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Abstract

Recent developments, in non-linear structural dynamics, have led to a new kind of

implicit algorithms: the energy-momentum conserving algorithm and the energy-

dissipative, momentum-conserving algorithm. Contrarily to commonly used algo-

rithms, such as the explicit central difference or the α-generalized method, the

stability of those algorithms is always ensured in the non-linear range, leading to a

higher accuracy. In previous works, we have developed a new formulation of the in-

ternal forces for a hypoelastic model, that leads to an energy-momentum conserving

algorithm. In this paper, we will extend this formulation to an energy-dissipative,

momentum-conserving algorithm. We will prove with an academic example, that

our algorithm is more accurate than the α-generalized method in the non-linear

range. Then we will simulate a blade loss problem to demonstrate the efficiency of

our developments on complex dynamics simulations.
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1 Introduction

When simulating impact problems, time integration of the equations of evo-

lution occurs in the non-linear range. Usually, explicit algorithms are used

in such a context. Nevertheless, due to its lack of stability in the non-linear

range, and its limitation in time step size, an implicit scheme could advan-

tageously be used. The most widely used implicit algorithm is the Newmark

algorithm [1]. For linear models, this algorithm is unconditionally stable. For

non-linear models, Belytschko and Schoeberle [2] proved that the discrete en-

ergy, computed from the work of the internal forces and from the kinetic

energy, is bounded if it remains positive. Nevertheless, since the work of the

internal forces is different from the internal energy variation when the New-

mark algorithm is used in the non-linear range, Hughes et al.[3] have proved

that the Newmark algorithm remains physically consistent only for small time

step sizes. To avoid divergence due to the numerical instabilities, numerical

damping was thus introduced, leading to the generalized-α methods [4]. Nev-

ertheless, the unconditional stability of these methods occurs only for linear

systems or asymptotically for the high frequency in the non-linear range [5].

Therefore, a new kind of implicit algorithm that remains stable in the non-

linear range appeared. The first algorithm verifying these properties was de-

scribed by Simo and Tarnow [6]. They called this algorithm Energy Momen-

tum Conserving Algorithm or EMCA. It consists in a mid-point scheme with

an adequate evaluation of the internal forces. This adequate evaluation was
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given for a Saint Venant-Kirchhoff hyperelastic material. A generalization to

other hyperelastic models was given by Gonzalez [7]. The EMCA was recently

extended to dynamic finite deformation plasticity, with a hyperelastic formu-

lation, by Meng and Laursen[8]. We have recently [9,10] established a new

expression of the internal forces for the hypoelastic materials using the final

rotation scheme. When associated with the mid-point scheme, this expres-

sion ensures the conservation laws of mechanics for a hypoelastic constitutive

model. Moreover, using the radial return mapping, we proved that this adap-

tation remains consistent with the Drucker postulate when plastic deformation

occurs. Nevertheless, if the EMCA remains stable in the non-linear range, the

presence of high frequency modes, resulting from the finite-element discretiza-

tion, can lead to divergence of the Newton-Raphson iterations. Armero and

Romero [11,12] have introduced numerical dissipation in the conserving algo-

rithms, for hyperelastic models. This dissipation only affects the total energy

but preserves the angular momentum. Moreover, it is proved to be stable in

the non-linear range, contrarily to the α-generalized algorithms. It is called

Energy Dissipative Momentum Conserving algorithm or EDMC.

In this paper, we propose to introduce numerical dissipation in our hypoe-

lastic conserving model. The plan is the following. Section 2 will expose the

preliminaries such as the dynamics conservation laws and the finite element

discretization. In section 3, we will recall the EDMC algorithm principles. In

section 4, we will develop a forces formulation for a hypoelastic model that

leads the integration algorithm to verify the energy dissipation and the con-

serving momentum properties. In section 5 we will show the accuracy of our

algorithm on the Taylor bar problem. We will also demonstrate the ability of

theses developments to simulate the complex problem of a blade loss in a aero
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engine. Finally we will draw some conclusions.

2 Preliminaries

In this section we will define the notations in use in this work. Therefore we

will be able to recall the continuum laws. Then we will introduce the finite

elements discretization.

2.1 Notations

Let V ⊂ R
3 be the manifold of the points defining the body and S ⊂ R

3

be the manifold of the boundary. We define two configurations: the initial

configuration referred to by subscript 0 and the current configuration at time

t. Let ρ0: V0 → R+ be the initial density. Boundary S is decomposed into

two parts: the first one S~x is the part where the displacements are known and

the second one S~T is the part where the surface tractions are known. It yields

S~x ∪ S~T = S and S~x ∩ S~T = 0. Let ~x be the current positions and ~x0 be the

initial positions. Therefore, the two-point gradient of deformation tensor is

defined by

F ≡
∂~x

∂~x0
with f ≡ F−1 and J ≡ detF (1)

Conservation of the mass leads to

ρdV = ρ0dV0 and ρJ = J0 (2)

Let X be the manifold of the admissible positions
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X≡
{

~x : V0 → R
3|
[

J > 0 and ~x|S~x = ~̄x
]

∀~x0 ∈ V0

}

(3)

with ~̄x the known positions. Let t be the current time and let T = [0, tf ]

be the integration interval. Therefore, the motion of the body is defined by

t ∈ T → ~x (t) ∈ X. During this motion, the body is subject to specific loads

~b (t) : V0 × T → R
3. Let Σ be the Cauchy stress tensor. Boundary pressures

~TS (t) : S~T 0
× T → R

3 lead to the condition ~TS (t) = Σ (t)~n (t) with ~n the

outward unit normal to S.

The body is now decomposed into finite elements thanks to shape functions

ϕξ: V0 → R with ξ ∈ [1, N ] (N the total number of nodes), and with ϕξ (~xµ0 ) =

δµξ (δ is the Kronecker symbol). It leads for each node ξ ∈ [1, N ]

~x (~x0) = ϕξ (~x0) ~x
ξ , ~̇x (~x0) = ϕξ (~x0) ~̇x

ξ and ~̈x (~x0) = ϕξ (~x0) ~̈x
ξ (4)

where Einstein’s notations are used. Let ~v be an admissible virtual displace-

ment defined by the manifold

D≡
{

~v : V0 → R
3| [~v|S~x = 0 et ~v (~x0, 0) = 0, ~v (~x0, tf ) = 0 ∀~x0 ∈ V0]

}

(5)

Let D
v ⊂ D be the manifold of admissible virtual displacements δ~x that can

be decomposed such as (4).

2.2 The continuous dynamics

The following quasi-variational principle (principle of virtual power of forces)

must hold ∀δ~x ∈ D
v [13, page 412]

∫ tf

0

{
∫

V

[

ρ~̈x · δ~x+ΣT :
∂δ~x

∂~x
− ρ~b · δ~x

]

dV−
∫

S~T

[

~TS · δ~x
]

dS

}

dt=0 (6)
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Integrating by parts, one gets

∫

V

{

ρ~̈x · δ~x
}

dV
︸ ︷︷ ︸

≡δK

=
∫

V

{

ρ~b · δ~x
}

dV +
∫

S~T

{

~TS · δ~x
}

dS

︸ ︷︷ ︸

≡δWext

−

∫

V

{

ΣT :
∂δ~x

∂~x

}

dV

︸ ︷︷ ︸

≡δWint

∀t ∈ T (7)

with δWint, δWext and δK respectively the virtual work of internal forces, the

virtual work of external forces and the virtual work of inertia forces. This

principle leads to the dynamics conservation laws.

