
Random forests variable importances
Towards a better understanding and large-scale feature selection

Antonio Sutera

Dept. of EECS, University of Liège, Belgium

COMPSTAT 2016,
Oviedo, Spain

August 24, 2016

Pierre Geurts, Louis Wehenkel (ULg),
Gilles Louppe (CERN & NYU)

Célia Châtel (Luminy)

1 / 23



Ensemble of randomized trees: strengths and weaknesses

3 Good classification method with useful properties:
I Universal approximation
I Robustness to outliers
I Robustness to irrelevant variables (to some extent)
I Invariance to scaling of inputs
I Good computational efficiency and scalability
I Very good accuracy

7 Loss of interpretability w.r.t. standard trees
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I Universal approximation
I Robustness to outliers
I Robustness to irrelevant variables (to some extent)
I Invariance to scaling of inputs
I Good computational efficiency and scalability
I Very good accuracy

7 Loss of interpretability w.r.t. standard trees

⇒ but some interpretability can be retrieved through variable
importance scores
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Variable importance scores

I Some interpretability can be retrieved through variable importance
scores

Variable ranking by tree-based methods
feat1 feat2 . . . featm Class

191.63 -128.29 . . . -107.59 0
241.07 44.47 . . . 96.56 . . .
179.17 -3.69 . . . 56.67 0

. . . . . . . . . . . . 1
. . .

120.26 -30.47 . . . 42.81 1

⇓

0
5

10
15
20
25
30

f15 f4 f10 f8 f9 f20 f11 f1 f13 f2 f12 f14 f3 f16 f17 f6 f18 f19 f7 f5

%
 in

fo

e.g. Sum of entropy reduction at each node where the variable
appears.
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Ensemble of randomized trees

I Improve standard classification and regression trees by reducing
their variance

I Many examples: Bagging (Breiman, 1996), Random Forests (Breiman,

2001), Extremely randomized trees (Geurts et al., 2006)

I Standard Random Forests: bootstrap sampling + random
selection of K features at each node
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I Two main importance measures:
I The mean decrease of impurity (MDI): summing total impurity

reductions at all tree nodes where the variable appears (Breiman et
al., 1984)

I The mean decrease of accuracy (MDA): measuring accuracy
reduction on out-of-bag samples when the values of the variable
are randomly permuted (Breiman, 2001)

I These measures have found many successful applications such as:
I Biomarker discovery
I Gene regulatory network inference

(Huynh-Thu et al, Plos ONE, 2010 and Marbach et al., Nature Methods, 2012)
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Mean decrease of impurity (MDI): definition

𝜑1 𝜑𝑀 𝜑2 

… 

Importance of variable Xm for an ensemble of NT trees is given by:

Imp(Xm) =
1
NT

∑
T

∑
t∈T :v(t)=Xm

p(t)∆i(t)

where p(t) = Nt/N and ∆i(t) is the impurity reduction at node t:

∆i(t) = i(t)− NtL

Nt
i(tL)− Ntr

Nt
i(tR)

4 / 23



Motivation

Despite many successful applications in various domains, random
forests variable importances are still poorly understood.

Our general objectives:
I Better understand the MDI importance measure, so as to provide

advices on how to best interpret it and exploit it in practice
I Design more efficient feature selection procedures based on

random forests.
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Outline

1 Tree-based variable importance scores

2 Towards a better understanding of the MDI measure

3 Towards large-scale feature selection
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Background: Feature relevance (Kohavi and John, 1997)

V

Irrelevant
features

Weakly

Strongly

Relevant
features

M

Given an output Y and a set of input variables V , X ∈ V is
I relevant iff ∃B ⊆ V such that Y ⊥6⊥ X |B .
I irrelevant iff ∀B ⊆ V : Y ⊥⊥ X |B
I strongly relevant iff Y ⊥6⊥ X |V \ {X}.
I weakly relevant iff X is relevant and not strongly relevant.

