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Abstract

Recent developments, in non-linear structural dynamics, have led to a new kind of
implicit algorithms: the energy-momentum conserving algorithm and the energy-
dissipative, momentum-conserving algorithm. Contrarily to commonly used algo-
rithms, such as the explicit central difference or the a-generalized method, the
stability of those algorithms is always ensured in the non-linear range, leading to a
higher accuracy. In previous works, we have developed a new formulation of the in-
ternal forces for a hypoelastic model, that leads to an energy-momentum conserving
algorithm. In this paper, we will extend this formulation to an energy-dissipative,
momentum-conserving algorithm. We will prove with an academic example, that
our algorithm is more accurate than the a-generalized method in the non-linear
range. Then we will simulate a blade loss problem to demonstrate the efficiency of

our developments on complex dynamics simulations.
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1 Introduction

When simulating impact problems, time integration of the equations of evo-
lution occurs in the non-linear range. Usually, explicit algorithms are used
in such a context. Nevertheless, due to its lack of stability in the non-linear
range, and its limitation in time step size, an implicit scheme could advan-
tageously be used. The most widely used implicit algorithm is the Newmark
algorithm [1]. For linear models, this algorithm is unconditionally stable. For
non-linear models, Belytschko and Schoeberle [2] proved that the discrete en-
ergy, computed from the work of the internal forces and from the kinetic
energy, is bounded if it remains positive. Nevertheless, since the work of the
internal forces is different from the internal energy variation when the New-
mark algorithm is used in the non-linear range, Hughes et al.[3] have proved
that the Newmark algorithm remains physically consistent only for small time
step sizes. To avoid divergence due to the numerical instabilities, numerical
damping was thus introduced, leading to the generalized-a methods [4]. Nev-
ertheless, the unconditional stability of these methods occurs only for linear

systems or asymptotically for the high frequency in the non-linear range [5].

Therefore, a new kind of implicit algorithm that remains stable in the non-
linear range appeared. The first algorithm verifying these properties was de-
scribed by Simo and Tarnow [6]. They called this algorithm Energy Momen-
tum Conserving Algorithm or EMCA. It consists in a mid-point scheme with

an adequate evaluation of the internal forces. This adequate evaluation was
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given for a Saint Venant-Kirchhoff hyperelastic material. A generalization to
other hyperelastic models was given by Gonzalez [7]. The EMCA was recently
extended to dynamic finite deformation plasticity, with a hyperelastic formu-
lation, by Meng and Laursen[8]. We have recently [9,10] established a new
expression of the internal forces for the hypoelastic materials using the final
rotation scheme. When associated with the mid-point scheme, this expres-
sion ensures the conservation laws of mechanics for a hypoelastic constitutive
model. Moreover, using the radial return mapping, we proved that this adap-
tation remains consistent with the Drucker postulate when plastic deformation
occurs. Nevertheless, if the EMCA remains stable in the non-linear range, the
presence of high frequency modes, resulting from the finite-element discretiza-
tion, can lead to divergence of the Newton-Raphson iterations. Armero and
Romero [11,12] have introduced numerical dissipation in the conserving algo-
rithms, for hyperelastic models. This dissipation only affects the total energy
but preserves the angular momentum. Moreover, it is proved to be stable in
the non-linear range, contrarily to the a-generalized algorithms. It is called

Energy Dissipative Momentum Conserving algorithm or EDMC.

In this paper, we propose to introduce numerical dissipation in our hypoe-
lastic conserving model. The plan is the following. Section 2 will expose the
preliminaries such as the dynamics conservation laws and the finite element
discretization. In section 3, we will recall the EDMC algorithm principles. In
section 4, we will develop a forces formulation for a hypoelastic model that
leads the integration algorithm to verify the energy dissipation and the con-
serving momentum properties. In section 5 we will show the accuracy of our
algorithm on the Taylor bar problem. We will also demonstrate the ability of

theses developments to simulate the complex problem of a blade loss in a aero



engine. Finally we will draw some conclusions.

2 Preliminaries

In this section we will define the notations in use in this work. Therefore we
will be able to recall the continuum laws. Then we will introduce the finite

elements discretization.

2.1 Notations

Let V C R3 be the manifold of the points defining the body and S C R?
be the manifold of the boundary. We define two configurations: the initial
configuration referred to by subscript 0 and the current configuration at time
t. Let pg: Vo — R, be the initial density. Boundary S is decomposed into
two parts: the first one Sz is the part where the displacements are known and
the second one Sy is the part where the surface tractions are known. It yields
SzUSz =S and Sz NSy = 0. Let & be the current positions and Zy be the

initial positions. Therefore, the two-point gradient of deformation tensor is

defined by
F=_— with f=F"" and J = detF (1)
8x0

Conservation of the mass leads to

pdV = podVy and pJ = Jo (2)

Let X be the manifold of the admissible positions



X={#:Vo— R |J >0 and 75, = 7| Vi € Vo} (3)

with ¥ the known positions. Let ¢ be the current time and let T = [0,]
be the integration interval. Therefore, the motion of the body is defined by
t € T — Z(t) € X. During this motion, the body is subject to specific loads
b (t): Vg x T — R3. Let ¥ be the Cauchy stress tensor. Boundary pressures
Ts (1) - S, X T — R? lead to the condition Ts (t) = X (t) 7 () with 7 the

outward unit normal to S.