2.2.1 Conservation of linear momentum

Let ~L be the linear momentum defined by

~L≡
∫

V

{

ρ~̇x
}

dV =
∫

V0

{

ρ0~̇x
}

dV0 (8)

where Eq. (2) has been used. If δ~x ∈ D
v is taken constant (rigid body trans-

lation), Eq. (7) leads to the conservation of the linear momentum

~̇L=
∫

V

{

ρ~b
}

dV +
∫

S~T

{

~TS
}

dS

︸ ︷︷ ︸

≡~Fext

∀t ∈ T (9)

2.2.2 Conservation of angular momentum

Let ~J be the angular momentum defined by

~J ≡
∫

V

{

ρ~x ∧ ~̇x
}

dV =
∫

V0

{

ρ0~x ∧ ~̇x
}

dV0 (10)

Taking δ~x = ~η∧~x with ~η constant (rigid body rotation), since Σ is symmetric,

and ~η is an arbitrary constant, Eq. (7) leads to the conservation of the angular
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momentum

~̇J =
∫

V

{

ρ~x ∧~b
}

dV +
∫

S~T

{

~x ∧ ~TS
}

dS ∀t ∈ T (11)

2.2.3 Conservation of the energy

Let K, Wint and Wext be respectively the kinetic energy, the internal forces

work and the external forces work, with

K ≡
∫

V

{
1

2
ρ~̇x2

}

dV =
∫

V0

{
1

2
ρ0~̇x

2
}

dV0

Ẇint≡
∫

V

{

ΣT :
[

Ḟf
]}

dV

Ẇext≡
∫

V

{

ρ~b · ~̇x
}

dV +
∫

S~T

{

~TS · ~̇x
}

dS (12)

where Eq. (2) is used. If the internal forces power Ẇint is decomposed into a

reversible part U̇int and an irreversible part ∆̇int ≥ 0 (plastic dissipation, ...)

and if E is the system energy, one gets

Ẇint ≡ U̇int + ∆̇int and E ≡ K + Uint (13)

Therefore, if δ~x = ~̇x, Eq. (7) leads to the first thermodynamics principle

Ė= Ẇext − ∆̇int ∀t ∈ T (14)

2.3 Finite-elements decomposition

Thanks Eq. (2) and to Eq. (4), the discrete terms of Eq. (7) can be rewritten

such that
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δK =
∫

V0

{

ρ0ϕ
ξϕµ

}

dV0

[

~̈x
]µ
· δ~xξ = M ξµ

[

~̈x
]µ
· δ~xξ

δWext=
∫

V0

{

ρ0~bϕ
ξ
}

dV0 · δ~x
ξ +

∫

S~T

{

~TSϕ
ξ
}

dS · δ~xξ =
[

~Fext
]ξ
· δ~xξ

δWint=
∫

V0






ΣT

[

∂ϕξ

∂~x

]T

J






dV0 · δ~x

ξ =
∫

V0

{

ΣT fT ~DξJ
}

dV0

︸ ︷︷ ︸

≡~F
ξ
int

·δ~xξ (15)

where M ξµ is the mass related to nodes ξ and µ and where ~D is the derivative

value, in the initial configuration, of the shape functions (i.e. ~Dξ = ∂ϕξ

∂~x0
). Since

δ~x ∈ D
v is an arbitrary vector, Eq. (7) leads to the balance equation

M ξµ
[

~̈x
]µ

=
[

~Fext − ~Fint
]ξ

∀t ∈ T (16)

To be able to integrate this relation in time, T is decomposed into some inter-

vals [tn, tn+1] such that T =
⋃n=nf

n=0 [tn, tn+1]. Let ∆t = tn+1 − tn be the time

step size. Superscripts n and n+ 1 will refer to configurations in time tn and

tn+1. To be consistent, the integration scheme must verify Eq. (9), Eq. (11)

and Eq. (14).

3 The Energy Dissipative Momentum Conserving (EDMC) algo-

rithm

Once the balance Eq. (16) is established for all times t, this relation must

be integrated in time. To achieve this goal, Armero and Romero [11,12] have

introduced velocities dissipation ~Gdiss and forces dissipation ~Fdiss in Simo and

Tarnow EMCA scheme. Both vectors ~Gdiss and ~Fdiss must be considered si-

multaneously to avoid bifurcation in the spectral analysis of the amplification

matrix. In this section we will present the headlines of the EDMC algorithm.

Then we will propose a predictor-corrector algorithm to solve the set of equa-
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tions. Next we will deduce the conditions on the forces to verify the conserva-

tions laws expressed by Eqs. (9), (11) and (14).

3.1 Description

The relation between positions and velocities at node ξ becomes

[

~xn+1
]ξ
= [~xn]ξ +

∆t

2

[

~̇xn+1
]ξ

+
∆t

2

[

~̇xn
]ξ

+∆t
[

~G
n+ 1

2
diss

]ξ

(17)

This relation is a second order approximation (in ∆t) if ~Gdiss = O (∆t2) and is

a first order approximation if ~Gdiss = O (∆t). A second order approximation

of the relations between the velocities and the accelerations at node ξ is

[

~̇xn+1
]ξ
=
[

~̇xn
]ξ

+
∆t

2

[

~̈xn+1
]ξ

+
∆t

2

[

~̈xn
]ξ

(18)

The balance Eq. (16) is discretized in time at node ξ by

1

2
M ξµ

[

~̈xn+1 + ~̈xn
]µ

=
[

~F
n+ 1

2
ext − ~F

n+ 1
2

int − ~F
n+ 1

2
diss

]ξ

(19)

This relation is a second order approximation of Eq. (16) if ~Fdiss = O (∆t2)

and if the internal forces ~F
n+ 1

2
int are a second order approximation of ~Fint

(

tn+
1
2

)

.

The set of Eqs. (17), (18) and (19) is solved by a predictor-corrector algorithm.

Prediction values are deduced from Eqs. (17) and (18) by taking ~̈xn+1 = 0

[

~xn+1,0
]ξ
=

[

~xn +∆t~̇xn +
∆t2

4
~̈xn +∆t ~G

n+ 1
2
,0

diss

]ξ

[

~̇xn+1,0
]ξ
=
[

~̇xn +
∆t

2
~̈xn
]ξ

(20)

Linearization with the accelerations of Eq. (19) evaluated at Newton-Raphson

iteration i, leads to
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[

Si
]ξµ [

∆~̈xi+1
]µ

=−
1

2
M ξµ

[

~̈xn+1,i + ~̈xn
]µ
−

[

~F
n+ 1

2
int

(

~xn+1,i
)

+ ~F
n+ 1

2
diss

(

~xn+1,i
)

− ~F
n+ 1

2
ext

(

~xn+1,i
)]ξ

(21)

with S the Jacobian matrix

Sξµ=

∂

{

1
2
M ξν

[

~̈xn+1 + ~̈xn
]ν

+
[

~F
n+ 1

2
int + ~F

n+ 1
2

diss −
~F
n+ 1

2
ext

]ξ
}

∂
[

~̈xn+1
]µ

=Kξν ∂~x
ν

∂~̈xµ
+

1

2
M ξµI = Kξµ

[

∆t2

4
I+

∆t2

2
G
(

~̇x
µ)
]

+
1

2
M ξµI (22)

In this last expression, Kξµ is the stiffness matrix and G is the derivative of

~Gdiss with respect to the velocities

Kξµ =
∂
[

~F
n+ 1

2
int + ~F

n+ 1
2

diss −
~F
n+ 1

2
ext

]ξ

∂ [~xn+1]µ
and G

(

~̇x
ξ
)

=
∂ ~G

n+ 1
2

diss

(

~̇x
ξ
)

∂~̇xξ
(23)

Let us note that solving Eqs. (21) using ∆~̈x and not ∆~x avoids the inversion

of matrix G. Details to obtain the Jacobian matrix are reported in appendix

A. Finally, linearization with the accelerations of Eqs. (17) and (18) leads to

correction values at iteration i+ 1 and at configuration n+ 1

[

~̈xn+1,i+1
]µ

=
[

~̈xn+1,i + αls∆~̈x
i+1
]µ

[

~̇xn+1,i+1
]µ

=
[

~̇xn+1,i +
∆t

2
αls∆ẍ

i+1
]µ

[

~xn+1,i+1
]µ

=

[

~xn+1,i + αls
∆t2

4
∆~̈x

i+1
]µ

+

∆t
[

~Gdiss(ẋ
n+1,i+1)− ~Gdiss(~̇x

n+1,i)
]µ

(24)

with αls a line search parameter that enhances the Newton-Raphson resolution

[14, page 254].
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3.2 Verification of conservation laws

In this section we will verify the conservation laws defined by Eqs. (9), (11)

and (14).

