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Abstract

An inverse Mean-Field Homogenization (MFH) process is developed to im-
prove the computational efficiency of non-linear stochastic multiscale ana-
lyzes by relying on a micro-mechanics model. First full-field simulations
of composite Stochastic Volume Element (SVE) realizations are performed
to characterize the homogenized stochastic behavior. The uncertainties ob-
served in the non-linear homogenized response, which result from the un-
certainties of their micro-structures, are then translated to an incremental-
secant MFH formulation by defining the MFH input parameters as random
effective properties. These effective input parameters, which correspond to
the micro-structure geometrical information and to the material phases model
parameters, are identified by conducting an inverse analysis from the full-field
homogenized responses. Compared to the direct finite element analyzes on
SVEs, the resulting stochastic MFH process reduces not only the compu-
tational cost, but also the order of uncertain parameters in the composite
micro-structures, leading to a stochastic Mean-Field Reduced Order Model
(MF-ROM). A data-driven stochastic model is then built in order to gener-
ate the random effective properties under the form of a random field used
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as entry for the stochastic MF-ROM embedded in a Stochastic Finite Ele-
ment Method (SFEM). The two cases of elastic Unidirectional (UD) fibers
embedded in an elasto-plastic matrix and of elastic UD fibers embedded in a
damage-enhanced elasto-plastic matrix are successively considered. In order
to illustrate the capabilities of the method, the stochastic response of a ply
is studied under transverse loading condition.

Keywords: Stochastic, Homogenization, Micro-Mechanics, Composite
Materials, Data-driven

1. Introduction

In the last decade there has been a growing interest in considering uncer-
tainties in structural engineering. One source of uncertainties originates from
the material itself, and is of particular importance when considering strongly
non-linear behaviors and/or fracture [1, 2]. This is the case in composite
materials for which variability in the micro-structure leads to a variability in
the structural quantity of interest such as the strength. Although Stochastic
Finite Elements (SFEM) [3, 4] provide a mean of assessing the structural
stochastic response, they require the definition of proper random fields [5],
which can hardly be fully characterized from experimental data, since a lim-
ited number of mechanical tests cannot accurately sample the distribution of
a material response. This has led to the conclusion that the random fields
should be defined from micro-mechanical information [5, 6, 7], paving the
way to virtual testing.

In the context of virtual testing of composite materials, the uncertain-
ties in the micro-structure arrangement are experimentally characterized
and statistically represented in order to be able to generate synthetic micro-
structures having the same stochastic features and that can be readily used
in numerical simulations. We refer to the works [8, 9, 10] for woven compos-
ites, [11] for particle-reinforced composites and [12, 13, 14] for unidirectional
fiber reinforced composites (UD). While for the former case, the generated
structures can be envisioned to be used for structural studies [8, 9], for the
latter two heterogeneous materials, because the length scales are separated
by several orders of magnitudes [5], a homogenization step is first required.

Different multiscale techniques, see the reviews [15, 16, 17], have been
developed analytically and/or numerically to predict the macro or meso-
scopic response of heterogeneous materials at reduced computational costs
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Figure 1: Multiscale analysis performed by homogenization of the meso-scale volume
element ω: (a) Non-Linear multiscale analysis; (b) Multiscale analysis using a non-local
counterpart Zi of a homogenized representation of an internal variable Zi in phase ωi.
The latter are not rigorously volume averaged values.

while maintaining a high degree of accuracy. Among them, computational
homogenization based strategies were developed in [18, 19, 20, 21, 22] and
have gained popularity with the increase in computational power. In a
homogenization-based multiscale analysis, at each (macro) material point
of interest, a Boundary Value Problem (BVP) is defined on a meso-scale
volume, which represents the different phases of the material, see Fig. 1(a).
Computational homogenization investigates the response of the meso-scale
volume element through a full-field analysis like the Finite Element (FE)
method, in which case the multiscale method is also called Finite Element
Square (FE2). Since the micro-structures and phases properties of heteroge-
neous materials are considered explicitly in the meso-scale volume elements,
the computational homogenization can provide rather accurate predictions.

Computational homogenization-based multiscale methods have mainly
been developed by considering a deterministic micro-scale BVP by assuming
statistical representativity of the latter, allowing the definition of a Repre-
sentative Volume Element (RVE) on which the homogenization is achieved.
However, a RVE cannot always be defined: because of the various sources
of uncertainties, which are involved in real micro-structures, the size of the
RVE may reach the order of the macro-scale for some heterogeneous mate-
rials, such as UD fiber and/or woven fiber reinforced matrix material. This
increase in the RVE size is particularly severe for non-linear behaviors such
as plasticity [23, 2] or micro-cracking [2]. In that case, a unique RVE cannot
be used since the scale separation criterion for a multiscale analysis is not
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satisfied. In order to be able to predict by virtual testing the uncertainties
observed at the structural scale, the multiscale analyzes should thus be con-
ducted on the material synthetic micro-structures which capture the material
stochasticity; these synthetic micro-structures serve as Stochastic or Statis-
tical Volume Elements (SVEs) [7] in the context of homogenization: local
homogenized properties depend on the SVE realization, and on the applied
boundary conditions as studied in the case of elasticity [14, 23, 24], in the
case in micropolar elasticity [25, 26], in the non-linear case [27, 23], and in
limit analyzes [28].

Although, the distribution of the homogenized properties of SVE realiza-
tions can be used to define apparent homogenized properties [23, 24, 25, 26],
in the context of virtual testing and stochastic analyzes, the SVEs are seen
as a mean to propagate the micro-scale uncertainties to a higher scale. How-
ever, direct FE2 methods conducted on SVEs and combined to macro-scale
SFEM are not computationally affordable, in particular when Monte Carlo
(MC) simulations are conducted at the structural scale. Indeed, in order
to conduct a reliable stochastic multiscale structural analysis by SFEM, the
stochastic description of the material properties should be defined accounting
for the size of the stochastic finite elements [29]: the SVEs used to define the
meso-scale random material property fields should have a comparable size to
the finite element size in the structural analysis, putting severe constraints
on the finite element mesh used at the SFEM level. Therefore, in the context
of linear elastic materials, to avoid the costly coupled micro-scale computa-
tions, phenomenological macroscopic models were stochastically calibrated
from homogenized responses of computational homogenization performed on
SVEs: a transverse isotropic law with resultant Young’s modulus and Pois-
son ratio was calibrated for the homogenized behavior of random two-phase
composites [30, 31] and an orthogonal anisotropic law was adopted for the
same material system [14], for poly-silicon elasticity [29], and for poly-silicon
thermo-elastic damping [32].

Nevertheless, in the context of non-linear materials it is not always easy
to define an ad hoc model since the behavior of the materials system can be
complex. Using a modified version of the meso-scale stochastic finite element
method (SFEM), the stochastic homogenization of a UD composite cell can
be achieved [33] efficiently, but the micro-structure is limited to a single fiber.
An alternative is to speed up the homogenization process by considering a
Reduced Order Model (ROM). In general, a ROM accelerates the micro-scale
analyzes with pre-off-line computations. Based on the acquired information

4



from pre-off-line full-field micro-scale analyzes, the full-order governing equa-
tions are projected into a suitably selected reduced order space. In order to
avoid the use of a large number of displacement degrees of freedom, the micro-
scale model is solved with a reduced number of unknown variables which are
defined by means of proper orthogonal decomposition of the displacement
field [34, 35]. Furthermore, hyper-reduction techniques can be applied to re-
duce the computation cost of the internal forces resulting from the evaluation
of the local constitutive equations [36, 37]. In the context of order reduction
using a micro-mechanics-based homogenization model, nonuniform transfor-
mation field analysis (NTFA) [38] reduces the field of internal variables by
using the pre-defined internal variables modes obtained with pre-off-line full-
field analyzes. Moreover, a tangent second-order (TSO) expansion of the
dissipation potential [39] corresponds to a reduction of the evolution equa-
tions related to the reduced internal variables. An alternative to the TSO-
expansion is the NTFA extension in terms of a potential-based Reduced Basis
Model Order Reduction (pRBMOR), developed in [40], which provides the
evolution law for the reduced degrees of freedom from a mixed incremental
variational principle, and which has been combined to GPU acceleration in
[41]. By dividing the volume element phases into clusters of similar strains
obtained through full-field analyzes and by performing a Hashin-Shtrikman
homogenization, an efficient order reduction method for non-linear reversible
behaviors has been developed in [42]. Clustering the volume elements from
linear analyzes and applying a self consistent homogenization of the non-
linear clusters response is an efficient alternative proposed in [43]. Finally,
the mapping functions, as surrogate models, can also be constructed from
pre-off-line computations, such as through kernel methods [44], polynomial
chaos expansion [45] etc.

The concept of ROMs has been used in stochastic analyzes. Using an or-
der reduction method combined to an asymptotic homogenization on SVEs,
stochastic multiscale analyzes account for fine-scale material properties as
random variables –and random fields in particular cases [46]. By defining
a meso-scale potential which reflects the uncertainties related to the fibers
geometry/distribution in composites, a ROM was built from the resolution of
SVEs in the context of finite elasticity [47, 48]. The idea of using data-driven
ROMs in non-linear stochastic analyzes is also discussed in [49]. Nevertheless
ROMs remain mainly applied to deterministic analyzes, in which the pre-off-
line full-field analyzes need to be carried out on a RVE, which is by definition
statistically representative. Indeed, using ROM to solve MC resolutions of
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realistic SVEs would not only require a huge series of pre-off-line compu-
tations on SVEs, but the memory required to store these information from
off-line computations also becomes overwhelming. Addressing the problem
of conducting efficient stochastic multiscale analyzes in the context of virtual
testing remains thus highly challenging.
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Figure 2: Development of a stochastic non-linear Mean-Field Reduced Order Model (MF-
ROM).