The body is now decomposed into finite elements thanks to shape functions
¢%: Vg — R with € € [1, N] (N the total number of nodes), and with ¢ (7)) =

d¢ (6 is the Kronecker symbol). It leads for each node ¢ € [1, N]
(&) = ¢° (T0) 3, ¥ (T0) = ¢ (£p) ° and & (#y) = ¢* (%) * (4)

where Einstein’s notations are used. Let ¢ be an admissible virtual displace-

ment defined by the manifold

D

{7: Vo — R [ls, = 0 et 7(7,0) = 0,5 (&, t7) = 0 V& € Vo] } (5)

Let D” C D be the manifold of admissible virtual displacements 02 that can

be decomposed such as (4).
2.2 The continuous dynamics

The following quasi-variational principle (principle of virtual power of forces)

must hold Yoz € DY [13, page 412]

T



Integrating by parts, one gets

/V{pa?-éf}dV:/V{pg-éf}dVJr Sf{fs.af}dS—

=0K =0Weat
D6
o224V VteT
/V{ af} vie (M)
EdWint

with 0W;,e, 6Were and 6K respectively the virtual work of internal forces, the
virtual work of external forces and the virtual work of inertia forces. This

principle leads to the dynamics conservation laws.

2.2.1 Conservation of linear momentum

Let L be the linear momentum defined by

EE/V{pf}dV:/V {poit} dVy ®)

0

where Eq. (2) has been used. If §77 € D" is taken constant (rigid body trans-

lation), Eq. (7) leads to the conservation of the linear momentum

[;;:/V{pg}dV%—/Sﬂ{’fg}dS VieT 9)

=Feat

2.2.2  Conservation of angular momentum

Let .J be the angular momentum defined by
\% Vo
Taking 6% = 7jAZ with 77 constant (rigid body rotation), since 3 is symmetric,

and 77 is an arbitrary constant, Eq. (7) leads to the conservation of the angular



momentum

j:/v{pf/\g}dv—i- {EnTshdS VteT (11)

Sy

2.2.83  Conservation of the energy

Let K, W;,; and W,,; be respectively the kinetic energy, the internal forces

work and the external forces work, with

=)o | (b
WmtE/V{ET: {Ff}}dV
WeztE/V{pg-x;’}dV—i— [ {13} as (12)

where Eq. (2) is used. If the internal forces power Wmt is decomposed into a
reversible part Umt and an irreversible part Amt > 0 (plastic dissipation, ...)

and if F is the system energy, one gets

V.Vint = Uint + Aint and E = K + Uint (13>

Therefore, if 67 = 7, Eq. (7) leads to the first thermodynamics principle

E = Wez‘t - Aint Vt € ']T (14)

2.8  Finite-elements decomposition

Thanks Eq. (2) and to Eq. (4), the discrete terms of Eq. (7) can be rewritten

such that



5K:/ {poctot} avo [7]" - 62¢ = Mo [7]" - oaf

SW g — / {pobip} AV - 65 + / [Tt} ds - 6 = [Fof] - 626

5Wmt—/ {ZT [aai] J}dvo-affzfv [STE7 54T} v -2 (15)

=F¢

int

where M is the mass related to nodes £ and p and where D is the derivative
value, in the initial configuration, of the shape functions (i.e. D¢ = amo) Since

0z € DY is an arbitrary vector, Eq. (7) leads to the balance equation

M [F]" = [Fope — Fr|® WieT (16)

To be able to integrate this relation in time, T is decomposed into some inter-
vals [t", "] such that T = U= [t", t"+]. Let At = ¢"™* — " be the time
step size. Superscripts n and n + 1 will refer to configurations in time ¢ and
g+l

. To be consistent, the integration scheme must verify Eq. (9), Eq. (11)

and Eq. (14).

3 The Energy Dissipative Momentum Conserving (EDMC) algo-

rithm

Once the balance Eq. (16) is established for all times ¢, this relation must
be integrated in time. To achieve this goal, Armero and Romero [11,12] have
introduced velocities dissipation édiss and forces dissipation ﬁdiss in Simo and
Tarnow EMCA scheme. Both vectors édiss and ﬁdiss must be considered si-
multaneously to avoid bifurcation in the spectral analysis of the amplification
matrix. In this section we will present the headlines of the EDMC algorithm.

Then we will propose a predictor-corrector algorithm to solve the set of equa-



tions. Next we will deduce the conditions on the forces to verify the conserva-

tions laws expressed by Egs. (9), (11) and (14).
3.1 Description

The relation between positions and velocities at node & becomes

{fn—l—lr =7 + At {f’n“r + % {:Z’”r + At [é;l;s% ‘ (17)

2

This relation is a second order approximation (in At) if Ggiss = O (At2) and is
a first order approximation if édiss = O (At). A second order approximation

of the relations between the velocities and the accelerations at node & is

] =)+ B ) B ] (18)

The balance Eq. (16) is discretized in time at node & by

1 . . ot L ot 1 176
§M£'LL [1_3%4_1"‘5%}#: Fex—:2 _Fin—ti_2 _Fdi:; (19>

This relation is a second order approximation of Eq. (16) if Fyy, = O (Af2)

—)n l . . —

and if the internal forces Fm? are a second order approximation of Fj,; (t”+2 )

The set of Egs. (17), (18) and (19) is solved by a predictor-corrector algorithm.

