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Data-Interpolating Variational
Analysis

» DIVAnd: Data Interpolating Variational Analysis in
n-dimensions

» Objective: derive a gridded climatology from
in situ observations

» [ he variational inverse methods aim to derive a
continuous field which is:

e close to the observations (it should not nec-
essarily pass through all observations because ob-
servations have errors)

e “smooth” (i.e. small first and second deriva-
tives)

» DIVANd is essentially a monovariate reconstruction
method

» How can it be extended to use other related vari-
ables?

Analysis
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Multivariate analysis

» Multivariate analysis with covariables with a list of
covariable z1, zo, ...

X =X + f(z1,22,..., Wi, b1, Wy, by, ..

function of the
parameters

where f is a non-linear
known covariables and unknown

W17 b17 WQ) b27 )

» T he structure of the function f is given here by a
neural network (multilayer perception).

» The field X’ is also unknown. Its spatial structure

Is constrained by DIVANd.

Neural network
» For every location j, initially the value of vector v!
are the co-variables at the location 7.

» T his vector is linearly transformed by a weight ma-
trix W, and an offset vector b, and then a non-
linear activation function (here RELU) is applied to
each element element of the resulting vector (ex-
cept for the last step).
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» Here, the weights W;. and b, do not dependent on
space but the longitude and latitude are one of the
covariables.

Experiments with synthetic
observations

» Create a series of random field which are the “co-
variables”

» Create synthetic observations by combining these
covariables: true field

» Sample these fields at random location: synthetic
observations

» Perturb these covariables as these covariables are
not perfectly known in practice

» Try to recover the true field from the synthetic ob-
servation using the imperfectly known covariables
using the neural network

True field
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Logistic regression problem

Model 1 Model 2
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p(Model 1|obs.) =0.9 - 0.7 -

(1—0.1) = 0.57

p(Model 2 |obs.) =0.3 - 0.1 - (1 —0.3) =0.02

» Similar as the previous case, but the true field is a
probability of occurrence

» synthetic observation are binary (occurrence or not)

» cost-function to minimize the based on the negative
log-likelihood (i.e. find the model which maximize
the probability of the observations)

True probability
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Application

» A gridded data product for 40 zooplankton species
using DIVAnd and the neural network library Knet
in Julia.

» The neural network uses the following variables as
Input:
e dissolved oxygen
e salinity
e temperature
e chlorophyll concentration
e bathymetry

e the distance from coast

e the position (latitude and longitude) and the year

» Abundance values are expressed in number per

m? and transformed by the function log(x/a + 1)

where ais 1 m 2.

» The covers the area from 9°E to 30.8°E and 53°N
to 66.1°N at a resolution of a tenth of a degree.

» Gridded data product for the years 2007, 2008,
2010, 2011, 2012 and 2013 have been made. No

observations were available for the year 2009.
» The fields represent the yearly average abundance.

» For every specie the correlation length and signal to
noise ratio is estimated using the spatial variability
of the observations.

Results

» Interpolated field show good agreement with the
observations and the cross-validation data points

» Complex spatial dependencies could be learned
from the covariable

Limnocalanus macrurus macrurus (2013)
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Limnocalanus macrurus macrurus (year 2013)

Acartia (Acanthacartia) bifilosa (2007)
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Acartia (Acanthacartia) bifilosa (year 2007)

Conclusions

» Neural network can extract non-linear relationships
useful to generated gridded data products

» We present essentially a multivariate extension to
DIVAnd where the dependency to other variables
(“covariables”) are estimated from the observations

» Tests with synthetic data show that the underlying
true field can be reconstructed from observations,
even when the covariables are not perfectly known

» The technique was also applied to abundance of 40
zooplankton species in the Baltic

» The gridded dataset for all 40 species is available
at http://www.emodnet-biology.eu/.
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