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Abstract — This paper deals with eddy-current effects in the distributed
winding of electrical machines, and in particular with the proxim-
ity effect and the associated losses. A previously proposed homog-
enization method for windings in two-dimensional (2D) time-domain
finite-element (FE) models is shown to be applicable without additional
computational cost, producing a precise estimate of the instantaneous
proximity-effect losses. The method is illustrated by considering the
conductors in a single stator slot of a 3kW induction motor. The brute-
force model, with fine discretisation of each conductor, and the homog-
enized model yield macroscopic results that are very close to each other.

I. INTRODUCTION

Multiturn windings in electromagnetic devices may be sub-
jected to considerable skin and proximity effect [1]. Most
often these effects are simply ignored in the resolution stage
of the FE simulation, and the associated losses are estimated
a posteriori. However, in some cases the behaviour of the
device under study can be significantly altered by the eddy-
current effects, and their direct inclusion in the FE modeling
is required. As an alternative to the prohibitively expensive
brute-force approach, which requires a fine discretization of
each separate turn of the winding and associated electrical
circuit equations, accurate frequency and time domain ho-
mogenization methods have recently been proposed in [2].
In the time-domain case, the additional computational cost
depends on the frequency content of the application, and in
particular on the conductor radius to skin depth ratio.

In the case of electrical machine windings, the latter ra-
tio is generally sufficiently low so as to allow a simple im-
plementation of the time-domain method, with furthermore
negligible additional computational cost. This will be illus-
trated in the present paper by considering a 3kW induction
motor [3].

II. EDDY-CURRENT EFFECT COEFFICIENTS

A complete eddy-current effect characterization of a winding
(shape of the conductor cross-section, packing type and fill
factor) can be carried out by means of a representative 2D FE
model consisting of a central cell and a layer of cells around
it [1][2]. See Fig. 1.

A. Frequency domain coefficients

We define the reduced frequency X as follows:

X = /6 = \/f-rymopu, (1)

with r = 4/ A./m the equivalent radius of the conductors
(A. being the conductor surface area), § the penetration
depth at frequency f or pulsation w = 27 f, ¢ the conductiv-
ity of the conductors, and pg = 4710~" H/mand vy = 1 /1o
their permeability and reluctivity.

Frequency-domain 2D FE calculations are carried out us-
ing the complex notation (symbols in bold, = imaginary unit,
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Fig. 1. Winding with conductors of circular cross-section and hexago-
nal packing: skin-effect flux pattern (left) and proximity-effect flux pattern
(right)

* indicating the conjugate value) for the sinusoidal time vari-
ation. The classical magnetic vector potential formulation is
adopted [4]. The same net current I is imposed in all con-
ductors by means of electrical circuit equations, whereas the
average induction b, in the central cell can be imposed via
the boundary conditions. This way skin effect and proximity
effect can be separated as follows. A pure skin-effect exci-
tation is obtained at the level of the central cell by imposing
a = 0 on the complete boundary (yielding b,,, = 0 thanks
to the symmetry) and a unit net current (I = 1A) in all
conductors (flux pattern in Fig. 1 left). By imposing a unit
horizontal (or vertical) induction (b,,, = 1 T) through appro-
priate boundary condition and a zero net current (I = 0), a
pure proximity-effect excitation is effected (Fig. 1 right).

From these field solutions, obtained at a certain pulsation
w, the complex power .S (in VA) absorbed by the central cell
Q. is calculated by considering the local current density j
and flux density b in the central cell €2.:

S =P+:1Q :é/ (j2/o +rwryb?)dQ, ()

c

with P and @ the active and reactive power, and j2/2 =
jj*/2 and b*/2 = bb*/2 r.m.s.-values squared; [ is the
length along the third dimension (which can be arbitrar-
ily taken to be 1 m). We can then define a complex skin
effect impedance Z,y;, (which replaces the DC resistance
in the frequency-domain circuit equations) and a complex
proximity-effect reluctivity v,,, (which replaces vq in the
field equations) [2]. In multi-layer windings (as in electri-
cal machines), the skin-effect losses are normally negligible
compared to the proximity-effect losses. We will therefore
focus on the latter effect and losses in the remaining of this
paper.