Prediction values are deduced from Eqs. (17) and (18) by taking 2" = 0
diss

. At2? .. ot L §
[WLOF — [f” + AT+ Ti’” + AtGEE0

wﬂﬁ_pwﬁ%f

-5 (20)

Linearization with the accelerations of Eq. (19) evaluated at Newton-Raphson

iteration 7, leads to



S e

Sl Sl N
F;;TL—:Q <_m+1 7’) _'_ Fd’LSS (_‘n—i_l Z) - Fex—rz (a_jyn—‘rl’l) (21)
with S the Jacobian matrix
. oy DL ot L NS 1
a{%ng {fﬂ+1+jm} + Fm—:Q +Fdij32 _Fex—jf—2 }
St = —
o [fn—&-l}

a*y 1 At? At2 1
—K¥Y 4+ M =K% |—/I+ —G —M&T 22
S () @

In this last expression, K¢ is the stiffness matrix and G is the derivative of

@diss with respect to the velocities

—nt L 0 —n41 § —n+i [
0 En:_Q + Fdz:—; - Fex—;2 -£ aGdz-:s2 <fg>
K£H = a [q;n""l] and G (.f ) = T (23)

Let us note that solving Eqs. (21) using AZ and not AZ avoids the inversion

of matrix G. Details to obtain the Jacobian matrix are reported in appendix

A. Finally, linearization with the accelerations of Egs. (17) and (18) leads to

correction values at iteration ¢ + 1 and at configuration n + 1

[ZmtLir1 | _ —»n+1 4oy A$Z+1
- S

At

r e . 'H
jm—i-l,z—l—l _ {1_jm+1 ) ‘I’ _alsAlﬂ—H

m

_ L i ) At? . =
Lt & :fm-i-lal_i_als AJ] +

At [Gdzss< n+11+1) Gdiss(fmﬂ’i)r (24>

with g a line search parameter that enhances the Newton-Raphson resolution

[14, page 254].

10



3.2 Verification of conservation laws

In this section we will verify the conservation laws defined by Egs. (9), (11)

and (14).

3.2.1 Conservation of linear momentum

A sum on ¢ in Eq. (19) and the use of Eq. (18) leads to

3
Sntl bl ontd
Fea:t - ‘Fint - Fdiss (25)

;Mﬁu [i.‘?’b+1:|‘u _ %:Méu [fn}“ :Atz

3

-

En+1 Ln

where the continuous linear momentum L defined by Eq. (8) is discretized

thanks to Eq. (4) in L = e Mt Eq. (25) is a discretization of Eq. (9) if

SIS 14
Errzl =0 (26)

diss

SIS 14
> [EZ:FQ] =0 and »

3 3

These two conditions must be simultaneously verified since the dissipation

forces are independent of the internal forces.

3.2.2  Conservation of angular momentum

fn+1

Thanks to Eq. (17) and Eq. (18), the vector product between Z"2 = AT

and Eq. (19) leads to

1 ¢ . w1 TH
—— AfEH | pntl = N L VA TR - 31 | F
AtM [x } /\[:z: } AtM [:c]/\{x] =
Jn+1 Jn
U gl gt . T e
Mfll Gd:;sz /\ [%] + [:Zm—i_%}é /\ Flsajtr2 F;nIQ Fdi;rsz:| (27)




where the continuous angular momentum .J defined by Eq. (10) is discretized

thanks to Bq. (4) in J = M@ A 2. Therefore, Eq. (27) is a discretization

of (10) if
n+1 | =m]¢ 116 an+l 4 2n¢ ot 176
[x T A AR Z 0 and [ FU A EE —g (28)
2
and if
—'n—f—l € ierl +1—m !
e Gl [ -

This last expression allows the numerical dissipation to conserve the angular

momentum.

3.2.83 Conservation of enerqgy

Thanks to Eq. (17) and Eq. (18), the dot product between gty = ety

—n 1
Gd;g; and Eq. (19) leads to

MT@ {f’n+1r. [x;nﬂ]u M [;n]ﬁ_ [x;n]#_'_Mgu [fnﬂ B -_,n}u' [G_v'n+1:|£

92 diss
Kn+l K
o178 ¢ i 1 o116
_ |smtl )¢ n+3 ~-m+1 -n n+3 n+sz
- [.I' - } : Femt - : Fint + Fdiss (30)
1
Wi =W,

where the continuous kinetic energy K defined in Eq. (12) is dicretized thanks
toEq. (4) in K = 1M ng€. 71 and where the power of the external forces Wy,

defined in Eq. (12) is discretized and integrated in W —wn, = [z7+ — 77)°

ext ext —

1
L
n+2

F,

ext

3
. Let E be the discretized energy, let U,,; be the discretized internal

energy, let W,,; be the discretized work of the internal forces and let A;,; > 0

be the discretized internal dissipation during the step, all such that their

12



continuous values are defined in Eq. (13). Therefore Eq. (14) can be discretized

into

En+1 - En - Wn+1 - i Az’nt - Anum (31)

ext ext

where A, > 0 is the numerical dissipation during the step. If this last

expression is compared with Eq. (30), the internal forces must lead to

NS 13
Fot| [t -] U - U A (32)
and the dissipation values must lead to

13
+

F,

G diss

e [=nt+1 _ Zn]H
MH\Z T dise

The problem of the EDMC algorithm is to find a consistent expression of the
internal forces and of the dissipation terms that verify Eqs. (26), (28), (29),
(32) and (33). In a previous work [9,10], we have developed a new expression
of the internal forces, for an elasto-plastic hypoelatic model, that verifies this
conditions in the absence of numerical dissipation. The goal of this paper is
to establish the expression of the dissipation forces for such a model. It will

be achieved in the following section.

