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Abstract

We propose a micro-mechanical numerical model able to predict the nonlinear behavior and failure of
unidirectional fiber reinforced high-crosslinked epoxy subjected to transverse loading conditions. Statistical
microstructural volume elements (SMVE) of a realistic composite material are generated from the statistical
characterization of the fibers distribution and fiber radius estimated from SEM images of a similar material
system. The fibers are assumed to be transversely hyperelastic isotropic and the matrix obeys a hyperelastic
viscoelastic-viscoplastic constitutive model enhanced by a multi-mechanism nonlocal damage model. This
polymer model captures the pressure dependency and strain rate effects. Besides, it also accounts for size
effects through its internal length scales, allowing capturing, with the same unique set of parameters, the
behaviors of the epoxy as pure material as well as matrix phase in composites, which are experimentally
observed to be different. Additionally, since fiber/matrix interfaces of the considered composite material are
categorized as strong ones, the true underlying failure mechanism is located in the matrix close to the fibers,
and the interface does not need to be explicitly introduced in the model. The model prediction is found to
be in good agreement with experimental results in terms of the global nonlinear stress-strain curves over
various strain rates and pressure conditions, on the one hand for pure matrix samples, and on the other hand
for the composite coupons, making the proposed framework a predictive virtual testing facility for material
design. Finally, using this model, we study the localization behavior in order to characterize the post-failure
behavior of the composite material: the cohesive strength is given by the stress-strain curve peak stress
while the critical energy release rate is estimated by evaluating the dissipated energy accumulated during
the post-peak localization stage. Finally, different SMVE realizations are considered allowing assessing the
discrepancy in the failure characteristics of composites.
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1. Introduction

Nowadays, fiber reinforced materials are widely used in various fields of engineering applications because
of their exceptional properties. The fabrication and testing of the composites are generally costly and time-
consuming. Therefore, numerical methods should be used in order to facilitate and accelerate the evaluation
process of a new material. The mechanical behavior, in particular when studying failure, of this kind of
material depends on the details of their material microstructure including the mechanical behavior and the
complex spatial arrangement of their constituents. Macroscopic cracks generally result from the damage and
failure events at the microstructure level, including matrix localization under shear bands, matrix cracking,
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fiber /matrix decohesion, fiber breaking, and delamination. As a result, the damage and failure modeling of
composites requires a multiscale approach incorporating the lower scale mechanisms.

In a homogenization-based multiscale approach, the homogenized properties are estimated from mi-
croscale models and are transferred to an upper-scale problem. On the one hand, two-scale homogenization
frameworks are accurate tools incorporating directly the material behavior through multiple scales, see the
review [I]. In this approach, a finite element (FE) simulation is performed at the macroscale and the con-
stitutive relations at each macroscopic material point of interest (integration point in the context of FE)
are estimated “on the fly” from the resolution of a microscale model defined at that point. This two-scale
strategy has been considered not only for continuous problems but also for discontinuous problems with
evolving damage and failure. In the latter cases, the representativity of the microscale problem is lost dur-
ing the softening stage and, as a result, the homogenized stress-strain response depends on the dimensions
of the microscopic problem: a larger dimension along the loading direction leads to a more pronounced
snapback in the stress-strain response. However, the objectivity with the dimensions of the microscopic
problems can be recovered, e.g. in terms of a homogenized Traction Separation Law (TSL) [2 B] governing
a Cohesize Zone Model (CZM). Although two-scale approaches can be considered for structures made of
composites, a simulation still requires a lot of computational resources and computational time, in particular
when dealing with the material failure. On the other hand, a numerical homogenization is more attractive
from the computational efficiency. This approach assumes a closed form of the homogenized constitutive
relations and the microscale models are used to calibrate the underlying constitutive parameters [4]; there is
no coupling between the macroscale and microscale problems but the relevant information from microscale
simulations is accounted for. The homogenized constitutive relations consist in material responses under the
form of strain-stress curves to model the pre-failure stage, but they can also consist in homogenized TSL in
order to model the failure onset and crack propagation using CZM [4]. In this case, the TSL combines the
material cohesive strength (denoted by o.) and fracture energy (denoted by G.) to describe the resistance
of crack lips opening. The shape of the TSL (such as linear, exponential, polynomial, monotonically, etc.) is
generally postulated since it is less important than o. and G, [5]. However, the two homogenization-based
multiscale approaches require an accurate microscale model of the composite material, which is the objective
of this paper.

At the microstructure level, among various possible models, computational micromechanics provides
an accurate framework allowing directly relating the homogenized material behavior to its microstructure
evolution [I]. In case of fiber reinforced composites, this technique can predict the mechanical behavior,
including the failure mechanisms under complex loading conditions, as demonstrated by numerous numerical
studies [0l [7, [3] and references therein as a non-exhausted list. The finite element (FE) simulations are carried
out on statistical microstructural volume elements (SMVE), extracted from the composite microstructure, by
considering either single loading modes (tension, compression, and shear) or combined loading modes. The
constitutive laws of fibers, matrix and of their interfaces are explicitly introduced. From the computational
point of view, computational micromechanics plays as a virtual experiment facility in which a parametric
study, including the influence of the constituent properties as well as the microstructure topology, is easily
conducted on the mechanical response and the microstructure evolution of the composite material.

However, microscale simulations remain highly challenging. In general each constituent of the composite
material, the polymeric matrix in particular, requires a complex material model and the identification of its
parameters. One methodology is to test pure polymer samples in order to identify their material parameters,
assuming that the polymer behavior is the same as in the composite material. However this assumption is
still uncertain [8], and a reverse engineering step is usually conducted to evaluate the polymer response of the
composite material matrix, which prevents the models to be predictive. Moreover the microstructure suffers
from uncertainty [9], which should be accounted for in the virtual testing. Finally, in order to be able to
consider composites failure, since o, and G, are two relevant parameters of the homogenized cohesive laws,
they need to be estimated in an efficient and accurate way. The value of o, is easily estimated from the stress-
strain curve. However, the value of GG, should be estimated by accumulating the dissipated energy during
post-peak localization stage. One should note that these two parameters are dependent on the stress-strain
state applied to the microscale problem during the virtual test. Therefore, the micromechanics numerical
simulations should be carried out with complex mechanisms involving softening and possible snapbacks in
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order to extract these relevant parameters, which requires the development of a robust framework under
localization.

The objective of this work is to provide an efficient virtual testing facility for carbon fibers/high-
crosslinked RTM6 epoxy composites allowing the nonlinear behavior, as well as the material cohesive strength
and fracture energy, to be estimated in an predictive way. To this end we aim at addressing the issues that
have been pointed out.

The first difficulty addressed in this paper is the modeling of the matrix behavior in the composite
material. The mechanical behavior of the high-crosslinked RTM6 epoxy was studied experimentally in
[10] with a set of mechanical tests at various levels of triaxiality (such as shear, uniaxial tension, uniaxial
compression) as well as of strain rates. Rate-dependent behavior of this epoxy resin can be modeled either by
a viscoelastic-viscoplastic model [I1]], by a viscoplastic-damage model [I0] or by a viscoelastic-viscoplastic-
nonlocal damage model [I2]. This epoxy resin can be used as the matrix of a unidirectional composite
of carbon fibers and experimental testing of cubic samples made of this composite was performed under
uniaxial compression at various strain rates [8]. The manufacturing of the tested cubic samples was made
through a resin transfer molding (RTM) process in order to perfectly replicate the curing conditions of
the bulk matrix (high-crosslinked RTM6 epoxy resin) which was considered in [I0, 12]. As a result, the
constitutive model developed for the RTM6 epoxy resin in [I0, 2] could have been used to represent the
matrix behavior under the assumption that the responses of the RTM6 epoxy as a bulk material and as
a composite material phase are identical. However, using the constitutive model developed and identified
by [10] within a composite material leads to FE predictions underestimating the experimental values of the
peak stress [§]. An assumption to explain this discrepancy is the existence of a length scale effect in the
irreversible behavior of the epoxy [8]. The presence of fibers embedded in the matrix (e.g. fiber diameter,
fiber spacing) should be included in the constitutive relation of the matrix by a material length scale. The
constitutive model developed in [I2] allows incorporating such a length scale. In this work, we will show that,
because of this length scale, a unique set of material parameters allows modeling the pure resin behavior
and the composite material response in good agreement with the corresponding experimental measurements,
making the numerical framework predictive.

The second point addressed in the work is to carry out numerical tests on the SMVEs representative of
a real microstructure: the sizes and spatial distribution of carbon fibers must closely correspond to the ones
of the real microstructure. Most of available numerical studies have made the assumption of a periodic fiber
arrangement in the matrix, see e.g [I3] for generating periodic and random SMVEs. However this periodic
assumption acts as a constraint of the microstructure generator and makes the distribution of the fibers far
from the real one: the real microstructure of composites possesses a high irregular dispersion of fibers, which
has a significant effect on the failure/damage initiation and evolution under certain loading conditions. In
this work, statistically equivalent random microstructures are generated using the statistical information of
real microstructures [9].