3.2.1 Conservation of linear momentum

A sum on ξ in Eq. (19) and the use of Eq. (18) leads to

∑

ξ

M ξµ
[

~̇xn+1
]µ

︸ ︷︷ ︸

~Ln+1

−
∑

ξ

M ξµ
[

~̇xn
]µ

︸ ︷︷ ︸

~Ln

=∆t
∑

ξ

[

~F
n+ 1

2
ext − ~F

n+ 1
2

int − ~F
n+ 1

2
diss

]ξ

(25)

where the continuous linear momentum ~L defined by Eq. (8) is discretized

thanks to Eq. (4) in ~L =
∑

ξM
ξµ~̇xµ. Eq. (25) is a discretization of Eq. (9) if

∑

ξ

[

~F
n+ 1

2
int

]ξ

= 0 and
∑

ξ

[

~F
n+ 1

2
diss

]ξ

= 0 (26)

These two conditions must be simultaneously verified since the dissipation

forces are independent of the internal forces.

3.2.2 Conservation of angular momentum

Thanks to Eq. (17) and Eq. (18), the vector product between ~xn+
1
2 = ~xn+~xn+1

2

and Eq. (19) leads to

1

∆t
M ξµ

[

~xn+1
]ξ
∧
[

~̇xn+1
]µ

︸ ︷︷ ︸

~Jn+1

−
1

∆t
M ξµ [~xn]ξ ∧

[

~̇xn
]µ

︸ ︷︷ ︸

~Jn

=

M ξµ

[

~G
n+ 1

2
diss

]ξ

∧

[

~̇xn+1 + ~̇xn

2

]µ

+
[

~xn+
1
2

]ξ
∧
[

~F
n+ 1

2
ext − ~F

n+ 1
2

int − ~F
n+ 1

2
diss

]ξ

(27)
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where the continuous angular momentum ~J defined by Eq. (10) is discretized

thanks to Eq. (4) in ~J = M ξµ~xξ ∧ ~̇xµ. Therefore, Eq. (27) is a discretization

of (10) if

[

~xn+1 + ~xn

2

]ξ

∧
[

~F
n+ 1

2
int

]ξ

= 0 and

[

~xn+1 + ~xn

2

]ξ

∧
[

~F
n+ 1

2
diss

]ξ

= 0 (28)

and if

M ξµ

[

~G
n+ 1

2
diss

]ξ

∧

[

~̇xn+1 + ~̇xn

2

]µ

=0 (29)

This last expression allows the numerical dissipation to conserve the angular

momentum.

3.2.3 Conservation of energy

Thanks to Eq. (17) and Eq. (18), the dot product between ~̇xn+
1
2 = ~̇xn+~̇xn+1

2
+

~G
n+ 1

2
diss and Eq. (19) leads to

M ξµ

2

[

~̇xn+1
]ξ
·
[

~̇xn+1
]µ

︸ ︷︷ ︸

Kn+1

−
M ξµ

2

[

~̇xn
]ξ
·
[

~̇xn
]µ

︸ ︷︷ ︸

Kn

+M ξµ
[

~̇xn+1 − ~̇xn
]µ
·
[

~Gn+1
diss

]ξ

=
[

~xn+1 − ~xn
]ξ
·
[

~F
n+ 1

2
ext

]ξ

︸ ︷︷ ︸

Wn+1
ext −W

n
ext

−
[

~xn+1 − ~xn
]ξ
·
[

~F
n+ 1

2
int + ~F

n+ 1
2

diss

]ξ

(30)

where the continuous kinetic energy K defined in Eq. (12) is dicretized thanks

to Eq. (4) in K = 1
2
M ξµ~̇xξ · ~̇xµ and where the power of the external forces Ẇext

defined in Eq. (12) is discretized and integrated inW n+1
ext −W

n
ext = [~xn+1 − ~xn]

ξ
·

[

~F
n+ 1

2
ext

]ξ

. Let E be the discretized energy, let Uint be the discretized internal

energy, let Wint be the discretized work of the internal forces and let ∆int ≥ 0

be the discretized internal dissipation during the step, all such that their
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continuous values are defined in Eq. (13). Therefore Eq. (14) can be discretized

into

En+1 − En=W n+1
ext −W n

ext −∆int −∆num (31)

where ∆num ≥ 0 is the numerical dissipation during the step. If this last

expression is compared with Eq. (30), the internal forces must lead to

[

~F
n+ 1

2
int

]ξ

·
[

~xn+1 − ~xn
]ξ
=Un+1

int − Un
int +∆int (32)

and the dissipation values must lead to

M ξµ
[

~̇xn+1 − ~̇xn
]µ
·
[

~G
n+ 1

2
diss

]ξ

︸ ︷︷ ︸

≡∆K

+
[

~F
n+ 1

2
diss

]ξ

·
[

~xn+1 − ~xn
]ξ

︸ ︷︷ ︸

≡∆W

=∆num ≥ 0 (33)

The problem of the EDMC algorithm is to find a consistent expression of the

internal forces and of the dissipation terms that verify Eqs. (26), (28), (29),

(32) and (33). In a previous work [9,10], we have developed a new expression

of the internal forces, for an elasto-plastic hypoelatic model, that verifies this

conditions in the absence of numerical dissipation. The goal of this paper is

to establish the expression of the dissipation forces for such a model. It will

be achieved in the following section.

4 Expression of the forces for a hypoelastic model

In this section we will establish the internal and dissipation forces expres-

sions and the dissipation velocities expression for an elasto-plastic hypoelastic

model. First we will recall the hypoelastic model. Next we will briefly expose

the formulation of the internal forces we have established in [9,10]. Then we
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will be able to extend this theory to the formulation of the dissipation forces

for such a model. The velocities dissipation will therefore be given. Finally,

the spectral analysis will prove that the high frequencies are numerically dis-

sipated.

4.1 The hypoelastic model

The two-point-deformation map F defined in Eq. (1) can be evaluated between

configurations m and n

Fnm ≡
∂~xn

∂~xm
with Fn0 = FnmF

m
0 (34)

Thanks to the Polar Decomposition theorem, this tensor can be decomposed

into a rotation tensor R and into a deformation tensor U

Fnm = Rn
mU

n
m with Un

m = Un
m
T and Rn

m
TRn

m = I (35)

Therefore one can define the Green-Lagrange deformation tensor GLnm, the

Almansi deformation tensor An
m and the natural deformation tensor En

m by

GLnm≡
1

2

[

Fnm
TFnm − I

]

An
m≡

1

2

[

I− fnm
T fnm

]

Enm≡
1

2
ln
[

Fnm
TFnm

]

(36)

Cauchy stress tensor at configuration n is denoted Σn. Let Hijkl = kδijδkl +

Gδikδjl+Gδilδjk−
2G
3
δijδkl be the Hooke fourth order tensor with operation H :

E defined by HijklEkl and with k the bulk modulus and G the shear modulus.