The purpose of this paper is to define a stochastic non-linear micro-
mechanics model serving as meso-scale surrogate model, which represents the
non-deterministic material response of UD composite materials, and that can
be used as random field input of a SFEM analysis. The developed method-
ology is described in Fig. 2. Using SEM images of composite materials, a
micro-structure stochastic model was developed in [14] from statistical rep-
resentation, such as the fiber radius rf and nearest distance d illustrated in
Fig. 2, allowing synthetic micro-structures to be generated under the form
of SVE realizations of arbitrary size and number. Conducting non-linear
full-field analyzes and performing homogenization on these SVE realizations
lead to a set of homogenized responses, which are in turn used to identify
the random effective material properties of the micro-mechanics-based sur-
rogate model. In this context, the non-linear micro-mechanics model is seen
as a ROM basis in which the order reduction actually corresponds to the
identification of the effective material parameters.

In [50], such a methodology has been developed in the context of linear
elasticity by using as stochastic ROM basis the non-linear Mean-Field Ho-
mogenization (MFH) theory, thus defining a stochastic Mean-Field Reduced
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Order Model (MF-ROM). The MFH approach is originally a computationally
efficient semi-analytical framework for the modeling of multi-phase compos-
ites. MFH methods were first developed for linear elastic composites using
different extensions of the Eshelby single inclusion solution [51] to account
for the multiple inclusions interaction, as in the Mori-Tanaka [52, 53] and in
the self-consistent [54, 55] schemes. Based on the concept of Linear Compar-
ison Composite (LCC) [56, 57], MFH has been extended to the modeling of
non-linear composites whose constituents may exhibit non-linear behaviors,
as plasticity, visco-elasticity ... By opposition to computational homogeniza-
tion, the microstructure is not explicitly represented but defined from the
phases material properties, the phases volume fractions and either from the
inclusion geometrical shape or from their spatial correlation [58]; the BVP
is then formulated by a series of equations, completed by the knowledge of
phases properties, that can be solved iteratively. Since the detailed spacial
information of the micro-structure is neglected, the volume element is only
a concept in the MFH and the micro-structure uncertainty effects cannot
be directly accounted for in contrast to the computational homogenization
method. Therefore, in this work, the MFH theory is not used as a predictive
homogenization method, but as a ROM basis in which the uncertainties are
represented by a few random parameters defined as random effective ma-
terial properties and geometrical parameters identified through an inverse
micro-mechanical analysis conducted on the SVE full-field resolutions.

In this paper this MF-ROM concept is developed for non-linear elasto-
plastic and damage-enhanced elasto-plastic responses of UD composite ma-
terials. The main interest of considering the stochastic MF-ROM is its com-
putational efficiency allowing stochastic scale-transition to be carried out by
the SFEM for non-linear behaviors and macro-scale quantity of interest, such
as the strength, to be assessed as it will be illustrated on a virtual ply loading
test.

The paper is organized as follows. General background for homogenization-
based multiscale analyzes is given in Section 2 for both the FE2 and the MFH
methods that will be used in this work for the full-field analysis and the def-
inition of the MF-ROM, respectively. The stochastic MF-ROM is defined
in Section 3 by conducting an inverse identification of the model parameters
from the full-field analyzes. First the case of linear elasticity treated in [50] is
briefly summarized, then the cases of elastic fibers embedded in elasto-plastic
and damage-enhanced elasto-plastic matrix are successively developed. Note
that in the case of damage-enhanced elasto-plasticity, the formalism pre-
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sented is strictly valid up to the strain-softening onset of the meso-scale
homogenized behavior. During strain softening, the homogenized behavior
of the SVEs obtained by computational homogenization in terms of a bulk
stress-strain relationship is not valid since size objectivity is not ensured [59].
The developed methodology is then applied in the context of UD compos-
ites in Section 4, and the stochastic responses predicted by the MF-ROM
are compared to the full-field simulation results. The statistical character-
istics of the realizations of the MF-ROM effective parameters identified for
the UD composites are then studied in Section 5. From these realizations, a
stochastic model is built in order to generate random vectors of the effective
properties respecting these information. Since there exists a dependence be-
tween the properties, and since only a limited number of samples is available,
we adopt the data-driven sampling method developed in [60]. As a result,
random vectors can be generated and used as entry for the stochastic MF-
ROM embedded in a Stochastic Finite Element Method (SFEM). Finally, the
applicability of the method to study a stochastic response at a higher scale
is investigated in Section 6. It is shown that, although in the linear range
the ply response remains deterministic, the non-linear response exhibits un-
certainties as well as the ply strength. However, since we do not account
for the loss of size objectivity during softening of the homogenized response,
the stochastic study of the ply strength is only presented to illustrate the
potential of the method while future developements are still required.

2. Homogenization-based multiscale analysis

In this section, the main equations of the homogenization-based multi-
scale analysis are reviewed. In the multiscale approach, at each macro-point
X, the macro-strain tensor εM and its increment ∆εM are known, and the
macro-stress tensor σM is sought from the resolution of a meso-scale Bound-
ary Value Problem (BVP), see Fig. 1(a). To this end, the macro-point
is viewed as the center of a meso-scale volume element of domain x ∈ ω.
First the governing equations at the micro-scale are given in the cases of
anisotropic elasticity and J2-elasto-plastic phase materials. Elasto-plasticity
is successively considered with and without damage. Then, two homoge-
nization methods for non-linear composites are reviewed: the computational
homogenization or FE2 method and the incremental-secant MFH.
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2.1. Definition of the meso-scale boundary value problem

At the micro-scale, any point x ∈ ω belongs to a phase ωi with ∪iωi = ω.
At that scale the classical continuum mechanics is assumed to hold. Besides
we assume that the deformations remain infinitesimal and that the time for a
stress wave to propagate in the meso-scale volume element remains negligible.
Therefore, in the absence of dynamics effects the equilibrium equations read{

∇m · σm = 0 ∀x ∈ ω ,
nm · σm = tm ∀x ∈ ∂ω ,

(1)

where the subscript ’m’ refers to the local value at the micro-scale, σm is the
Cauchy stress tensor, and tm is the surface traction on the boundary ∂ω of
outward unit normal nm. Notations are detailed in Appendix A.

To complete the micro-scale problem, the local constitutive laws of the
different materials are written as

σm (t) = σm (εm (t) ; Zm (τ) , τ ∈ [0, t]) , (2)

where the small-deformation strain tensor εm is evaluated in terms of the
micro-scale displacement um as εm = 1

2
(∇m ⊗ um + um ⊗∇m), and where

Zm is a set of internal variables allowing history-dependent processes to be
accounted for.

Futhermore, anticipating on the case in which a damaging process is
considered, a subset of the internal variables Zm (τ) ought to be considered
in a non-local form in order to avoid mesh dependency during the strain
softening stage (locally in the meso-scale volume element ω). The non-local
internal variables denoted as Zm are herein evaluated using the implicit non-
local model [61, 62, 63, 64], in which the relation between an internal variable
p ∈ Zm to its non-local counterpart p ∈ Zm follows the Helmholtz-type
equation

p−∇ · cg · ∇p = p ∀x ∈ ω , (3)

where cg is the matrix of the squared characteristic lengths [65] introduced
to account for material anisotropy. In the case of an isotropic medium cg =
diag (l2; l2; l2) with the characteristic length scale l. Under this non-local
framework, the constitutive Eq. (2) becomes

σm (t) = σm (εm (t) , Zm (τ) ; Zm (τ) , τ ∈ [0, t]) . (4)

We can now define the constitutive equations that will be considered in
this work.
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2.1.1. Model of elastic (possibly anisotropic) phases

For elastic phases, the constitutive Eq. (2) is rewritten in the linear form

σm = Cel
m : εm , (5)

where the fourth-order material tensor Cel
m (x) can be anisotropic.

In the transverse isotropic case, the material parameters are the trans-
verse Young’s modulus ET, the transverse Poisson ratio νTT, the longitudinal-
transverse Poisson ratio νLT, the transverse shear modulus µTT, the longitudinal-
transverse shear modulus µLT, and the longitudinal Young’s modulus EL.

2.1.2. Material models of (possibly damage-enhanced) J2-elasto-plastic phases

The constitutive Eq. (4) is now detailed in the case of elasto-plastic
materials enhanced by a non-local damage model. For the case of materials
without damage, these equations still hold by enforcing explicitly the damage
parameter to zero (i.e. Dm = 0).

Considering the strain equivalence assumption for which the strain ten-
sors observed in the actual body and in its undamaged representation are
equivalent [66], the average undamaged stress1 is defined by introducing a
damage parameter and reads

σ̂m =
σm

(1−Dm)
, (6)

where σm is the apparent stress and where the damage variable satisfies
0 ≤ Dm < 1. The damage evolution is formulated in a non-local constitutive
equation{

Ḋm (t) = D (Dm (t) , εm (t) , χ(t) ; Zm (t′) , t′ ∈ [0, t]) χ̇ ,

χ(t) = maxt′∈[0, t]

(
pC , p (t′)

) (7)

where χ is the maximum of the damage threshold pC and of the maximum
non-local internal variable p reached during the process. This non-local vari-
able is related to the local internal variable p through Eq. (3). For concise-
ness, the subscript “m” is dropped in the following equations.

1In the literature this quantity is sometimes called effective stress; however since we use
the term “effective” for identified properties, and in order to avoid confusion, we called it
undamaged stress in this paper.
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Assuming an elasto-plastic material, which obeys J2 elasto-plasticity, the
von Mises stress criterion reads

f = σ̂eq −R(p)− σY 6 0 . (8)

In this expression, f is the yield surface, σ̂eq =
√

3
2

dev(σ)
1−D : dev(σ)

1−D is the equiv-

alent von Mises undamaged stress, σY is the initial yield stress, R(p) > 0 is
the isotropic hardening stress, and p is the internal variable characterizing
the irreversible behavior2. During the occurrence of plastic flow, f = 0, ṗ
is positive, and the plastic strain tensor increment obeys the normal plastic
flow, which is summarized by

ε̇pl = ṗN , with N =
∂f

∂σ̂
=

3

2

dev(σ)

(1−D)σ̂eq
, (9)

where N is the normal to the yield surface in the undamaged stress space.
In this formalism, the internal variable p thus represents the accumulated

plastic strain ṗ = [2
3
ε̇pl : ε̇pl]1/2, and, assuming small deformations, the

reversible (elastic) and irreversible (plastic) strain tensors can be added (ε =
εel + εpl), yielding

σ = (1−D)Cel : (ε− εpl) , (10)

where Cel is the fourth-order Hooke tensor of the undamaged material. The
radial return mapping equations of this damage formalism and their lineariza-
tion are summarized in Appendix B.