The third difficulty addressed in this paper is to model the composite material post-softening response.
The transverse failure mode (including matrix failure and fiber/matrix debonding) is often considered as
the first failure mechanism which leads to the deviation of the material behavior from linear elasticity.
Transverse tensile loading results in the matrix cracking and/or fiber/matrix debonding [I4] while the
failure under transverse compressive loading is controlled by the localization of the matrix plastic strain
along shear bands; interface decohesion develops afterwards around these bands; and final fracture occurs
by matrix cracking [6]. However, the failure scenario at matrix/fiber interfaces is not clear by the fact
that the true failure mechanism can be either due to the failure of the interfacial bonding or to the failure
of the matrix close to the fiber (so-called interphase). From the experimental tests performed by [14]
on composites with weak and strong fiber/matrix interfaces, the SEM results show that the dominating
failure mechanism in case of a weak interface is a true interfacial failure while in case of a strong interface
the dominating failure mechanism is an interphase failure. Strong interfaces lead to a very small number
of isolated interfacial cracks occurring at each fiber before the sudden ply failure occurs transversely. In
contrast, many interfacial cracks grow and connect to a macroscopic crack when the load is increased in
the case of weak interfaces [I4]. After ultimate fracture, fibers surfaces are observed to be almost totally
covered by the matrix in the interphase failure whereas neat carbon fibers are observed in the interfacial
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failure. Clearly, in composites with weak interfaces, the fiber/matrix debonding must be explicitly modeled
to correctly capture the initiation and propagation of micro-cracks. In composites with strong interfaces,
because the true failure mechanism is the matrix cracking, the failure of the matrix and of interfaces is taken
into account using a damageable constitutive model for the matrix so that fiber/matrix debonding does not
need to be explicitly modeled. Since the fiber/matrix interfaces of the considered composite material is
categorized into the strong ones [14], they are not explicitly modeled and it will be demonstrated that the
damageable matrix model developed in [I2] can capture the failure pattern. However, in order to conduct
the simulations, the numerical framework ought to be developed in a robust way able to capture local and
global softening, as well as snapback behaviors. The finite element resolution of the boundary value problem,
defined by the SMVE geometry, the constituents material behaviors, and the boundary condition, follows
a standard procedure based on an incremental Newton-Raphson iterative scheme. Nevertheless, on the one
hand, an incremental control purely based on monotonically increasing the external load cannot pass the
limit point, and, on the other hand, an incremental control purely based on prescribed displacements cannot
follow a snap-back unstable behavior. To overcome these problems, the path following technique based on
dissipation constraint [I5] is extended in this work to account for the physical nonlinearities due to high
strain localization.

The paper is organized as follows. The constitutive models of fibers and matrix are described in Section
Section 3| presents the computational framework of the virtual test. In particular, the nonlinear subscale
boundary value problem is detailed with its corresponding boundary conditions and the extraction of the
material strength and fracture energy. Identification of the material parameters and experimental validation
are conducted in Section {| for several loading strain rates and pressure conditions. Finally, the material
strength and the critical energy release rate of the considered composite material are extracted in Section

2. Constitutive models

This section presents briefly the constitutive laws used to describe the behavior of the fiber and matrix
phases in fiber reinforced composites. The constitutive models are formulated in large strains using the total
Lagrange formulation. The material point x in the deformed configuration is characterized by a two-point
mapping x = x (X, t) where X is its reference location in the undeformed configuration. This mapping leads
to the definition of the deformation gradient tensor F

F=x®Vyg=I4+u® Vy, (1)

where u = x — X denotes the displacement vector. The stress measure is the first Piola-Kirchhoff stress
tensor P, which is energetically conjugate to F. While the fibers are considered as a transversely isotropic
and linear elastic material [3], the matrix obeys the multi-mechanism nonlocal damage model proposed in
[12]. The interfaces between matrix and fibers are assumed to be perfectly coherent.

2.1. Fiber phase

When considering transverse mechanical behavior of the unidirectional fibers reinforced composites, an
isotropic elastic model is generally assumed for the fibers since only the plane strain deformation mode is
considered, see e.g. [7]. In that case, the transverse Young’s modulus of the fibers should be used. In
this work, a general large strain hyperelastic model is applied with a view toward general three-dimensional
simulations, see e.g. [3].

The fibers follow a transversely isotropic hyperelastic model characterized by a neo-Hookean strain energy
U = U (C), where the C = F7-F is the right Cauchy-Green tensor. Considering the transversely isotropic
properties of the fibers, U, can be decomposed into two parts such as

P (2)

where i;” and \I/}m are respectively the isotropic and transverse components.



A transversely isotropic elastic material is characterized by the following parameters:

Er=E, =FE, # E3 = Ey; UTT = Vi3 = Va1 # V13 = V23 = UTL;
Grr = Gi3 = Ga3 = G3; Grr = G2 = ﬁ, (3)

where the subscript “3” refers to the fiber direction. Along this direction, the Poisson’s ratios are not
symmetric but instead satisfy v;;/E; = vj;/E; (no sums).
The isotropic energy part is a function of C as

. 1 1
‘111;0 = §G12 (Il —3) —GlglogJ+§)\log2J, (4)
where Iy =trC, J = v/det C = det F, and G132 and A are material constants. The transverse energy part is
obtained from a generalization of the model proposed by [16]

1
\Ij?‘n = [atrn + 2ﬂtrnan + ’Ytrn(I4 - 1)}(1—4 - ]-) - iatrn(-[fi - 1)3 (5)
where I and I5 are respectively defined by
IL,=A-C-Aand y=A-C? A, (6)

with the unit vector A defining the main direction of orthotropy (fibers direction) in the undeformed
configuration and where i, Birn, and Y are material constants. The model parameters of Egs. and
are A\, G12, Qrn, B, and g and follow from the measured properties (3) as

)\ . ET (VTT + HV%L> o ET
m(l+vprr) 12 2(1+vrr)’
Qtrn = G12 - G3 5

Er [nvry (1 + vor — voL) — v

6trn = )

4m (1 + VTT)
E,(1—vprr) A+2G12  ogm
Ytrn 8m 8 + 2 Btrn )
2 Er,
m = 1—vpr—2nvy,, and n = —. (7)
Er

The first Piola-Kirchhoff stress tensor can be estimated from the strain energy given by Eq. by

_ 0¥y

U
P QF.Q

O a - 2F {AInJC™ + G12(T— C™Y) + 284 (14 — 1)C™F + 2[agm + 2BymIn +

2'Ytrn(I4_1)]A®A—Oétrn(CA®A+A®CA)} (8)

2.2. Matriz phase

The matrix, e.g. epoxy, exhibits rate-, time-, pressure-, and temperature-dependent mechanical response
[10]. Under uniaxial compressive loading, the whole stress-strain curve can be divided into multiple stages,
see Fig. [Th. After an elastic stage at small strains, a prepeak nonlinear stage continues until reaching a peak
stress. After this peak value, the stress tends to decrease with increasing deformation. This effect is called
softening. At large strains, when the softening is saturated, a rehardening stage takes place. After the onset
of failure, the failure stage sets in until reaching total failure. Under uniaxial tensile loading, the rehardening
stage is not present as the failure stage follows the peak stress. In order to capture the multi-stage behavior
reported in Fig. [Th, the hyperelastic viscoelastic-viscoplastic material law enhanced by a multi-mechanism
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Figure 1: (a) Typical stress-strain curve of amorphous glassy polymers under uniaxial compressive and tensile loading conditions
at a constant strain rate [I0]; and (b) Modeling strategy [12].

damage model proposed in [I2] is used. In this work, the ability of the constitutive model developed in [12]
to capture size effects in composites will be demonstrated. Since the details of the model can be found in
[12], only its key features are recalled in this section.

The softening and failure phenomena are addressed in the context of the continuum damage mechanics
[I7]. Under the assumption that the strain measure in the current configuration and in its undamaged
representation are equivalent, the first Piola-Kirchhoff stress P is given by

P=(1-D)P, (9)

where D is the damage variable which is equal to 0 for intact materials and to 1 when the full failure occurs,
and where P denotes the first Piola-Kirchhoff stress tensor in the undamaged representation, so-called the
effective first Piola-Kirchhoff stress tensor, which is determined from a hyperelastic potential ¥ such as

L OV,
P= oF (10)

The modeling strategy to capture the multi-stage behavior reported in Fig. [Th. is schematically demon-
strated in Fig. . From the undamaged stress-strain law & = 6(¢), the softening stage is modeled using
a softening variable, denoted by Dg, whose evolution obeys a saturation law, which tends to a saturation
value Dgo, when strains increase. When D is saturated, the rehardening stage sets in since the hardening
of the undamaged part is still developing. After the onset of failure is detected by a failure criterion, the
stress decrease is modeled using a failure variable, denoted by Dy. The value of Dy ranges from 0 at the
onset of failure to 1 when final failure occurs. Finally, since two distinct softening variables (Ds and Dy)

are used, the damage variable D is expressed by
D=1-(1-Dy)(1—Dy). (11)

In the following, the viscoelastic-viscoplastic constitutive law specified in Eq. is first briefly recalled.
Then the evolution laws for the softening and failure variables are provided. The fully implicit integration
scheme of this elasto-visco-plastic constitutive law can be found in [12].

2.2.1. Viscoelastic-viscoplastic constitutive model
Following the standard decomposition in elastoplastic materials at finite strains, the deformation gradient
tensor F is decomposed into a recoverable viscoelastic part, denoted by F¥¢ and an irrecoverable viscoplastic



part, denoted by F"? such that
F=F". .F"", (12)

The viscoelastic effect is captured using a viscoelastic potential based on the generalized Maxwell model.
After some mathematical manipulations, see [12] for details, the effective constitutive relation following Eq.

is expressed by

P=F"r. (+ : ngi > FrT (13)

where 7 = 9V, JOEV¢ is the stress measure energetically conjugated to the viscoelastic logarithmic strain
tensor EY¢ = In vV FveT . Fve so-called the corotational Kirchhoff stress

?(t):[ (C”e(t—s):6%2(8)5157 (14)
with
(C”e(t):2G(t)<I—;I@I)—FK(t)I@I. (15)

In this last equation, I and Z are respectively the second and the fourth order symmetric identity tensors;
G(t) and K(t) are respectively the shear and bulk relaxation functions, which are expressed using Prony
series

Glt) = G + f: G exp <—;) s and K(t) = Koo + f: K; exp <—t) , (16)

i=1 i i=1 ki
where g; and k;, with ¢ = 1,..., N, are the shear and volumetric relaxation times; G; and K;, with i =
1,..., N, are the shear and bulk moduli, and G, and K, are the permanent elastic shear and bulk moduli.

