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Summary: Recently, robust implicit energy and momentum conserving algorithms have been developed in the non-linear range. The 
authors extended these algorithms to hypoelasticity-based constitutive models and introduced numerical dissipation, opening the way 
to more complex simulations such as blade-loss in a turbofan. 
Résumé: Récemment, des algorithmes implicites robustes, conservant l’énergie et le moment angulaire dans le domaine non-linéaire, 
ont été développés. Les auteurs ont étendu ces algorithmes aux modèles constitutifs à base hypo-élastique, et ont introduit de la 
dissipation numérique, ouvrant ainsi la voie à des simulations complexes comme la perte d’aube dans un turbofan. 
 

 
INTRODUCTION 

 
When studying impact problems, time integration of the equations of evolution occurs in the non-linear range. Usually, 
explicit algorithms are used in such a context. Nevertheless, due to its lack of stability in the non-linear range, and its 
limitation in the time step size, an implicit scheme could advantageously be used. The most widely used implicit 
algorithm is the Newmark algorithm [1]. Nevertheless, when this algorithm is used in the non-linear range, the 
conservation of the energy is no longer satisfied. To avoid divergence due to the numerical instabilities, numerical 
damping was introduced, leading to the generalized-α methods [2]. But these schemes can exhibit instabilities in the 
non-linear range too [3]. Therefore a new family of integration algorithms for structural dynamics has appeared that 
satisfies the mechanical laws of conservation (i.e. conservation of linear momentum, angular momentum and total 
energy) and that remains stable in the non-linear range.  
 
The first algorithm verifying these properties was described by Simo and Tarnow [4]. They called this algorithm Energy 
Momentum Conserving Algorithm or EMCA. It consists in a mid-point scheme with an adequate evaluation of the 
internal forces. This adequate evaluation was given for a Saint Venant-Kirchhoff hyperelastic material. A generalization 
to other hyperelastic models was given by Laursen [5], who iteratively solved a new equation for each Gauss point to 
determine the adequate second Piola-Kirchhoff stress tensor. Another solution that avoids this iterative procedure, and 
leads to a general formulation of the second Piola-Kirchhoff stress tensor, was given by Gonzalez [6]. This formulation 
is valid for general hyperelastic materials. The EMCA was recently extended to dynamic finite deformation plasticity 
by Meng and Laursen [7]. The finite element discretization leads to high frequency modes that are purely numeric. To 
avoid the convergence problems resulting from these modes, Armero and Romero [8,9] introduced numerical 
dissipation in these conserving algorithms. This dissipation only affects the total energy but preserves the angular 
momentum. Moreover, it is proved to be stable in the non-linear range, contrarily to the α−generalized algorithms. It is 
called Energy Dissipative Momentum Conserving algorithm or EDMC. Besides, Armero and Petöcz [10,11] proposed a 
treatment of contact interactions in a consistent way in the non-linear range. 
 
All the conserving methods described above were established for hyperelastic materials. We have recently [12,13] 
established a new expression of the internal forces for the hypoelastic materials using the final rotation scheme [14]. 
When associated with the mid-point scheme, this expression ensures the conservation laws of mechanics for a 
hypoelastic constitutive model. Moreover, we proved that this adaptation remains consistent with the Drucker postulate 
when plastic deformation occurs. Nevertheless, to be able to simulate complex impact problems, two improvements are 
necessary. The first one is to introduce numerical dissipation in a consistent way for such hypoelastic constitutive 
models [15]. This numerical dissipation avoids the numerical high frequency modes parasiting the physical solution. 
The second one is an enhancement of the contact formulation proposed by Armero and Petöcz to surfaces with 
discontinuous normal, as is the case when the two bodies in contact are deformable and are thus discretized by finite 
elements [16]. With such improvements, we are able to simulate complex problems of impact such as a blade-loss in a 
turbo engine.  
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DESCRIPTION OF THE MODEL 
 