2.2. Scale transition

The scale transition defines the relation between macro-strains εM and
stresses σM into the relation between average micro-strains 〈εm(x)〉ω and
stresses 〈σm(x)〉ω over the meso-scale volume element ω, with

εM = 〈εm(x)〉ω and σM = 〈σm(x)〉ω , (11)

2Rigorously, the von Mises stress criterion (8) should be written f (σ̂, r) 6 0, where
r is an internal variable related to the accumulated plastic strain p and to the plastic
multiplier λ̇ following ṙ = λ̇ = (1 − D)ṗ, see the discussion by [67] for details. However
in this paper we use the approximation that consists in writing the J2-plasticity in the
undamaged stress space.

11



where 〈f(x)〉ω = 1
Vω

∫
ω
f(x)dV and Vω is the volume of the meso-scale volume

element ω.
We now define two homogenization methods that can be used to perform

the scale transition: the computational homogenization or FE2 method and
the MFH method.

2.2.1. Computational homogenization

The problem of computational homogenization is illustrated in Fig. 1(a),
in which an equivalent macro-scale strain-stress response is extracted from
the resolution of the meso-scale BVP discretized using the finite-element
method.

Hill-Mandel condition. The energy consistency between the different scales,
which corresponds to the Hill-Mandel condition, is stated as

σM : δεM = 〈σm : δεm〉ω . (12)

The micro-scale displacement field is written under the form

um(x) = εM · (x− xref) + u′(x) , (13)

where xref is a reference point of ω and u′ is the perturbation field. Con-
sidering the definition of the homogenized strain tensor εM, Eq. (11), this
perturbation field should thus satisfy the condition

0 = 〈∇m ⊗ u′(x) + u′(x)⊗∇m〉ω =
1

Vω

∫
∂ω

(nm ⊗ u′ + u′ ⊗ nm) dS . (14)

Besides, substituting Eq. (13) in Eq. (12), integrating by parts, and using
the equilibrium Eqs. (1), allow the Hill-Mandel condition (12) to be rewritten
as

σM : δεM = 〈σm : δεm〉ω = σM : δεM +
1

Vω

∫
ω

σm : (δu′ ⊗∇m) dV , (15)

or again as

0 =

∫
∂ω

(σm · nm) · δu′dS =

∫
∂ω

tm · δu′dS . (16)
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Definition of the constrained micro-scale finite element problem. Let δu′ ∈ U
be a test function, where U is an admissible kinematic vector field subset of
the minimum kinematic field Umin satisfying Eq. (14), i.e.

Umin =

{
δu′|

∫
∂ω

(nm ⊗ δu′ + δu′ ⊗ nm) dS = 0

}
. (17)

Then, the weak form of the micro-scale Eqs. (1) reads∫
ω

σm : (δu′ ⊗∇m) dV = 0 , ∀δu′ ∈ U . (18)

Since U ⊂ Umin, the resolution of this weak form always ensures Eq. (15)
and the Hill-Mandel condition (12) is satisfied.

The variational statement (18) of the Hill-Mandel condition was intro-
duced in [68, 69] and is practically implemented by defining specific boundary
conditions on the meso-scale volume element whose constraint is to satisfy
Eq. (14), as detailed in [70].

Following the study on the effect of boundary conditions conducted in [14]
for linear responses, we consider the Periodic Boundary Conditions (PBCs),
for which the admissible kinematic vector field U is defined by

UPBC =
{
u′|um(x+)− um(x−) = εM · (x+ − x−) ,

∀x+ ∈ ∂ω+ and corresponding x− ∈ ∂ω−
}
⊂ Umin , (19)

where the parallelepiped SVE faces have been separated in opposite surfaces
∂ω− and ∂ω+. Note that the variational statement does not require the
PBCs to constrain directly the symmetry of the surface traction in order
to satisfy the Hill-Mandel condition. This symmetry is a consequence of the
micro-scale problem resolution as shown by considering arbitrary δu′ ∈ UPBC

in Eq. (16).
In the case of damage enhanced material model, there is no scale transi-

tion considered for the local and non-local internal variables p and p. The
weak form associated to Eq. (3) reads∫

ω

{(
p

m
− pm

)
δp+∇p

m
· cg · ∇δp

}
dV = 0 , ∀δp ∈ K , (20)

where the test function δp belong in an admissible kinematic field K. This
admissible kinematic field K depends on the boundary conditions selected
for the non-local equations. Following the natural boundary conditions

nm · cg · ∇p = 0 ∀x ∈ ∂ω , (21)
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one has K = H1 (ω). However, when considering the failure process, peri-
odic boundary conditions can advantageously be applied, see the complete
discussion in [71].

The set of Eqs. (18, 20) is completed by the PBCs (19) and the sys-
tem is solved using the multiplier elimination method [70]. The fourth order
macro-scale material tensor CM = ∂σM

∂εM
can be extracted from this resolution.

We note that the fourth order macro-scale material tensor CM generally does
not correspond to the volume average of the micro-scale material tensor Cm.
Finally, in order to perform the MT inverse identification in the case of dam-
age, we also need to extract the material tensor Cel D

M , which corresponds to
the homogenized material tensor during an elastic unloading. This extrac-
tion follows the same expression as for the material tensor but by considering
Cm = (1−Dm)Cel

m in the micro-constituents.

2.2.2. Incremental-secant Mean-Field Homogenization (MFH)

The principle of MFH resolution is illustrated in Fig. 1(a). Considering
a two-phase isothermal composite material, with the respective volume frac-
tions v0 + vI = 1 (subscript 0 refers to the matrix and I to the inclusions),
Eq. (11) can be rewritten by separating the volume averages on the matrix
subdomain ω0 and on the inclusions subdomain ωI as

εM = v0〈εm〉ω0 + vI〈εm〉ωI
and σM = v0〈σm〉ω0 + vI〈σm〉ωI

. (22)

In what follows, the notations 〈•m〉ωi
are replaced by 〈•〉i for conciseness.

Only the strain tensors (total and incremental) and the stress tensors
evaluated for a phase ωi correspond to the volume average of the field within
the phase. Internal variables, damage parameters, elastic and plastic parts
of strain tensors, or again material operators related to the homogenized
phase ωi are denoted by •i and are the homogenized representations of the
corresponding field in the phase but not necessarily the volume averaged
values: in general •i 6= 〈•〉i.

In particular, the case of non-local damage is illustrated in Fig. 1(b),
where the local variables Zi correspond to homogenized representations of
the composite phases, but are not necessarily the volume average on the
phases. The non-local variables Zi are solved at the macro-scale using the
diffusion Eq. (3) and also correspond to homogenized representations of the
composite material phases and not necessarily to the volume average.
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MFH for linear behaviors. The relation between εM and σM can be evaluated
by completing the Eqs. (22), on the one hand, by the constitutive laws of
each phase, e.g. by considering uniform constitutive material tensors Cel

0 for
the matrix phase and Cel

I for the inclusions phase,

〈σ〉0 = Cel
0 : 〈ε〉0 and 〈σ〉I = Cel

I : 〈ε〉I , (23)

and, on the other hand, by a relation linking the strain averages per phase,
which reads

〈ε〉I = Bε(I,Cel
0 , Cel

I ) : 〈ε〉0 , (24)

where Bε is the strain concentration tensor whose expression depends on the
assumptions made on the micro-mechanics, and (I) refers to the geometrical
information of the inclusions required to evaluate Bε. In this work, the Mori-
Tanaka (M-T) model [52] is considered since it provides good predictions for
two-phase composite materials for which the matrix can be clearly identified
[72]. In this case, the strain concentration tensor reads

Bε(I,C0, CI) = {I + S(I, C0) : [(C0)−1 : CI − I]}−1 , (25)

where C0 and CI are the considered phase linear operators (Cel
0 and Cel

I for
linear materials) and where the Eshelby tensor S(I, C0) [51] depends on the
geometry of the inclusion (I) and on the operator C0 of the matrix.

The set of Eqs. (22-24) is rewritten in a general constitutive expression
for linear elastic composites as

σM = Cel
M(I,Cel

0 ,Cel
I , vI) : εM . (26)

Extension to non-linear behaviors. In a non-linear framework, MFH is car-
ried out in an incremental form through the definition of a so-called Linear
Comparison Composite (LCC) [57, 73, 74, 75, 76, 77, 78]. The LCC plays the
role of a virtual heterogeneous material, whose constituents linear behaviors,
defined through virtual elastic operators, match the linearized behaviors of
the real composite material constituents for a given strain state.

Therefore, the MFH equations of a linear composite material can be ap-
plied by considering the virtual elastic operators CLCC

0 of the matrix phase
and CLCC

I of the inclusions phase instead of the elastic operators. The rela-
tion between the average incremental strains in the two phases (24) is thus
rewritten

〈∆ε〉I = Bε(I,CLCC
0 , CLCC

I ) : 〈∆ε〉0 , (27)
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and equation (22) is rewritten

∆εM = v0〈∆ε〉0 + vI〈∆ε〉I and σM = v0〈σ〉0 + vI〈σ〉I . (28)

Among the possible different linearization techniques developed in order
to define the LCC we consider the incremental-secant formulation [79, 80].
Within this framework, the homogenized relation ∆σM −∆εM is evaluated
from the phases responses 〈∆σ〉i − 〈∆ε〉i constructed as being uniform, and
does not involve neither the definition nor the use of macro-scale elastic and
plastic strain tensors, although they could be estimated from the homoge-
nized response. As a result, in the context of incremental MFH, equivalence
between the dissipated energies at both scales is not explicitly enforced. How-
ever, when considering a variational MFH formulation [81] an incremental
free-energy is defined between the deformation configurations, and on which
averaging relations are recovered between the scales.

Incremental-secant MFH. The incremental-secant formulation provides a way
to define the LCC and the operators CLCC

i following the methodology illus-
trated in Fig. 3 and Fig. 4 in the cases of elasto-plastic and damage-enhanced
elasto-plastic materials, respectively.