The viscoplastic flow is modeled using the Perzyna-type viscoplastic flow rule [18], which can be expressed
by the following relation

. 1 1 0P
e e (- a7)
n ot
where D? is the viscoplastic strain rate, F' is the yield function, P is the flow potential, n is the viscosity, p
is the rate sensitivity exponent, and (F) = (F + |F|) /2. Clearly, if F < 0, plastic flow does not occur since

DP = (. The yield function F' and the plastic potential P are given as follows

po Q)" _mioltrg mtm (18)
m-+1 o, m—+1

3
Geg =/ odeve:deve, tré = ¢y ,m = -,
2 O¢

where ¢ = 7T — b is the combined stress tensor; b is the backstress tensor defined to capture the re-
hardening effect; o. and o; are the isotropic compressive and tensile yield stresses respectively; m is the
tensile/compression yield anisotropy; and «a and § are material constants.

The hardening effects are introduced through the evolutions of the isotropic compressive hardening
stress o., the isotropic tensile hardening stress o, and the backstress tensor b with respect to the plastic
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deformation state. From the viscoplastic deformation tensor specified in Eq. , the equivalent plastic
strain is defined by

A= L\/DP :Dr, (19)

1/1—&-2u§

where v, is the initial plastic Poisson’s ratio, which relates to the parameter 5 used in the flow potential in
Egs. (18], with

9-20
=" 2
AT DY (20)
The hardening evolution laws are given by
b= H,(7) D", 6. = He(7)¥,and 6, = Hy ()7, (21)

with the initial conditions b (y = 0) = 0, 0. (y = 0) = 02, and o, (y = 0) = ¢?. In the last equations, Hj,
H., and H; are respectively the kinematic, isotropic compressive, and isotropic tensile hardening moduli,
and 00 and ¢! are respectively the initial yielding compressive and tensile stresses.

2.2.2. Softening model

The phenomenological softening variable Dy is introduced to capture the softening effect. Therefore the
evolution of Dy obeys a saturation law, and tends to its saturated value Dy, (with Do < 1) when strains
increase. Following [12], this saturation law is given under an explicit form

Ds = Hs (xs — XsO)CS (Dsoo — Ds) Xs » and (22)
Xs (t) = max (x50,7 (1) ;7 € [0 1]),

where H,, (s, and D, are material constants, where x,o is the onset of the softening stage, and where ¥
is the nonlocal plastic strain, which is estimated from a Helmholtz-type equation [19]

¥ —Vo-csVoy =1, (23)

in order to overcome the issue of mesh dependency that appears with local damage models [I9]. In the last
equation, ¢, is the square of the softening nonlocal length scale. This intrinsic length allows interactions
between neighboring material points, so that not only this mesh-dependency numerical deficiency is resolved
but the size effect observed during this stage can also be captured. Equation can be integrated, leading
to

Dy = Dy {1 — exp (— Csh-r: 1 (xs — XSO)CS'H) } . (24)
2.2.3. Failure model

The onset of failure is detected through a pressure-dependent failure criterion in order to capture the
pressure sensitivity process. Since in this work we are interested in a high-crosslinked epoxy matrix, instead
of using a stress-based criterion as considered in [I2], a criterion of the failure onset based on the equivalent
plastic strain should be used [I0], with the general form

Oy =vy—aexp(—bT)—c=0, (25)

where the stress triaxiality is estimated by T = ;:" , With Teq =4/ %devi‘ : dev 7, and where a, b, and c are
q

e

material constants. After the onset of failure defined by Eq. , the evolution of the failure surface follows
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the Kuhn-Tucker condition
oy —r<0, 7#>0,and 7(Py—1r)=0, (26)

where r is a non-negative variable, whose initial value is equal to 0, introduced to follow the maximal failure
criterion ever reached in the loading loading history. Equation allows defining the failure plastic strain,
denoted by vy, whose evolution is estimated by

0 ifr=0
Yp = ’ 27
K {ﬁ if 7> 0. 27
The failure variable Dy is driven by the nonlocal failure plastic strain following

Dy =Hy(xp)¥ (1-Dys)~* Xy, and (28)
Xy (t) = max (¢ (7);7 € [0 ¢]),

where Hy > 0, (¢ > 0, and (4 > 0 are material constants and where 7, is the nonlocal failure plastic strain,
which is estimated from another Helmholtz-type equation [19]

¥ — Vo -cyVoyr =7y . (29)

In this last equation, cy is the square of failure nonlocal length scale, which is also introduced in order to
overcome the issue of mesh dependency. This intrinsic length allows resolving the loss of ellipticity of the
boundary value problem and its susceptibility to size effects. Equation can be integrated, leading to

Cr+1
Dy=1-|1- <Xf>
Xfe

where x . is the critical nonlocal failure plastic strain, which satisfies Dy (x5 = xs.) = 1 and is related to
the other constants by

1
FES

; (30)

1
1 ¢ +1\T
c = _ . 31
X (Hf<d+1> (3D

When x5 > xyc the material is completely damaged and the integration point should be removed from
computation since its load capacity no longer exists possibly leading to convergence issues. To avoid this
problem, a smooth function XF =X} (xf) is considered for the nonlocal failure plasticity such that Eq.

can be rewritten as
X\ Gt Py
Dy=1-— 1-(!’) : (32)
Xfe

. Xf if xf < X}e»
Xr = X .
TVt (e =) [Lmew ((525)] i <o

where
(33)

In the last equation, x7%, is the onset value of the smooth stage. In this work, a fixed XFe = 0.8xc is used.

2.83. Dissipated energy .
At an arbitrary material point, the total internal power is given at time ¢ by P : F. The reversible part
of the internal power at time ¢ is determined by ¥ where ¥ is the hyperelastic potential. The dissipated
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part denoted by T is then estimated by
T=P:F-U. (34)

Following the second law of thermodynamics, the Clausius-Duhem inequality T > 0 must be satisfied.
The fibers are modeled as a purely elastic behavior, so that Ty = 0. For the matrix, the dissipated rate
is given by

Y,=P:F—-17,,, (35)

where W,, is the elastic potential, which is estimated from its undamaged counterpart \i/m following Eq.
, with, at a given damage state D,

U, =(1-D)¥,,. (36)

The multiplicative decomposition 1] leads to F = Fv¢ . Fv? 4 F*¢ . F*P from which Eq. can be
rewritten as

Y, =P: (F : F“”) P (Fve : F”P) (1= D), + VD, (37)

in which ¥,, = (1-D) W,, —¥,,D is used following Eq. . Since following Egs. @ P: <F“e . F”P) =
(1-D) \i!m, Eq. 1i can be rewritten as

Y =P: (F -va) +¥,D. (38)
This equation shows that the dissipated energy results from plastic deformation and from the damage

evolution. From the definition of the effective corotational stress following Eq. , this last equation is
eventually rewritten as

T,=01-D)7:D"+¥,.D. (39)

3. Computational framework

Figure 2: A typical microscopic volume element for virtual test with boundary parts 0Vy = 95, Vo U OrVo U 91V U OV and
control nodes 1, 2, and 4. Two unit vectors Nr and N7 normal to OgrVp and 91 Vy, respectively, are also shown.
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The basic of computational micromechanics is to evaluate the homogenized response for a specific loading
path by resolving a microscale boundary value problem. This section provides a virtual experiment testing
methodology using the constitutive models presented in Section [2] to predict the homogenized behavior of
fiber reinforced composites. Since we are interested in unidirectional composites, two-dimensional problems
are considered but the strategy can be extended to three-dimensional cases. A rectangular SMVE denoted
by Vp is considered, see Fig. [2| Its external boundary 9V, can be divided into 4 non-overlapping parts, with
OVy = 0. Vo UOrVy U OrVy U O Vy, which are distinct at the 4 corner nodes. The set of interfaces between
the fiber and the matrix, so-called internal boundary, is denoted by 9;Vy. One can also define N as the
outward reference unit normal vector and N’ as the reference unit normal vector of 9;Vy, which is oriented
from the fiber to the matrix.

3.1. Microscopic boundary value problem with multiple nonlocal variables
Because of the constitutive law of the matrix material, which is modeled with the multiple-mechanism
nonlocal damage model, the microscopic BVP follows a multi-variable nonlocal continuum where the nonlocal
equations must be simultaneously solved with the equilibrium stress equation. In the absence of
body forces, the local strong form is given by the following system of equations
P-Vyg=0
’3/ — VO . CSVO’V =7 on VO . (40)
Yt = Vo VoY =7s
The weak form of the strong form is stated as finding (u,%,7y) such that

(- (P-Vo))y, =0
(3 =Vo-csVo7 =7y, =0 V (0, %,7¢) kinematically admissible . (41)
((Br = Vo cVoir =vp) Ay, =0

In these last equations, <0>V0 is the volume averaging operator over the SMVE, with

1

O = o (42)

where e represents an arbitrary quantity and where |Vj| denotes the volume measure of the domain V.
By applying the integration by parts and Gauss’ theorem, the weak form can be rewritten as

(P:(a®Vo))y, — iy Jor, 0 TdA=0
(¥ =M +esVo7 Vot = wrp Jov, s Vo7 - NYdA+ g [y [e5Voy3] - NP dA =0, (43)
(B =) 37 +¢rVo¥s - Vodn)y, = wir Jov, ¢ Voly - NipdA+ g [ 4, [er Voyris] - NP dA =0,

where T is the traction vector per unit reference surface of 9V
T=P-N, (44)

and where [e] and (e) are respectively the jump and mean operators defined at the interface between fibers
and matrix with

(.matrix + .ﬁber) .