Let us denote the corotational values (i.e. before the rotation operation) with
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a superscript c. Then the corotational stress tensor is computed from

Σcn+1=
[

Σn +H : En+1n − sc
]

(37)

where sc is a deviatoric correcting term resulting from the J2 plasticity and

computed from the radial return mapping [15]. It is computed in the following

way. Let the elastic predictor se be the deviatoric part of Σn+H : En+1n . If the

elastic predictor lies outside the von Mises criterion in the stress space, the step

was, at least partially plastic and some corrections need to be introduced in

the system. This correction is evaluated in the following way. The unit normal

tensor Nc (normal to von Mises criterion in the stress space) is defined from

se√
se:se

where the operation a : b is defined by aijbij. Let ε
p be the equivalent

plastic strain and let Σv be the yield stress. Therefore, γp is a scalar such that

[15]

[εp]n+1 = [εp]n +

√

2

3
γp and sc = 2GγpNc (38)

and obtained from the von Mises criterion

[se − 2GγpNc] : [se − 2GγpNc] =
2

3

[

Σv
n+1 (γp)

]2
(39)

The final rotation scheme leads to

Σn+1=Rn+1
n Σcn+1Rn+1

n

T
(40)

Let us note that such a formalism can be obtained with an heredity tensor

defining the kinematic hardening [9].
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4.2 Expression of the internal forces

The internal forces at time tn are expressed by Eq. (15). In [9], we have pro-

posed the following expression of the internal forces for the EMCA integration

scheme

[

~F
n+ 1

2
int

]ξ

=
1

2

[

~F ∗int + ~F ∗∗int
]ξ

[

~F ∗int
]ξ
=

1

2

∫

V0

{[

I+ Fn+1n

] [

ΣnT +C∗
]

fn0
T ~DξJn0

}

dV0

[

~F ∗∗int
]ξ
=

1

2

∫

V0

{[

I+ fn+1n

] [

Σn+1T +C∗∗
]

fn+10
T ~DξJn+10

}

dV0 (41)

where C∗ and C∗∗ are two correcting tensors resulting from the plasticity.

4.2.1 Conservation of linear momentum

Conservation of the linear momentum discretized in Eq. (26) is directly ob-

tained from Eq. (41) since
∑

ξ
~Dξ = 0.

4.2.2 Conservation of angular momentum

Conservation of the angular momentum discretized in Eq. (28) results from

the symmetric nature of Σ, C∗ and C∗∗. Effectively, after some algebra [9],

and if ε is the third order permutation tensor such that ~a∧~b = ε : [~a⊗~b], with

operation [~a⊗~b]ij = ~ai~bj, Eq. (41) yields

[

~xn+
1
2

]ξ
∧
[

~F ∗int
]ξ
=

1

4
ε :
∫

V0

{[

I+ Fn+1n

]

[Σn +C∗]
[

I+ Fn+1n

]T
Jn0

}

dV0

=
∫

V0

{ε : ΘJn0 } dV0 (42)

that is equivalent to zero since Θ = [I+ Fn+1n ] [Σn +C∗] [I+ Fn+1n ]
T
is a sym-

metric tensor and ε is an antisymmetric tensor. The same technique leads to
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[

~xn+
1
2

]ξ
∧
[

~F ∗∗int
]ξ

= 0.

4.2.3 Conservation of energy

The first thermodynamics principle discretized by (32) can not be directly

obtained for an hypoelastic model since no internal potential can be defined.

Some algebra [9] yields

[

~F
n+ 1

2
int

]ξ

·
[

~xn+1 − ~xn
]ξ

=

1

2

∫

V0

{

GLn+1n : [Σn +C∗] Jn0 +An+1
n :

[

Σn+1 +C∗∗
]

Jn+10

}

dV0 (43)

that has to be equal to Un+1
int −U

n
int+∆int to verify Eq. (32). In [9] we have pro-

posed to study Eq. (43) on a two-step cycle. The first step is an elasto-plastic

loading step resulting in an internal dissipation ∆int, and the second step is

an elastic unloading. Let Eel be the elastic part of the natural deformations

and Ueln+1
n be the elastic part of the deformation

H : Eeln+1

n ≡ H : En+1n − sc and Eeln+1

n ≡
1

2
ln
[

Ueln+1

n Ueln+1

n

]

(44)

The existence ofUeln+1
n is ensured from the symmetric nature of Eeln+1

n . There-

fore elastic tensor GLeln+1
n and Aeln+1

n are defined from Ueln+1
n

GLeln+1

n ≡
1

2

[

Ueln+1

n Ueln+1

n − I
]

Aeln+1

n ≡
1

2
Rn+1
n

[

I−Ueln+1

n

−1
Ueln+1

n

−1
]

Rn+1
n

T
(45)

Elastic partsGLel andAel of, respectivelyGL andA, contribute to an increase

of the reversible energy (i.e. energy that is stored as internal energy and could

be released by the material [9]). Plastic part GLpl and Apl of, respectively GL

and A are obtained from

17



GLpln+1

n ≡ GLn+1n −GLeln+1

n and Apln+1

n ≡ An+1
n −Aeln+1

n (46)

We have proved in [9] that Eq. (43), studied on the loading unloading cycle

yields to

∆int=
1

2

∫

V 0

{

GLpln+1

n : ΣnJn0
}

dV0 +
1

2

∫

V 0

{

GLn+1n : C∗Jn0
}

dV0 +

1

2

∫

V 0

{

Apln+1

n : Σn+1Jn+10

}

dV0 +
1

2

∫

V 0

{

An+1
n : C∗∗Jn+10

}

dV0 (47)

To be physically consistent, Eq. (47) has to be related with a physical quan-

tity. The positive internal plastic dissipation can be expressed from a volumic

dissipation Dint obtained from [10]

Dint'
1

2
εpn+1n Σv

n+1Jn+10 +
1

2
εpn+1n Σv

nJn0 (48)

Let us define the tensors C∗ and C∗∗ such that [10]

C∗=

Dint

Jn0
−Σn : GLpln+1

n

GLn+1n : GLn+1n

GLn+1n

C∗∗=

Dint

Jn+10

−Σn+1 : Apln+1
n

An+1
n : An+1

n

An+1
n (49)

These tensors are symmetric (leading to the conservation of the angular mo-

mentum) and are equal to zero when no plastic deformation occurs, as as-

sumed. Therefore Eq. (47) can be rewritten

∆int=
∫

V0

{Dint} dV0 ≥ 0 (50)

that is consistent with the first thermodynamics principle.
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4.3 Expression of the dissipation forces

In the previous section, it was shown that tensors C∗ and C∗∗ defined in Eq.

(49) and used in Eq. (41), control the internal dissipation through Eq. (47).

Therefore, we can control the numerical dissipation in the following way. Let

DW be a volumic potential. We propose the new formulation of the dissipation

forces

[

~F
n+ 1

2
diss

]ξ

=
1

2

[

~F ∗diss + ~F ∗∗diss
]ξ

[

~F ∗diss
]ξ
=

1

2

∫

V0

{[

I+ Fn+1n

]

D∗fn0
T ~DξJn0

}

dV0

[

~F ∗∗diss
]ξ
=

1

2

∫

V0

{[

I+ fn+1n

]

D∗∗fn+10
T ~DξJn+10

}

dV0 (51)

with

D∗ =

DW

Jn0

GLn+1n : GLn+1n

GLn+1n and D∗∗ =

DW

Jn+10

An+1
n : An+1

n

An+1
n (52)

The potential DW must verify the following conditions

DW
√

GLn+1n : GLn+1n

→ 0 if Un+1
n → I

DW
√

An+1
n : An+1

n

→ 0 if Un+1
n → I (53)

The algorithm will be second order accurate if ~Fdiss = O (∆t2). Therefore, the

algorithm is second order accurate if DW = O (∆t3) and is first order accurate

if DW = O (∆t2). We propose the following expression of DW , that satisfies

Eq. (53), and that leads to a first order accurate scheme.