Considering a time step [tn, tn+1], in the incremental-secant formulation
the composite material is first subjected to a fictitious elastic unloading from
its configuration at time tn, see Fig. 3(a) and Fig. 4(a). Note that this
unloading remains virtual since a real one could imply reverse plasticity;
its purpose is to obtain a virtually unloaded state from which the LCC is
defined. This fictitious unloading of the composite material corresponds to
the existence of residual stress in its phases as illustrated in Fig. 3(b) and Fig.
4(b). The composite material is then loaded to the new configuration at time
tn+1, see Fig. 3(c) and Fig. 4(c). The LCC is then defined by considering
the secant operators in the phases defined from the residual strain and stress,
see Fig. 3(d) and Fig. 4(d).

This definition of the LCC has several advantages as compared to other
formulations. First, the isotropization step required by the affine and incre-
mental-tangent methods [82] is avoided because the secant operators are
naturally isotropic. Second, the method has a better accuracy in the case
of non-proportional loading [79] and in the case of damage-enhanced elasto-
plasticity since the virtual unloading step allows capturing a phase elastic
unloading during softening of another one [80].
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Figure 3: Definition of the LCC in the incremental-secant method for elasto-plastic com-
posites: (a) virtual elastic unloading of the composite material with the elastic operator
Cel

M; (b) corresponding virtual elastic unloading of an elasto-plastic phase ωi with the
elastic operator Cel

i ; (c) incremental-secant loading of the composite material from the
virtually unloaded state and definition of the incremental-secant operator CS

M; and (d)
corresponding incremental-secant loading of an elasto-plastic phase ωi from the residual
state and definition of the incremental-secant phase operator CS

i .

Finally, because of its intrinsic definition of the phase secant-operators,
the inverse analysis of the MF-ROM model from full-field simulation results
will be achieved in Section 3 in a more accurate way by formulating it in a
step by step process which closely follows the incremental steps of the full-
field analysis, and by considering only the volume average stress and strain
tensors of the SVEs.

Virtual elastic unloading. The virtual elastic unloading is conducted on the
composite material from the configuration at time tn to reach a residual state
so that σres

M n = 0, where the subscript “res” refers to the virtually unloaded
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(d) Phase ωi; loading

Figure 4: Definition of the LCC in the incremental-secant method for damage-enhanced
elasto-plastic composites: (a) virtual elastic unloading of the composite material with
the elastic operator Cel D

M , the red dotted line corresponds to an undamaged composite
and is shown for illustration purpose only; (b) corresponding virtual elastic unloading
of an elasto-plastic phase ωi with the elastic operator Cel D

i , the red line corresponds
to the stress-strain curve of the undamaged phase material; (c) incremental-secant load-
ing of the composite material from the virtually unloaded state and definition of the
incremental-secant operator CSD

M ; and (d) corresponding incremental-secant loading of a
damage-enhanced elasto-plastic phase ωi from the residual undamaged stress and defini-
tion of the incremental-secant phase operator CS

i ; the damaged incremental-secant phase
operator CSD

i is obtained in the effective stress space.

state. We consider the case of damage-enhanced elasto-plasticity illustrated
in Figs. 4(a) and 4(b) since the elasto-plastic case can be directly deduced
from it.

Since this virtual unloading is elastic, the LCC is defined from the phase
damaged elastic operators Cel D

i = (1−Din)Cel
i , with in the case of an isotropic
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behavior

Cel
i = 3κiIvol + 2µiIdev , (29)

where κi and µi are the (elastic) bulk and shear modulii of the material of
phase ωi. When considering anisotropic elasticity for the fiber phase ωI, Cel

I

results from the anisotropy model.
Therefore, considering that only the matrix phase can experience damage,

the set of Eqs. (27-28) is rewritten as
∆εunload

M = v0〈∆ε〉unload
0 + vI〈∆ε〉unload

I and

0 = σres
M = v0〈σ〉res

0n + vI〈σ〉res
In

with

〈∆ε〉unload
I = Bε(I,Cel D

0 , Cel
I ) : 〈∆ε〉unload

0 .

(30)

This system of equations can be solved analytically using Eq. (26) rewritten
as

σMn = Cel D
M (I,Cel D

0 ,Cel
I , vI) : ∆εunload

M , (31)

where the macro-scale damaged elastic operator Cel D
M reads

Cel D
M =

[
vICel

I : Bε(I,Cel D
0 , Cel

I ) + v0Cel D
0

]
:
[
vIBε(I,Cel D

0 , Cel
I ) + v0I

]−1
. (32)

Although the residual stress related to the unloaded composite material
vanishes, this is not the case for phases, see Fig. 4(b), which are characterized
by a residual strain tensor 〈ε〉res

in = 〈ε〉in − 〈∆ε〉unload
i and a residual stress

tensor3 〈σ〉res
in obtained from the resolution of the set of Eqs. (30). The

undamaged stress tensors in the configuration at time tn and in the residual
configuration follow from

σ̂in =
〈σ〉in

(1−Din)
and σ̂res

in =
〈σ〉res

in

(1−Din)
. (33)

Incremental-secant loading. The secant linearization of the non-linear com-
posite material is carried out in the time interval [tn, tn+1] from the residual
state with the strain increment ∆εr

M defined such that

εMn+1 = εres
Mn

+ ∆εr
M , (34)

3For completeness, when considering first statistical moments only, it has been shown
that the predictive capabilities of the incremental-secant method are improved in the case
of hard inclusions when the residual stress in the matrix phase σres

0n is canceled [79, 83].
However since in this work we use the MFH as a ROM, we always keep this residual.
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see Fig. 4(c), where εMn+1 is known from the macro-scale BVP.
Similarly, the phase strain increments 〈∆ε〉ri are defined such that

〈ε〉in+1 = εres
in + 〈∆ε〉ri , (35)

as illustrated in Fig. 4(d). In each phase, a incremental-secant operator is
also defined in the undamaged stress state space with

σ̂in+1 = σ̂res
in + ∆σ̂r

i , and ∆σ̂r
i = CS : 〈∆ε〉ri . (36)

The apparent stress tensor then follows as

〈σ〉in+1 = (1−Din+1)σ̂
res
in + CSD

i : 〈∆ε〉ri , with CSD
i = (1−Din+1)CS

i . (37)

Therefore, the LCC is defined from the phase residual states using the
incremental-secant operators CSD

i . Considering that only the matrix phase
can experience damage, the set of Eqs. (27-28) is thus rewritten as

∆εr
M = v0〈∆ε〉r0 + vI〈∆ε〉rI and

σMn+1 = v0〈σ〉0n+1 + vI〈σ〉In+1 with

〈∆ε〉rI = Bε(I,CSD
0 , CS

I ) : 〈∆ε〉r0 ,
(38)

where the (damaged) incremental-secant operators CSD
0 of the matrix phase

and CS
I of the inclusions phase are uniform by construction and do not neces-

sarily correspond to the volume averages of their micro-scale counter parts.
The resolution of the MFH equations (38) follows an iterative process detailed
in [80] and summarized in Appendix C.

Finally, the incremental-secant form of Eq. (26) reads

σMn+1 = ∆σr
M = CS

M(I,CSD
0 ,CS

I , vI) : ∆εr
M , (39)

where the macro-scale incremental-secant operator CS
M reads

CS
M =

[
vICS

I : Bε(I,CSD
0 , CS

I ) + v0CSD
0

]
:
[
vIBε(I,CSD

0 , CS
I ) + v0I

]−1
. (40)

Evaluation of the phase incremental-secant operator CSD
i . During an elas-

tic response, which is always the case for an anisotropic elastic phase, the
incremental-secant operator CS

i of phase ωi equals its elastic tensor Cel
i (29).

During a J2-elasto-plastic flow in the phase, the linear comparison mate-
rial is defined as isotropic elastic by assumption. It was shown in [79] that
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this isotropicity is naturally obtained with the incremental-secant approach
by considering a return mapping pointing to the residual stress tensor, i.e. a
plastic flow direction satisfying

Ni =
3

2

Idev : Cel
i : 〈∆ε〉ri(

Cel
i : 〈∆ε〉ri

)eq =
3

2

Idev : CS
i : 〈∆ε〉ri

(CS
i : 〈∆ε〉ri)

eq , (41)

where (Cel
i : 〈∆ε〉ri)eq holds for the equivalent von Mises stress operator. Ex-

pression (41) avoids the isotropic projection of the LCC operator usually
required with affine and incremental-tangent MFH [82, 77, 84]. When con-
sidering the return mapping (41) for a single phase material, since the virtual
elastic unloading is aligned with the elastic strain at time tn, one can show

that N = 3
2
Idev:Cel:∆εr

(Cel:∆εr)
eq = 3

2

Idev:(σ̂n+O(∆εf))
(σ̂n+O(∆εf))

eq with ∆εf = εn+1− εn. After devel-

opment in a Taylor’s series, one has N = 3
2
Idev:σ̂n

(σ̂n)eq
+O

(
∆εf

)
showing that the

return direction is a first order approximation of the radial direction. When
considering a two-phase elastic material, unless the fiber volume fraction
tends to 0, the average virtual elastic unloading ∆εunload

i is not necessarily

aligned with the Cel
i
−1

: σ̂i, as it can be seen by combining Eqs. (30-32),
and the return mapping applied on the homogenized phase behavior is not
necessarily normal to the homogenized undamaged stress tensor. However,
when developing a MFH scheme, one has to make assumptions on the phases
behaviors which are constructed as being uniform. Only the stress tensor is
strictly a volume average of the phase distribution, but locally the plastic
flow is not uniformly distributed and thus the direction of the plastic flow
constructed to be uniform does not have to be normal to the yield surface
built from σ̂n+1 (this would actually be another assumption since the internal
variables cannot be volume averaged).

Therefore, the incremental-secant operator admits the following decom-
position:

CS
i = 3κiIvol + 2µs

iIdev , (42)

where µs
i is the shear modulus of the virtual elastic material. For this non-

linear phase, this virtual elastic shear modulus µs
i can be computed through

µs
i = µi

(
1− ∆pi

(〈∆ε〉ri)
eq

)
, (43)
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where (〈∆εr〉)eq
i is the equivalent increment strain, and ∆pi is the equivalent

accumulated plastic strain which is evaluated through the von Mises criterion
(8) and hardening law Ri(pi).

