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Ensemble propagation

In sampling-based uncertainty quantification (UQ), instead of individually evaluating each
instance of the model, Ensemble propagation (EP) consists of simultaneously evaluating a
subset of samples of the model.

Model Model

EP was introduced by [Phipps, 2017], made available in Stokhos a package of Trilinos, and
implemented using a template-based generic-programming approach:

template <typename T, int ensemble_size>
class Ensemble{

T data[ensemble_size];
Ensemble<T,ensemble_size> operator+ (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator- (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator* (const Ensemble<T,ensemble_size> &v);
Ensemble<T,ensemble_size> operator/ (const Ensemble<T,ensemble_size> &v);
//...

}
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Ensemble propagation

Advantages of the EP:

I Reuse of common variables,
I More opportunities for SIMD (more data parallelism),
I Improved memory usage,
I Reduction of Message Passing Interface (MPI) latency per sample.

Example sparse matrix vector product:

// CRS matrix-vector product z = A*x for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *z) {
for (int row =0; row<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry<entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
z[row] = sum;

}
}
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Ensemble propagation

Challenges of the EP:

I Increased memory usage,

I Ensemble divergence:

I if-then-else divergence,

A B

If

End

Inactive Active

If

End

I loop divergence,

I function call divergence.
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Parametric linear systems

We want to solve a parametric linear system for a subset of s samples of the parameters
together:

A::` x :` = b:` for all ` = 1, . . . , s, (1)

where matrices A::1, . . . , A::s are not necessarily symmetric positive definite (SPD).

Representation of a system for s = 4:

=

A X B

As the matrices are not SPD, we cannot use conjugate gradient methods.
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GMRES and ensemble divergence

r (0) = b − Ax (0)

β = ‖r (0)‖
v : 1 = r (0)/β
for j = 1, . . . ,m do

w = AM−1 v : j

h(1:j)j = VT
:(1:j) w

v :(j+1) = w − V :(1:j) h(1:j)j

h(j+1) j = ‖v : (j+1)‖
if h(j+1) j 6= 0 then

v : (j+1) = v : (j+1)/h(j+1) j

else
m = j
break

if qT
:(j+1)

e1 ≤ ε then
m = j
break

y = arg minz ‖β e1 −H(1:m+1)(1:m) y‖
x (m) = x (0) + M−1V :(1:m) y

Algorithm 1: GMRES for one sample

Ensemble divergence in the GMRES:

1. an Arnoldi vector can require a
normalization or not: if-then-else
divergence,

2. different samples may require different
numbers of iterations to converge: loop
divergence,

3. called BLAS functions, such as GEMV
for the dense matrix-vector operations,
may not support ensemble-typed inputs,
leading to function call divergence.
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Reduced and ensemble-typed inner products

I Reduced inner product and its associated norm were the first ones introduced,
implemented, and tested in the EP [Phipps, 2017]:

= + + +

Fully remove every ensemble divergence coupling the samples together.

I Ensemble-typed inner product was first introduced for grouping purpose [D’Elia,
2017]:

=

This approach requires to manage every ensemble divergence explicitly.
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Advantages and challenges of both approaches

Reduced inner product:
Advantages:

I No control flow divergence.

I Use of standard libraries such as
MKL.

Challenges:

I Convergence in the least-squares
sense.

I The spectrum of the ensemble
matrix is the union of the spectra of
the sample matrices: having a good
preconditioner is more complex.

I Increased number of iterations.

Ensemble-typed inner product:
Advantages:

I Convergence for every sample.

I The spectra are not gathered.

I Convergence rates controlled by the
slowest sample.

Challenges:

I Control flow divergence has to be
treated explicitly.

I No current implementation of the
needed BLAS routines in the MKL.
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Control flow divergence

The control flow divergence, both the if-then-else divergence and the loop divergence,
was solved by defining a Mask class equivalent to:

template <int ensemble_size>
class Mask{

bool data[ensemble_size];
//...

