
Ensemble Propagation for Efficient Uncertainty
Quantification of Mechanical Contact Problems

K. Liegeois1, R. Boman1, E. T. Phipps2 and M. Arnst1

1Aerospace and Mechanical Engineering, Université de Liège, Belgium
2Sandia National Laboratories, USA

2019 SIAM Conference on Computational Science and Engineering
MS332 SIMD Approaches for Achieving Performance and
Portability on Emerging Computational Architectures

Spokane, USA
February 28, 2019

https://kliegeois.github.io/

https://kliegeois.github.io/
https://kliegeois.github.io/

Ongoing PhD: New methods for parametric computations with multiphysics models
on HPC architectures with applications to design of opto-mechanical systems

ITER

Ph. Mertens, A. Panin, FZ. Jülich

High performance computing library

Clusters Emerging architectures

Ensemble propagation

In sampling-based uncertainty quantification (UQ), instead of individually evaluating each
instance of the model, Ensemble propagation (EP) consists of simultaneously evaluating a
subset of samples of the model.

Model Model

EP was introduced by [Phipps, 2017], made available in Stokhos a package of Trilinos, and
implemented using a template-based generic-programming approach:

template <typename T, int ensemble_size>
class Ensemble{

T data[ensemble_size];
Ensemble<T,ensemble_size> operator+ (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator- (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator* (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator/ (const Ensemble<T,ensemble_size> &v);
//...

}

1 / 20

Ensemble propagation

Advantages of the EP:

I Reuse of common variables,
I More opportunities for SIMD (more data parallelism),
I Improved memory usage,
I Reduction of Message Passing Interface (MPI) latency per sample.

Example sparse matrix vector product:

// CRS matrix-vector product z = A*x for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *z) {
for (int row =0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry<entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
z[row] = sum;

}
}

2 / 20

Ensemble propagation

Challenges of the EP:

I Increased memory usage,

I Ensemble divergence:

I if-then-else divergence,

A B

If

End

Inactive Active

If

End

I loop divergence,

I function call divergence.

3 / 20

Parametric linear systems

We want to solve a parametric linear system for a subset of s samples of the parameters
together:

A::` x :` = b:` for all ` = 1, . . . , s, (1)

where matrices A::1, . . . , A::s are not necessarily symmetric positive definite (SPD).

Representation of a system for s = 4:

=

A X B

As the matrices are not SPD, we cannot use conjugate gradient methods.

4 / 20

GMRES and ensemble divergence

r (0) = b − Ax (0)

β = ‖r (0)‖
v : 1 = r (0)/β
for j = 1, . . . ,m do

w = AM−1 v : j

h(1:j)j = VT
:(1:j) w

v :(j+1) = w − V :(1:j) h(1:j)j

h(j+1) j = ‖v : (j+1)‖
if h(j+1) j 6= 0 then

v : (j+1) = v : (j+1)/h(j+1) j

else
m = j
break

if qT
:(j+1)

e1 ≤ ε then
m = j
break

y = arg minz ‖β e1 −H(1:m+1)(1:m) y‖
x (m) = x (0) + M−1V :(1:m) y

Algorithm 1: GMRES for one sample

Ensemble divergence in the GMRES:

1. an Arnoldi vector can require a
normalization or not: if-then-else
divergence,

2. different samples may require different
numbers of iterations to converge: loop
divergence,

3. called BLAS functions, such as GEMV
for the dense matrix-vector operations,
may not support ensemble-typed inputs,
leading to function call divergence.

5 / 20

Reduced and ensemble-typed inner products

I Reduced inner product and its associated norm were the first ones introduced,
implemented, and tested in the EP [Phipps, 2017]:

= + + +

Fully remove every ensemble divergence coupling the samples together.

I Ensemble-typed inner product was first introduced for grouping purpose [D’Elia,
2017]:

=

This approach requires to manage every ensemble divergence explicitly.

6 / 20

Advantages and challenges of both approaches

Reduced inner product:
Advantages:

I No control flow divergence.

I Use of standard libraries such as
MKL.

Challenges:

I Convergence in the least-squares
sense.

I The spectrum of the ensemble
matrix is the union of the spectra of
the sample matrices: having a good
preconditioner is more complex.

I Increased number of iterations.

Ensemble-typed inner product:
Advantages:

I Convergence for every sample.

I The spectra are not gathered.

I Convergence rates controlled by the
slowest sample.

Challenges:

I Control flow divergence has to be
treated explicitly.

I No current implementation of the
needed BLAS routines in the MKL.

7 / 20

Control flow divergence

The control flow divergence, both the if-then-else divergence and the loop divergence,
was solved by defining a Mask class equivalent to:

template <int ensemble_size>
class Mask{

bool data[ensemble_size];
//...