The turbo-engine is modeled with a shaft that has an imposed revolution motion on one extremity. At its other 
extremity, there is a disk with 24 blades. The shaft, the disk and the blades are part of the rotor, which is in rotation in a 
stator. The stator is composed of a casing and a bearing. The rotor has a cyclic symmetry of 15 degrees. Fig. 1  
illustrates a 15-degree part of the rotor. The blade is defined from a ruled surface that has two splines for extremities. 
The blade is made of an alloy (density 3600 kg/m³, Young's modulus 88000 N/mm², Poisson's coefficient 0.31, initial 
yield stress 880 N/mm² and hardening parameter 26700 N/mm²). The disk and the shaft are composed of another alloy 
(density 6300 kg/m³, Young's modulus 165000 N/mm², Poisson's coefficient 0.31, initial yield stress 800 N/mm² and 
hardening parameter 271 N/mm²). The blade is discretized with 99 elements: 11 in length (elements at the head of the 
blade are 50% smaller than at the root), 9 elements in height and 1 element on the thickness. The disk has 2 elements on 
the thickness and 72 elements on the circumference. The shaft has 1 element on its thickness and 11 elements on its 
length (8 for the constant section shaft and 3 for the conical part). The shaft has 72 elements on its circumference. The 
elements are 8-node bricks with constant pressure. 
 

 

Point Spline 1 Spline 2 
1 (200; 0; 0) (791.9; -113.4;8.9) 
2 (199.3; 8.9; 19.7) (793.9; -94.7; 28.2) 
3 (198.8; 16.3; 39.9) (795.1; -75.9; 47.5) 
4 (198.3; 22.1; 60.7) (796.4; -57.0; 66.7) 
5 (198; 26.3; 81.9) (797.6; -38.2; 85.9) 
6 (197.9; 28.9; 103.4) (798.8; -19.4; 105.2) 
7 (197.8; 29.7; 125) (800.; -0.6; 124.4) 
8 (197.9; 28.9; 146.6) (799.8; 18.3; 143.7) 
9 (198; 26.3; 168.0) (799.1; 37.1; 162.9) 
10 (198.3; 22.1; 189.2) (798.0; 55.7; 182.3) 
11 (198.8; 16.3; 210.1) (796.5; 74.3; 201.8) 
12 (199.3; 8.9; 230.3) (794.6; 92.6; 221.4) 
13 (200; 0; 0.25) (792.3; 110.7; 241.3)  

Fig. 1. Model (dimensions in mm). 
Fig. 1. Modèle (dimensions en mm). 

 
The casing is a cylinder made of an aluminium alloy (density 2710 kg/m³, Young's modulus 55200 N/mm², Poisson's 
coefficient 0.31, yield stress 550 N/mm² and hardening parameter 281 N/mm²). Its geometry is illustrated at Fig. 2a.  
The bearing has a conical geometry (Fig. 2b) and is made of an alloy (density  3600 kg/m³, Young's modulus 88000 
N/mm², Poisson's coefficient 0.31, yield stress 550 N/mm² and hardening parameter 2600 N/mm²). The displacement of 
the shaft is restrained by the bearing thanks to a central node (Fig. 2b). There are springs between the central node and 
the extremity nodes of the bearing and there are springs between the central node and two rows on nodes of the shaft. 
Each spring has a stiffness of 108 N/mm. A mass of 0.05kg is associated with the central node. The bearing and the 
casing have 1 element on the thickness. The casing has 36 elements on its circumference and 8 elements on its length. 
The bearing has 3 elements on its length and 20 on its circumference. The elements are 8-node bricks with constant 
pressure. 
 

 

 

Fig. 2. Stator model, a- casing, b- bearing. 
Fig. 2. Modèle du stator, a- carter, b- palier.  
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INITIAL CONFIGURATION 
 

At time t=0s, the initial configuration of the rotor is computed for a rotation velocity of 4775 rpm. This initial 
configuration is computed with a Newton-Raphson scheme where the external forces are the analytical inertial forces 
computed from the nodes position and from the imposed rotation velocity. The von Mises stresses resulting from this 
uniform rotation velocity are illustrated at Fig. 3. The blade pointed by an arrow is independent from the disk. To 
evaluate the initial configuration, it is linked to the disk thanks to an adhesion law (normal penalty 109, tangential 
penalty 108). After the initial configuration is evaluated, this link is removed and the free blade interacts with the other 
blades and with the casing. The interaction between the blades and the casing is simulated with a Coulomb friction law 
(normal penalty 109, tangential penalty 107 and friction coefficient 0.1). The interaction between the free blade and the 
other blades is simulated with the same law. Contact interactions between attached blades are simulated with a 
frictionless law (normal penalty 109). 
 