4 Expression of the forces for a hypoelastic model

In this section we will establish the internal and dissipation forces expres-
sions and the dissipation velocities expression for an elasto-plastic hypoelastic
model. First we will recall the hypoelastic model. Next we will briefly expose

the formulation of the internal forces we have established in [9,10]. Then we

13



will be able to extend this theory to the formulation of the dissipation forces
for such a model. The velocities dissipation will therefore be given. Finally,
the spectral analysis will prove that the high frequencies are numerically dis-

sipated.

4.1 The hypoelastic model

The two-point-deformation map F defined in Eq. (1) can be evaluated between

configurations m and n

F

.
= (%n with F? = F" Fm (34)

Thanks to the Polar Decomposition theorem, this tensor can be decomposed

into a rotation tensor R and into a deformation tensor U
. T T
F' =R, U’ with U, =U"" and R} R} =1 (35)

Therefore one can define the Green-Lagrange deformation tensor GL;,, the

Almansi deformation tensor A7 and the natural deformation tensor E7, by

GL" = % FE 1
1
An =g [1- 676
E" = % In [F;,"F7,| (36)

Cauchy stress tensor at configuration n is denoted X". Let H;ji = k0w +
G051 +Gydjn — %@jékl be the Hooke fourth order tensor with operation H :
E defined by 'H, ;i Ey; and with k& the bulk modulus and G the shear modulus.

Let us denote the corotational values (i.e. before the rotation operation) with

14



a superscript ¢. Then the corotational stress tensor is computed from

Bt = BT H BT - (37)

where s° is a deviatoric correcting term resulting from the J2 plasticity and
computed from the radial return mapping [15]. It is computed in the following
way. Let the elastic predictor s® be the deviatoric part of X" +H : E""1. If the
elastic predictor lies outside the von Mises criterion in the stress space, the step
was, at least partially plastic and some corrections need to be introduced in
the system. This correction is evaluated in the following way. The unit normal
tensor N¢ (normal to von Mises criterion in the stress space) is defined from

S

\/S:? where the operation a : b is defined by a;;b;;. Let P be the equivalent

plastic strain and let X, be the yield stress. Therefore, 4? is a scalar such that

[15]

2
[é‘p]"Jrl = [e"]" + \/;’yp and s® = 2GY’N° (38)
and obtained from the von Mises criterion
2
[8° — 267N 1 [8° = 267N = &[5, (7)) (39)
The final rotation scheme leads to
En-i-l — RZ—H Ecn-i-le—&—lT (40)

Let us note that such a formalism can be obtained with an heredity tensor

defining the kinematic hardening [9].

15



4.2 FExpression of the internal forces

The internal forces at time ¢" are expressed by Eq. (15). In [9], we have pro-

posed the following expression of the internal forces for the EMCA integration

scheme
Ft] = 3 [+ ]’
RS ; AL+ E] [T e Do f v
- 0
[Fox] = % AT [zt e Do v, (41)
- 0

where C* and C** are two correcting tensors resulting from the plasticity.

4.2.1 Conservation of linear momentum,

Conservation of the linear momentum discretized in Eq. (26) is directly ob-

tained from Eq. (41) since >, D¢ = 0.

4.2.2  Conservation of angular momentum

Conservation of the angular momentum discretized in Eq. (28) results from
the symmetric nature of ¥, C* and C**. Effectively, after some algebra [9],
and if € is the third order permutation tensor such that a A b=ce: @ ®l;j, with

operation [@ ® g]ij = Jigj, Eq. (41) yields

7] A [ = e LA+ E] s o [ E] gy ave
:/VO {e: @I} dV, (42)

that is equivalent to zero since © = [+ Fr+!] [S" + C*] [T + F*]" is a sym-

metric tensor and e is an antisymmetric tensor. The same technique leads to

16



e

wnt

|*=o0.

4.2.3 Conservation of energy

The first thermodynamics principle discretized by (32) can not be directly
obtained for an hypoelastic model since no internal potential can be defined.
Some algebra [9] yields

B e e

% g {GLy™: [Zr+ CJy + Aptt s [mt ) Jptt  av (43)
0

that has to be equal to Ut —U”

8 " 4 At to verify Eq. (32). In [9] we have pro-
posed to study Eq. (43) on a two-step cycle. The first step is an elasto-plastic
loading step resulting in an internal dissipation A;,;, and the second step is

an elastic unloading. Let E®! be the elastic part of the natural deformations

and UQIZH be the elastic part of the deformation

H : EQIZH =H:E'"" —s° and E"‘IZH =_—1In [UBIZHUQIZH} (44)

1
2
The existence of UQIZH is ensured from the symmetric nature of Eelzﬂ. There-

. n+1 n+1 n+1
fore elastic tensor GL®!""" and A®"""" are defined from U®!

L =1 [UelnHUemH B I]
n - 2 n n
A = %RZH -yt gt T gett T (45)

Elastic parts GL® and A®! of, respectively GL and A, contribute to an increase
of the reversible energy (i.e. energy that is stored as internal energy and could
be released by the material [9]). Plastic part GLP' and AP! of, respectively GL

and A are obtained from

17



n+1 n+1 n+1 n+1
GLPU'™ = GL™ — GL®" and AP = AnFL _ A°lY (46)

We have proved in [9] that Eq. (43), studied on the loading unloading cycle

yields to

mt -

/ GLp12+1 ; E"Jg}dVO + %/VO {GLZH : C*Jg}dvo +

N)I)—k[\’)l}—t

n 1
/ Apln+1 : 2n+1J61+1} dVy + 5 /VO {AZJrl : C**J61+1} avi (47)

To be physically consistent, Eq. (47) has to be related with a physical quan-
tity. The positive internal plastic dissipation can be expressed from a volumic

dissipation D;,; obtained from [10]
1 n+1 n+1 n+1 1 n+1 n
Dins = e E, P 4 S, (48)
Let us define the tensors C* and C** such that [10]

D — 30 GLPY

* n+1
C'= GLn—&—l GLn—H (I[Jn
nzﬂ s+l . Aplz+1
C** — J AZ+1 (49)

n+1 . n+1
Antl; An

These tensors are symmetric (leading to the conservation of the angular mo-
mentum) and are equal to zero when no plastic deformation occurs, as as-

sumed. Therefore Eq. (47) can be rewritten

Vo
that is consistent with the first thermodynamics principle.