DW =
χ

2
Eeln+1

n : H : Eeln+1

n Jn0 ≥ 0 (54)
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where χ is a user-defined parameter that controls the numerical dissipation.

Its variation range will be studied in a future section. A second order accurate

algorithm could be reached if Eq. (54) is substituted by DW = χ
2
E∗n+1n :

H : Eeln+1
n Jn0 where E∗ is computed from an intermediate configuration ~x∗ =

~xn + O (∆t2). Nevertheless, such an algorithm leads to an increase of the

number of equations to be solved and is therefore more expensive [12]. In this

paper we focused on first order accurate schemes.

4.3.1 Conservation of linear momentum

Conservation of the linear momentum discretized in Eq. (26) is directly ob-

tained from Eq. (51) since
∑

ξ
~Dξ = 0.

4.3.2 Conservation of angular momentum

Conservation of the angular momentum discretized in Eq. (28) results from

the symmetric nature of D∗ and D∗∗. Proceeding such as with the internal

forces, Eq. (51) yields

[

~xn+
1
2

]ξ
∧
[

~F ∗diss
]ξ
=

1

4

∫

V0

{

ε :
[

I+ Fn+1n

]

D∗
[

I+ Fn+1n

]T
Jn0

}

dV0 (55)

that is equivalent to zero since [I+ Fn+1n ]D∗ [I+ Fn+1n ]
T
is a symmetric tensor

and ε is an antisymmetric tensor. The same technique leads to
[

~xn+
1
2

]ξ
∧

[

~F ∗∗diss
]ξ

= 0.

4.3.3 Evaluation of the numerical dissipation

The forces part of the numerical dissipation (∆W ) expressed in Eq. (33) is

obtained directly from Eq. (51)
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∆W =
[

~F
n+ 1

2
diss

]ξ

·
[

~xn+1 − ~xn
]ξ

=
1

2

∫

V0

{

GLn+1n : D∗Jn0 +An+1
n : D∗∗Jn+10

}

dV0 =
∫

V0

{DW} dV0 (56)

that is always positive. The next goal to achieve is to determine the expression

of the dissipation velocities.

4.4 Expression of the dissipation velocities

The dissipation velocities have to verify Eq. (29) and the velocity part of

Eq. (33). Moreover, the expression of the dissipation velocity must lead to

a spectral analysis without bifurcation of the spectral eigenvalues to achieve

the numerical dissipation of the high frequencies. Armero and Romero [11,12]

propose the following expression of the dissipation forces

M ξµ

[

~G
n+ 1

2
diss

]µ

=
∫

V0







ρ0ϕ
ξDK

~̇xn+1 + ~̇xn
∥
∥
∥~̇xn+1

∥
∥
∥

2
−
∥
∥
∥~̇xn

∥
∥
∥

2







dV0 (57)

with ~̇x = ϕξ~̇xξ and
∥
∥
∥~̇x
∥
∥
∥ = ϕξ

∥
∥
∥~̇xξ

∥
∥
∥ and with the specific kinetic potential DK

that must verify

Dξ
K

∥
∥
∥
∥

[

~̇xn+1
]ξ
∥
∥
∥
∥−

∥
∥
∥
∥

[

~̇xn
]ξ
∥
∥
∥
∥

→ 0 if
∥
∥
∥
∥

[

~̇xn+1
]ξ
∥
∥
∥
∥−

∥
∥
∥
∥

[

~̇xn
]ξ
∥
∥
∥
∥→ 0 (58)

Since the dissipation velocities are first order accurate, the dissipation forces

are also chosen first order accurate. Therefore we want DK = O (∆t2) such as

DK =χ
1

2

[∥
∥
∥~̇xn+1

∥
∥
∥−

∥
∥
∥~̇xn

∥
∥
∥

]2
≥ 0 (59)

This expression differs from the one proposed by Armero and Romero (i.e.

DK = χ
∥
∥
∥~̇xn+1 − ~̇xn

∥
∥
∥

2
) that does not lead to zero for an uniform rigid body
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rotation. A lumped expression of Eq. (57) can also be used to improve the

performance of the algorithm. It leads (without sum on superscript ξ, but

with velocities evaluated at node ξ)

[

~G
n+ 1

2
diss

]ξ

=
Dξ
K

∥
∥
∥
∥

[

~̇xn+1
]ξ
∥
∥
∥
∥

2

−

∥
∥
∥
∥

[

~̇xn
]ξ
∥
∥
∥
∥

2

[

~̇xn+1 + ~̇xn
]ξ

2
(60)

Therefore, one gets (with the lumped mass matrix m such that M ξµ = mξδξµ)

∑

µ

M ξµ

[

~G
n+ 1

2
diss

]µ

' δξµ
∑

µ

mµDµ
K

∥
∥
∥

[

~̇xn+1
]µ∥∥
∥

2
−
∥
∥
∥

[

~̇xn
]µ∥∥
∥

2

[

~̇xn+1 + ~̇xn
]µ

2
(61)

Actually, combination of Eqs. (59) and (61) leads to the expression of the

dissipation velocity

[

~G
n+ 1

2
diss

]ξ

=χ

∥
∥
∥
∥

[

~̇xn+1
]ξ
∥
∥
∥
∥−

∥
∥
∥
∥

[

~̇xn
]ξ
∥
∥
∥
∥

∥
∥
∥
∥

[

~̇xn+1
]ξ
∥
∥
∥
∥+

∥
∥
∥
∥

[

~̇xn
]ξ
∥
∥
∥
∥

[

~̇xn+1 + ~̇xn
]ξ

2
(62)

4.4.1 Conservation of angular momentum

Conservation of angular momentum Eq. (29) is verified since

∑

µ

∑

ξ

[

~̇xn+1 + ~̇xn
]ξ
∧M ξµ

[

~G
n+ 1

2
diss

]µ

=

∑

µ

mµDµ
K

∥
∥
∥

[

~̇xn+1
]µ∥∥
∥

2
−
∥
∥
∥

[

~̇xn
]µ∥∥
∥

2

[

~̇xn+1 + ~̇xn
]µ

2
∧
[

~̇xn+1 + ~̇xn
]µ

= 0 (63)

4.4.2 Evaluation of the numerical dissipation

The velocity part of numerical dissipation (∆K) defined by Eq. (33) is evalu-

ated by (using Einstein’s notations)
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∆K =
[

~̇xn+1 − ~̇xn
]ξ
·M ξµ

[

~G
n+ 1

2
diss

]µ

= mµDµ
K '

∫

V0

{ρ0DK} dV0 ≥ 0 (64)

4.5 Spectral analysis

At this point, we have proved that our formulation is thermodynamically con-

sistent and numerically dissipative in the non-linear range. Now we have to

achieve the spectral analysis to prove that the high frequencies are numer-

ically dissipated. Let us assume a small transformation, without plasticity,

hypothesis with εij = 1
2

(
∂~xi
∂~xj

+ ∂~uj
∂~xi

)

the small strain tensor. Therefore one

gets

Jn+10 ' Jn0 and Rn
0 ' I

ε
eln+1
n ' GLeln+1

n ' Aeln+1

n ' Eeln+1

n

Eeln+1

0 ' Eeln

0 + E
eln+1

n and Σn ' H : Eeln

0 (65)

