

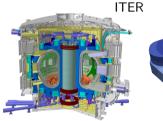
Efficient parametric computations using ensemble propagation for high dimensional finite element models

K. Liegeois¹, R. Boman¹, E. T. Phipps² and M. Arnst¹

¹Aerospace and Mechanical Engineering, Université de Liège, Belgium
²Sandia National Laboratories, USA

11th CÉCI Scientific Meeting
Université Libre de Bruxelles
April 25, 2019
https://kliegeois.github.io/

Ongoing PhD: New methods for parametric computations with multiphysics models on HPC architectures with applications to design of opto-mechanical systems



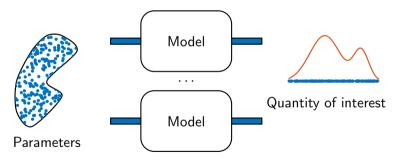
High performance computing library

Ph. Mertens, A. Panin, FZ. Jülich

Parametric computations

Sampling-based parametric computations typically require numerous calls of potentially **costly models**.

Example: Monte Carlo for uncertainty quantification.



Goal of the work: to reduce the CPU cost to evaluate a given set of samples or increase the number of evaluated samples for a given CPU cost.

Ensemble propagation

In sampling-based parametric computation, instead of individually evaluating each instance of the model, Ensemble propagation (EP) consists of **simultaneously evaluating** a **subset of samples** of the model.

EP was introduced by [Phipps, 2017], made available in **Stokhos** a package of **Trilinos**, and implemented using a **template-based generic-programming** approach:

```
template <typename T, int ensemble_size>
class Ensemble{
    T data[ensemble_size];
    Ensemble<T,ensemble_size> operator+ (const Ensemble<T,ensemble_size> &v);
    Ensemble<T,ensemble_size> operator- (const Ensemble<T,ensemble_size> &v);
    Ensemble<T,ensemble_size> operator* (const Ensemble<T,ensemble_size> &v);
    Ensemble<T,ensemble_size> operator* (const Ensemble<T,ensemble_size> &v);
    //...
}
```

Ensemble propagation

Advantages of the EP:

- ▶ Reuse of common variables,
- ▶ More opportunities for SIMD (more data parallelism),
- Improved memory usage,
- ▶ Reduction of Message Passing Interface (MPI) latency per sample.

Challenges of the EP:

- Increased memory usage,
- Ensemble divergence:
 - ▶ control flow divergence: if-then-else divergence and loop divergence,

function call divergence.

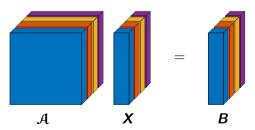
Parametric linear systems

We want to solve a parametric linear system for a subset of s samples of the parameters together:

$$m{A}_{::\ell} \, m{x}_{:\ell} = m{b}_{:\ell} \quad ext{for all} \quad \ell = 1, \ldots, s,$$

where matrices $A_{::1}, \ldots, A_{::s}$ are not necessarily symmetric positive definite (SPD).

Representation of a system for s = 4:



As the matrices are not SPD, we cannot use conjugate gradient methods.

GMRES and ensemble divergence

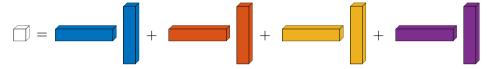
```
r^{(0)} = h - A x^{(0)}
\beta = \| \mathbf{r}^{(0)} \|
 \mathbf{v}_{\cdot 1} = \mathbf{r}^{(0)} / \beta
for j = 1, \ldots, m do
            \mathbf{w} = \mathbf{A}\mathbf{M}^{-1}\,\mathbf{v}_{\cdot\,i}
           oldsymbol{h}_{(1:i)j} = oldsymbol{V}_{\cdot(1:i)}^{	ext{T}} oldsymbol{w}
            \mathbf{v}_{:(i+1)} = \mathbf{w} - \mathbf{V}_{:(1:i)} \mathbf{h}_{(1:i)i}
            h_{(j+1)|j} = \|\mathbf{v}_{:(j+1)}\|
           if h_{(i+1),i} \neq 0 then
              |\mathbf{v}_{:(j+1)} = \mathbf{v}_{:(j+1)}/h_{(j+1)j}
           else
                        m = i
                       break
           if \boldsymbol{q}_{:(i+1)}^{\mathrm{T}}\boldsymbol{e}_{1}\leq \varepsilon then
                        break
\mathbf{y} = \operatorname{arg\,min}_{\mathbf{z}} \|\beta \, \mathbf{e}_1 - \mathbf{H}_{(1:m+1)(1:m)} \, \mathbf{y} \|
\mathbf{x}^{(m)} = \mathbf{x}^{(0)} + \mathbf{M}^{-1} \mathbf{V}_{\cdot (1:m)} \mathbf{v}
```

Ensemble divergence in the GMRES:

- an Arnoldi vector can require a normalization or not: if-then-else divergence,
- different samples may require different numbers of iterations to converge: loop divergence,
- called BLAS functions, such as GEMV for the dense matrix-vector operations, may not support ensemble-typed inputs, leading to function call divergence.

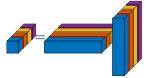
Reduced and ensemble-typed inner products used in CG

▶ Reduced inner product and its associated norm were the first ones introduced, implemented, and tested in the EP [Phipps, 2017]:



Fully remove every ensemble divergence coupling the samples together.

► Ensemble-typed inner product was first introduced for grouping purpose [D'Elia, 2017]:



This approach requires to manage every ensemble divergence explicitly.

Advantages and challenges of both approaches

Reduced inner product:

Advantages:

- ► No control flow divergence.
- Use of standard libraries such as MKL.