 
Fig. 3. Initial von Mises stresses (Mpa) of the rotor (front view). 

Fig. 3. Contraintes de von Mises (Mpa) initiales du rotor (vue de face). 
 

NUMERICAL SIMULATION OF THE FIRST REVOLUTION 
 

Now we analyze the first revolution of the rotor after the blade loss. We use the EDMC (first order accurate) algorithm 
with a spectral radius equal at the infinity frequency 0.8. The time step size is computed from an automatic criterion 
[17] and with an accuracy of 10-4 on the integration error. The Hessian matrix is updated only when necessary [17]. 
Each time step is computed with a Newton-Raphson scheme (tolerance = 10-5) enhanced by a line-search [18] (tolerance 
10-3). 
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Fig. 4. Configuration and equivalent plastic strains after a quarter of revolution, a- front view, b- rear view. 

Fig. 4. Configuration et déformations plastiques équivalentes après un quart de tour, a- vue de face, b- vue de dos. 
 
Fig. 4a and Fig. 4b illustrate respectively the front and the rear view of the configuration after a quarter of revolution. 
The free blade interacts with the first next (attached) blade. Fig. 5a and Fig. 5b illustrate respectively the front view and 
the rear view of the configuration after half a revolution. The free blade remains between the linked blades and the 
casing. Due to the friction law, the attached blades bend. The head of the free blade enters into contact with the fifth 
linked blade. Fig. 6a and Fig. 6b illustrate respectively the front view and the rear view of the deformation after three 
quarters of a revolution. The head of the free blade has led the fifth blade to bend significantly, and the free blade is 
pushed towards the rear of the casing. Fig. 7a and Fig. 7b illustrate respectively the front view and the rear view of the 
results after a revolution. The free blade was pushed away from the disk so that the remaining interactions only occur 
between the linked blades and the casing. 
 

  
Fig. 5. Configuration and equivalent plastic strains after half a revolution, a- front view, b- rear view. 

Fig. 5. Configuration et déformations plastiques équivalentes après un demi tour, a- vue de face, b- vue de dos. 
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Fig. 6. Configuration and equivalent plastic strains after three quarters of revolution, a- front view, b- rear view. 

Fig. 6. Configuration et déformations plastiques équivalentes après trois quarts de tour, a- vue de face, b- vue de dos. 
 
The total force on the bearing is illustrated at Fig. 8a. It appears that this force is linear during the first instants, when 
the bearing reacts to the presence of an unbalanced shaft. But when the free blade interacts with both the linked blades 
and the casing, the force starts oscillating. The time evolution of the force on the casing (Fig. 8b) results from the 
interaction of the blades on the casing and the force oscillates during the whole simulation.  
  

  
Fig. 7. Configuration and equivalent plastic strains after a full revolution, a- front view, b- rear view. 

Fig. 7. Configuration et déformations plastiques équivalentes après un tour complet, a- vue de face, b- vue de dos. 
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Fig. 8. Time evolution of the clamping forces, a- casing, b- bearing. 

Fig. 8. Evolution temporelle des forces d’encastrement, a- carter, b- palier. 
 

 
CONCLUSIONS  

 
In this paper we proved that new developments in the study of the implicit schemes stability allow us to compute 
complex dynamics such as a blade loss problem. Advantages of the implicit scheme compared to the explicit one are its 
stability in the non-linear range that is mathematically proved and its ability to use large time step size. For the present 
simulation, the mean implicit time step size is equal to about 1.8 µs and the explicit critical time step is equal to 0.07 µs. 
But thanks to the automatic Hessian matrix update and time step computation, the implicit steps are not much more 
expensive that the explicit ones. The implicit simulation is therefore twice cheaper than the explicit one. 
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