18



4.3  Fxpression of the dissipation forces

In the previous section, it was shown that tensors C* and C** defined in Eq.
(49) and used in Eq. (41), control the internal dissipation through Eq. (47).
Therefore, we can control the numerical dissipation in the following way. Let

Dy, be a volumic potential. We propose the new formulation of the dissipation

forces
ﬁ(Z:S%- E = % [ﬁ;iss + ﬁj;sr
(o] =5 [ {[1+Fur Dot ey avy
- 0
[Fi] = ; /V {[T+ e Dot Dt avy (51)
- 0
with
D 6 GL"*! and D™ = — % NG (52)

= n+1 ., n+1 n+1 . ntl™ "N
GL'™: GL! Al An

The potential Dy, must verify the following conditions
Dw

\/GLZ+1 . G[Jz+l
Dw

JARL: Ant

The algorithm will be second order accurate if Fiw=0 (At?). Therefore, the

— 0if UM — 1

— 0 U ST (53)

algorithm is second order accurate if Dy, = O (At3) and is first order accurate
if Dy = O (At?). We propose the following expression of Dy, that satisfies

Eq. (53), and that leads to a first order accurate scheme.

Dy = XE g B

19



where y is a user-defined parameter that controls the numerical dissipation.
Its variation range will be studied in a future section. A second order accurate
algorithm could be reached if Eq. (54) is substituted by Dy = XE " :
H : E"IZHJ(;1 where E* is computed from an intermediate configuration 7* =
7" + O (At?). Nevertheless, such an algorithm leads to an increase of the
number of equations to be solved and is therefore more expensive [12]. In this

paper we focused on first order accurate schemes.

4.3.1 Conservation of linear momentum

Conservation of the linear momentum discretized in Eq. (26) is directly ob-
tained from Eq. (51) since >, D¢ =0.

4.8.2  Conservation of angular momentum

Conservation of the angular momentum discretized in Eq. (28) results from
the symmetric nature of D* and D**. Proceeding such as with the internal

forces, Eq. (51) yields

5—_
4 Jv,

N

@3] A [l {e:temr o rem) v, 55)

that is equivalent to zero since [I + F™] D* [I + F™1)" is a symmetric tensor

. . . . 13
and € is an antisymmetric tensor. The same technique leads to {:E“*ﬂ A

Fi] =0,

4.3.8  FEwvaluation of the numerical dissipation

The forces part of the numerical dissipation (Ay) expressed in Eq. (33) is

obtained directly from Eq. (51)

20



—nt+178

Ay = Fiss '[l_mﬂ_jm]é
1
= [ e Doy + AL D av, = / { Dy} dVy (56)
2 Vo Vo

that is always positive. The next goal to achieve is to determine the expression

of the dissipation velocities.

4.4 Fxpression of the dissipation velocities

The dissipation velocities have to verify Eq. (29) and the velocity part of
Eq. (33). Moreover, the expression of the dissipation velocity must lead to
a spectral analysis without bifurcation of the spectral eigenvalues to achieve
the numerical dissipation of the high frequencies. Armero and Romero [11,12]

propose the following expression of the dissipation forces

M {Gdﬂ—/ gDy f”ﬁf 5 ¢ Vo (57)
: &=l

with 7 = goéx;’f and HfH = ¢t Hféu and with the specific kinetic potential Dy

that must verify

D
SR

— 0 if

-

[f"fH 0 (58)

]

Since the dissipation velocities are first order accurate, the dissipation forces

are also chosen first order accurate. Therefore we want Dy = O (At?) such as

D =xy | = [#]])* 2 0 (59)

This expression differs from the one proposed by Armero and Romero (i.e.

. .2
Dk = x H:E"”“ — :E'"H ) that does not lead to zero for an uniform rigid body

21



rotation. A lumped expression of Eq. (57) can also be used to improve the
performance of the algorithm. It leads (without sum on superscript &, but

with velocities evaluated at node &)

— pi ] (60)
[T - [T

Therefore, one gets (with the lumped mass matrix m such that M = m&é,)

—'n-i—%
Gdiss

oyl Ly Zntl +:1.:"’n]#
ZMﬁu {GZ;;;]HQQ Z - m" Dig - [
Z B (el e 1O

Actually, combination of Eqs. (59) and (61) leads to the expression of the

dissipation velocity

(62)

4.4.1  Conservation of angular momentum
Conservation of angular momentum Eq. (29) is verified since

I

L
Gdiss

SS [t ] A
nog
mi DI [

ET -0

] Attt =0 (63)