}

which is returned by any comparison of ensembles.
This mask is then used for masked assignments and logical reductions:

Ensemble<double,8> a,b;
b = 3.; b[3] = -5.; b[7] = 5.;
mask_assign(b>=0.,a) = {b,1.};
cout << a << endl; // Print: [3.,3.,3.,1.,3.,3.,3.,5.]
mask_assign(a>=5.,a) /= {a, 5.,-1.};
cout << a << endl; // Print: [-1.,-1.,-1.,-1.,-1.,-1.,-1.,1.]
bool test_a = AND(a==1.);
cout << test_a << endl; // Print: 0
bool test_a = OR(a==1.);
cout << test_a << endl; // Print: 1

Those operations are enough to safely implement the GMRES.
8 / 20

GEMV with Ensemble propagation

The GEMV with EP takes the form of tensors contrac-
tions as follows:

y:` = β` y:` + α` A::` x:` for all ` = 1, . . . , s, (2)

Interleaved memory layout of the m×n×s third-order
tensor A:

aij` ←[a [(i − 1) s + (j − 1)m s + (`− 1)] , (3)

i.e.

Kokkos::View< Ensemble<double,s>**,
Kokkos::LayoutLeft, Kokkos::Device,
Kokkos::MemoryTraits>

Challenge: the memory layout prevents us from us-
ing efficiently a scalar-typed GEMV implementation se-
quentially s times.

Tall skinny matrices A::` with left
layout and row stride of s

m

n

9 / 20

GEMV with Ensemble propagation

Such an operation has a low arithmetic intensity as, for every aij` loaded from memory only
two operations are performed.

The throughput of this computation is therefore limited by the memory bandwidth on stan-
dard architectures.The speed-up of this tensors contraction versus s GEMV with unit stride
cannot be greater than 1.
Unoptimized implementations of the contraction lead to a big slowdown of the GMRES:

1 8 16 24 32
10−2

10−1

100

Ensemble size

S
p

ee
d

-U
p

How should we implement the contraction such that theoretical performance is achieved?

10 / 20

GEMV and GEMM in the literature

To reach full bandwidth, we have to:

I Exploit the parallelism of the architecture:
I Use every physical cores as much as possible.

I Transfer data efficiently through the memory hierarchy:
I Keep reusable data in cache.

I Use unit stride loads.

I Exploit CPU power:
I Keep reusable data in registers.

I Use vector load and store, avoid vector gather.

11 / 20

GEMV with Ensemble propagation

parfor t = 1 to m −mc + 1 by mc do
for i = t, . . . , t + mc − 1 do

yi` = β` yi` for all ` = 1, . . . , s

for j = 1, . . . , n do
γ` = α` xj` for all ` = 1, . . . , s
for i = t, . . . , t + mc − 1 do

yi` = yi` + γ` aij` for all ` = 1, . . . , s

I Tiling:

I As usual,
I Each thread applies a tile at a time,
I Cache blocking of Y.

I Vectorization:

I Different,
I Vectorization of the loops over the samples,
I Intel Intrinsics, overloaded operators.

Outer level

m =

mc

+

n
Tile level

= +

Column level

= +
12 / 20

GEMV: results - KNL

Xeon Phi KNL in quadrant cache mode
Measured bandwidth:
320 GB/s

Deduced maximal throughput:
80 GFLOPS

Parameters:

I Threads N = 128

I mc = 1024 for s = 8, m = 8N mc ,

I for a given n, data size independent
of s.

Performance greater than the MKL,

Performance similar to the theoretical

limit,

Sensibility to the order of the operations.

0

20

40

60

80

T
h

ro
u

gh
p

u
t

[G
F

L
O

P
S

]

Overloaded operators

MKL s = 8

s = 16 s = 24

s = 32

0 50 100 150 200 250 300
0

20

40

60

80

Krylov subspace dimension n

T
h

ro
u

gh
p

u
t

[G
F

L
O

P
S

]

Intel intrinsics

MKL s = 8

s = 16 s = 24

s = 32

13 / 20

GEMV: results - Skylake

Xeon Skylake
Measured bandwidth:
88 GB/s

Deduced maximal throughput:
22 GFLOPS

Parameters:

I Threads N = 24

I mc = 1024 for s = 8, m = 8N mc ,

I for a given n, data size independent
of s.

Performance similar to the MKL,

Performance similar to the theoretical

limit,

Less sensitive to the Intel Intrinsics.

0

20

40

T
h

ro
u

gh
p

u
t

[G
F

L
O

P
S

]

Overloaded operators

MKL s = 8

s = 16 s = 24

s = 32

0 50 100 150 200 250 300
0

20

40

Krylov subspace dimension n

T
h

ro
u

gh
p

u
t

[G
F

L
O

P
S

]

Intel intrinsics

MKL s = 8

s = 16 s = 24

s = 32

14 / 20

Code

I We have implemented a fully templated code heavily based on Trilinos which provides
a fully templated solver stack.