Challenges:

- Convergence in the least-squares sense.
- ➤ The spectrum of the ensemble matrix is the union of the spectra of the sample matrices: having a good preconditioner is more complex.
- Increased number of iterations.

Ensemble-typed inner product:

Advantages:

- ► Convergence for every sample.
- ► The spectra **are not** gathered.
- Convergence rates controlled by the slowest sample.

Challenges:

- Control flow divergence has to be treated explicitly.
- ▶ No current implementation of the needed BLAS routines in the MKL.

Control flow divergence

The control flow divergence, both the **if-then-else divergence** and the **loop divergence**, has been solved by defining a Mask class equivalent to:

```
template <int ensemble_size>
class Mask{
   bool data[ensemble_size];
   //...
}
```

which is returned by any comparison of ensembles.

This mask is then used for masked assignments and logical reductions:

Those operations are enough to safely implement the GMRES.

GEMV with Ensemble propagation

The **GEMV** with EP takes the form of a **tensors contraction** as follows:

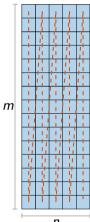
$$\mathbf{y}_{:\ell} = \beta_{\ell} \, \mathbf{y}_{:\ell} + \alpha_{\ell} \, \mathbf{A}_{::\ell} \, \mathbf{x}_{:\ell} \quad \text{for all} \quad \ell = 1, \dots, s,$$

Such an operation has a **low arithmetic intensity** as, for every $a_{ij\ell}$ loaded from memory only two operations are performed.

Interleaved memory layout of the $m \times n \times s$ third-order tensor A:

$$a_{ij\ell} \leftarrow a[(i-1)s+(j-1)ms+(\ell-1)].$$

Tall skinny matrices $\mathbf{A}_{::\ell}$ with left layout and row stride of s



GEMV with Ensemble propagation

Challenge: the **memory layout** and the fact that the operation is memory bound prevent us from using efficiently a **scalar-typed GEMV** implementation sequentially *s* times.

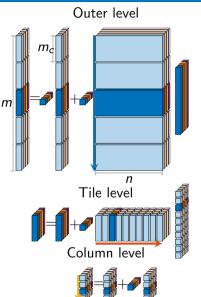
How should we implement the contraction such that theoretical performance is achieved?

In order to use efficiently the memory bandwidth here, it is important to:

- Reuse reusable data from cache,
- Use all the physical cores,
- ► Load data with unit stride,
- ▶ Use vector instructions while avoiding gather vector loads.

GEMV with Ensemble propagation

- ▶ Tiling:
 - ightharpoonup Each thread applies a tile of ${\cal A}$ at a time,
 - ► Cache blocking of **Y**.
- Vectorization:
 - Vectorization of the loops over the samples,
 - ▶ Intel Intrinsics, overloaded operators.



GEMV: results - KNL

Xeon Phi KNL in quadrant cache mode Measured bandwidth: 320 GB/s

Deduced maximal throughput: 80 GFLOPS

Parameters:

- ightharpoonup Threads N=128
 - ▶ $m_c = 1024$ for s = 8, $m = 8 N m_c$,
 - ▶ for a given n, data size independent of s.

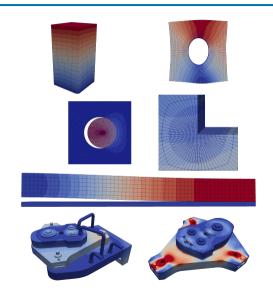
Performance greater than the MKL, Performance similar to the theoretical limit,

Sensibility to the order of the operations.

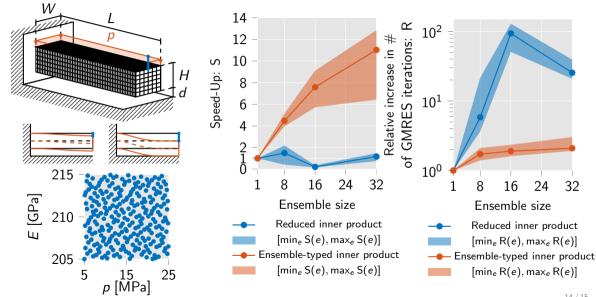


Implemented code and its capabilities

- Fully templated C++ code heavily based on Trilinos which provides a fully templated solver stack.
- Embedded in a Python interface. This eases the looping around samples, the grouping of samples together, etc.
- Hybrid parallelism based on Tpetra with MPI for distributed memory and Kokkos with OpenMP for shared memory.
- ▶ Uses Gmsh [Geuzaine, 2009] to import 3D meshes and VTK to write the output files.
- Has already generated preliminary results for industrial thermomechanical contact problems.



Test case: beam contact problem on Xeon Phi KNL



Conclusion

Conclusion and contributions:

- Contributions towards EP applied to the GMRES,
- ▶ Implementation of the mask and the masked assignments,
- ▶ Implementation of the GEMV for ensemble type that reaches performance similar to the MKL,
- ➤ Two variants of the GMRES can currently be used: with reduced inner product and with ensemble-typed inner product,
- ► First results that suggest that the GMRES with ensemble-typed inner product is faster than the GMRES with reduced inner product.

Future work:

- ▶ Applying the method on engineering problems relevant for ITER in collaboration with FZ. Jülich,
- ▶ Testing on more than one computational node to leverage the increased memory usage,
- ► Studying how to use this method in uncertainty quantification of contact problems with local surrogate model and grouping,

Acknowledgement

The first author, Kim Liegeois, would like to acknowledge the Belgian National Fund for Scientific Research (FNRS-FRIA) and the Federation Wallonia-Brussels (FW-B) for their financial support.