4.4.2  Evaluation of the numerical dissipation

The velocity part of numerical dissipation (Ag) defined by Eq. (33) is evalu-

ated by (using Einstein’s notations)
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Ar=[am - )" me |G

m
— MDY ~ / {poDr}dVo >0 (64)
Vo
4.5 Spectral analysis

At this point, we have proved that our formulation is thermodynamically con-
sistent and numerically dissipative in the non-linear range. Now we have to
achieve the spectral analysis to prove that the high frequencies are numer-
ically dissipated. Let us assume a small transformation, without plasticity,
ou;

hypothesis with €;; = % (g? + 85‘) the small strain tensor. Therefore one
J 3

gets

Jott ~ JP and Ry ~ 1
eln+1 elnt+1 eln+1 eln+1
e®, ~GL*, ~~A® =~ ~E®

and ¥" ~ H : E®| (65)

1n+1

e ~ Tel” eln+l1
EUT ~EV LB

n

Let us assume a uniform tension problem with a displacement . The elements
are decomposed with linear shape functions. Therefore, it comes, for one ele-
ment of length [ and of cross section A, the following incremental deformation

tensor holds

wi e S (66)
o T %n N [ 0 irec 0

2G—-3k
0 0 6k+2G

with k£ the bulk modulus and G the shear modulus. Only the first component

of the stress tensors is different from zero and it comes

2"t 9kG
[ 3k+dG

a" 9kG
I 3k+G

I and X = (67)
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The first components of the forces vectors (41) and (51) become (at the first

9kG
3k+G

order in z) with Y = the Young’s modulus

il YA "t —gn
[ X 2

and diss (68)

wnt

F_v’”"'%] :Y_Ax”+1+x”
1 l 2

For a translation motion, the kinematic potential (59) is rewritten as Dg =

. . 12
X% {f”“ — :?”} that is correct while the velocity keeps the same direction

between two steps. Since the lumped mass m associated for each extremity is

equal to %, if w? = %, then Egs. (17), (18) and (19) lead to

At gttt — gn
n+l__ .n = s n+1 N
T =x" + 5 [1+X¢n+l+x,n] [x +x}
At
n+l1 __ -m 2V Tentl “n
T =z + 5 {x +x }
n-+1 n
g2 (1 gy e = (a7 4 2] (69)
anrl +

This system of equations is equivalent to the one obtained by Armero and

Romero [11] for a spring model, and leads to the spectral matrix As(Q2)

n 17£[17X2] 1 n
! D) oy U z
2
T _oz 19127 n 70
N S Do 0 || At (70)
n 202 —02[14] “n
At2$ +1 D(Q) W)X —1 At2.f13
As(©)

with D (Q) =1+ %2 [1 4 x]* and with Q = wAt. This system is reduced to a

two dimension system with the two conjugate complex eigenvalues

1— 21—y +i0

(71)
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Armero and Romero [11,12] pointed out the necessity of considering dissi-
pation velocities unless there exists a bifurcation limit €2, that leads to real
eigenvalues. Let €2y and &; respectively be the adimensional pulsation of the

solution and the damp ratio of the solution

& 1 1
)y = arctan (JM) ~Q—- {XQ + —] P+ 0 (94)

R\ 4 3
—In ([SAP 4+ [RM)
= ~ =) 0? 2
S 20, o () (72)
It comes directly that the error on the pulsation eq = Q"’Q_ £ and that the error

on the damping ratio e, = &; are both first order in At, leading to a first order

accurate scheme. The spectral radius of the response is then evaluated by

2

pa (@) =N = Hﬂ_ﬁlﬂfﬂl—%u—xﬂ] o (73)

If 0 < x <1 the spectral radius is always lower than unity. It is close to unity
for the low frequencies and tends to its minimal value p,, = i—; for the high

frequencies.

5 Numerical examples

In this section we will analyze the results obtained with the developed for-
mulation and with the traditional Newmark family on an academic case: the
Taylor bar problem. The following step will be to prove that our formulation

is able to simulate a more complex problem such as a blade loss problem.
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5.1 FExample 1: The Taylor bar

[Fig. 1 about here.]

[Fig. 2 about here.]

[Fig. 3 about here.]

[Fig. 4 about here.]

The problem consists in a cylindrical bar (external diameter d. = 6.4mm,

length [ = 32.4mm) made of an elasto-plastic material (Young’s modulus

Y = 117E9N/m?, Poisson’s ratio v = 0.35, density p = 8930kg/m3, initial

vield stress ¥y = 400N/mm?, hardening parameter h = 100N/mm?) that

impacts a rigid wall with an initial velocity (¢ = 227m/s). We study one

quarter of the cylinder. It is discretized into 12 times 48 = 576 elements (Fig.

A.1). The simulation occurs in 80us. We will compare the results obtained with

4 algorithms. For each algorithm, the spectral radius for an infinite frequency

is chosen as po, = 0.7. The different algorithms are:

the first order accurate EDMC algorithm (EDMC-1) with x = 1=poc .

1+Poo )
the Newmark algorithm [1] with the first parameter § = m and the
second parameter y = 23;2";; ;