Let us assume a uniform tension problem with a displacement x. The elements

are decomposed with linear shape functions. Therefore, it comes, for one ele-

ment of length l and of cross section A, the following incremental deformation

tensor holds

ε
n+1
n = Fn+1n − I =

xn+1 − xn

l

















1 0 0

0 2G−3k
6k+2G

0

0 0 2G−3k
6k+2G

















(66)

with k the bulk modulus and G the shear modulus. Only the first component

of the stress tensors is different from zero and it comes

Σn
11 =

xn

l

9kG

3k +G
and Σn+1

11 =
xn+1

l

9kG

3k +G
(67)
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The first components of the forces vectors (41) and (51) become (at the first

order in x) with Y = 9kG
3k+G

the Young’s modulus

[

~F
n+ 1

2
int

]

1
=
Y A

l

xn+1 + xn

2
and

[

~F
n+ 1

2
diss

]

1
=
Y A

l
χ
xn+1 − xn

2
(68)

For a translation motion, the kinematic potential (59) is rewritten as DK =

χ1
2

[

~̇xn+1 − ~̇xn
]2

that is correct while the velocity keeps the same direction

between two steps. Since the lumped mass m associated for each extremity is

equal to ρlA
2
, if ω2 = 18kG

[3k+G]ρl2
, then Eqs. (17), (18) and (19) lead to

xn+1=xn +
∆t

2

[

1 + χ
ẋn+1 − ẋn

ẋn+1 + ẋn

]
[

ẋn+1 + ẋn
]

ẋn+1= ẋn +
∆t

2

[

ẍn+1 + ẍn
]

ẍn+1=−ẍn − ω2
[

1 + χ
xn+1 − xn

xn+1 + xn

]
[

xn+1 + xn
]

(69)

This system of equations is equivalent to the one obtained by Armero and

Romero [11] for a spring model, and leads to the spectral matrix As (Ω)

















xn+1

∆tẋn+1

∆t2ẍn+1

















=

















1−Ω
2

4 [1−χ2]
D(Ω)

1
D(Ω)

0

−Ω2

D(Ω)

1−Ω
2

4 [1−χ2]
D(Ω)

0

−2Ω2

D(Ω)
−Ω2[1+χ]
D(Ω)

−1

















︸ ︷︷ ︸

As(Ω)

















xn

∆tẋn

∆t2ẍn

















(70)

with D (Ω) = 1 + Ω2

4
[1 + χ]2 and with Ω = ω∆t. This system is reduced to a

two dimension system with the two conjugate complex eigenvalues

λ=
1− Ω2

4
[1− χ2]± iΩ

D (Ω)
(71)
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Armero and Romero [11,12] pointed out the necessity of considering dissi-

pation velocities unless there exists a bifurcation limit Ωb that leads to real

eigenvalues. Let Ωd and ξd respectively be the adimensional pulsation of the

solution and the damp ratio of the solution

Ωd=arctan

(

=λ1
<λ1

)

' Ω−
1

4

[

χ2 +
1

3

]

Ω3 +O
(

Ω4
)

ξd=
− ln

(

[=λ1]
2 + [<λ1]

2
)

2Ωd

'
χ

2
Ω +O

(

Ω2
)

(72)

It comes directly that the error on the pulsation eΩ = Ωd−Ω
Ω

and that the error

on the damping ratio eξ = ξd are both first order in ∆t, leading to a first order

accurate scheme. The spectral radius of the response is then evaluated by

ρd (Ω)= ‖λ‖ =
1

1 + Ω2

4
[1 + χ]2

√
√
√
√

[

1−
Ω2

4
[1− χ2]

]2

+ Ω2 (73)

If 0 ≤ χ ≤ 1 the spectral radius is always lower than unity. It is close to unity

for the low frequencies and tends to its minimal value ρ∞ = 1−χ
1+χ

for the high

frequencies.

5 Numerical examples

In this section we will analyze the results obtained with the developed for-

mulation and with the traditional Newmark family on an academic case: the

Taylor bar problem. The following step will be to prove that our formulation

is able to simulate a more complex problem such as a blade loss problem.
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5.1 Example 1: The Taylor bar

[Fig. 1 about here.]

[Fig. 2 about here.]

[Fig. 3 about here.]

[Fig. 4 about here.]

The problem consists in a cylindrical bar (external diameter de = 6.4mm,

length l = 32.4mm) made of an elasto-plastic material (Young’s modulus

Y = 117E9N/m2, Poisson’s ratio ν = 0.35, density ρ = 8930kg/m3, initial

yield stress Σ0 = 400N/mm2, hardening parameter h = 100N/mm2) that

impacts a rigid wall with an initial velocity (ẋ0 = 227m/s). We study one

quarter of the cylinder. It is discretized into 12 times 48 = 576 elements (Fig.

A.1). The simulation occurs in 80µs. We will compare the results obtained with

4 algorithms. For each algorithm, the spectral radius for an infinite frequency

is chosen as ρ∞ = 0.7. The different algorithms are:

• the first order accurate EDMC algorithm (EDMC-1) with χ = 1−ρ∞
1+ρ∞

;

• the Newmark algorithm [1] with the first parameter β = 1
[1+ρ∞]

2 and the

second parameter γ = 3−ρ∞
2+2ρ∞

;

• the Hilber-Hughes-Taylor (HHT) [4] algorithm with the first Newmark pa-

rameter β = 1
[1+ρ∞]

2 , the second Newmark parameter γ = 3−ρ∞
2+2ρ∞

and with

the internal forces interpolation parameter αF = 1−ρ∞
1+ρ∞

;

• the Chung-Hulbert (CH) [4] algorithm with the first Newmark parameter

β = 1
[1+ρ∞]

2 , the second Newmark parameter γ = 3−ρ∞
2+2ρ∞

, with the inter-

nal forces interpolation parameter αF = ρ∞
1+ρ∞

and with the inertial forces
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interpolation parameter αM = 2ρ∞−1
1+ρ∞

.

For each algorithm we study the influence of the time step size that evolves

in a range from 0.1µs to 1µs. For a time step size equal to 1.25µs, only the

Newmark and the EDMC-1 algorithms have converged. Fig. A.2 (a) represents

the evolution, with the time step size, of the physically (plastically) dissipated

energy and Fig. A.2 (b) represents the energy numerically dissipated. In accor-

dance with the theory, since there are no bifurcation in the spectral analysis, if

the time step size is increased, the a-dimensional pulsation is increased and the

energy numerically dissipated is increased. Surprisingly, if the numerical dis-

sipation is increased, the CH scheme overestimates the plastically dissipated

energy (Fig. A.2 (a)). For the other schemes, since a part of the initial kinetic

energy is numerically dissipated, the plastically dissipated energy is underes-

timated. Fig. A.3 (a) illustrates the energy of the system (sum of the kinetic

energy and the work of the internal forces minus the plastically dissipated

energy) of the bar. We can see that only the EDMC-1 leads to positive energy

for all the time step sizes, for the other schemes, if the time step increases,

the plastically dissipated energy becomes larger than the work of the internal

forces. Thus, these schemes violate the first principle of the thermodynamics.

Fig. A.3 (b) illustrates the error on the system energy. All the scheme leads

to first order accurate solutions, while a linear theory predicts that the CH

and of the HHT schemes are second order accurate. We assume that in the

non-linear range, the second order accuracy is no longer ensured. Equivalent

plastic strains of the final configurations are illustrated on Fig. A.4. The so-

lution obtained with a time step size equal to 1µs and with the EDMC-1

algorithm is equivalent within less than 1% to the solution obtained with a

time step size equal to 0.1µs. For the other schemes, solutions with ∆ = 1µs
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overestimate the equivalent plastic strain of about 5%.

5.2 Example 2: blade loss problem in a aero engine

[Fig. 5 about here.]

[Table 1 about here.]

[Fig. 6 about here.]

