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Supervised learning
Principle

X1 X2 . . . Xp Y

x11 x12 . . . x1p y1

x21 x22 . . . x2p y2

...
... . . . ...

...
xn1 xn2 . . . xnp yn

Learning
====⇒ Ŷ = f(X1, X2, . . . , Xp)

Goal: From a learning set of n samples, find a function f of
the inputs V = {X1, X2, . . . , Xp} that approximates at best the
output Y.
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Supervised learning
High-dimensionality

Figure: Brain regions [Blausen, 2014] and fMRI [Graner et al., 2013]

• High-dimensional classification problem : n� p

• A lot of useless variables
• There exists unknown groups of highly correlated

variables corresponding to brain regions
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Variable selection
Motivation

• Improving interpretability
• Data understanding : features involved in the underlying

mechanism
• Data visualisation

• Increasing performances
• Dimensionality reduction
• Avoid overfitting
• Reduce storage and computation requirements
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Variable selection
Relevance

A variable Xm ∈ V is relevant with respect to the output Y
iff there exists a subset B ⊆ V−m such that Xm 6⊥⊥ Y|B. A
variable is irrelevant if it is not relevant.
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Variable selection
Two objectives

• Prediction: The minimal-optimal feature selection
problem consists in finding a subset of V of minimal size
that minimises the generalisation error of a given learning
algorithm.

• Interpretation: The all-relevant feature selection
problem consists in finding all relevant features.
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Variable selection
Approaches (see iML)

• Filter (e.g., statistical test): a priori selection of the
variables (ie, independently of the supervised learning
algorithm);
• Embedded (e.g., decision tree node splitting): feature

selection embedded in the learning algorithm;
• Wrapper: use CV to find the optimal set of features for

a given algorithm.

8/47



Variable selection
Recursive elimination of variables [Díaz-Uriarte and De Andres, 2006]

Given a learning model that can rank the features or
provide variable importance (e.g., RF);
Iterate (from the full feature set)
• Build a model with the remaining features;
• Compute feature ranking (or variable importance);
• Remove the feature (or more, e.g. 20%) with the

smallest ranking (or importance).

The set of features leading to the lowest (CV) error is then
selected.
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Variable selection
Sequential introduction of variables [Ghattas and Ben Ishak, 2008]

Step 1. Feature ranking (e.g., RF variable importance)
Step 2. Iterate (with k from 1 to p, by step of 1 or more)

• Build a model (e.g., RF) with the k most important
feature.

The set of features leading to the lowest (CV) error is then
selected.
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Variable selection using random forests
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Decision tree
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Decision tree

X2 6 1

X1 6 1 X1 6 1

X1 6 2 X1 6 2
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Decision tree
Maximizing the impurity reduction

The impurity reduction is

∆i(s, t) = i(t) −
NtL

Nt

i(tL) −
NtR

Nt

i(tR)

where
• s is a binary split dividing node t into tL and tR,
• Nt is the number of samples in node t,
• NtL and ptL (respectively, NtR and ptR) are the number

of samples and the proportion of samples that fall into tL
(resp., tR),
• i(·) is an impurity measure.
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Decision tree
Several impurity measures

Three main properties
1. Minimal when the node is pure,
2. Maximal for uniform distribution,
3. Not biased towards some output values.

Suitable impurity measures for classification
With C classes:
• Shannon entropy : ih(t) = −

∑C
j=1 p(cj|t) log2 p(cj|t)

• Gini index: ig(t) =
∑C

j=1 p(cj|t)(1− p(cj|t))

Extension for regression

• Variance: iv(t) =
1

Nt

∑
y∈Y(y− ȳt)

2
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Decision tree
High learning variance

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X1

X
2

Class 1
Class 2

X1

X2 X2

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

X1

X
2

Class 1
Class 2

X2

X1 X1

16/47



Random forests
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Random forests
Techniques to build diverse trees

Ways of introduction randomization in the tree growing
procedure
• Tree-wise learning set randomization: e.g. bootstraps or

feature (or sample) subspaces
• Node-wise variable randomization
• Node-wise split randomization
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Random forests
Random forest methods vs randomization techniques

Boot. Subspace Feat. rand. Split rand.
Bagging 3
Random Subspace 3 (3)
Random Forest 3 3
Extra-Trees 3 3
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Bagging
How to make bootstrap samples?

n samples

n samples oob samples

LS x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

LSB
1 x2 x10 x9 x5 x4 x1 x1 x4 x1 x9 LSoob

1x3 x6 x7 x8

LSB
2 x5 x10 x6 x5 x6 x4 x5 x9 x8 x1 LSoob

2x2 x3 x7

LSB
3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 LSoob

3x1 x2 x3 x4

LSB
4 x1 x1 x1 x8 x9 x10 x3 x8 x8 x5 LSoob

4x2 x4 x6 x7

LSB
5 x10 x6 x8 x2 x3 x10 x5 x10 x9 x7 LSoob

5x1 x4
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Bagging
Random forest building LS
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Variable importances
Two measures

• Mean Decrease of Impurity (MDI)
• Mean Decrease of Accuracy (MDA)
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Variable importances
MDI

