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Abstract ⎯ This paper shows that the application of a 
perturbation finite element method can provide a useful 
alternative to correct the equivalent magnetic circuits used to 
model loudspeakers. A ring magnet design of a loudspeaker is 
modeled by means of an axisymmetric magnetic vector 
potential formulation. The effects of geometry variations on 
its performances are analyzed. The perturbation solution 
allows further adapting and refining the equivalent magnetic 
circuit model of the loudspeaker to each possible variation. 
Results will be compared with the classical finite element 
solution. 

I. INTRODUCTION 

A loudspeaker is an electromechanical transducer which 
converts electrical energy to mechanical work in the form 
of acoustic power [1] [2]. Loudspeakers can be modeled 
for instance by equivalent magnetic circuits or the finite 
element method. However, for any variation of geometrical 
or physical characteristics a new complete finite element 
(FE) computation must be performed or a new equivalent 
circuit must be studied. 

 (a)  (b) 
 

 (c)  
Fig. 1.  Ring magnet design: 3D image (a) and transversal cut of the 

loudspeaker magnetic circuit (b). The transversal cut of the loudspeaker 
magnetic circuit with low leakage flux design (c). 

The perturbation finite element method is an excellent 
tool to deal with this kind of geometrical variations. 
Benefits are particularly aimed for allowing different 
problem-adapted meshes and for computational efficiency 
due to the reduce size of each sub-problem [3]. In this 
work a perturbation method is used in the magnetic design 
of a loudspeaker and the effects of geometry variations on 
its performance are analyzed. This approach allows to 
straightforwardly correct the equivalent circuit for each 
geometry variation performed. 

In general, the magnetic circuit of a permanent magnet 
(PM) loudspeaker has a ring magnet design or a cylinder 
magnet design. The ring magnet design shown in Fig. 1a 
and Fig. 1b has the magnet material outside the voice coil, 
so the magnetic circuit efficiency is much lower, only 35-

 
 

50% of the total flux is used [2]. However, such a ring 
design allows a larger magnet area and hence lower 
remanent magnetic flux density materials can be used. 

Ferrite magnet loudspeakers have low circuit efficiency 
but still give acceptable solutions because of the low cost 
ferrite magnet. This magnet compensates for two major 
disadvantages [2]: (i) the soft iron parts for the ferrite ring 
design are large and expensive; (ii) the high leakage flux is 
difficult to tolerate in some application environments, e.g. 
in automotive dashboard locations. 

For the ring design, a circuit modification can be made 
(Fig. 1c) to cancel the leakage flux due to the second ring 
magnet. This is an effective functional solution, although 
the savings made are questionable. 

II. REFERENCE AND MODIFIED PROBLEMS 

A. Reference problem and its strong formulation 
A magnetostatic problem p is defined in a bounded 

domain Ωp, with boundary ∂Ωp = Γh,p ∪ Γb,p, of the two or 
three-dimensional Euclidean space. 

A problem, defined with subscript p = 1, is first 
considered. Its equations and material relations in Ω1 are: 

11 curl jh = ,   0 div 1 =b ,   1111  rbhb +μ= , (1a-b-c) 
with boundary conditions (BCs) and interface conditions 
(ICs) 
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where h is the magnetic field, b is the magnetic flux 
density, j is the electric current density, μ is the magnetic 
permeability and n is the unit normal exterior to Ω. The 
notation [ . ] = . |γ+ − . |γ- expresses the discontinuity of a 
quantity through any interface γ (of both sides γ+ and γ−), 
which is allowed to be non-zero; the associated surface 
fields jsu,1 and bsu,1 are usually unknown, i.e., parts of the 
solution [3]. It is intended to solve successive problems, 
the solutions of which being added to get the solution of a 
complete problem. At the first step, a simplified problem p 
= 1 is solved either analytically or with the FE method. Its 
solution is called reference or source solution. In both 
cases, it is based on particular assumptions that aim to 
simplify its solving but that are to be further corrected. 

B. Modified problem defining perturbation 
A modification of the problem p = 1 leads to a 

perturbation of its solution. This can result from the change 
of properties of existing materials or from the addition or 
suppression of materials, which actually also amounts to 



changing some material properties [3]. Both large and 
small perturbations are considered. The governing 
equations and relations in other domains Ω2 and Ω3, i.e. 
successive modified forms of Ω1 (Fig. 2a), and the BCs and 
ICs, are still on the form (1) with all the involved relative 
quantities to the new solution and the involved relative 
boundaries to Ω2 and Ω3. The domain Ω2 considers the 
perturbation due to the variation of the magnetic circuit in 
Ω1. The domain Ω3, shown in Fig. 2b, considers the 
perturbation due to the inclusion of another ferrite PM 
(PM2) in Ω2. We have chosen to analyze these 
perturbations separately to quantify their individual effect 
on the equivalent circuit used to model the loudspeakers. 

The solution of the complete problem can be thus 
decomposed in three parts: the reference solution and two 
perturbations of this one. These quantities are given by 

321 hhhh ++= ,             321 bbbb ++= , (2a-b) 
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Subtracting each equation of (1) from its counterpart in 
the so-modified problem, the perturbation equations that 
define the problem p = 2, are 

22 curl jh = , 0 div 2 =b , 2,2222  sr bbhb ++μ= , (3a-b-c) 
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and the perturbation equations that define the problem p = 
3, are 
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where the so-defined volume sources bsu,2 and bsu,3 are 
obtained from the reference solution (either analytical or 
numerical) as 

1122,  )( hb μ−μ=s  and )( )( 21233, hhb +μ−μ=s . (5a-b) 

The perturbation fields are still governed by the Maxwell 
equations in their classical forms (3a-b) and (4a-b). 
However, their associated material relations now include 
the additional sources (3c) and (4c), that only acts in the 
modified regions. 

III. PERTURBATION FINITE ELEMENT 
METHOD AND APPLICATION 

A ring magnet design of the loudspeaker is considered as 
a test case. The solution domain is an axial cross-section of 
the axisymmetric geometry (Fig. 2). A reference solution is 
first calculated (Fig. 2a) with a ferrite PM (PM1) as 
excitation. In this case, a transformation air layer is used 
with infinite boundaries around the magnetic circuit to 
prevent errors due to the truncation of the computational 
domain. The reference solution serves then as a source for 
a perturbation problem (Fig. 2b) defined with another 

ferrite PM (PM2) as excitation. The complete solution 
domain is shown in Fig. 2c. 

The solutions are transferred from one problem to the 
other through projections of the source fields between the 
independent meshes [4]. Solving the perturbation problem 
instead of the complete one enables to avoid operations 
already performed in the reference problem. 

Fig. 3 shows the magnetic flux density along a vertical 
line in the air gap. It can be observed that with two PM’s 
the leakage decreases and the magnetic flux density 
increases in the air gap. 

(a) + (b) =  

 (c)  
Fig. 2.  The solution domain of a ring magnet design: reference solution 
(field lines) with PM1 (a), perturbation solution with PM2 and with the 

magnetic circuit modified (b), complete (corrected) solution (c). 
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Fig. 3.  Magnetic flux density along the air gap. 

The perturbation solution allows adapting and refining 
the equivalent magnetic circuit model of a loudspeaker, 
pointing out the significance of each variation. 

The modifications in the equivalent circuit will be 
analyzed when adding first an iron part and second a ferrite 
PM to the loudspeaker structure. Results will be compared 
with the classical finite element solution. 

The definition of the sources of the perturbation problem 
and the corrections of the equivalent magnetic circuit of 
loudspeaker will be detailed in the extended paper. 
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