}

which is returned by any comparison of ensembles.
This mask is then used for masked assignments and logical reductions:

Ensemble<double,8> a,b;
b = 3.; b[3] = -5.; b[7] = 5.;
mask_assign(b>=0.,a) = {b,1.};
cout << a << endl; // Print: [3.,3.,3.,1.,3.,3.,3.,5.]
mask_assign(a>=5.,a) /= {a, 5.,-1.};
cout << a << endl; // Print: [-1.,-1.,-1.,-1.,-1.,-1.,-1.,1.]
bool test_a = AND(a==1.);
cout << test_a << endl; // Print: 0
bool test_a = OR(a==1.);
cout << test_a << endl; // Print: 1

Those operations are enough to safely implement the GMRES.
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GEMV with Ensemble propagation

The GEMV with EP takes the form of tensors contrac-
tions as follows:

y:` = β` y:` + α` A::` x:` for all ` = 1, . . . , s, (2)

Interleaved memory layout of the m×n×s third-order
tensor A:

aij` ←[ a [(i − 1) s + (j − 1)m s + (`− 1)] , (3)

i.e.

Kokkos::View< Ensemble<double,s>**,
Kokkos::LayoutLeft, Kokkos::Device,
Kokkos::MemoryTraits>

Challenge: the memory layout prevents us from us-
ing efficiently a scalar-typed GEMV implementation se-
quentially s times.

Tall skinny matrices A::` with left
layout and row stride of s

m

n
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GEMV with Ensemble propagation

Such an operation has a low arithmetic intensity as, for every aij` loaded from memory only
two operations are performed.

The throughput of this computation is therefore limited by the memory bandwidth on stan-
dard architectures.The speed-up of this tensors contraction versus s GEMV with unit stride
cannot be greater than 1.
Unoptimized implementations of the contraction lead to a big slowdown of the GMRES:

1 8 16 24 32
10−2

10−1

100

Ensemble size

S
p
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d
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p

How should we implement the contraction such that theoretical performance is achieved?
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GEMV and GEMM in the literature

To reach full bandwidth, we have to:

I Exploit the parallelism of the architecture:
I Use every physical cores as much as possible.

I Transfer data efficiently through the memory hierarchy:
I Keep reusable data in cache.

I Use unit stride loads.

I Exploit CPU power:
I Keep reusable data in registers.

I Use vector load and store, avoid vector gather.
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GEMV with Ensemble propagation

parfor t = 1 to m −mc + 1 by mc do
for i = t, . . . , t + mc − 1 do

yi` = β` yi` for all ` = 1, . . . , s

for j = 1, . . . , n do
γ` = α` xj` for all ` = 1, . . . , s
for i = t, . . . , t + mc − 1 do

yi` = yi` + γ` aij` for all ` = 1, . . . , s

I Tiling:

I As usual,
I Each thread applies a tile at a time,
I Cache blocking of Y.

I Vectorization:

I Different,
I Vectorization of the loops over the samples,
I Intel Intrinsics, overloaded operators.

Outer level

m =

mc

+

n
Tile level

= +

Column level

= +
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GEMV: results - KNL

Xeon Phi KNL in quadrant cache mode
Measured bandwidth:
320 GB/s

Deduced maximal throughput:
80 GFLOPS

Parameters:

I Threads N = 128

I mc = 1024 for s = 8, m = 8N mc ,

I for a given n, data size independent
of s.

Performance greater than the MKL,

Performance similar to the theoretical

limit,

Sensibility to the order of the operations.
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GEMV: results - Skylake

Xeon Skylake
Measured bandwidth:
88 GB/s

Deduced maximal throughput:
22 GFLOPS

Parameters:

I Threads N = 24

I mc = 1024 for s = 8, m = 8N mc ,

I for a given n, data size independent
of s.