With the first statistical moments formula [79], the equivalent von Mises
stresses and equivalent increment strains, corresponding to the averaged
stress and strain tensors in phases ωi, are evaluated as

σeq
i =

√
3

2
〈σ〉ωi

: Idev : 〈σ〉ωi
(44)

and ∆εeq
i =

√
2

3
〈∆ε〉ωi

: Idev : 〈∆ε〉ωi
. (45)

The terms σeq
i and ∆εeq

i can also be evaluated with the second statistical
moments formula, see the work in [83] for details.

3. Stochastic MF-ROM for non-linear composites

Homogenized material responses can be evaluated by the M-T method
following Section 2.2.2 from given micro-structure descriptions and phases
material properties. In classical MFH applications, these micro-structure
properties are identified in a unique way, hence leading to deterministic ho-
mogenized properties. In this work, in order to reproduce the uncertainties
observed by conducting computational homogenization on different SVE real-
izations following the method described in Section 2.2.1, the micro-structure
descriptions and phases material properties of the MFH model correspond
to a random vector whose observations are obtained by an inverse analysis
from the behaviors evaluated on SVE realizations by computational homog-
enization.

The MFH and the computational homogenization methods have identical
definitions of the homogenized strain tensor increment ∆εM and stress tensor
σM, which are respectively the volume averaged values of their micro-scale
counterparts ∆εm and σm, see Eqs. (11) and (28). Besides, computational
homogenization satisfies the Hill-Mandel condition (12). Therefore, in order
to reproduce the homogenized response obtained by computational homog-
enization without violating the Hill-Mandel condition, the inverse analysis
should only use the homogenized stress evolution σσσM in term of the homog-
enized strain tensor εεεM history, which is the natural output of the compu-
tational homogenization process. To this end, we build the MF-ROM by
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defining effective micro-scale properties in order to satisfy Eq. (39) at all
points of the strain-stress evolution.

First the case of linear elasticity previously developed in [50] is briefly
recalled. Then the non-linear elasto-plastic case and the damage-enhanced
non-linear case are successively derived.

Note for completeness, that inverse identification was already combined
to MFH in the literature. In order to determine the size of RVE, Mori-
Tanaka MFH with incremental-tangent formula [85] was adopted in [86] to
extract the effective matrix parameters with a global error minimization.
Effective matrix behavior of nano-composites has been identified with the
overall mechanical behavior given by molecular dynamics simulations in [87].

3.1. Random descriptors of linear elastic composites

The inverse MFH procedure of linear elastic composites is recalled briefly
for the sake of completeness, more details are given in [50].

ℂ0
elℂI

el

 ℂ0
el

ℂI
el

 𝜃

 𝑎

 𝑏

Equivalent 

inclusion

(a) Equivalent inclusion

inclusions

composite

matrix

𝜺 I

𝝈

𝜺

 ℂ0
el

𝜺 = 𝜺M
𝜺 0

ℂI
el  ℂM

el

(b) Elastic MFH

Figure 5: Definition of the equivalent inclusion problem for linear elastic materials: (a)
Definition of the micro-structure geometrical and phases material properties; and (b) 1D
illustration of the MFH elastic response.

In order to reproduce with MFH the randomness observed by computa-
tional homogenization on different SVE realizations, the MFH micro-structure
geometrical and phases material properties are represented by random vari-
ables whose observations are identified from an inverse analysis. In the fol-
lowing section, we use the notation •̃ to indicate these effective parame-
ters/values obtained from the inverse analysis. Therefore, in linear elasticity,
we want to reproduce in C̃el

M, the meso-scale material tensor evaluated by
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the M-T method following Eq. (32), the randomness observed in Cel
M, ex-

tracted by computational homogenization on different SVE realizations fol-
lowing Section 2.2.1. Besides, some micro-structure geometrical and phases
material properties can directly be measured from the SVE realizations and
do not result from the inverse identification process, in which case we do not
use the •̃ notation. In linear elasticity, the different micro-structure geomet-
rical and phases material properties are, see Fig. 5,

• The volume fractions of inclusions vI, which can be directly measured
from the SVE realizations;

• The geometrical information of the effective inclusions Ĩ, which corre-
spond to the ellipsoid radii ã and b̃ for the case of UD-fiber reinforced
composites;

• The orientation variable of the effective inclusion, which is a rotation
angle θ̃ for the case of UD-fiber reinforced composites, since the local
coordinates of the effective inclusions do not generally coincide with
the global coordinates of composites or of SVEs;

• The effective elasticity properties of the isotropic matrix C̃el
0 (Ẽ0, ν̃0),

which is represented by its effective Young’s modulus Ẽ0 and Poisson
ratio ν̃0;

• The effective anisotropic elasticity tensor of fibers Cel
I , which can be

considered to be constant for all the SVE realizations [50].

On the one hand, the observations of vI are obtained directly from the re-
alizations of SVEs. Besides, for UD-fiber reinforced composites, the material
response is dominated by the behavior of the matrix phase when transversely
loaded and by that of the fiber phase when longitudinally loaded, the trans-
verse properties are kept as the inclusion material properties used in the
computational homogenization. However, because of the expression for UD-
fiber reinforced composites of the strain concentration tensor (25), the M-T
model corresponds to the Voigt assumption for the longitudinal response,
which is an upper bound for the homogenized property. Therefore a reduced
longitudinal Young’s modulus EL

I is identified through a simple pre-step,
which reads,

min
EL

I

∣∣∣[C̃el
M(I,C0,CI(E

L
I ); vI)− Cel

M

]
3333

∣∣∣ , (46)
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where [·]3333 indexes the entry of a fourth-order tensor along the longitudinal
direction. Afterward, the effective elasticity tensor of fiber Cel

I is assumed to
be constant for all the SVE realizations.

On the other hand, the observations of other random variables are ex-
tracted from an inverse MFH study, which is stated under the following
optimization problem to be solved on each SVE realization

min
Ĩ,θ̃,Ẽ0,ν̃0

‖C̃el
M(̃I, θ̃, C̃el

0 (Ẽ0, ν̃0);Cel
I , vI)− Cel

M‖ , (47)

where ‖•‖ refers to the Frobenius norm. By solving the optimization problem
(47), the uncertain elastic response of the SVEs, Cel

M, is represented by five
random variables under the framework of MFH, C̃el

M(vI, Ĩ, θ̃, Ẽ0, ν̃0).

3.2. Random descriptors of non-linear elasto-plastic composites

The inverse MFH study of non-linear composites is based on the evolution
of the meso-stresses σMn with respect to the meso-strains εMn at different
loading configuration times tn (n = 1, 2, ...), evaluated by full-field analyzes
on different SVE realizations. The geometrical information Ĩ, θ̃ of the effec-
tive inclusion as well as the effective elastic properties of the matrix phase
C̃el

0 (Ẽ0, ν̃0) have been evaluated during the elastic response of the SVEs fol-
lowing the approach presented in Section 3.1, see Fig. 6(a). Therefore what
remain to be identified are the effective plastic flow R̃0(p̃0) and the effective
yielding stress σ̃Y 0 of the matrix phase (we assume that the inclusions remain
elastic).

This non-linear inverse process is carried out in the following steps.

• During a time interval [tn, tn+1], εMn , σMn, εMn+1 and σMn+1 are
known from the full-field analysis. A virtual elastic unloading, see Fig.
6(c) is performed in order to satisfy

σMn − C̃el
M : ∆εunload

M = 0 . (48)

According to Eq. (34), this defines the effective LCC using an incre-
mental strain

∆εr
M = (εMn+1 − εMn) + C̃el−1

M : σMn . (49)

• Then, the incremental-secant scheme (39) is rewritten as

σ̃Mn+1 = C̃S
M(C̃S

0, CS
I ; Ĩ, θ̃, vI) : ∆εr

M , (50)
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Figure 6: Definition of the equivalent inclusion problem for non-linear elasto-plastic mate-
rials: Definition of the micro-structure geometrical and phases material properties during
(a) virtual elastic unloading and (b) elasto-plastic loading; and 1D illustration of the non-
linear MFH response during (c) virtual elastic unloading and (d) elasto-plastic loading.

with the expression of the tensor C̃S
M given by Eq. (40). In order

to identify the effective non-linear properties associated to the MFH
process, C̃S

M should be evaluated so that the effective homogenized
stress follows the one obtained by computational homogenization. To
this end, we define the optimization problem, min{‖σ̃Mn+1−σMn+1‖},
which reads, assuming that the inclusion behavior remains elastic,

min
µ̃S0

{‖C̃S
M(C̃S

0(µ̃S
0; κ̃0);Cel

I , Ĩ, θ̃, vI) : ∆εr
M − σMn+1‖} , (51)

where µ̃S
0 is the effective virtual elastic shear modulus of the LCC’s

matrix material defined by Eq. (42) and κ̃0

(
Ẽ0, ν̃0

)
is the (already

identified) effective compressibility modulus of matrix phase.

• Through the resolution of the optimization problem (51) for the time in-
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terval [tn, tn+1], the effective virtual elastic shear modulus µ̃S
0 is known

and the effective increment of average strain in the matrix phase, 〈∆ε〉r0,
can be evaluated using Eqs. (38) rewritten as

〈∆ε〉r0 =
[
v0I + vIBε

(
Ĩ, θ̃, C̃S

0

(
µ̃S

0, κ̃0

)
, Cel

I

)]−1

: ∆εr
M . (52)

Finally, using Eq. (43), the effective increment of accumulated plas-
tic strain in the matrix, ∆p̃0n , during the time interval [tn, tn+1], is
obtained following

∆p̃0n = (〈∆ε〉r0)eq

(
1− µ̃S

0

µ̃el
0

)
, (53)

where (〈∆ε〉r0)eq is evaluated through the first statistical moment for-
mula, Eq. (45)4.