A turbo-engine is modelled with a shaft that has an imposed revolution motion

on one extremity. At the other extremity, there is a disk with 24 blades. The

shaft, the disk and the blades are part of the rotor, which is in rotation in a

stator. The stator is composed of a casing and a bearing.

The rotor has a cyclic symmetry of 15 degrees (24 blades). Fig. A.5 (a) il-

lustrates a 15-degree-sector. The blade is defined thanks to a ruled surface

that has two splines for extremities. The two splines are described in Ta-

ble A.1. The blades are made of an alloy (density ρ = 3600kg/m3, Young’s

modulus Y = 88000N/mm2, Poisson’s ratio ν = 0.31, initial yield stress

Σ0 = 880N/mm2 and hardening parameter h = 26700N/mm2). The disk and

the shaft are composed of another alloy (density ρ = 6300kg/m3, Young’s

modulus Y = 165000N/mm2, Poisson’s ratio ν = 0.31, initial yield stress

Σ0 = 800N/mm2, hardening parameter h = 271N/mm2). The blade is dis-

cretized with 99 elements: 11 in length (elements at the head of the blade are

50% smaller than at the root), 9 elements in height and 1 element through the

thickness. The disk has 2 elements through the thickness and 72 elements on

the circumference. The shaft has 1 element on its thickness and 11 elements
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on its length (8 for the constant section shaft and 3 for the conical part). The

shaft has 72 elements on its circumference. The elements are 8-node bricks

with constant pressure.

At time t = 0s, the initial configuration of the rotor is equilibrated for a

rotation velocity of 4775rpm. This initial configuration is computed with a

Newton-Raphson scheme where the external forces are the analytical inertial

forces computed from the nodes position and from the imposed rotation ve-

locity. The von Mises stresses resulting from this uniform rotation velocity are

illustrated in Fig. A.5 (b). The blade pointed by an arrow is independent from

the disk. To evaluate the initial configuration, it is linked to the disk through

an adhesion law (normal penalty kp = 109, tangential penalty kT = 108). Af-

ter the initial configuration is evaluated,in order to simulate the blade loss,

this link is numerically removed thus creating some unbalance in the system

and the free blade interacts with the other blades and with the casing. The

interaction between the blades and the casing is simulated with a Coulomb

friction law (normal penalty kp = 109 tangential penalty kT = 107, friction

coefficient µc = 0.1). The interaction between the free blade and the other

blades is simulated with the same law. Contact interactions between attached

blades are simulated with a frictionless law (normal penalty kp = 109).

The casing is a cylinder made of an aluminum alloy (density ρ = 2710kg/m3,

Young’s modulus Y = 55200N/mm2, Poisson’s ratio ν = 0.31, yield stress

Σ0 = 550N/mm2 and hardening parameter h = 281N/mm2). Its geometry is

illustrated in Fig. A.6 (a). The bearing has a conical geometry (Fig. A.6 (a) and

Fig. A.6 (b)) and is made of an alloy (density ρ = 3600kg/m3, Young’s modu-

lus Y = 88000N/mm2, Poisson’s ratio ν = 0.31, yield stress Σ0 = 550N/mm2

and hardening parameter h = 2600N/mm2). The displacement of the shaft
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is restrained by the bearing thanks to a central node (Fig. A.6b). There are

springs between the central node and the extremity nodes of the bearing and

there are springs between the central node and two rows on nodes of the shaft.

Each spring has a stiffness of 108N/mm and a mass M = 0.05kg is associated

with the central node. The bearing and the casing have 1 element through the

thickness. The casing has 36 elements along the circumference and 8 elements

through its length. The bearing has 3 elements through its length and 20 along

its circumference. The elements are 8-node bricks with constant pressure.

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

We analyze the first revolution of the rotor after the blade loss with an EDMC

(first order accurate) algorithm with a spectral radius equal to ρ∞ = 0.8. The

time step size is computed from an automatic criterion [16,17] and with an

accuracy of 10−4 on the integration error [16,17] and the choice of updating

the Hessian matrix is computed from automatic criteria [16,17]. Each time

step is computed with a Newton-Raphson scheme (Tolerance 10−5) enhanced

by a line-search system [14] (Tolerance 10−3). The contact interactions are

simulated with the consistent penalty method proposed by Armero et Petöcz

[18,19]. Let us note that we adapted this method to normal-discontinuous

surfaces [20].
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Fig. A.7 illustrates the configuration after a quarter of revolution. The free

blade interacts with the first next (attached) blade. Fig. A.8 illustrates the

configuration after half a revolution. The free blade remains between the at-

tached blades and the casing and the attached blades bend. The head of the

free blade enters into contact with the fifth linked blade. Fig. A.9 illustrates

the deformation after three quarters of a revolution. The head of the free

blade has led the fifth blade to bend significantly, and the free blade is pushed

towards the rear of the casing. Fig. A.10 illustrates the results after one rev-

olution. The free blade was pushed away from the disk so that the remaining

interactions only occur between the linked blades and the casing.

The total force on the bearing is illustrated in Fig. A.11 (a). It appears that

this force is linear during the first instants, when the bearing reacts to the

presence of an unbalanced shaft. But when the free blade interact with both

the linked blades and the casing, the force starts oscillating. The time evolution

of the force on the casing (Fig. A.11 (b)) results from the interaction of the

blades on the casing and the force oscillates during the whole simulation.

6 Conclusions

In this paper we have extended the Energy Dissipative Momentum Conserv-

ing algorithm to the elasto-plastic hypoelatic model. We have proved that

this method is stable in the non-linear range and the numerical dissipation is

always positive. We have shown on an academic example that the proposed

algorithm remains accurate even for large time step sizes in the non-linear

range, although the method is only first order accurate. But, due to its consis-

tency in the non-linear range, it is more accurate than the Newmark family.
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Moreover, we have presented a blade loss problem to expose the ability of the

method to simulate more complex dynamics phenomena.

A The Jacobian matrix

To be able to evaluate analytically the Jacobian matrix defined by Eq. (22),

we need to known the expression of the dissipation velocities derivative (G)

and the expression of the stiffness matrix (K), both defined in Eq. (23).

Let us evaluate tensor G (ẋµ). Eq. (62) leads to

G (ẋ)=
∂

∂~̇xn+1
~G
n+ 1

2
diss = χ

‖~̇xn‖

‖~̇xn+1‖
[

‖~̇xn+1‖+ ‖~̇xn‖
]2

[

~̇xn+1 + ~̇xn
]

⊗ ~̇xn+1 +

χ

2

∥
∥
∥~̇xn+1

∥
∥
∥−

∥
∥
∥~̇xn

∥
∥
∥

∥
∥
∥~̇xn+1

∥
∥
∥+

∥
∥
∥~̇xn

∥
∥
∥

I (A.1)

The stiffness matrix was evaluated for the internal forces in [10]. The part com-

ing from the dissipation forces is evaluated exactly in the same way. Therefore,

in this paper we only give the expression that differs. To derivate Eq. (41),

one needs to know the derivation of the dissipation Dint defined by Eq. (48).

