the use of local

reinsertion operations is most often sufficient, since the number of unassigned patients at the

end of the day is extremely low. The frequency and severity of the patient time windows

extensions and driver overtime are also analyzed and appear to be acceptable in practice.

Moreover, the local operators bring only small changes in the solutions as required by the

application. The results show the effectiveness of this approach in supporting the decision-

making process for real-time replanning operations.

An additional benefit of the chosen approach is its flexibility. Indeed, several extensions

or modifications could easily be implemented, such as different service durations for loading

and unloading operations, service durations dependent on the locations (e.g., if the patient

requires special assistance at home), or drivers’ breaks.

In practice, route congestion may have an impact on the travel times. In our applied

context, all trips take place in a local urban area where the travel times may depend on the

time of day, but where huge traffic jams are unlikely to happen. Our algorithm could be

easily adapted in order to deal with travel times that depend on the period of the day (peak

hours, holidays, etc.). Accounting for random travel times, however, would require different

extensions of our approach.

Acknowledgements

This research has been supported by the project PRESupply funded by the Walloon Region

of Belgium (Convention #7566). The authors are grateful to the academic and industrial

partners of the project for their helpful collaboration. In particular, they thank Charles

Thomas for his help in generating the instances used in the computational experiments. The

authors also acknowledge useful comments by an anonymous reviewer.

References

Berbeglia, G., J.-F. Cordeau, and G. Laporte (2010). Dynamic pickup and delivery problems.

European Journal of Operational Research 202 (1), 8–15.

Berbeglia, G., G. Pesant, and L.-M. Rousseau (2011). Checking the feasibility of dial-a-ride

instances using constraint programming. Transportation Science 45 (3), 399–412.

32



Berbeglia, G., G. Pesant, and L.-M. Rousseau (2012). Feasibility of the pickup and delivery

problem with fixed partial routes: a complexity analysis. Transportation Science 46 (3),

359–373.

Cappart, Q., C. Thomas, P. Schaus, and L.-M. Rousseau (2018). A constraint programming

approach for solving patient transportation problems. In J. Hooker (Ed.), Principles and

Practice of Constraint Programming, Cham, pp. 490–506. Springer International Publish-

ing.

Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations

Research 54 (3), 573–586.

Cordeau, J.-F. and G. Laporte (2003). A tabu search heuristic for the static multi-vehicle

dial-a-ride problem. Transportation Research Part B: Methodological 37 (6), 579–594.

Cordeau, J.-F. and G. Laporte (2007). The dial-a-ride problem: models and algorithms.

Annals of Operations Research 153 (1), 29–46.

Coslovich, L., R. Pesenti, and W. Ukovich (2006). A two-phase insertion technique of un-

expected customers for a dynamic dial-a-ride problem. European Journal of Operational

Research 175 (3), 1605–1615.

Häll, C. H., M. Högberg, and J. T. Lundgren (2012). A modeling system for simulation of

dial-a-ride services. Public Transport 4 (1), 17–37.

Ho, S. C., W. Szeto, Y.-H. Kuo, J. M. Leung, M. Petering, and T. W. Tou (2018). A survey of

dial-a-ride problems: Literature review and recent developments. Transportation Research

Part B: Methodological 111, 395–421.

Jaw, J.-J., A. R. Odoni, H. N. Psaraftis, and N. H. Wilson (1986). A heuristic algorithm for

the multi-vehicle advance request dial-a-ride problem with time windows. Transportation

Research Part B: Methodological 20 (3), 243–257.

Liebchen, C., M. Lübbecke, R. Möhring, and S. Stiller (2009). The concept of recover-

able robustness, linear programming recovery, and railway applications. In R. K. Ahuja,

R. Möhring, and C. D. Zaroliagis (Eds.), Robust and Online Large-Scale Optimization,

LNCS 5868, pp. 1–27. Berlin Heidelberg: Springer-Verlag.

Liu, C., D. M. Aleman, and J. C. Beck (2018). Modelling and solving the senior transportation

problem. In W.-J. van Hoeve (Ed.), Integration of Constraint Programming, Artificial Intel-

ligence, and Operations Research, pp. 412–428. CPAIOR 2018. Lecture Notes in Computer

Science, vol 10848: Springer,Cham.

33



Mitrović-Minić, S., R. Krishnamurti, and G. Laporte (2004). Double-horizon based heuristics

for the dynamic pickup and delivery problem with time windows. Transportation Research

Part B: Methodological 38 (8), 669–685.

Mitrović-Minić, S. and G. Laporte (2004). Waiting strategies for the dynamic pickup and de-

livery problem with time windows. Transportation Research Part B: Methodological 38 (7),

635–655.

Molenbruch, Y., K. Braekers, and A. Caris (2017). Typology and literature review for dial-a-

ride problems. Annals of Operations Research 259 (1), 295–325.

Paquette, J., J.-F. Cordeau, and G. Laporte (2009). Quality of service in dial-a-ride opera-

tions. Computers & Industrial Engineering 56 (4), 1721–1734.

Pillac, V., M. Gendreau, C. Guéret, and A. Medaglia (2013). A review of dynamic vehicle

routing problems. European Journal of Operational Research 225 (1), 1–11.

Psaraftis, H. N. (1986). Scheduling large-scale advance-request dial-a-ride systems. American

Journal of Mathematical and Management Sciences 6 (3-4), 327–367.

Psaraftis, H. N., M. Wen, and C. A. Kontovas (2016). Dynamic vehicle routing problems:

Three decades and counting. Networks 67 (1), 3–31.

Ropke, S., J.-F. Cordeau, and G. Laporte (2007). Models and branch-and-cut algorithms for

pickup and delivery problems with time windows. Networks 49 (4), 258–272.

Savelsbergh, M. W. P. (1985). Local search in routing problems with time windows. Annals

of Operations research 4 (1), 285–305.

Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: Minimizing

route duration. ORSA Journal on Computing 4 (2), 146–154.

Savelsbergh, M. W. P. and M. Sol (1995). The general pickup and delivery problem. Trans-

portation Science 29 (1), 17–29.

Schilde, M., K. F. Doerner, and R. F. Hartl (2011). Metaheuristics for the dynamic stochas-

tic dial-a-ride problem with expected return transports. Computers & Operations Re-

search 38 (12), 1719–1730.

Thomas, C., Q. Cappart, P. Schaus, and L.-M. Rousseau (2018). CSPLib problem 082:

Patient transportation problem. http://www.csplib.org/Problems/prob082.

Tukey, J. W. (1977). Exploratory Data Analysis. Addison-Wesley. Reading, Mass.

34

http://www.csplib.org/Problems/prob082

	Introduction
	Literature review and positioning of the contribution
	Constraints
	Objective functions
	Nature of the available information
	Positioning and contribution of the paper

	Problem description
	Notations and solution representation
	Feasible solutions
	Earliest and latest arrival and departure times

	Real-time disruptions and recourses
	Disruption types
	Increase of the duration of an appointment
	Reinsertion of a request
	Cancellation of a request

	Revealed time
	Associated recourses
	Reinsertion operator O1: pure reinsertion
	Reinsertion operator O2: destroy-and-repair
	Reinsertion operator O3: relaxed time windows
	Reinsertion operator O4: extended working hours
	Buffered reinsertions and failures


	Computational experiment settings
	Instances
	Case details
	Simulated disruptions

	Results
	Quality measures
	Failed scenarios and unassigned requests
	Excess journey duration ratio
	Time window extensions
	Drivers' overtime

	Algorithm analysis
	Recourse utilization
	Effectiveness of reinsertion operators


	Conclusion