Mean Decrease of Impurity (MDI)

Impmdi(Xm) =
1

NT

∑
T

∑
t∈T :v(s∗t)=Xm

p(t)∆i(s∗t, t)

where
• Xm is an input variable,

• p(t) = Nt

N
is the proportion of samples reaching node t,

• NT is the number of trees;
• s∗t is the split yielding the largest impurity reduction.
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Variable importances
MDA

Mean Decrease of Accuracy (MDA)

Impmda(Xm) =
1

NT

∑
T

(errÕOB
m

T − errOOBT )

where
• NT is the number of trees,
• errOOBT is the error (MSE, 0− 1, ...) of a single tree T

on its OOBT sample,

• errÕOB
m

T is the error of a single tree T on its OOBT

sample where the values of Xm have been permuted.
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Variable selection using random forests
[Genuer et al., 2010]
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Experiments
A simulated dataset

A classification problem:
• Two classes : Y ∈ {−1, 1}

• Six informative features: X1, X2, . . . , X6 such that
• There are two independent groups of three relevant

features,
• The first group (X1, X2, X3) is more significant than the

second one (X4, X5, X6),
• Within each group, the third feature (X3 or X6) is the

most correlated with the output while the first one (X1

or X4) is the less correlated.

• All others features are noise: X7, . . . , Xp
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Sensitivity to n and p
Only informative features, ntree = 500, mtry =

√
p
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Sensitivity to n and p
Increasing p, n = 500, ntree = 500, mtry =

√
p
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Sensitivity to n and p
Increasing p, n = {100, 500}, ntree = 500, mtry =

√
p
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Sensitivity to mtry and ntrees
Increasing mtry, ntree = {500, 2000}, n = 100, p = 200
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Sensitivity to highly correlated predictors
with X3, n = 100, p = 200, ntree = 2000, mtry = 100
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Sensitivity to highly correlated predictors
with X3 and X6, n = 100, p = 200, ntree = 2000, mtry = 100
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Experiment on a real microarray dataset
n = 102, p = 6033, ntree = {500, 2000}, mtry = {

√
p, p/3}
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Variable selection
Two objectives

Their two variable selection objectives:

• To find important variables highly related to the response
variable for interpretation purpose;
• To find a small number of variables sufficient to a good

parsimonious prediction of the response variable.
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A two-steps procedure
Sketch of the algorithm

Step 1. Preliminary elimination and ranking:
• Sort the variables in decreasing order of RF scores of

importance.
• Cancel the variables of small importance. Denote by m

the number of remaining variables.
Step 2. Variable selection:

• For interpretation: construct the nested collection of RF
models involving the k first variables, for k = 1 to m,
and select the variables involved in the model leading to
the smallest OOB error;

• For prediction: starting from the ordered variables
retained for interpretation, construct an ascending
sequence of RF models, by invoking and testing the
variables stepwise. The variables of the last model are
selected.
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Results on the simulated dataset
n = 100, p = 200, ntree = 2000, mtry = 100

X1, . . . , X6 are respectively represented by .
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Results on the simulated dataset
Details

Step 1 • Feature ranking (averaged from 50 runs) in descending
order;

• Use the standard deviations of importance scores to
estimate the threshold* (pelim = 33 variables);

* Minimum prediction value given by a CART model fitting this curve.
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Results on the simulated dataset
Details

Step 2 • For interpretation: nested models (from only the most
important variable, to the one with all 33 kept features);

• For interpretation: they select the smallest model with a
sufficiently* small OOB error (pinterp = 4 variables
while minimal OOB error corresponds to 24 variables);

• For prediction: a variable is added only if the error gain
exceeds a threshold given by

1

pelim − pinterp

pelim−1∑
j=pinterp

|errOOB(j+ 1)− errOOB(j)|

where errOOB(j) is the OOB error of the RF built using
the j most important variables (gives X3, X6, X5 in that
order).

* OOB error less than the minimal OOB error augmented by its empirical standard deviation.
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Discussion
Main contributions of their empirical analysis of MDA

• They give some experimental insights about RF
importance measure.
• They take into account mtry and ntree parameters

simultaneously.
• They notice that importance scores of correlated (or

duplicated) variables decrease.
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Discussion
Main limitations of their empirical analysis of MDA

• They do not consider a (true) high-dimensional setting.
• Only three values of mtry, and all are above the number

of informative features.
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Discussion
Main contributions of their variable selection procedure

They propose:
• a method that addresses both objectives of feature

selection;
• a cheap way to reduce the number of features in a

preliminary step;
• a practical way to find a feature ranking threshold.
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Discussion
Main limitations of their variable selection procedure

They note:
• that the threshold value is based on standard deviations

while the effective thresholding is performed on
importance mean;
• that the threshold estimation strategy is sensible when

there exist irrelevant variables;
• that an error evaluation on a test set or using a

cross-validation scheme should be preferred.
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Discussion
Main limitations of their variable selection procedure

• Importance of their preliminary step.
• Some relevant features may be missed.
• Selection bias.
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Conclusion
In their conclusion
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Conclusion
In their conclusion
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Appendices
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Experiments
A simulated dataset [Weston et al., 2003]
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