• At configuration tn, the effective von Mises stress in the matrix phase,
σ̃eq

0n , is computed from Eqs. (36) and (44), and the approximated ac-
cumulated plastic strain reads

p̃0n =
n∑
l=1

∆p̃0l . (54)

Therefore, a critical accumulated plastic strain, pcrit, is defined to iden-
tify the effective initial yielding stress of the matrix phase σ̃Y 0. Prac-
tically, pcrit can be any reasonably small values (e.g. ×10−6 ∼ ×10−4).
Although the value of pcrit will affect the resulting yielding stress, σ̃Y 0

and the effective parameters of the material strain hardening law, it
will not have an obvious effect on the accuracy of the predicted MFH
behavior. In this work, the critical value is set as pcrit = 2.0× 10−4. A
linear interpolation is then used to evaluate the effective initial yielding
stress of the matrix phase, which reads

σ̃Y 0 = σ̃eq
0l

+ (pcrit − p̃0l)
σ̃eq

0l+1
− σ̃eq

0l

p̃0l+1
− p̃0l

, if p̃0l ≤ pcrit < p̃0l+1
. (55)

4This evaluation does not require to perform a volume average on the SVE
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Then, the recorded effective accumulated plastic strain in the matrix
needs to be updated by

p̃0n → p̃0n − pcrit , for all n such that p̃0n > pcrit . (56)

Moreover, the effective isotropic hardening stress in the matrix phase
is obtained at each configuration tn by

R̃0(p̃0n) = σ̃eq
0n − σ̃Y 0 , if p̃0n > 0 . (57)

• Finally, the effective elasto-plastic behavior R̃0(p̃0) of the matrix phase
can be represented by a proper plastic hardening model which fits the
discretized hardening law R̃0(p̃0n).

In the proposed formulation, the effective parameters, including the hard-
ening law, of the MF-ROM are identified from the full-field response through
Eq. (51) only. The methodology never evaluates the volume average of in-
ternal variables such as the plastic strain on the SVEs, which would not be
consistent with the Hill-Mandel condition.

3.3. Random descriptors of non-linear damage-enhanced elasto-plastic com-
posites

In this section, a scalar damage variable D0 is considered in the matrix
phase. As for the elasto-plastic case described in the previous section, the
geometrical information Ĩ, θ̃ of the effective inclusion and the effective elastic
properties of the matrix phase C̃el

0 (Ẽ0, ν̃0) are evaluated during the initial
elastic response of the SVEs for which D0 = 0, following the approach pre-
sented in Section 3.1. During the remaining direct finite element analyzes
conducted on the SVEs, the damaged homogenized elastic tensor, Cel D

Mn of an
SVE, see Fig. 7(a), is evaluated at each time configuration tn (n = 1, 2, ...),
together with the evolution of the meso-stress σMn with respect to the meso-
strain εMn.

In the damage-enhanced case, the effective damage evolution has to be
identified through the inverse identification process before identifying the ef-
fective plastic flow R̃0(p̃) and the effective yielding stress σ̃Y 0 of the matrix
phase (we assume that the inclusions remain elastic), since the latter are
expressed in the undamaged stress space. Using the identified effective pa-
rameters Ĩ, θ̃, Ẽ0, ν̃0 and vI, the effective damage D̃0 in the matrix phase is
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Figure 7: Definition of the equivalent inclusion problem for damage-enhanced non-linear
materials: Definition of the micro-structure geometrical and phases material properties
during (a) virtual elastic loading and (b) damage-enhanced elasto-plastic loading; and 1D
illustration of the non-linear MFH response during (c) virtual elastic unloading and (d)
damage-enhanced elasto-plastic loading.

evaluated, at each time configuration tn, by solving the following optimiza-
tion problem

min
D̃0n

‖C̃el
M(C̃el D

0 (D̃0n); Ĩ, θ̃, Ẽ0, ν̃0, Cel
I , vI)− Cel D

Mn‖ , (58)

where C̃el D
0 (D̃0n) = (1− D̃0n)C̃el

0 (Ẽ0, ν̃0) is also denoted by C̃el D
0n .

Once the effective damage evolution D̃0n , (n = 1, 2, ...) has been obtained,
the effective non-linear properties of the phases in the undamaged space can
be inferred by a similar process as the one presented in Section 3.2, Eqs. (48-
57). However, because of the existence of damage in the matrix phase, a few
modifications are needed when studying the incremental-secant formulation
in the time interval [tn, tn+1]:

• C̃el D
Mn = C̃el

M(C̃el D
0n , C

el
I , Ĩ, θ̃, vI) is used instead of C̃el

M in the elastic un-
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loading step, Eqs. (48) and (49).

• The optimization problem (51) is restated in terms of µ̃SD
0 as argu-

ment, and the term C̃SD
M (C̃SD

0 (µ̃SD
0 ); Cel

I , Ĩ, θ̃, vI) substitutes to the term
C̃S

M(C̃S
0(µ̃S

0); Cel
I , Ĩ, θ̃, vI), yielding

min
µ̃SD0

{‖C̃SD
M (C̃SD

0 (µ̃SD
0 ; Ẽ0, ν̃0, D̃0);Cel

I , Ĩ, θ̃, vI) : ∆εr
M − σMn+1‖} . (59)

Moreover, the damaged incremental-secant operator C̃SD
0 (µ̃SD

0 ; Ẽ0, ν̃0, D̃0)
is used to compute Bε in Eq. (52) instead of C̃S

0.

• Considering the effective damage in matrix allows Eq. (53) to be rewrit-
ten as

∆p̃0n = (〈∆ε〉r0)eq

(
1− µ̃SD

0

µ̃el D
0

)
, (60)

with µ̃el D
0 = µ̃el

0 (1− D̃0n+1).

• Finally, the effective equivalent undamaged stress matrix reads

˜̂σeq
0n+1

=
σ̃eq

0n+1

1− D̃0n+1

(61)

and is used to evaluate the isotropic hardening stress R̃0(p̃0n) in equa-
tion (57). Indeed, the plastic flow behavior is related to the equivalent
value of the undamaged stress.

In order to define the governing laws of the matrix phase of the MFH
model, the effective damage evolution D̃0 (ε̃e

0, p̃0) is described with a proper
damage model, whose parameters can be identified through the recorded
damage evolution D̃0n , and through the corresponding effective stress, σ̃0n ,
and elastic strain, ε̃e

0n , state in the matrix phase.

4. Application to UD-fiber reinforced matrix composites

In this section the inverse MFH procedure presented in Section 3 is applied
to reproduce the stochastic non-linear behavior of UD-fiber reinforced matrix
composites. After having described the SVEs, the stochastic inverse MFH
process is applied successively to the cases of elastic fiber-reinforced elasto-
plastic matrix and of elastic fiber-reinforced damage-enhanced elasto-plastic
matrix, with respectively 1900 and 1868 SVEs.
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4.1. SVEs description

4.1.1. Micro-structure generation

In this work it is assumed that the uncertainties result from the spatial
organization of the fibers only and the material properties are considered
deterministic. The SVE cross-section realizations of UD-carbon fiber rein-
forced composites are obtained using the methodology described in [14]. The
chosen cross-section size is 25× 25µm2, for which it has been shown in [14]
that the homogenized elastic properties of two neighboring SVEs are not
correlated and could be represented as independent random vectors. As a
result, the inclusion volume fraction within an SVE ranges from a few per-
cents up to more than 60 percents depending on the realization. In this
paper we assume that the homogenized properties could also be represented
as independent random vectors in the non-linear range.

The SVEs are meshed with quadratic elements, but with a geometrical
linear interpolation at the fiber/matrix interface in order to prevent the ex-
istence of concave elements. A mesh sensitivity analysis has been conducted
to select a maximum mesh size of 1µm.

4.1.2. Material properties

The UD-carbon fibers follow a transversely isotropic linear elastic con-
stitutive material model whose material parameters are presented in Table
1.

Table 1: Material properties of the carbon fibers.

Property Value
Long. Young’s modulus EL

I [GPa] 230.0
Trans. Young’s modulus ET

I [GPa] 40.0
Trans. Poisson ratio νTT

I [-] 0.20
Long.-Trans. Poisson ratio νLT

I [-] 0.256
Trans. shear modulus µTT

I [GPa] 16.7
Long.-Trans. shear modulus µLT

I [GPa] 24.0

The matrix follows an elasto-plastic behavior model and its hardening
law reads

R0(p) = h0

(
1− e−m0p

)
, (62)
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where h0 and m0 are the material parameters. The elasto–plastic model of
matrix material can be further enhanced by a Lemaitre [88] scalar damage
setting affecting the constitutive law of matrix material following Eqs. (6-10).
To avoid the mesh dependency of finite element analysis during strain soften-
ing, the damage model is formulated in a non-local form, and the evolution
of the damage (7) reads

Ḋ0 = (
Y

S0

)s0χ̇ , (63)

where S0 and s0 are the material parameters, and Y is the strain energy
release rate computed as

Y =
1

2
εel : Cel

0 : εel . (64)

To illustrate the efficiency of the method to capture extended plasticity,
a relatively ductile matrix behavior is considered as in [80]. The material
parameters of the matrix material are reported in Table 2. Stress-strain
curves under unidirectional tension and bi-axial loading condition of the ma-
trix material are illustrated in Fig. 8. It can be seen that the used matrix
material is quite ductile in tension compared to the epoxy used in UD-fiber
reinforced matrix composites. Because of this ductility, the presented inverse
procedure can be better revealed in the non-linear range than with a brittle
matrix material.

Table 2: Material properties of the matrix.

Property Value
Young’s modulus E0 [GPa] 3.2
Poisson ratio ν0 [-] 0.3
Initial yield stress σY0 [MPa] 25.0
Hardening modulus h0 [MPa] 73.0
Hardening exponent m0 [-] 60.0
Damage critical energy release S0 [Mpa] 2.0
Damage exponent s0 [-] 0.5
Damage critical plastic strain pC0 [-] 0.0

Characteristic length l0 [mm]
√

2
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(a) Uni-axial tension
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(b) Bi-axial loading

Figure 8: Stress-strain curve, σ11 − ε11, of the matrix material whose parameters are
reported in Table 2, under different boundary conditions: (a) Uni-axial tension with only
σ11 6= 0; (b) Bi-axial loading, with ε22 = −0.5ε11 and ε33 = ε12 = ε23 = ε31 = 0.0.

4.1.3. The loading conditions on the SVEs

A loading condition is defined and used in the direct finite element ana-
lyzes performed on the SVEs to obtain the reference macro-responses. The
loading condition is defined by the macro-strain εM which reads

εM11 ∈ [0.; 0.07], εM22 = −0.5εM11 and εM33 = εM12 = εM23 = εM31 = 0 .
(65)

This loading condition is close to the state of UD-fiber reinforced composites
under transverse loading with an extra strain constraint along the thickness
direction of a ply.