the Hilber-Hughes-Taylor (HHT) [4] algorithm with the first Newmark pa-

-, the second Newmark parameter v = 2=£= and with

!
rameter 3 = Tl 21 2p00

1—poo .
:L"l‘poo7

the Chung-Hulbert (CH) [4] algorithm with the first Newmark parameter

the internal forces interpolation parameter ap =

0 = m, the second Newmark parameter v = 2%_2%0’ with the inter-

nal forces interpolation parameter ar = ;5 _’;‘;’ and with the inertial forces

26



interpolation parameter a,, = 21”;*1.
o0

For each algorithm we study the influence of the time step size that evolves
in a range from 0.1us to 1us. For a time step size equal to 1.25us, only the
Newmark and the EDMC-1 algorithms have converged. Fig. A.2 (a) represents
the evolution, with the time step size, of the physically (plastically) dissipated
energy and Fig. A.2 (b) represents the energy numerically dissipated. In accor-
dance with the theory, since there are no bifurcation in the spectral analysis, if
the time step size is increased, the a-dimensional pulsation is increased and the
energy numerically dissipated is increased. Surprisingly, if the numerical dis-
sipation is increased, the CH scheme overestimates the plastically dissipated
energy (Fig. A.2 (a)). For the other schemes, since a part of the initial kinetic
energy is numerically dissipated, the plastically dissipated energy is underes-
timated. Fig. A.3 (a) illustrates the energy of the system (sum of the kinetic
energy and the work of the internal forces minus the plastically dissipated
energy) of the bar. We can see that only the EDMC-1 leads to positive energy
for all the time step sizes, for the other schemes, if the time step increases,
the plastically dissipated energy becomes larger than the work of the internal
forces. Thus, these schemes violate the first principle of the thermodynamics.
Fig. A.3 (b) illustrates the error on the system energy. All the scheme leads
to first order accurate solutions, while a linear theory predicts that the CH
and of the HHT schemes are second order accurate. We assume that in the
non-linear range, the second order accuracy is no longer ensured. Equivalent
plastic strains of the final configurations are illustrated on Fig. A.4. The so-
lution obtained with a time step size equal to 1us and with the EDMC-1
algorithm is equivalent within less than 1% to the solution obtained with a

time step size equal to 0.1us. For the other schemes, solutions with A = 1us
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overestimate the equivalent plastic strain of about 5%.

5.2 Fxample 2: blade loss problem in a aero engine

[Fig. 5 about here.]

[Table 1 about here.]

[Fig. 6 about here.]

A turbo-engine is modelled with a shaft that has an imposed revolution motion
on one extremity. At the other extremity, there is a disk with 24 blades. The
shaft, the disk and the blades are part of the rotor, which is in rotation in a

stator. The stator is composed of a casing and a bearing.

The rotor has a cyclic symmetry of 15 degrees (24 blades). Fig. A.5 (a) il-
lustrates a 15-degree-sector. The blade is defined thanks to a ruled surface
that has two splines for extremities. The two splines are described in Ta-
ble A.1. The blades are made of an alloy (density p = 3600kg/m?, Young’s
modulus Y = 88000N/mm?, Poisson’s ratio v = 0.31, initial yield stress
Yo = 880N/mm? and hardening parameter h = 26700N/mm?). The disk and
the shaft are composed of another alloy (density p = 6300kg/m3, Young’s
modulus Y = 165000N/mm?, Poisson’s ratio v = (.31, initial yield stress
Yo = 800N/mm?, hardening parameter h = 271N/mm?). The blade is dis-
cretized with 99 elements: 11 in length (elements at the head of the blade are
50% smaller than at the root), 9 elements in height and 1 element through the
thickness. The disk has 2 elements through the thickness and 72 elements on

the circumference. The shaft has 1 element on its thickness and 11 elements
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on its length (8 for the constant section shaft and 3 for the conical part). The
shaft has 72 elements on its circumference. The elements are 8node bricks

with constant pressure.

At time t = 0s, the initial configuration of the rotor is equilibrated for a
rotation velocity of 4775rpm. This initial configuration is computed with a
Newton-Raphson scheme where the external forces are the analytical inertial
forces computed from the nodes position and from the imposed rotation ve-
locity. The von Mises stresses resulting from this uniform rotation velocity are
illustrated in Fig. A.5 (b). The blade pointed by an arrow is independent from
the disk. To evaluate the initial configuration, it is linked to the disk through
an adhesion law (normal penalty k, = 10°, tangential penalty kr = 10%). Af-
ter the initial configuration is evaluated,in order to simulate the blade loss,
this link is numerically removed thus creating some unbalance in the system
and the free blade interacts with the other blades and with the casing. The
interaction between the blades and the casing is simulated with a Coulomb
friction law (normal penalty k, = 10° tangential penalty kr = 107, friction
coefficient pi. = 0.1). The interaction between the free blade and the other
blades is simulated with the same law. Contact interactions between attached

blades are simulated with a frictionless law (normal penalty k, = 10%).

The casing is a cylinder made of an aluminum alloy (density p = 2710kg/m3,
Young’s modulus Y = 55200N/mm?, Poisson’s ratio v = 0.31, yield stress
Yo = 550N/mm? and hardening parameter h = 281 N/mm?). Its geometry is
illustrated in Fig. A.6 (a). The bearing has a conical geometry (Fig. A.6 (a) and
Fig. A.6 (b)) and is made of an alloy (density p = 3600kg/m?, Young’s modu-
lus Y = 88000N/mm?, Poisson’s ratio v = 0.31, yield stress ¥y = 550N /mm?

and hardening parameter h = 2600N/mm?). The displacement of the shaft
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is restrained by the bearing thanks to a central node (Fig. A.6b). There are
springs between the central node and the extremity nodes of the bearing and
there are springs between the central node and two rows on nodes of the shaft.
Each spring has a stiffness of 108N/mm and a mass M = 0.05kg is associated
with the central node. The bearing and the casing have 1 element through the
thickness. The casing has 36 elements along the circumference and 8 elements
through its length. The bearing has 3 elements through its length and 20 along

its circumference. The elements are 8-node bricks with constant pressure.

[Fig. 7 about here.]

[Fig. 8 about here.]