A Markov boundary is a minimal size subset M ⊆ V such that
Y ⊥⊥ V \M|M.
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Background: Feature selection (Nilsson et al., 2007)

V

Irrelevant
features

Weakly

Strongly

Relevant
features

M

Two different feature selection problems:
I Minimal-optimal: find a Markov boundary for the output Y .
I All-relevant: find all relevant features.

Notes:
I In general, both problems requires exhaustive subset search.
I When the input distribution is strictly positive (f (x) > 0), the

markov boundary is unique and it contains all and only the
strongly relevant features.
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Assumptions

Imp(Xm) =
1
NT

∑
T

∑
t∈T :v(t)=Xm

p(t)∆i(t)

Our working assumptions:
I All variables are discrete
I Multi-way splits à la C4.5, i.e. one branch per value of the variable
I Shannon entropy is used as the impurity measure:

i(t) = −
∑
c

Nt,c

Nt
log

Nt,c

Nt

I Asymptotic conditions: infinite sample size and number of trees

Two method parameters (with p the number of features):
I Number of features drawn at each node K ∈ [1, p]

I (Maximum tree depth D ∈ [1, p])
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Totally random unpruned trees
Thm. Variable importances provide a three-level decomposition of
the information jointly provided by all the input variables about
the output, accounting for all interaction terms in a fair and
exhaustive way.

I (X1, . . . ,Xp;Y )︸ ︷︷ ︸
Information jointly provided

by all input variables
about the output

=

p∑
m=1

Imp(Xm)︸ ︷︷ ︸
i) Decomposition in terms of

the MDI importance of
each input variable

Imp(Xm) =

p−1∑
k=0

1(p
k

)
(p − k)︸ ︷︷ ︸

ii) Decomposition along
the degrees k of interaction
with the other variables

∑
B∈Pk (V−m)

I (Xm;Y |B)

︸ ︷︷ ︸
iii) Decomposition along all

interaction terms B
of a given degree k

E.g.: p = 3, Imp(X1) =
1
3 I (X1;Y ) + 1

6 (I (X1;Y |X2) + I (X1;Y |X3)) +
1
3 I (X1;Y |X2,X3)
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Link with common definitions of variable relevance
In asymptotic setting (N = NT =∞)

K = 1: Variable importances depend only on the relevant variables

I A variable Xm is relevant iff Imp(Xm) > 0
I The importance of a relevant variable is insensitive to the addition

or the removal of irrelevant variables in V .

⇒ Asymptotically, unpruned totally randomized trees thus solve the
all-relevant feature selection problem.
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Link with common definitions of variable relevance
In asymptotic setting (N = NT =∞)

K > 1: Variable importances can be influenced by the number of
irrelevant variables and there can be relevant variables with zero
importances (due to masking effect)

But:
I Xm irrelevant ⇒ Imp(Xm) = 0
I Xm strongly relevant ⇒ Imp(Xm) > 0

Strongly relevant features can not
be masked

V

Irrelevant
features

Strongly

Relevant
features

F1F2Fp

⇒ In the case of stricly positive distributions, non random trees always
find a superset of the minimal-optimal solution which size decreases
with K.
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Non asymptotic setting

• Finite number of trees
In general, a single tree can not identify all relevant features, even
the strongly relevant ones and an ensemble of trees is necessary.

E.g.: I (Y ;X1) = I (Y ;X2) = 0 and I (Y ;X1,X2) > 0

• Finite number of samples
There is a positive bias in the estimation of mutual informations that
depends on the cardinality of X and Y :

I (Y ;X ) = 0⇒ E{Î (Y ;X )} =
(|Y | − 1)(|X | − 1)

2Nt log 2
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Conclusions
Asymptotically, MDI is a sound statistic to detect weakly and
strongly relevant features

As a quantitative score to rank relevant features, it should however be
interpreted cautiously:

I Asymptotically, it is affected by the value of K , tree depth D,
redundant and irrelevant variables (when K > 1).