Besides, PBCs (19) are applied on the SVE boundary. Even in the context
of damage, the periodic boundary conditions capture the SVE response with
accuracy since the final failure stage is not studied. We refer to the work [71]
for a more complete analysis of the boundary condition effect on the failure
study of UD composite SVEs.

Later, the same loading condition (65) will be applied during the MFH
with the effective phases material properties obtained from the inverse MFH
procedure. Since these boundary conditions do not imply a kinematic un-
known, they fasten the identification process.

4.2. Stochastic inverse MFH process for elastic fiber-reinforced elasto-plastic
matrix

According to the previous study in [50], the uncertainties can be modeled
by inferring an effective inclusion geometry and an effective matrix behavior,
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while the effective properties of the carbon fibers can be considered constant
for all the SVEs. In particular, the transverse-related material properties are
the original ones used during the computational homogenization and pre-
sented in Table 1, while the longitudinal Young’s modulus is inferred from
Eq. (46) leading to ẼL = 222.1 GPa. Therefore, the inverse MFH proce-
dure consists in evaluating the micro-structure effective inclusion Ĩ, θ̃ and the
effective matrix properties. The micro-structure effective inclusion Ĩ, θ̃ and
the effective matrix elastic properties Ẽ0, ν̃0 are inferred from Eq. (47), and
the results have been extensively presented in [50]. The identification of the
effective matrix hardening law is discussed here after.

4.2.1. Identification of the effective matrix isotropic hardening law
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Figure 9: Isotropic hardening behavior of the the matrix material: “Matrix (EXP)” cor-
responds to the hardening law (62) used in the SVE direct simulations; “Effective matrix”
corresponds to the effective curves obtained from the inverse identification process; “Linear
EXP” corresponds to the effective behavior curve-fitted following Eq. (66).

The evolution of the isotropic hardening stress R̃0(p̃0) associated to the
effective accumulated plastic strain p̃0 is extracted from the direct finite ele-
ment analyzes, according to the inverse procedure presented in Section 3.2,
and the results of a few randomly picked SVEs are presented in Fig. 9. The
behavior of a pure matrix following the material parameter reported in Ta-
ble 2 is also presented for comparison purpose. The figure shows that the
exponential hardening law of pure matrix, Eq. (62), cannot fit the behavior
of the effective matrix for all the realizations. Therefore, a linear exponential
hardening law, which reads

R̃0(p̃0) = k10 p̃0 + k20

(
1− e−m0p̃0

)
, (66)
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is adopted to model the behavior of the effective matrix. Compared to an
exponential hardening law, the linear exponential hardening law is enriched
with a linear hardening term so that the exponential hardening law (62) can
be recovered by the linear exponential hardening law (66) with k10 = 0.

The strain hardening parameters, k̃10 , k̃20 and m̃0 of the linear exponential
hardening law of the effective matrix obtained using a standard “curve fit”
function of the Scipy library are illustrated in Fig. 9, under the label “Linear
EXP”.

4.2.2. Assessment of the elasto-plastic MF-ROM
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Figure 10: Homogenized responses σM11 − εM11 of elasto-plastic SVEs obtained from: (a)
Direct finite element analyzes; and (b) MF-ROM with effective material properties.

The responses of 750 SVEs obtained from direct finite element analyzes
are plotted in Fig. 10(a) in terms of σM11 − εM11 curves. The corresponding
results predicted by the MF-ROM with the identified effective material prop-
erties are presented in Fig. 10(b) for comparison purpose. It can be seen
that the MF-ROM reproduces well the stochastic macro responses σM11 of
the SVEs. For all the comparison results presented in Fig. 10, the maximum
relative error in the stress σM11 is found to be lower than 3.5%; the higher
relative errors are found for the SVEs with the higher fiber volume fractions
(e.g. vI > 60%). For the SVEs with lower fiber volume fractions, the inverse
MFH can provide rather accurate results, e.g. the lowest curves in Figs.
10(a) and 10(b) refer to an SVE with a fiber volume fraction vI = 25%, for
which the relative error of MF-ROM is lower than 1.0%. Furthermore, the
statistical characteristic of SVEs macro responses is well preserved. This fea-
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ture is crucial for the future application of MF-ROM to achieve the stochastic
analysis at a higher scale.
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Figure 11: Homogenized response of elastic-plastic SVEs: (a)-(d) Under boundary condi-
tions (65); and (e)-(f) Under boundary condition (67).
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A more detailed comparison of the stress evolution is presented in Fig.
11 for a few randomly picked SVEs. It can be seen that the homogenized
stress components σM11 and σM33 obtained with the MF-ROM with the ef-
fective materials properties agree well with that obtained from the direct
finite element analysis, see Figs. 11(a) and 11(c); Besides the trend of σM22

is well preserved as compared to the results of the finite element simulations,
see Fig. 11(b). Finally, loading-unloading cycles are well captured by the
MF-ROM up to the re-hardening stage during reverse plasticity, as it can be
seen on Fig. 11(d).

In order to assess the effect of the loading conditions, a transverse tension,
with the boundary condition specified by

εM33 = εM12 = εM23 = εM31 = 0 and σM22 = 0 , (67)

is applied on the same SVEs. The resulting σM11 predicted by the MF-ROM
are compared to that of the direct finite element analysis in Fig. 11(e). Al-
though the loading condition applied for this comparison is different from
the loading condition (65) that is used for the inverse study, obvious dis-
agreements between the finite element results and the MF-ROM predictions
only appear at the later stage of the loading. However, loading-unloading
cycles are well captured by the method, at the exception of the re-hardening
occurring during reverse plasticity, as seen in Fig. 11(f). This indicates that
using MFH with the effective phases material properties from the inverse
study to reproduce the non-linear behaviors of SVEs is valid in a low to
moderate strain region. However, when high strain zones develop within the
SVEs with the increase of the homogenized-stain, εM, the accuracy of the
MF-ROM becomes limited.

4.3. Stochastic inverse MFH process for elastic fiber-reinforced damage-en-
hanced elasto-plastic matrix

In the matrix damage-enhanced elasto-plastic case, the MF-ROM random
variables to be identified are

• The micro-structural geometrical parameters Ĩ, θ̃ and vI, and the effec-
tive matrix elastic properties Ẽ0, ν̃0 that are inferred from Eq. (47);

• The effective matrix yielding stress and hardening law (66) parameters
σ̃Y0, k̃10 , k̃20 , m̃0 that are identified from the effective matrix undam-
aged stress evolution ˜̂σ0 as detailed in Section 3.3, and which extraction
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does not differ from what had been presented in the previous subsec-
tion;

• The effective damage law (63) parameters S̃0 and s̃0 whose extraction
is detailed here below.

4.3.1. Identification of the effective matrix damage evolution law

Although in the direct finite element analysis the damage variable of the
matrix possesses a non-local form, in the inverse MFH analysis, the effective
damage, which is associated to (but which is not rigorously) the volume
averaged degradation of the matrix material, is written in its local form

˙̃D0 =

{
0, if p̃0 6 pC0 ;

( Y
S0

)s0 ˙̃p0, if p̃0 > pC0 ,
(68)

where D̃0 and p̃0 are respectively the effective matrix damage and accumu-
lated plastic strain. We keep pC0 = 0, and two random variables, S̃0 and s̃0,
are thus added to describe the effective properties of the matrix.

4.3.2. Assessment of the damage-enhanced elasto-plastic MF-ROM
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Figure 12: Homogenized responses σM11 − εM11 of damage-enhanced elasto-plastic SVEs
obtained from: (a) Direct finite element analyzes; and (b) MF-ROM with effective material
properties.

The macro responses of 750 SVEs obtained by direct finite element an-
alyzes are plotted in Fig. 12(a) for σM11 − εM11 for boundary conditions
(65). The corresponding results obtained by the MF-ROM with the effective
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phases materials properties identified following the methodology reported in
Section 3.3 are presented in Fig. 12(b). Since a damage variable is applied
in the matrix phase, the damage induced strain softening can be seen in
the macro responses of some SVEs, see Fig. 12(a). However, for the ho-
mogenized responses σM11 reproduced by the MF-ROM, the damage induced
strain softening can only be seen for a few SVEs, see Fig. 12(b). Comparing
Fig. 12 to Fig. 10 shows that the MF-ROM is less accurate in the case of
damage-enhanced elasto-plasticity. For some severe cases, the maximum rel-
ative error, before reaching the softening stage, is around 6% in term of the
stress σM11. The statistical characteristics of SVEs homogenized responses is
only preserved up to the strain softening onset, upon which the homogenized
strain stress curve looses its size objectivity in any case.

The direct finite element results of randomly picked SVEs under loading
condition (65) are presented in Figs. 13(a)-13(c). It can be seen that the
homogenized stress components σM11 and σM33 obtained with the MF-ROM
with the effective materials properties agree well with that obtained from
the direct finite element analysis, see Figs. 13(a) and 13(c); a discrepancy
appears for larger strain in the trend of σM22, see Fig. 13(b). Loading-
unloading cycles are studied in Fig. 13(d) and are shown to be well captured
by the MF-ROM. MFH analyzes are then performed using the same identified
effective properties, but by considering the loading condition (67). These
results are compared to the results of direct finite element analyzes on several
SVEs in Fig. 13(e). An obvious strain softening can be seen for the direct
finite element results in Fig. 13(e), which is not captured by the effective
matrix material properties of the MF-ROM. However, a loading-unloading
cycle is well captured by the method if the unloading occurs in the first stage
of the damage evolution as seen in Fig. 13(f).

One of the reason for the loss of accuracy of the stochastic MF-ROM is re-
lated to the use of a uniform isotropic damaged effective matrix to represent
the real matrix. Although the damage law of the matrix phase is isotropic,
the distribution in the SVE of damage during the computational homoge-
nization is not isotropic and would require a non-isotropic damage model
in the micro-mechanics-based reduced order model. This point is discussed
further hereafter.