®|| = ®matrix — ®fiber »
{[[ | = o 45)
2

From the weak form , the boundary conditions must be defined not only for the displacement field
u but also for nonlocal variables 4 and 7y, especially those at the fiber/matrix interfaces. In principle, the
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boundary conditions for nonlocal variables are introduced at 0V, and 9;Vj in such a way that the following
equations are a priori satisfied [20]

favo csVo7 -NYdA =10,

fz‘?Vo crVoiy - N’Lyf dA =0,
faIVD [esVoy7] - N'dA =0,
fano [[CfVo’?f’i/f]] -NldA=0.

The details of these boundary conditions are discussed in Section[3.4l With the boundary conditions specified
in Egs. , the weak form is written under the simpler form

(46)

(P:(a® Vo))y, — iy Jor, 0 TdA=0,
(F=MA+csVoy - Vody, =0, (47)
(G =70) 9 + ¢V - Voy)y, = 0.

In the next Section, the boundary conditions are specified in order to satisfy a priori the Hill-Mandel
principle.

3.2. Hill-Mandel principle and homogenized quantities

The Hill-Mandel condition, so-called the macro-homogeneity condition, allows considering mechanical
constitutive relations through different scales in a consistent way [I]. The most common condition refers to
the equality between the deformation power at a macroscopic point and the volume averaging deformation
power over the whole SMVE, yielding

<P:F>V0:13:F, (48)

where P is the macroscopic first Piola-Kirchhoff stress tensor and where F is the macroscopic deformation
gradient tensor. Using the integration by parts and the local equilibrium equation specified in Eq. , Eq.
can be rewritten as

— [ w-TdA=P:F. (49)
Vol Jav,

Clearly, P : F is the external power which drives the deformation state of the microscopic boundary value
problem. From Eq. , the weak form (47) is rewritten as

(P:(a® V), —P:F=0,
¥=7)7+¢sVoy- Voy)y, =0, (50)
Tt =)V +¢rVoir - Voip)y, =0.

{

Once the Hill Mandel condition is satisfied following Eq. , the macroscopic quantities are estimated
by volume averaging

F = <F>V , and (51)
P = <P>VO' (52)

Following an integration by parts and the Gauss’ theorem application, these last two equations are rewritten
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as

F - [ 4oNdA. and (53)
Vol Jov,

p - ' [ Texaa. (54)
Vol Jov,

The microscopic boundary condition of the displacement field u is chosen in order to satisfy a priori
the Hill-Mandel condition (49) and Eq. . The latter leads to the kinematically admissible space of the
displacement field while Eq allows defining the ones of the nonlocal variables. When only the integral
forms are considered to define the boundary conditions, the weakest kinematic constraints are
obtained. In the context of the kinematically admissible finite elements, stronger conditions are generally
used. The periodic boundary condition (PBC) is often used in combination with the assumption of the
periodic distribution of fibers. Although the SMVE generated following [9] is generally not periodic, the
periodic boundary condition is still favored as it improves the convergence rate [2I]. Because the PBC
results in a SMVE deformed shape compatible with the periodic assumption, multiple localization bands
can appear in the post-peak localization stage, which is nonphysical since only one band develops [22]. This
nonphysical result can be avoided using orthogonal uniform mixed boundary conditions [3], or the minimal
kinematic boundary condition [23] in which the localization direction can freely develop, or the percolated
path-aligned boundary condition [22] in which the boundary condition is adapted with the direction of the
localization band. Under tensile loading conditions, experimental and numerical studies reveal that the
failure band is perpendicular to the loading direction [7]. When only one localization band develops, the use
of the periodic boundary condition is still valid. Under compressive loading, the failure pattern is oriented
with an angle so that multiple failure bands occur [0], and the use of the periodic boundary condition after
the onset of localization is not appropriate [22]. In this work, only PBC is considered: under tensile loading,
the failure characteristics are extracted, while under compressive loading only the material strength is of
interest for validation purpose.

3.83. Boundary condition for the displacement field

Figure 3: Periodic boundary conditions

The periodic boundary condition (PBC) of the displacement field u adds extra constraints to the ones
defined by Egs. . The whole boundary 0V can be decomposed into negative and positive parts
such that 0_Vy = 0,V U0V and 0, Vy = OrVp U OpVy. Each material point X~ € 0_V matches with a
material point X € 9, Vj to form a couple of matching nodes (X, X 1), see Fig. |3 The periodic boundary
condition is then expressed by the periodicity of the displacement field and anti-periodicity of the traction
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field on the matching nodes, such that
a(XH) —a(X7) = F- (Xt -X7), (55)
T(X*) = —T(X*)

where F is the homogenized deformation gradient given in Eq. . With the use of the PBC, the left hand
side of the Hill Mandel condition is rewritten as

1

* T~1'1dA:/ T (X' X )dA:F=P:F, (56)
Vol Javs, 9_Vo

since the homogenized stress is estimated by Eq. . Therefore, one can conclude that the PBC satisfies
the Hill-Mandel condition. For general non-periodic meshes, the point-to-point constraints expressed in Eq.
cannot directly be applied. This problem can be resolved with the interpolation method proposed by
[21], in which an interpolation form is introduced to approximate the PBC, such as

u(X7) =Yr N (X)), (57)
0(X) =L N (XT)V +F - (X - X)),

where Zfil N; (X~)v? is the interpolation form of degree N, which is defined from the discrete field v¢ and
its shape functions N; (X7), with ¢ =1,..., N.

3.4. Boundary conditions for nonlocal variables

The boundary conditions related to the nonlocal variables are defined in order to satisfy a priori Eqs.
(46). If no other constraints are considered, Eq. leads to the following homogeneous Neumann-type
boundary condition [19]

Vo -N'=0, on Ty, (58)

where ¢ is a nonlocal variable representing either 4 or 47, where I'y = 9V, U 9V, and where N!' is the
outward unit normal of 'y in the reference configuration (either N of 9V, or N’ of 9;V;). Equation
implies an insulating condition, in which no direct nonlocal energy exchange exists with the surroundings of
the body bounded by T'y: the net dissipation in this body vanishes for constant damage [20]. If the boundary
of interest is the boundary of the SMVE, the influence of the surrounding is always present so that this
insulating statement appears to be too ideal. When multiple materials are present (fiber and matrix in
composites), the nonlocal energy exchange across the dissimilar interfaces needs to be considered. If the
condition is still used, the nonlocal energy exchange across the dissimilar interfaces is suppressed and
the ability of the elastic region to influence damage growth in the process zone is limited, preventing length
scale effects to be accounted for.

A complete discussion on the thermodynamics aspects of the boundary condition for nonlocal variables
can be found in [20]. In this work, the boundary conditions of the nonlocal variables are derived from
the weak conditions given in the system of Eqgs. (46]). Using the decomposition of the boundary 9V} into
negative and positive parts as sketched out in Fig. (3 the two first equations of the system of equations (46))
can be rewritten as

{ Jov [esV oA - N~ dA =0, [, [e; Voisis] - N-dA =0, (59)

where the definitions of the jump and mean operators expressed in Egs. are extended onto the external
surface V) by

{[[-]>] = (X*) —e(X7), (60)

() =3 [e(XT) +e(X7)],
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where X € 07V, matches X~ € 97V} to form a matching nodes pair.
Using the equality [ab] = [a] (b) + (a) [b] with two arbitrary quantities a and b, the system of equations

becomes
/F (Vo] - N () + (Vo) - N [¢]) dA =0, (61)

where ¢ represents a nonlocal variable, and where ¢ is the square of its nonlocal length. In order to satisfy
a priori Eq. , I’y is divided into different non-overlapping subsets such that 'y = | J; 'y, and one of the
three following possible kinds of boundary conditions is used for the nonlocal variable ¢ on each I'} C Ty

i) Fixation:
¢ =0onT}. (62)

ii) Isolation:
Vop-NY=0, onT. (63)

iii) Balance:
. NF = .
{%;ﬂvip(]l 0 on I'y. (64)

One can find that the condition is a full kinematic constraint, which is equivalent to the linear
displacement boundary condition of the displacement field, Eq. is equivalent to the constant traction
boundary condition and Eq. is equivalent to the periodic boundary condition of the displacement field.
Note that the variational statement does not require to constrain directly the condition [¢Vo¢] - N =0 in
the last condition while kinematic constraints on the nonlocal variable ¢ = 0 or [¢] = 0 must be directly
enforced in the context of kinematically admissible finite element. Since the damage variables are defined
as functions of the nonlocal variables, the condition suppresses the damage band extending to the
boundary of the domain. Therefore, the conditions and are considered in this work.

3.4.1. At the external boundary OVy

At the external boundary 0V}, the boundary condition for nonlocal variables should be compatible with
the ones of the displacement field. Since the PBC is used for the displacement field, the balance condition
is used for both ¥ and 7;.

The implementation of the point-to-point constraints [¢] = 0 requires periodic meshes. As the mesh is
not periodic in general, the interpolation method [21] is used as with the periodic boundary condition of the
displacement field expressed in Eq. , leading to

() = p (K%)= YoMy (X ¢ @

where ¢ represents either 7 or 7y, and where Zf\g MY (X ™) ¢ is the interpolation form of degree M ¥, which
is defined from the discrete field ¢’ and its shape functions MY (X~), with i = 1,..., M¥. In all generalities,
the interpolation forms of the nonlocal variables and the one of the displacement field are independent. In
this work, the same forms are used, so that N = M7 = M7 and N; (X~) = M] (X~) = M/ (X~), with
i=1,...,N.

3.4.2. At the internal boundary 0;Vy
For the nonlocal plastic strain field 7, either the isolation condition or the balance condition
can be used a priori at the internal boundary 9;Vy. However, we will show in the next section, that only
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the balance condition can be used to introduce a length scale effect resulting from the presence of fibers
within the matrix.

For the nonlocal failure plastic strain field 7y, since the failure occurs at the interphase region close to
the fiber, the isolation condition should be used.