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

We analyze the first revolution of the rotor after the blade loss with an EDMC
(first order accurate) algorithm with a spectral radius equal to ps, = 0.8. The
time step size is computed from an automatic criterion [16,17] and with an
accuracy of 107* on the integration error [16,17] and the choice of updating
the Hessian matrix is computed from automatic criteria [16,17]. Each time
step is computed with a Newton-Raphson scheme (Tolerance 107°) enhanced
by a line-search system [14] (Tolerance 1073). The contact interactions are
simulated with the consistent penalty method proposed by Armero et Petocz
[18,19]. Let us note that we adapted this method to normal-discontinuous

surfaces [20].
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Fig. A.7 illustrates the configuration after a quarter of revolution. The free
blade interacts with the first next (attached) blade. Fig. A.8 illustrates the
configuration after half a revolution. The free blade remains between the at-
tached blades and the casing and the attached blades bend. The head of the
free blade enters into contact with the fifth linked blade. Fig. A.9 illustrates
the deformation after three quarters of a revolution. The head of the free
blade has led the fifth blade to bend significantly, and the free blade is pushed
towards the rear of the casing. Fig. A.10 illustrates the results after one rev-
olution. The free blade was pushed away from the disk so that the remaining

interactions only occur between the linked blades and the casing.

The total force on the bearing is illustrated in Fig. A.11 (a). It appears that
this force is linear during the first instants, when the bearing reacts to the
presence of an unbalanced shaft. But when the free blade interact with both
the linked blades and the casing, the force starts oscillating. The time evolution
of the force on the casing (Fig. A.11 (b)) results from the interaction of the

blades on the casing and the force oscillates during the whole simulation.

6 Conclusions

In this paper we have extended the Energy Dissipative Momentum Conserv-
ing algorithm to the elasto-plastic hypoelatic model. We have proved that
this method is stable in the non-linear range and the numerical dissipation is
always positive. We have shown on an academic example that the proposed
algorithm remains accurate even for large time step sizes in the non-linear
range, although the method is only first order accurate. But, due to its consis-

tency in the non-linear range, it is more accurate than the Newmark family.
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Moreover, we have presented a blade loss problem to expose the ability of the

method to simulate more complex dynamics phenomena.

A The Jacobian matrix

To be able to evaluate analytically the Jacobian matrix defined by Eq. (22),
we need to known the expression of the dissipation velocities derivative (G)

and the expression of the stiffness matrix (K), both defined in Eq. (23).

Let us evaluate tensor G (i*). Eq. (62) leads to

, 0 A+l &zl il | i o ml
G(i)=———-Gyu2 =X [ZE +x}®x +
ogntl e 41| [||an+1 ]2
2| 2+ [l )]

29 i o Gl B
X . (A1)
2 ]+ |

The stiffness matrix was evaluated for the internal forces in [10]. The part com-
ing from the dissipation forces is evaluated exactly in the same way. Therefore,
in this paper we only give the expression that differs. To derivate Eq. (41),
one needs to know the derivation of the dissipation D;,; defined by Eq. (48).
Because of the analogy between the internal forces expressed by Eq. (41) and
the dissipation forces expressed by Eq. (51), the only new term to be evaluated

is the derivation of the internal dissipation potential expressed by Eq. (54). It

leads to
ODw  Xeantl ,, OETL oy QESNT

Let us define M the fourth order tensor such that

32



n 9 [H : EZ-‘:—l — ZGWPNC] n+1T - n )
{R”H O [an+1)" Ry - = Mij [fo H} it P (A.3)
ij

Its expression can be computed [21,15] : Mji = k00 + g*0ud 5 + g*0ir01 —

*

%&j(skl - 29*/VL*NUNM with g* = 6G7 6 — 2xvntl ,u* _ H_gih and

3 /se:se’ 3 TI=Th
h = %?: n+1, yielding
0Dw n eIty 1T — [ent117 Ry n
W =X {Rn-‘rlE ln Rn+1 } : M {f() +1} D’ujo (A4)
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Fig. A.1. Mesh of the Taylor bar.
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Fig. A.5. Description of the problem model (mm) - (a) description of a 15-de-
gree-part rotor - (b) initial von Mises stress (N/mm?) of the rotor (front view).
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Fig. A.11. Time evolution of the clamping forces - (a) clamping force of the bearing
- (b) clamping force of the casing.
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Table A.1
Coordinates (mm) of the splines

Point spline 1 spline 2
1 Z = (200;0;0) ¥ =(791.9;-113.4;8.9)
2 Z = (199.3;8.9;19.7) T =(793.9; —94.7;28.2)
3 7 =(198.8;16.3;39.9) &= (795.1;-75.9;47.5)
4 ¥ =(198.3;22.1;60.7) &= (796.4; —57.0;66.7)
5 Z = (198;26.3;81.9) ¥ = (797.6; —38.2; 85.9)
6 ¥ =(197.9;28.9;103.4) & = (798.8;—-19.4;105.2)
7 ¥ = (197.8;29.7;125) Z = (800.; —0.6;124.4)
8 ¥ =(197.9;28.9;146.6) & = (799.8;18.3;143.7)
9 Z = (198;26.3;168.0) ¥ =(799.1;37.1; 162.9)
10 7 =(198.3;22.1;189.2) & = (798.0;55.7;182.3)
11 #=(198.8;16.3;210.1) & = (796.5;74.3;201.8)
12 Z=(199.3;8.9;230.3) &= (794.6;92.6;221.4)
13 Z = (200;0;0.25) Z = (792.3;110.7;241.3)
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