Performance similar to the MKL,

Performance similar to the theoretical

limit,

Less sensitive to the Intel Intrinsics.
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Code

I We have implemented a fully templated code heavily based on Trilinos which provides
a fully templated solver stack.

I The C++ code is embedded in a Python interface [Boman]. This eases the looping
around samples, the grouping of samples together, etc.

I The software has hybrid parallelism based on Tpetra with MPI for distributed memory
and Kokkos with OpenMP for shared memory.

I It uses Gmsh [Geuzaine, 2009] to import 3D meshes and VTK to write the output files.

I The code has already generated preliminary results for industrial thermomechanical
contact problems.
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Mechanical contact problem

Ω

Γc

ΓuΓσ

Γobs
n

x

γ(x)

k ← 0
Choose an initial guess for the active set Ak

do
Given Ak , compute the solution of

Kii Kic 0 0
Kci Kcc DT

Ik
DT

Ak

0 0 IIk 0
0 DAk

0 0




uk+1
i

uk+1
c

λk+1
Ik

λk+1
Ak

 =


fi
fc
0

g0,Ak


Ak+1 ←

{
q ∈ Ph,s

c : λk+1
q + c eTq

(
Duk+1

c − g0

)
> 0
}

k ← k + 1

while Ak 6= Ak−1

Algorithm 2: Active set strategy

Inner nodes: i, potential contact nodes: c, at iteration k , inactive set: Ik , and active set: Ak .
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Code capabilities

I Monolithic thermoelasticity problems,

I Mesh tying problems,

I Contact problems,
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Test case: beam contact problem

I Size: L = 50 cm,W = 5 cm,H = 5 cm,d = 1 cm,

I Elements: 60× 6× 6 hexahedra,

I Number of Dofs: 9 394 = 3× 61× 72 + 61× 7,

I Depending on the pressure p∼ U(5, 25) [MPa], the contact
is fully open or partially closed.

I Material:

I Young’s modulus: E ∼ U(205, 215) [GPa].
I Poisson coefficient: 0.29.

I Quantity of Interest: displacement along z on the center
point of the face x = L,

I 256 Halton Quasi Monte Carlo samples,

I One MPI process on a Xeon Phi KNL with 256 OpenMP
threads.

W
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5 15 25
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p [MPa]

E
[G

P
a]
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Speed-Up of the full simulation and increased computational work
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Conclusion

Conclusion and contributions:

I Contributions towards EP applied to the GMRES,
I Implementation of the mask and the masked assignments,
I Implementation of the GEMV for ensemble type that reaches performance similar to the

MKL,
I Two variants of the GMRES can currently be used: with reduced inner product and with

ensemble-typed inner product,
I First results that suggest that the GMRES with ensemble-typed inner product is faster

than the GMRES with reduced inner product.

Future work:

I Profiling study of the EP on mesh tying problem,
I Applying the method on engineering problems relevant for ITER in collaboration with

FZ. Jülich,
I Testing on more than one computational node to leverage the increased memory usage,
I Studying how to use this method in uncertainty quantification of contact problems

with local surrogate model and grouping,
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Inner product case

=

Storing
nc

team 0 team 1

n

m

I The atomic adds introduced a fixed cost linked to the desynchronization of the threads
that all want to access the first entries of the left-hand side vector at the same time.

I We used a cycling technique such that the threads start at different rows evenly
distributed among m. This reduces the desynchronization cost for larger m.

I To reduce the fixed cost for small m, we gather threads per team of 4, do a parallel
reduction per team and then do the atomics.
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Choice of mc (or nc) on KNL
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Speed-Up and R

I Speed-Up: relative gain in CPU cost (architecture dependent):

S(e) =

∑
`∈e Time`
Timee

, S =

∑
e

∑
`∈e Time`∑

e Timee
.
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I R: relative increase in computational work (architecture independent):

R(e) =
s #iterationse∑
`∈e #iterations`

, R =
s
∑

e #iterationse∑
e

∑
`∈e #iterations`

.
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