3.5. Finite element resolution

Unlike the FE? scheme in which the microscopic boundary value problem is directly driven by the
macroscopic deformation gradient available at every macroscopic material point, a virtual test is performed
under a prescribed deformation mode. Several components of the homogenized deformation gradient tensor
as well as of the homogenized stress tensor are unknown. Therefore a specific strategy is proposed to obtain
the prescribed deformation mode:

e Control nodes are defined on which prescribed displacements or prescribed forces are applied in order
to obtain the prescribed deformation mode; they are denoted by 1, 2, and 4, see Fig. [2}

e The microscopic boundary conditions described in Section [3.3] and Section [3.4] are used and specified
by relating the degrees of freedom of other nodes to the ones of the control nodes, i.e. nodes 1, 2, and
4 shown in Fig.

e The finite element discretization of the weak form combined to the micro-scale boundary condi-
tions listed here above results in a system of multi-point constraints, which can be treated through
the unified scheme developed in [24].

When snapback occurs, a path following technique must be used to follow the whole fracture process.
In this case, the procedure described above is mandatory since prescribed forces must be used instead of
prescribed displacements. Besides, the response of a structure made of dissipative solids generally follows
an irreversible equilibrium path, which is characterized by an increase of the dissipated energy. The total
dissipated energy, denoted by Ty, , can be estimated by

Ty, (t):/v/otﬁfmdtdw (66)

where T, is locally estimated by Eq. . As a result, by constraining the amount of the dissipated energy
Ty, at each increment step, the equilibrium path can be automatically traced [I5]. This virtual testing

strategy using the path following technique based on dissipated energy is detailed in

3.6. Extraction of the homogenized properties

The homogenized behavior, i.e. the homogenized stress evolution in terms of the homogenized
deformation gradient , is obtained by volume averaging. As a result, the macroscopic Cauchy stress is
computed by
P -FT, (67)

6’:

=

where J = det F is the macroscopic Jacobian. During the softening stage, the homogenized response in
terms of stress and strain measures depends on the dimensions of the microscopic problems. However,
the objectivity can be recovered by considering the homogenized TSL [2, B]. The homogenized TSL can
be directly estimated on-the-fly for concurrent multiscale simulations [25]. However, this work focuses on
non-concurrent simulations and on the extraction, from the resolution of the microscopic problems, of the
cohesive strength, denoted by ., which characterizes the onset of the creak nucleation, and the critical
energy release rate, denoted by G., which characterizes the total fracture energy released per unit crack
surface opening. The extraction of these two parameters is detailed in the following.

After the onset of microscopic localization, a macroscopically homogeneous state cannot be considered
over the SMVE, but a homogenized elastic state can be enriched by a cohesive band I'g, whose unit normal
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(a)

Figure 4: Enrichment of the position field: (a) position distribution of the microscopic problem after the onset of localization,
(b) equivalent inhomogeneous homogenized state with an embedded cohesive layer I'g whose unit normal vector is N. The
discontinuous position field is enriched by a cohesive jump using the Heaviside function Hr.

vector is N, at the location of the microscopic localization band, see Fig. Although the microscopic posi-
tion field does not exhibit sharp discontinuity, the macroscopic one is enhanced with a cohesive discontinuity
as

% =%+ Hp, A, (68)

where X is the macroscopic position vector, X¢ is its continuous counterpart, Hr, is a Heaviside function over
Ty, which is a discontinuous step function, and where A is the homogenized cohesive jump. The macroscopic
deformation gradient is then estimated using the volume averaging principle (51

((x+ Hr,A) 2 V)

= <§6®V() +6FOA®N>

= A - —
= F°+2A@N, (69)
Vo

F

Vo

Vo

where F¢ is the macroscopic continuous deformation gradient, Hr, ® Vo = o, N is defined using the Dirac
function dr,, and where

Ay = 51‘0 dv . (70)
Vo

From the last equation, Ag represents the homogenized crack size embedded in the SMVE.
By applying the Hill-Mandel principle (48]) using the macroscopic deformation gradient given in Eq.

, one has

VO<P:F> :Vol_D:Fc—i—AOT:A7 (71)

Vo
where the cohesive traction T is given by

T-P.N. (72)

Equation can be integrated from the onset of microscopic localization occurring at time #'° until final
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failure, leading to

+o00 . +oo +oo .
VO/ <P:F> dt:VO/ P:cht+A0/ T Adt. (73)
tloc Vo tloc

tloc

Since an elastic contribution is released through an elastic unloading state over the continuous part F¢ of
the SMVE, one has

—+oo —+oo .
VO/ <P:F> dtho/ P:Fedt =T - T, (74)
tloc Vo tloc
where 'I'IVOOC and T‘{}éd are respectively the accumulated microscopic dissipation values over the SMVE at the
onset of microscopic localization and at the final failure states. These quantities are estimated using Eq.
. Moreover, the critical energy release rate is estimated by

+o0 .
G, = T-Adt. (75)

tloc

As a result, the critical energy release rate can be extracted from the microscopic accumulated dissipation
by the following equation

end loc
o T

76
= (76)
The cohesive tension magnitude, denoted by &, is defined in the current configuration as
g =|lo-nf, (77)
where ||| = /o - @ is the vector norm, and n is the unit normal vector of the localization band in the current

configuration, which can be estimated from its reference counterpart and the macroscopic deformation
gradient at the onset of microscopic localization using Nanson’s relation as

F7.N
PN

ﬁ:

(78)

The cohesive strength o, is then defined by the maximal value of the cohesive traction magnitude, such as

. =max o (7);7 € [000)] . (79)

Total failure

Unloading path Onset of localization

loc
Ty /
» 0

Onset of dissipation

Figure 5: Failure diagram representing the dissipated energy as a function of the magnitude of the cohesive traction.

18



Both the cohesive strength &. and the critical energy release rate G. can be deduced from the failure
diagram of the evolution of the total dissipated energy with respect to the magnitude of the cohesive
traction, as shown in Fig. [}] Under macroscopic loading condition, the accumulated dissipated energy and
the magnitude of the cohesive traction are evaluated from Eq. and Eq. . The cohesive traction
in the current configuration is considered in order to detect the onset of strain softening while the total
dissipated energy is estimated in the reference configuration since the constitutive formulation follows the
total Lagrange formalism. From this diagram, three distinct stages are observed

e The linear elastic stage is characterized by a zero dissipated energy.

e The prepeak nonlinear stage starts from the onset of the dissipation until reaching the peak cohesive
traction. In this stage, the damage of material constituents diffuses in the whole microstructure. This
part of the dissipated energy scales with the volume of the microstructure.

e The post-peak localization stage is characterized by a decrease of the cohesive traction from its peak
to zero, which corresponds to the total failure at the microscopic scale. Clearly, this stage definition is
based on the assumption that the crack nucleation occurs at the peak value of the cohesive traction.
Since the localization starts developing at the microscopic scale, the dissipated energy released during
this stage does not scale with the volume of the microstructure. At the same time, the macroscopic
crack nucleates and develops. From the balance of the dissipated energy, the total energy dissipated at
the macroscopic scale by the homogenized TSL should be equal to the total dissipated energy released
during this stage.

From the failure diagram, the dissipated energy cannot decrease as a result of the second law of thermo-
dynamics. An elastic unloading step corresponds to a constant dissipated energy. Finally, the two relevant
parameters of the homogenized cohesive law are estimated using Egs. .

4. Material constituents parameters identification and experimental validation

In this section, the behavior of carbon fibers reinforced high-crosslinked epoxy matrix is studied using
the micromechanics model developed in Section The matrix is the RTM6 epoxy resin that has been
experimentaly tested in [I0]. Unidirectional composites slabs with carbon fibers were manufactured by
RTM in order to perfectly replicate the curing conditions of the bulk matrix. An analysis of micrography
obtained with an optical microscope at randomly chosen spots in the slab enabled the calculation of an
average fiber volume fraction of around 40%. The details about fabrication and testing procedures can be
found in [8]. The testing results are used in this work for identification and validation purposes. The SMVEs
are first defined from the geometrical measurements. Since the constitutive model of the matrix relies on
the phenomenological consideration, its parameters are then identified based on experimental stress-strain
curves. Because of the length scales incorporated in the constitutive law, a unique set of material parameters
can be found to capture the experimental stress-strain curves of pure resin and composites.

4.1. Definition of the SMVEs

In order to perform the numerical simulations with a realistic microstructure of fiber reinforce composites,
the fiber distribution and the fiber diameters must be close to the ones of the real microstructure. For this
purpose, the composite microstructure is generated from the statistical characterizations estimated from
SEM images of a similar material system [9] but limiting the average volume fraction of fibers to 40%. The
generating procedure in [9] can be summarized as follows:

(1) extract the statistical characterizations of the microstructure from SEM images of a similar material
system;

(ii) construct a micro-informatics model able to generate microstructure satisfying the same statistical
indicators;
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Figure 6: Some SMVEs of dimensions of 40 ym x40 ym.

(iii) generate a large microstructure using this micro-informatics model;

(iii) extract SMVEs by moving a window of given sizes throughout this large microstructure; as a result of
the existing randomness, the volume fraction of fibers in each SMVE is not equal to 40%;

Fig. |§| shows 4 SMVEs with a moving window of dimensions 40 ymx40um. Clearly, with this methodology
there is no periodicity of fiber distribution on the opposite edges of an SMVE as it is a part of a real
microstructure, for which such a periodicity is not observed. Adding a periodicity constraint on the boundary
for SMVEs of reduced sizes would actually modify the microstructure statistical characteristics. However
the periodic boundary condition can still be enforced with the use of the interpolation method proposed in

21].