Because of the analogy between the internal forces expressed by Eq. (41) and

the dissipation forces expressed by Eq. (51), the only new term to be evaluated

is the derivation of the internal dissipation potential expressed by Eq. (54). It

leads to

∂DW

∂ [~xn+1]µ
=
χ

2
Eeln+1

n : H :
∂Eeln+1

n

∂ [~xn+1]µ
Jn0 +

χ

2

∂Eeln+1
n

∂ [~xn+1]µ
: H : Eeln+1

n Jn0 (A.2)

Let us define M̄ the fourth order tensor such that
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{

Rn+1
n

∂ [H : En+1n − 2GγpNc]

∂ [~xn+1]µ
Rn+1
n

T

}

ijk

=M̄ijkl

[

fn+10

]

ml

~Dµ
m (A.3)

Its expression can be computed [21,15] : M̄ijkl = kδijδkl + g∗δilδjk + g∗δikδjl−

2g∗

3
δijδkl − 2g∗µ∗NijNkl with g∗ = βG, β =

√
2
3
Σv,n+1
√

se:se
, µ∗ = g∗

1+ h
3g∗+[β−1]h

and

h = ∂Σv

∂εp
n+1

, yielding

∂DW

∂ [~xn+1]µ
= χ

[

Rn+1
n Eeln+1

n Rn+1
n

T
]

: M̄
[

fn+10

]T ~DµJn0 (A.4)
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[19] F. Armero, E. Petöcz. A new dissipative time-stepping algorithm for frictional

contact problems: formulation and analysis. Comput Methods in Appl Mech

and Engng 1999;179:151–178.

[20] L. Noels, L. Stainier, J.-P. Ponthot. Simulation of crashworthiness problems

with new improvement in implicit time integration of non linear dynamical

systems. Intern J of Impact Engng In preparation.

[21] J. Nagtegaal, F. Veldpaus. On the implementation of finite strain plasticity

equations in a numerical model. in: Numer Anal of Forming Processes. Pittman

et al. (Eds) John Wiley and sons, 1984. pp. 351–371.

35



List of Figures

A.1 Mesh of the Taylor bar. 37

A.2 Energy dissipated after 80µs for the Taylor bar - (a) energy
plastically dissipated - (b) energy numerically dissipated (in %
of the initial kinetic energy). 38

A.3 Final energy of the Taylor bar after 80µs - (a) energy - (b)
error on the energy. 39

A.4 Deformation and equivalent plastic strain (after 80µs) for the
Taylor bar. 40

A.5 Description of the problem model (mm) - (a) description of a
15-degree-part rotor - (b) initial von Mises stress (N/mm2) of
the rotor (front view). 41

A.6 Model of the stator (mm) - (a) description of the casing - (b)
description of the bearing. 42

A.7 Configuration and equivalent plastic strain after 1/4 round -
(a) front view - (b) rear view. 43

A.8 Configuration and equivalent plastic strain after 1/2 round -
(a) front view - (b) rear view. 44

A.9 Configuration and equivalent plastic strain after 3/4 round -
(a) front view - (b) rear view. 45

A.10 Configuration and equivalent plastic strain after 1 round - (a)
front view - (b) rear view. 46

A.11 Time evolution of the clamping forces - (a) clamping force of
the bearing - (b) clamping force of the casing. 47

36



x
0

Fig. A.1. Mesh of the Taylor bar.

37



E
n

e
rg

y
 p

la
s
ti

c
a
ll
y

d
is

s
ip

a
te

d
 (

J
)

N
u

m
e
ri

c
a
l 
d

is
s
ip

a
ti

o
n

 (
J
)

Newmark EDMC-1 HHT CH

(a)

Time step size (µs)

50

52

54

56

58

0.1 10.5 2

(b)

0%

2%

4%

6%

8%

0.1 10.5 2

Time step size (µs)

Fig. A.2. Energy dissipated after 80µs for the Taylor bar - (a) energy plastically
dissipated - (b) energy numerically dissipated (in % of the initial kinetic energy).

38



first orderNewmark

EDMC-1 CH

HHT

S
y
s
te

m
 e

n
e
rg

y
 (

J
)

E
rr

o
r 

o
n

 t
h

e
 s

y
s
te

m
e
n

e
rg

y

(b)

0.1%

1.0%

10.0%

100.0%

1000.0%

0.2 10.5

(a)

-0.6

-0.4

-0.2

0

0.2

0.1 1 20.5

Time step size (µs) Time step size (µs)

Fig. A.3. Final energy of the Taylor bar after 80µs - (a) energy - (b) error on the
energy.

39



Newmark EDMC-1

D
m

t 
=

 0
.1

s

CHHHT

D
m

t 
=

 1
s

0.00

0.61

1.22

1.83

2.43

0.00

0.60

1.20

1.80

2.40

0.00

0.60

1.19

1.79

2.38

0.00

0.63

1.26

1.89

2.52

0.00

0.63

1.26

1.89

2.52

0.00

0.62

1.23

1.85

2.47

0.00

0.62

1.24

1.86

2.48

0.00

0.60

1.19

1.79

2.38

Fig. A.4. Deformation and equivalent plastic strain (after 80µs) for the Taylor bar.

40



x

yz

spline 1

spline 2

8

200
180

110

99

120

99

500 160

800

x

y

0           192           385         577         770

(a) (b)

Fig. A.5. Description of the problem model (mm) - (a) description of a 15-de-
gree-part rotor - (b) initial von Mises stress (N/mm2) of the rotor (front view).

41



815835

1842
322

240 160

y

z
(b)

6.5

220
10 N/mm

8 115

0.05kg
y

z
(a)

Fig. A.6. Model of the stator (mm) - (a) description of the casing - (b) description
of the bearing.

42



x

y

x

y

0          0.024       0.048      0.073      0.097

(b)(a)

Fig. A.7. Configuration and equivalent plastic strain after 1/4 round - (a) front view
- (b) rear view.

43



x

y

x

y

0          0.038       0.075        0.113      0.150

(b)(a)

Fig. A.8. Configuration and equivalent plastic strain after 1/2 round - (a) front view
- (b) rear view.

44



x

y

x

y

0         0.038        0.076       0.113      0.151

(b)(a)

Fig. A.9. Configuration and equivalent plastic strain after 3/4 round - (a) front view
- (b) rear view.

45



x

y

x

y

0           0.039      0.079       0.118      0.158

(b)(a)

Fig. A.10. Configuration and equivalent plastic strain after 1 round - (a) front view
- (b) rear view.

46



(a) (b)

0

1000000

2000000

3000000

4000000

0.0 0.2 0.4 0.6 0.8 1.0

Round

F
o

rc
e

o
n

th
e

c
a
s
in

g
(N

)

0

200000

400000

600000

800000

1000000

1200000

0.0 0.2 0.4 0.6 0.8 1.0

Round

F
o

rc
e

o
n

th
e

b
e
a
ri

n
g

(N
)

Fig. A.11. Time evolution of the clamping forces - (a) clamping force of the bearing
- (b) clamping force of the casing.

47



List of Tables

A.1 Coordinates (mm) of the splines 49

48



Table A.1
Coordinates (mm) of the splines

Point spline 1 spline 2

1 ~x = (200; 0; 0) ~x = (791.9;−113.4; 8.9)

2 ~x = (199.3; 8.9; 19.7) ~x = (793.9;−94.7; 28.2)

3 ~x = (198.8; 16.3; 39.9) ~x = (795.1;−75.9; 47.5)

4 ~x = (198.3; 22.1; 60.7) ~x = (796.4;−57.0; 66.7)

5 ~x = (198; 26.3; 81.9) ~x = (797.6;−38.2; 85.9)

6 ~x = (197.9; 28.9; 103.4) ~x = (798.8;−19.4; 105.2)

7 ~x = (197.8; 29.7; 125) ~x = (800.;−0.6; 124.4)

8 ~x = (197.9; 28.9; 146.6) ~x = (799.8; 18.3; 143.7)

9 ~x = (198; 26.3; 168.0) ~x = (799.1; 37.1; 162.9)

10 ~x = (198.3; 22.1; 189.2) ~x = (798.0; 55.7; 182.3)

11 ~x = (198.8; 16.3; 210.1) ~x = (796.5; 74.3; 201.8)

12 ~x = (199.3; 8.9; 230.3) ~x = (794.6; 92.6; 221.4)

13 ~x = (200; 0; 0.25) ~x = (792.3; 110.7; 241.3)
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