I The C++ code is embedded in a Python interface [Boman]. This eases the looping
around samples, the grouping of samples together, etc.

I The software has hybrid parallelism based on Tpetra with MPI for distributed memory
and Kokkos with OpenMP for shared memory.

I It uses Gmsh [Geuzaine, 2009] to import 3D meshes and VTK to write the output files.

I The code has already generated preliminary results for industrial thermomechanical
contact problems.

15 / 20

Mechanical contact problem

Ω

Γc

ΓuΓσ

Γobs
n

x

γ(x)

k ← 0
Choose an initial guess for the active set Ak

do
Given Ak , compute the solution of

Kii Kic 0 0
Kci Kcc DT

Ik
DT

Ak

0 0 IIk 0
0 DAk

0 0




uk+1
i

uk+1
c

λk+1
Ik

λk+1
Ak

 =


fi
fc
0

g0,Ak


Ak+1 ←

{
q ∈ Ph,s

c : λk+1
q + c eTq

(
Duk+1

c − g0

)
> 0
}

k ← k + 1

while Ak 6= Ak−1

Algorithm 2: Active set strategy

Inner nodes: i, potential contact nodes: c, at iteration k , inactive set: Ik , and active set: Ak .

16 / 20

Code capabilities

I Monolithic thermoelasticity problems,

I Mesh tying problems,

I Contact problems,

17 / 20

Test case: beam contact problem

I Size: L = 50 cm,W = 5 cm,H = 5 cm,d = 1 cm,

I Elements: 60× 6× 6 hexahedra,

I Number of Dofs: 9 394 = 3× 61× 72 + 61× 7,

I Depending on the pressure p∼ U(5, 25) [MPa], the contact
is fully open or partially closed.

I Material:

I Young’s modulus: E ∼ U(205, 215) [GPa].
I Poisson coefficient: 0.29.

I Quantity of Interest: displacement along z on the center
point of the face x = L,

I 256 Halton Quasi Monte Carlo samples,

I One MPI process on a Xeon Phi KNL with 256 OpenMP
threads.

W
L

d
H

p

5 15 25
205

210

215

p [MPa]

E
[G

P
a]

18 / 20

Speed-Up of the full simulation and increased computational work

1 8 16 24 32
0
1
2

4

6

8

10

12

14

Ensemble size

S
p

ee
d

-U
p

Reduced inner product: S

[mine S(e),maxe S(e)]
Ensemble-typed inner product: S

[mine S(e),maxe S(e)]

1 8 16 24 32
100

101

102
102.18

Ensemble size

R
el

at
iv

e
in

cr
ea

se
in

#
of

G
M

R
E

S
it

er
at

io
n

s

Reduced inner product: R

[mine R(e),maxe R(e)]
Ensemble-typed inner product: R

[mine R(e),maxe R(e)]

19 / 20

Conclusion

Conclusion and contributions:

I Contributions towards EP applied to the GMRES,
I Implementation of the mask and the masked assignments,
I Implementation of the GEMV for ensemble type that reaches performance similar to the

MKL,
I Two variants of the GMRES can currently be used: with reduced inner product and with

ensemble-typed inner product,
I First results that suggest that the GMRES with ensemble-typed inner product is faster

than the GMRES with reduced inner product.

Future work:

I Profiling study of the EP on mesh tying problem,
I Applying the method on engineering problems relevant for ITER in collaboration with

FZ. Jülich,
I Testing on more than one computational node to leverage the increased memory usage,
I Studying how to use this method in uncertainty quantification of contact problems

with local surrogate model and grouping,
20 / 20

Acknowledgement

The first author, Kim Liegeois, would like to acknowledge the Belgian
National Fund for Scientific Research (FNRS-FRIA) and the Federation

Wallonia-Brussels (FW-B) for their financial support.

1 / 4

Inner product case

=

Storing
nc

team 0 team 1

n

m

I The atomic adds introduced a fixed cost linked to the desynchronization of the threads
that all want to access the first entries of the left-hand side vector at the same time.

I We used a cycling technique such that the threads start at different rows evenly
distributed among m. This reduces the desynchronization cost for larger m.

I To reduce the fixed cost for small m, we gather threads per team of 4, do a parallel
reduction per team and then do the atomics.

2 / 4

Choice of mc (or nc) on KNL

3 / 4

Speed-Up and R

I Speed-Up: relative gain in CPU cost (architecture dependent):

S(e) =

∑
`∈e Time`
Timee

, S =

∑
e

∑
`∈e Time`∑

e Timee
.

1 8 16 24 32
1

10

20

30

Ensemble size s

S
p

ee
d

-U
p

S Matrix assembly GMRES Writting results

I R: relative increase in computational work (architecture independent):

R(e) =
s #iterationse∑
`∈e #iterations`

, R =
s
∑

e #iterationse∑
e

∑
`∈e #iterations`

.

4 / 4

	Appendix