4.2. Identification of model parameters

Table 1: Material parameters of the carbon fibers from [3]

Longitudinal Young’s modulus Ey, 230 [GPa]
Transverse Young’s modulus Er 40 [GPa]
Transverse Poisson’s ratio vrr  0.20 []
Longitudinal-Transverse Poisson’s ration  vpr  0.256 []
Transverse shear modulus Grr 16.7 [GPa]
Longitudinal-Transverse shear modulus ~ Gpr 24 [GPa]

The carbon fibers are assumed to be linear elastic and transversely isotropic as presented in Section
2] Their material constants are reported in Tab. [[ The RTM6 epoxy matrix follows a viscoelastic-
viscoplastic-damage model as discussed in Section Following [12], its model parameters are calibrated
against the experimental results in the cases of the pure RTM6 epoxy resin subjected to uniaxial tensile and
compressive loading conditions. However, this set of material parameters is not unique. As demonstrated in
Fig. [7} without considering the failure stage, the same stress-strain curves can be obtained by simultaneously
modifying the hardening moduli given by Egs. and the saturation softening law given by Eq. .
Clearly, each set of parameters is characterized by a given value of Dyy,. The identification procedure
performed in [I2] cannot be used to predict Dsy, since this parameter does not affect the global result when
only uniform and uniaxial tensile and compressive tests are used. It motivates using other tests in which the
nonlocal softening variable D, exhibits localization. In this work, the identification considers the uniaxial
compression tests of composites performed in [8] in combination with the experimental tests of the pure
RTMS6 epoxy resin performed in [12].

4.2.1. Pre-failure parameters of the RTMG6 resin
In this section, only the parameters related to the softening law are identified: the other model parameters
identified in [I2] are reported in Tabs. 2] and [3] Therefore, while the parameters listed in Tabs. [2] and
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Figure 7: Different saturation softening models leading to the same stress-strain curve.

Table 2: Viscoelastic material parameters of the RTM6 epoxy resin from [12]

Number of Maxwell elements: 4 Ey =380 [MPa] g1 =k1 =7000 s
Eo = 2450 [MPa] E; =190 [MPa]  gy=ky=70 s
V= 0.39 [ E3 =95 [MPa] g3 =k; =07 s

- E, =48 [MPa] g1 =ks =007 s

remain unchanged, the expressions of the saturation softening law and of hardening moduli previously
identified in [12], and reported in Tab. {4 for indication purpose, are modified.

The experimental results of the pure RTM6 resin tests conducted in [12] are first considered. The stress-
strain curve under uniaxial compression at a constant engineering strain rate of —1.41072 s~ ! is used as
the reference curve. The same calibration procedure used in [12] is reconsidered with other values of Dgqo:
0.31, 0.51, and 0.62. The new saturation softening laws and new hardening moduli are reported in Tab.
The stress-strain curves using these parameters under compressive and tensile loading conditions are shown
in Figs. and b, respectively. The nonlocal length scale of the nonlocal softening variable does not affect
the global result since the deformation state is uniform.

The saturation softening law governs the evolution of the softening damage Ds whose value is limited by
the saturation value Dy, < 1. In this case, the material never loses its entire load bearing capability. Once
Dy is saturated by its limit value, the loss of ellipticity no longer occurs and the local formulation should
follow [26]. This decreasing nonlocal effect can be obtained by decreasing the nonlocal length scale when Dy
develops [26]. For this purpose, the nonlocal length scale is defined as a function of the softening variable
itself

D,
DSOO

cs =17(1— ), (80)
where [ is the initial nonlocal length scale of the softening variable. Clearly, when Dy = D, ¢ vanishes and
the local formulation is recovered. In order to directly integrate the effect of fibers, a fixed value [ = 3 pm,
which is the average radius of fiber [9], is considered in this work.

When considering the nonlocal interaction of the softening variable, the boundary condition of the non-
local plastic strain at interfaces of fibers and matrix must be correctly chosen between the two possibilities
described in Section balance and isolation conditions. The influence of these kinds of boundary con-
ditions is analyzed through a numerical test. The first SMVE of dimension 40 pmx40 um in Fig. [0 is

Table 3: Viscoplastic material parameters of the RTM6 epoxy resin from [12]

Yield exponent a 3.5 [-]
Initial plastic Poisson’s ratio v, 0.3 [-]
Rate sensitivity exponent p 0.21 [-]
Viscosity parameter n  310* [MPa-s]
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Table 4: Parameters of saturation softening and of hardening moduli of the RTM6 epoxy resin from [12]

Data identification | Properties Unit
D, =0.2[1— exp (—457?)] -]
0¥ =48 [MPa]

Do —0.2 o) =384 [MPa]

see H, =4180exp (—767) [MPa|
H; = 3344 exp (—76) [MPa]
Hy, = 340y — 132042 + 4400+° [MPa]

Table 5: New parameters of saturation softening and of hardening moduli of the RTM6 epoxy resin

Data identification | Properties Unit
D, =0.31[1 — exp (—117)] -]
o0 =48 [MPal]
B oV = 40.8 [MPa]
Dioo = 0.31 H,. = 3932.5exp (—557) [MPa]
H, = 3342.6 exp (—557) [MPa]
Hy, = 428.57 — 1663.572 + 5545+ [MPa]
D; =0.51[1 — exp (—217)] ]
o0 = 48 [MPa)
_ o) =40.8 [MPa]
Dioo = 0.51 H. = 5267.5 exp (—437) [MPa]
H; = 44774 exp (—43y) [MPa|
Hy, = 849.6~ — 3298.672 + 10995+ [MPa]
D, =0.62[1 — exp (—307)] []
o0 =48 [MPal]
B o9 = 40.8 [MPa]
Disoo =062 H. = 6475exp (—377) [MPa]
H, = 5503.8exp (—377) [MPa|
Hy, = 1412.7y — 5484.872 + 18283~3 [MPa]

loaded by a uniaxial compression at a true strain rate of —1072s~!. The numerical results are shown in
Figs. Pp and b, for respectively the balance and isolation conditions. The experimental results provided in
[8] for compressive loading of carbon fibers reinforced RTM6 matrix are also reported. On the one hand,
Fig. [Op shows the numerical results using the isolation condition. Clearly the stress-strain responses are
not sensitive to the saturation softening and quite far from the experimental one. As a result, the isolation
boundary condition for the nonlocal plastic strain should not be used. On the other hand, the numerical
results using the balance condition are sensitive to the saturation softening. The higher the value of D is,
the higher the peak stress is obtained. By the fact that the objective of this work is to find a set of material
parameters that allows capturing not only the behavior of pure RTM6 matrix but also its behavior within
composites, the balance condition is a better choice compared to the isolation one. Note that in the current
constitutive model, the compressive peak stress is mainly due to the presence of the softening variable while
failure variable develops later after satisfying the condition of the failure onset expressed in Eq. .

Since the microstructure variability is an important factor that affects the homogenized prediction, a set
of 10 SMVE realizations of dimension 40 ymx40 um is considered, and the values of Do, ranges from 0.2
to 0.62 for each realization. The experimental results in [8] obtained at a true compressive loading of strain
rate —1072s~! are considered as reference. The comparison between numerical and experimental results is
shown in Fig. and confirms that D, = 0.62 is an accurate value. The set of parameters characterized
by Dss = 0.62 is chosen for the following analyses as it provides predictions in a good agreement with
experimental results performed on pure RTM6 resin and on composite materials.
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Figure 8: Model predictions with material data reported in Tab. [5|compared to the experimental results for compressive stress-
strain response of the RTM6 epoxy resin: (a) under uniaxial compression at a constant engineering strain rate of —1.41073
s~! and (b) under uniaxial tension at a constant engineering strain rate of —1.11073 s~1.
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Figure 9: Influence of boundary condition of the saturation nonlocal variable % on interfaces between the fibers and the RTM6
matrix at a true strain rate of —1072s7!: (a) balance condition and (b) isolation condition. Experimental results conducted
on fiber reinforced RTM6 matrix from [8] are also reported.

4.2.2. Post-failure parameters of the RTM6 resin

Once the material parameters governing the behavior prior to the onset of failure are obtained, the
ones governing the failure phase must be identified. The onset of failure is detected using Eq. (25 whose
parameters were provided in [10]. However, since the current material formulation is not the same as the
one considered in [I0], the constants are modified by a factor f such that Eq. can be rewritten as

O =7 — flagexp (—boT) — co] =0, (81)

where ag = 0.04042, by = 7.815, and ¢y = 0.02558 [I0]. Since the material strength under uniaxial compres-
sive loading at a constant engineering strain rate of —1.41073 s=! is approximately equal to 210 MPa [12],
the coefficients of the failure surface are given by

a =0.03428 ,b = 7.815, and ¢ = 0.02169. (82)

The nonlocal action of the failure variable is in all generality independent to the one of the softening
variable. In this work however, their nonlocal length scales are assumed to be the same in order to ease of
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Figure 10: Influence of Dsso on compressive responses of fiber reinforced RTM6 matrix at a true strain rate of —10~2s~ 1,

the identification process, leading to

cs = I*(1-="),and (83)

cp = 12 (84)
Moreover, the critical energy release rate during the failure process under a specific loading condition, so-
called G, is directly related to the nonlocal length scale and the failure law specified by Eq. . This
failure law is characterized by three parameters: (f, (4, and x .. By using ¢y = 1 and {4 = 0.3 as considered
n [12], the failure law is then controlled by xy. only, see Fig. , where it can be seen that increasing
Xfc decreases the damage rate, leading to a more ductile behavior. The value of G. ~ 86.5 J - m~—2 was
found for the pure RTMG6 resin through experimental tests [27]. Moreover, the value of [ = 3 pm is fixed as
described in the previous section. As a result, as G. and ! are known, the parameter x . can be deduced
by performing a virtual failure test as explained here below.

1-

0.8 t

Figure 11: (a) Influence of x ¢, on the failure law and (b) cylindrical specimen of radius R and of length L considered in order
to determe the critical energy release rate under uniaxial loading.