The complex proximity-effect reluctivity v, (X), at re-
duced frequency X, can be written in terms of dimensionless
coefficients pp(X) and ¢ (X):
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where the factor %XZ follows from the analytical expression
for low-frequency proximity losses in a round conductor [1],
and where ) is the fill factor of the winding and A,/ is the
surface area of one cell.

Fig. 2 shows how these coefficients vary with A\ and X
(up to 4). The packing type, hexagonal or square, has little

Vprox = =l (qB +tpp



influence. The coefficients tend to 1 as the frequency tends
to 0.
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Fig. 2. Proximity effect coefficients ¢p and pp as a function of fill factor
A for different values of X

B. Time-domain approach for the proximity effect

The frequency-dependant reluctivity pno,(X) of the ho-
mogenized winding can be translated into approximate time-
domain equations by considering the homogenized magnetic
induction b(t) and a number of auxiliary (fictitious) induc-
tion components by (t), b3(t), ... [2]. The simple algebraic
constitutive law h = v b, with h(t) the magnetic field, thus
becomes a system of n first-order differential equations in
terms of the n induction components. With n = 3, e.g., this
system can be written as

h b 2 P11 pr2 O b
A d
[O]ZVO by |+ ZT lpu D22 p23]dt[b2]'(4)
0 b3 0 p23 ps33 b3

The symmetric tridiagonal dimensionless matrix in (4) is ob-
tained using a fitting algorithm and considering the com-
plex reluctivity vp,,.(X) in the relevant frequency range
[0, X1naz]- The greater X,,q., the more induction compo-
nents are required to achieve good precision, and the greater
the additional computation time. The case n = 3 corre-
sponds to X4, equal to 4 [2].

In electrical machines, the relevant frequency range is
much smaller, with normally X,,,,, well below 1. The time-
domain approximation, with n = 1, then becomes very sim-
ple:

Aor? db

h(t) = vo b(t) + p11 T Q)

where pj; is pratically 1. This constitutive law is easy to

account for in the FE equations. Indeed, the first term in

the right-hand side of (5) gives the classical contribution to

the FE stiffness matrix, whereas the second term leads to the

following type of elemental contribution to the conductiv-

ity matrix (which is normally only due to so-called massive
conductors in the FE domain [4]):

A 2
/z tpll (Z grad a; - grad a; d2, (6)

where «; and «; are nodal basis functions.

III. APPLICATION TO A 3KW INDUCTION MOTOR

The homogenization method (with n = 1) is applied to one
stator slot (out of 36) of a 4-pole 3kW cage induction motor.
See [3] for simulation and experimental results, considering
4 different rotors: with either skewed and unskewed slots,

and with either open or closed slots. One stator slot com-
prises 102 conductors (with » = 0.3 mm, A = 0.48 consid-
ering the wound part of the slot, ¢ = 6e7 S/m). The fun-
damental 50 Hz current component (X = 0.033) produces
negligible proximity effect. The first rotor slot harmonic is
situated around 800 Hz (X = 0.13), with a current compo-
nent up to 20% of the fundamental in case of unskewed slots
[3]. Figure 3 shows the FE model (with imposed @ = 0
on the lower segment at the slot opening, and natural Neu-
mann condition on the rest of the boundary) and flux pat-
terns with the latter X-value. Fig. 4 shows that the addi-
tional proximity-effect losses are accurately calculated with
the homogenization method (n = 1) up to X = 0.5 and
above. In this X -range, the variation in inductance is seen to
be negligible. More results and discussion will be supplied
in the full paper.

a b c d
Fig. 3. Flux lines at X = 0.13 obtained with fine model (a and b) and with
homogenized model (c and d), with flux component in phase with imposed
unit current (a and c) and in quadrature (b and d)
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Fig. 4. Variation of joule losses and slot inductance (compared to DC value)
with X
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