I In finite settings, it is affected by biases in the estimation of
impurity

To make the most of these scores, method parameters should be
set appropriately and independently of predictive performance.

Future works:
I Finite sample analysis
I Numerical features
I Design alternative statistics with better or complementary

properties.
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Outline

1 Tree-based variable importance scores

2 Towards a better understanding of the MDI measure

3 Towards large-scale feature selection

I We want to address large-scale feature selection problems where
one can not assume that all variables can be stored into memory

I Based on the previous analyses, we study and improve ensembles
of trees grown from random subsets of features

(Work in progress)
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Random subspace for feature selection

Simplistic memory constrained setting: We can not grow trees with
more than q features

Straightforward ensemble solution: Random Subspace (RS)

Train each ensemble tree from a random subset of q features

1. Repeat T times:

1.1 Let Q be a subset of q features randomly selected in V
1.2 Grow a tree only using features in Q (with randomization K )

2. Compute importance Impq,T (X ) for all X

Proposed e.g. by (Ho, 1998) for accuracy improvement, by (Louppe and
Geurts, 2012) for handling large datasets and by (Draminski et al., 2010,
Konukoglu and Ganz, 2014) for feature selection

Let us study the population version of this algorithm.
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RS for feature selection: study

Asymptotic guarantees:
I Def. deg(X ) with X relevant is the size of the smallest B ⊆ V

such that Y ⊥6⊥ X |B
I K = 1: If deg(X ) < q for all relevant variables X : X is relevant iff

Impq(X ) > 0
I K ≥ 1: If there are q or less relevant variables: X strongly

relevant ⇒ Impq(X ) > 0
Drawback: RS requires many trees to find high degree variables

The probability to sample one feature X of degree k < q together with its

minimal conditioning is
(p−k−1
q−k−1)
(pq)

E.g.: p = 10000, q = 50, k = 1⇒ (p−k−1
q−k−1)
(pq)

= 2.5 · 10−5. In average, at least

T = 40812 trees are required to find X .
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Sequential Random Subspace (SRS)

Proposed algorithm:

1. Let F = ∅

2. Repeat T times:

2.1 Let Q = R ∪ C , where:
I R is a subset of min{αq, |F |} features randomly taken from F
I C is a subset of q − |R| features randomly selected in V \ R

2.2 Grow a tree only using features in Q
2.3 Add to F all features that get non-zero importance

3. Return F

↵q
F

Q

...

R C

V \ F

Compared to RS: fill α% of the memory with previously found relevant
variables and (1− α)% with randomly selected variables.
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SRS for feature selection: study

Asymptotic guarantees: similar as RS if all relevant variables can fit
into memory.

Convergence: SRS requires much less trees than RS in most cases.
For example,

X1 X2 X3 X4 X5

Analytically

NRS ' (pq )k

and
NSRS ' k p

q

Numerical simulation

Note: α < 1 ensures some permanent exploration of new features
(α = 0⇒ RS).
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Experiments: results in feature selection
Dataset: Madelon (Guyon et al., 2007)

I 1500 samples (|LS|=1000, |TS|=500)
I 500 features whose 20 relevant features (5 features that define Y , 5

random linear combinations of the first 5, and 10 noisy copies of the first 10)
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Experiments: results in prediction
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After 10000
trees/iterations:

I RF (K = max): 0.81
I RF (K = q): 0.70

I RS : 0.68
I SRS: 0.84
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Conclusions

Future works on SRS:
I Good performance of SRS are confirmed on other datasets but

more experiments are needed.
I How to dynamically adapt K and α to improve correctness and

convergence?
I Parallelization of each step or of the global procedure

General conclusion:
Interpreting random forests as a way to explore variable
conditionings might shed new light on this algorithm and could
suggest further improvements
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Experiments: results in feature selection

Dataset: TIS
I 13375 samples
I 927 features
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Experiments: results in prediction
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