A virtual test using an axisymmetrical finite element formulation under a uniaxial loading condition is
performed over a cylindrical specimen made of the pure RTM6 epoxy matrix, see Fig. [[Ip. The virtual
specimen is defined by a length of Ly and a radius of Ry. Since the finite element resolution converges when
decreasing the mesh size as a result of using an implicit nonlocal formulation [I9], a mesh sensitivity analysis
was first performed to define the mesh for the subsequent analyzes. A very small reduction of the bar radius
at the center is introduced to trigger localization deformation without affecting prelocalization stress-strain
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curves. The elastic and plastic viscosity effects are not considered since the path following method based on
the increase of the dissipated energy described in Section [3.5|is used because of the presence of the snapback
for values of L larger than [. From the total dissipation estimated by Eq. , the energy release rate G,
can be computed using Eq. . Because Ag = mR3, one has

end loc
_ TVO — TVO

G.= 85
¢ TR32 (85)
The true stress across the cylinder is estimated by
F
g = T_Rz s (86)

where F is the longitudinal reaction force and where R is the current (in the deformed configuration) smallest

cross-section radius. The value of TI‘EOC is measured when o reaches its maximal value, which is by definition

Oe.

100 ¢
90
80 r

70 ¢

G, (J-m™2)

60 r

50 : : : ‘
006 008 01 012 0.4

Xf
Figure 12: Influence of xf. with [ = 3 um, Lo = 10l, and Ro = 0.21.

From Eq. , clearly G is a function of Lg, Ry, [, and x .. With the use of a dimensionless analysis,
see[Appendix_B]|for details, one can introduce the dimensionless critical energy release rate that is a function
of x . only when the values of Ly and Ry are respectively large enough and small enough in comparison with
the value of [. The evolution of G., which depends on x. only (and of course on the material parameters),
and not on the geometrical parameters, is depicted in Fig. for { =3 pm, Lo = 10!, and Ry = 0.2]. From
the value of G, ~ 86.5J - m~2 of the pure RTM6 resin [27], the value of y ;. = 0.117 is found.

4.3. Validation

In the previous section, the set of material parameters of the RTM6 epoxy resin was identified from
experimental measurements of the pure matrix at a constant engineering strain rate of —1.41072s~! and
of the composite at a constant true strain rate of —1072s~!. This set of material constants is used in
this section to predict, not only the mechanical behavior of the pure RTM6 resin, but also the one of
the composites at other strain rates. It will be shown that the predictions are in good agreement with

experimental measurements.

4.3.1. Pure matrix

Figures|13|and [14] depict the comparison between the numerical predictions and the experimental results
of the pure RTM6 epoxy resin under various constant engineering strain rates under uniaxial compression
and uniaxial tension respectively. Under both uniaxial compressive and tensile loading conditions, a good
agreement is obtained. Compared to the numerical prediction in [I2], in which a rate independent failure
surface is used, the new failure surface expressed by Eq. allows modeling the effect of the strain rate
on the onset of failure.
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Figure 13: Model predictions compared to the experimental results of pure RTM6 epoxy resin under uniaxial compression: (a)
full range and (b) zoom at small strains. Experimental results from [12] are also reported.
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Figure 14: Model predictions compared to the experimental results of pure RTM6 epoxy resin under uniaxial tension. Experi-
mental results from [I2] are also reported.

4.8.2. Composite material

In case of composites, the 10 SMVEs used in Section [:2.1] are reconsidered but this time by incorporating
the failure model. Fig. shows the numerical predictions in comparison with the experimental results
obtained at constant true strain rates of —1072 s7!, —1072 s7!, and —107* s~!. They display a good
agreement for all three values of strain rates. Since the experimental specimens exhibit sudden failure, the
experimental stress-strain curves do not exhibit the softening parts contrarily ot the numerical predictions.

Figure[16|shows the evolution of the distribution of the total damage variable D for the SMVE realization
illustrated in Fig. [Bh. The damage localizes in the matrix under the shape of shear bands, which are inclined
to the loading direction in accordance with the literature, see e.g. [7]. Multiple localization bands appear
as a result of using the PBC.

5. Application: extraction of the composite material failure characteristics

Once the material parameters of the fibers and of the RTM6 epoxy resin are identified, the homogenized
cohesive properties, see Egs. , are extracted from the post-softening behavior.

To this end, and in order to study the size objectivity, a sequence of SMVEs of increasing dimensions is
created, namely 20 pumx20 ym, 20 pumx40 ym, 20 pumx60 ym, and 20 ymx80 ym SMVEs are successively
considered. For each size, several realizations are generated using the method described in Section see
Fig. [[7)which provides one realization for each size. Due to the microstructure variability, the volume fraction
of each realization deviates from the nominal value of 40% with an error smaller than 5%. A uniaxial tensile
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Figure 16: Distribution of the total damage variable D for the SMVE realization illustrated in Fig. @1: (a) prior to the
localization onset, (b) at the onset of localization, and (c) after the onset of localization under constant true strain rates of
—1072 s 1.

loading is applied along the vertical Y-direction. Since the numerical model possibly exhibits snapback,
the rate-independent case is considered by setting all viscoelastic and viscoplastic material constants to
zero. As a result, the path following framework described in Section [3.5] is used to follow the homogenized
stress-strain curve from the beginning up to the total failure.

The homogenized responses are shown in Fig. in terms of the homogenized Cauchy stress component
oyy evolution with the loading component of the deformation gradient Fyv — 1. The difference in the
homogenized responses of the different SMVEs increases with the applied deformation. The prepeak response
seems to be objective with the SMVE dimension although some discrepancies are observed since the SMVE
are not statistically representative. In the post-peak localization stage, the larger the SMVE dimension
along the loading direction, the more pronounced the snapback is in the homogenized response. Figure |18b
depicts the failure diagrams in terms of the evolution of the homogenized dissipation density, defined as the
total dissipation divided by the SMVE volume, as a function of the homogenized Cauchy stress component
yy-. The difference in the responses of the homogenized dissipation density increases during the loading
process in accordance with the observations from Fig. [I8h. As stated at the beginning of this work, the
dissipation accumulated during the post-peak localization stage does not scale with the SMVE volume.
Therefore the larger the SMVE volume is, the lower the accumulated dissipation density is.

Although the homogenized stress-strain curves and the failure diagrams in the post-peak localization
stage depend on the SMVE sizes, the material strength and critical energy release rate characterizing the
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Figure 17: A SMVE realization with increasing dimensions: (a) 20 umx20 pm, (b) 20 ymx40 ym, (c) 20 umx60 ypm, and (d)
20 ymx80 pm.

)

homogenized cohesive law can be extracted using Egs. . As demonstrated through different studies
[2, B], the objectivity of these homogenized quantities with respect to the SMVE dimensions is recovered.
Since the distribution of fibers in different realizations of SMVEs is not the same, different values of the
cohesive strength and of the critical energy release rate are extracted. The numerical results of the cohesive
strength and of the critical energy release rate are shown in Figs. [[Oh and b, respectively, in terms of the
average values and their deviations. Only a slight sensitivity of the average values of these two parameters
with the SMVE size is observed, that supports their SMVE size independence. Both parameters have a wide
deviation for the different realizations of the same size. Since only 10 realizations are considered for each
SMVE size, the real discrepancy of these material characteristics is not correctly captured: more realizations
and varying the SMVE width would be required to conduct a statistical analysis.

Figures [20] and [21] show respectively the distribution of the total damage variable D at peak stress
and at total failure for the SMVE realizations illustrated in Fig. The damage localization bands are
perpendicular to the loading direction in accordance with literature, see e.g. [7, [3]. By the fact that the
interfaces between fibers and matrix are not considered, the failure of composites occurs by the failure of
the matrix region close to the fibers. It is also observed that the damage localizes in regions where the fibers
are closely packed because of the high stress concentration developping in the fibers ligaments. As a result,
the fibers ligament distance is an important factor controlling the failure behavior of the unidirectional
composites under transverse loading, which justifies the use of statistical indicator to generate the micro-
structures [9].

6. Conclusion

The present work provides an efficient virtual testing facility for composites based on a nonlinear com-
putational micromechanics model.

The numerical simulations are performed with SMVEs generated using the statistical information of a
real microstructure with a highly irregular dispersion of fibers. A viscoelastic-viscoplastic-damage model
accounting for the pressure dependency and strain rate effects is used to model the matrix bahvior. This
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Figure 19: Extraction of cohesive parameters: (a) cohesive strength 3. and (b) critical energy release rate G as functions of
the SMVE size. Average values and their deviations are reported.

model is enhanced by multi-mechanism nonlocal damage variables to model post-peak softening and failure.
At fibers/matrix interfaces, the isolation condition is considered for the nonlocal failure plasticity variable
and the balance condition is used for nonlocal saturation plasticity variable in order to correctly capture the
interaction between the fibers and the matrix.

Size effects are incorporated in this constitutive model through the nonlocal length scales, which allow
capturing, in good agreement with the experimental results, the behavior of the pure matrix and of the
composite material in terms of the global stress-strain curves over various strain rates.

Under monotonic loading applied to the composites, the homogenized stress-strain behavior starts with
a linear elastic stage followed by a prepeak nonlinear stage; after that the post-peak stage lasts until the
total failure. When the size of the SMVEs increases, a snapback possibly occurs. This kind of behavior is
captured using the path following method based on the dissipation increment. This finite element resolution
is applied to study the material strength and critical energy release rates of composites under uniaxial
tensile loading with a sequence of SMVEs of increasing sizes. These failure characteristics are found to
be objective to the SMVEs size despite of the existence of wide deviations due to the randomness in the
microstructures. Although matrix/fiber decohesion is not considered for the composites under investigation,
the failure of the matrix is observed to occur close to the fibers. In the regions with highly packed fibers,
the stress concentration is more pronounced. Therefore, the distance of the fibers ligaments is one of the
most important factors that affects the failure behavior of the composites. Since only a small number of
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Figure 20: Distributions of the total damage variable D in the matrix at peak stress of SMVE realizations illustrated in Fig.
(a) 20 umx20 um, (b) 20 wmx40 um, (c) 20 pmx60 pm, and (d) 20 umx80 wm.

realizations is considered for each SMVE size, the real discrepancy of these material characteristics is not
correctly captured. In a future work, a more extended statistical study will be conducted using this current
framework.
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Appendix A. Virtual testing strategy

The response of structures made of dissipative solids generally follows an irreversible equilibrium path,
which is characterized by an increase of the dissipated energy. In this section, the resolution of the weak
form follows the path following technique based on the increase of the dissipated energy. This modeling
strategy is detailed in this section.

Appendiz A.1. Homogenized deformation gradient driven by control nodes

First, F is eliminated from the system of equation using the displacements of the control nodes 1,
2, and 4, see Fig. [2| for their positions. The periodicity constraint of the displacement field leads to

{g — =F (Xo - X)) iy — iy = F- (X4 - X)) | (A1)
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Figure 21: Distribution of the total damage variable D in the matrix at final failure of SMVE realizations illustrated in Fig.
(a) 20 umx20 um, (b) 20 wmx40 um, (c) 20 pmx60 pm, and (d) 20 umx80 wm.

from which, the homogenized deformation gradient F is expressed as

- (1p—10;)®Ng (1y — 1) @ Np
P A2
X Xi| KX (4.2)

where Ni = ﬁ and Np = ‘ X1|

Appendiz A.2. Weak form

The external power performed over the SMVE is given by the right hand side of the Hill-Mandel condition
([49), which is expressed using Eq. (A.2) as

P:F= Cr Ly ST g + £y, (A.3)
where £f7t, £57¢ and f{®' are the external force vectors exerted at the control nodes and given by
fert PNp _ _PNp
1 lljxl\zl Xl X=X
t_ ,
f5ot = P al (A.4)
fe:vt _ _P-Np
[Xa—X4]

Using the external power given in Eq. (A.3)), the weak form is rewritten as

(P (@@ Vo))y, — (B -ty + 57 ity + £ - iy) = 0,
:Y_’Y)’LY'FCSVO’Y'VO;)/)VO =0, (A.5)
V=) +¢rVovs - Voyp)y, =0.
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The SMVE domain Vj is discretized into finite elements such that Vy = J, Q. The test and trial functions
are defined over an element 2§ in terms of the standard interpolation concept

{q(X €%) =N(X)q over €, (A.6)

a(Xef) =N(X)q°

where q° denotes the unknown vector over €2, and where IN¢ is a matrix consisting of the shape functions.
With the use of the finite element approximation expressed in Eq. (A.6), the weak form (A.5) yields the

following discrete nonlinear equation
Q (Fint _ Femt) =0, (A?)

where F™ and Fe** are respectively internal and external force vectors, and where Q is the unknown vector
including both displacement and nonlocal unknowns.

Appendiz A.3. Multiple constraint resolution

By replacing the homogenized deformation gradient F in the kinematic constraints by the one
expressed in Eq. (A.2)), one has

{u(X) Y N (X o . (A8)
WX = O N () v (g — ) ) ) B X |

As there is no void at the boundary of the SMVE, the finite element interpolation over 9V~ can be considered
as the interpolation form N;.

Combining these constraints to the finite element discretization of the SMVE leads to a multi-point
linear constraints system [24]. Following [24], the microscopic boundary condition following Eq. can
be expressed under the matrix form

Cbe = 03 (Ag)

where G, is the constraint matrix, see [24] for its detailed expressions depending on the considered micro-
scopic boundary condition, and where Q, is the constrained unknowns vector.

Equations must be simultaneously resolved. In this work, the resolution strategy follows the
constraints elimination method proposed in [24], leading to

T" (F™ —F<') =0, (A.10)
where T is the constraint elimination matrix which is constructed from Cy, see [24] for details.

Appendiz A.4. Path following technique based on dissipated energy

The nonlinear Egs. (A.10) can be generally resolved by means of an incremental Newton-Raphson
iterative procedure by introducing a scalar A, so-called load factor, such that

Feot = \Fest (A.11)

where F¢*t is the reference load vector which is estimated at the beginning of the simulation. The nonlinear
problem stated by the system of Egs. cannot generally converge in one iteration, therefore the external
loading must be divided into increments until reaching the final value (e.g. A = 1). Under a pure load control
(unknown, force or their combination), the load factor X is prescribed by a monotonically increasing function.
However, a pure force control fails after the peak load as the structure cannot support any positive load
increment, while a pure unknown control cannot be used to follow the snapback behavior since the load
factor must decrease to hold the equilibrium path. These problems can be addressed using a path following
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technique, in which A is considered as an extra unknown in order to follow an arbitrary equilibrium path.
Therefore, an additional constraint, so-called path-following constraint, must be considered to complete the
problem statement. This constraint can be given under a general form

® (U, Uy, A\ A3 Z,2y,) —T7=0, (A.12)

where Z is a vector including all the internal variables; where the subscript n stands for a value obtained at
the previous converged solution; and where 7 is the prescribed path following step.
The residual of the equilibrium system of equations (A.10}|A.12)) is defined as

TT (ant _ /\ﬁ‘ezt)
S -7

R — - m . (A.13)

From (U, A\,), which is the converged solution of the system of equations (A.13)) at time ¢,, the system
state at time t,,41 and at iteration i is denoted by (US_)|r17 ASL), in which U1(104)-1 =U, and /\SLOJ)rl = A\, are

known. The resolution at iteration ¢ + 1 follows the linearized equations

: ,[TTKT —f] (Ul —ul) 0
R’L+1 = R? + |: T :| l TLZ+11 ?“'1 — , (A14)
S| DGO
where the sub-matrices are given by
OF ¢ e 0P 0P
K= f=T"F = — = —. Al
U ’ ext s 8 U ) and h O\ ( 5)

We note that the system (A.14)) only involves the stiffness matrix of the microscopic finite element discretiza-
tion, and not an homogenized material tensor. Its resolution leads to

e o
% i
)‘n+ 1 /\n+1

— FTKT _f] - R’. (A.16)

gl h

The iteration process continues until satisfying a convergence condition. Two criteria must be simultaneously
considered: the one from the unbalance in the forces, and the other one from the path following constraint,
i.e.

HTTFint _ /\TTﬁxemt |(b|
max - ,— | <e, (A.17)
ITTFnt|| + |A| H’H‘TFea:t 7|

where ¢ is the prescribed tolerance.

The path following framework described above is valid for any arbitrary path following constraint. In
this work, this path following constraint is constructed from the dissipated energy evolution as considered
n [I5]. The path following is only applicable in case of rate independent material laws since the load value
at the boundary is also an unknown of the problem; the viscosity effects in the matrix cannot considered.
When the dissipated energy is not always increasing, e.g. during elastic responses, this strategy must be
coupled with another control type [I5]. The easiest way is to couple with a pure load control such as

d=A\N—7=0, (A.18)

where 7; is the prescribed load increment. After the onset of the irreversible regime characterized by TVO > 0,
the path following constraint can be switched to a dissipating regime by directly constraining the amount
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of the dissipated energy per step mp as
@:AT\/O*TD:O, (A].g)

where the increment operator A is defined in comparison with the previous converged solution. The condition
constrains the irreversible equilibrium path to be traced. Clearly, an analysis always starts with a pure
load condition following Eq. 7 which can be switched to the dissipated energy-based control following
Eq. after the onset of the irreversible state. The proposed framework requires two parameters: load
factor and dissipated energy increments to trace the equilibrium path.

Appendix B. Dimensionless analysis

The dependency of the critical energy release rate G, on the nonlocal length [ can be eliminated using
a dimensionless analysis with [ considered as the reference length of the problem.

Considering the setup illustrated in Fig. [IIh, one can define dimensionless length and dimensionless
radius as

Eo = % and RO = %7 (B].)
and Eq. is rewritten as
Ty, (t) = 1Ty, (t) oc (B.2)

where TVU is the dimensionless dissipation, which is given by

_ 1 [t . _
Ty (1) = — /O [ B ava. (B.3)
0

Oc

In this relation V; is the dimensionless volume defined by Ly and Ry, and o, is the material strength, which
is estimated from the evolution of the true stress across the cylinder following Eq. , as

o.=max[o (t);t € [000)] . (B.4)
Using Eq. , Eq. leads to
G. = Glo,, (B.5)
where G is the dimensionless critical energy release rate

Yend loc
— ﬁ , (B.6)
mR32

c

Clearly, G. depends only on the material parameters and on the geometry of the problem but not on the
nonlocal parameter [, such that

Ge = Ge (Lo, Ro, xzc) - (B.7)

Figures and b show the influence of Lo when fixing Ry = 1 and fe = 0.1. The numerical response
does not depend on Ly when its value if larger than 1. Therefore, the value of Lg can be arbitrary chosen
larger than 1. The influence of Ry when fixing Ly = 10 and Xfe = 0.1 is depicted in Figs. and b.
Although the stress-strain curves in terms of the true stress as a function of the radius reduction depend
on Ry, G. seems to be not sensitive to Ry if this value is small enough. From Figs. and b and Figs.
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Figure B.22: Influence of Lo at constant Ro = 1 and constant Xfe = 0.1: (a) stress- strain curve and (b) estimated Ge.
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Figure B.23: Influence of Ry at constant Lo = 10 and constant x s, = 0.1: (a) stress- strain curve and (b) estimated G,

B.23h and b, one can choose Lo > 1 and Ry < 1 from which Eq. is rewritten in the simpler form

G.=G. (Xfc) : (B.8)
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