4.3.3. The effect of damage on the accuracy of the MF-ROM

The damage evolution of 2 randomly picked SVEs is presented in Fig.
14. Figure 14 shows that the damage in the matrix is almost uniform at
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Figure 13: Homogenized response of damage-enhanced elasto-plastic SVEs: (a)-(d) Under
boundary conditions (65); and (e)-(f) Under boundary condition (67).

the early stage of deformation. Therefore, the assumption of using a scalar
damage variable is valid and the effective damage can be identified with the
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Damage in matrix 
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Figure 14: Damage evolution in matrix.

optimization process (58). Once the damage starts to localize at a few spots
of the matrix when the deformation of the SVEs increases, since the distri-
bution of these damage localization spots is neither uniform nor isotropic,
an anisotropic behavior of the matrix appears after homogenization. The
damage in the effective matrix cannot be well described with a scalar law
anymore, hence, identifying the damage in the matrix with the optimization
process (58) leads to unreliable results. With the MF-ROM, the maximum
effective damage values D̃0 reached in the matrix are 0.089 for SVE #1, Fig.
14(a), and 0.187 for SVE #2, Fig. 14(b). These effective damage values are
quite close to the volume averaged damage in the matrix. However, in the
direct finite simulations, the damage reaches almost 1.0 locally, and these
damage localization spots have a much stronger effect on the apparent stiff-
ness of these SVEs in the main loading direction (x-direction), than in the
other directions.

Because the effective damage could not be accurately extracted with the
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optimization process (58) when serious damage localization occurs, the ex-
tracted accumulated plastic strain p̃0 and isotropic hardening stress R̃0(p̃0)
evolution, Eqs. (60) and (61), are no longer reliable, and the accuracy of
of the MF-ROM decreases. Moreover, severe damage localizations normally
appear together with the strain softening of SVEs, during which homoge-
nized stress-strain relationship looses size objectivity. Another homogeniza-
tion method should thus be considered beyond strain softening onset as it
will be discussed in Section 6.2.

5. Statistical analysis and generation of random material parame-
ters

In this section, in order to generate proper random fields for SFEM, some
statistical features of the identified parameters of the MF-ROM are first ana-
lyzed. We consider the random effective material parameters extracted by the
inverse identification process conducted in Section 4 on UD-fiber reinforced
elasto-plastic matrix, successively without and with damage enhancement;
the distribution of these parameters and their dependency are studied. A
stochastic model is then built using the data-driven sampling method de-
veloped in [60]. It is then shown that, despite the existing dependency in
the effective properties and the limited number of samples, a Markov chain
Monte Carlo (MCMC) process can generate random vectors respecting these
statistical features in order to conduct SFEM simulations in the next section.

5.1. Random material parameters for UD-fiber reinforced composites

In the presented stochastic MF-ROM, there are totally 9 and 11 random
parameters being used respectively to describe the UD-fiber reinforced elasto-
plastic matrix without and with damage enhancement. We denote them in
the form of the random vectors

• Without damage: β = [̃I, θ̃, vI, Ẽ0, ν̃0, σ̃Y0, k̃10 , k̃20 , m̃0]T; and

• With damage: βD = [̃I, θ̃, vI, Ẽ0, ν̃0, σ̃Y0, k̃
D
10
, k̃D

20
, m̃D

0 , S̃0, s̃0]T.

According to the presented inverse MFH process, the 3 micro-structural ge-
ometrical parameters, Ĩ, θ̃ and vI, and the 3 effective matrix parameters, Ẽ0,
ν̃0 and σ̃Y0 will have the same statistical features for the elasto-plastic matrix
and for the damage enhanced elasto-plastic matrix. Therefore, the notations
used for these six random parameters are not discriminated, contrarily to the
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Figure 15: Randomly picked realizations of vI, Ĩ, Ẽ0, ν̃0, σ̃Y0, k̃10/k̃
D
10 , k̃20/k̃

D
20 , m̃0/m̃

D
0

and θ̃. The notation k̃10/k̃
D
10 means either k̃10 or k̃D10 for respectively the elasto-plastic

matrix (EP) and the damage-enhanced elasto-plastic matrix (EPD).

5The notations k̃10/k̃
D
10 means either k̃10 or k̃D10 for respectively the elasto-plastic matrix

and the damage-enhanced elasto-plastic matrix.
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Figure 16: Randomly picked realizations of S̃0 and s̃0 for the damage-enhanced elasto-
plastic matrix.

In Fig. 15, a few randomly picked realizations of Ĩ, θ̃, vI, Ẽ0, ν̃0, σ̃Y0,
k̃10 , k̃20 , m̃0 and k̃D

10
, k̃D

20
, m̃D

0 are presented in order to study their depen-
dency. Respecting this dependency is of prime importance in order to gener-
ate the meso-scale random properties for the stochastic finite element simu-
lations. Only 300 realizations are used for a better visualization in both cases
of elasto-plastic matrix (EP) and of damage enhanced elasto-plastic matrix
(EPD). Obvious correlations can be found between the random parameters
in Fig. 15, except for θ̃,. Since the non-local damage model is adopted in the
direct finite element analysis of SVEs with damage enhanced elasto-plastic
matrix, and since this non-local model introduces a volume average effect
on the non-linear behavior, the identified hardening parameters are different
for the two effective matrix material behaviors. In particular, the difference
between k̃10 and k̃D

10
, k̃20 and k̃D

20
and m̃0 and m̃D

0 respectively are observed
in Fig. 15.

For completeness, 1800 realizations of S̃0 and s̃0 are plotted in Fig. 16.
The histograms of the σ̃Y0, k̃D

10
, k̃D

20
, m̃D

0 , S̃0 and s̃0 are also presented in Fig.

17, while the histograms of the Ĩ, θ̃, vI, Ẽ0 and ν̃0 distributions are left out
for conciseness since they have already been presented in [50].

In this section, we focus on the random MFH input parameters for com-
posites with damage enhanced elasto-plastic matrix. Since the distributions
of the random effective material parameters obtained from the inverse iden-
tification process are not Gaussian in general, see Fig. 17, the distance
correlations are used to investigate the dependence between the 11 random
parameters of the random vector βββD. More than 1800 samples are used to
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Figure 17: Histograms of (a) σ̃Y0; (b) k̃D10 ; (c) k̃D20 ; (d) m̃D
0 ; (e) S̃0 and (f) s̃0 distributions

for the damage-enhanced elasto-plastic matrix.

compute their distance correlations which are presented in Table 3. From
Table 3, an obvious dependence can be seen among the 11 random variables.
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Table 3: Distance correlation of effective random material parameters.

vI Ĩ Ẽ0 ν̃0 σ̃Y0 k̃D
10

k̃D
20

m̃D
0 θ̃ S̃0 s̃0

vI 1.0 0.09 0.70 0.82 0.07 0.11 0.30 0.21 0.04 0.11 0.38

Ĩ 1.0 0.06 0.06 0.11 0.10 0.05 0.08 0.15 0.18 0.10

Ẽ0 1.0 0.70 0.12 0.19 0.38 0.19 0.05 0.11 0.56
ν̃0 1.0 0.10 0.09 0.42 0.13 0.04 0.09 0.40
σ̃Y0 1.0 0.23 0.44 0.36 0.22 0.29 0.06

k̃D
10

1.0 0.17 0.16 0.29 0.37 0.47

k̃D
20

1.0 0.51 0.13 0.17 0.36
m̃D

0 sym 1.0 0.16 0.15 0.08

θ̃ 1.0 0.29 0.25

S̃0 1.0 0.42
s̃0 1.0

5.2. Stochastic model of the MF-ROM input parameters

In the remaining we consider the damage-enhanced case, the elasto-plastic
one being easily deduced from it. Using the realizations of random vector
βββD as random material properties, a stochastic finite element analysis can
be carried out at the higher length scale. The realizations of random vector
βββD can be obtained directly using the presented inverse MFH process, which
is computational costly and not practical. This motivates the construction
of a random vector generator. Based on the available samples, empirical
copula has been constructed to generate the random elastic material property
vectors in [50]. However, empirical copula is not feasible in the present work.
Firstly, the random vector βββD has a relatively high dimension of 11, in which
case constructing a reasonable empirical copula would require an enormous
amount of sampling data. Secondly, the samples of βββD are extracted from
direct non-linear elasto-plastic finite element simulations on SVEs, which is
much more computational expensive compared to that of the linear elastic
simulations. In order to construct a random vector generator of 11 dimensions
with dependence based on a limited number of samples (N =1868 samples),
a sophisticated data-driven sampling method [60] is adopted in this work.
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5.2.1. Data-driven probability sampling

The data-driven sampling method, which has been presented in reference
[60], is summarized in this section.

Considering the damage-enhanced case, the random material properties
are represented by a random vector βββD, which is defined on a probability
space (Θ, T ,P), with value in Rn (n = 11 in our case). The distribution
of this random vector is unknown, while, it is assumed that its statistic
information is concentrated on a subset Sn of Rn. The available information
consists of a given set of N statistically independent realizations βββD(θ), here
the realizations illustrated in Section 5.1, where θ ∈ Θ. It is further assumed
that the local structure of the given data-set is preserved via a random matrix
[βββD], which is defined on (Θ, T ,P), with value in Mn,N . Specifically, [βββD] =
[βββD

1 , ...,βββ
D
N ], with each column βββD

i (i = 1, ..., N) being an independent copy
of the random vector βββD. Therefore, if the vector b denotes a realization
of βββD, the matrix [b] = [b1, ...,bN ] is a realization of [βββD] (with N = 1868
observation samples in our case). A MCMC process is then used to generate
extra data samples based on the matrix [b].

This random samples generating process can be carried out in three se-
quential sub-processes:

1. Preparation of data-set by removing the mean and scaling it to the unit
variance;

2. Random data generating process; and

3. Recovering generated data in the original data-set scale.

These three steps are summarized in Appendix D.
Finally, k × N additional realizations of βββD can be generated, with k =

1, ..., nMC, where nMC corresponds to the maximum number of required ad-
ditional realizations, see details in Appendix D.

5.2.2. Application of the data-driven sampling method

In this section, the data-driven sampling method summarized in Section
5.2.1 is applied using the N = 1868 realizations of the random vector βββD,
which were obtained from the inverse MFH analysis of direct finite element
simulations on SVEs in Section 5.1.

With nMC = 10, 18680 additional realizations of βββD are generated. 300
samples are randomly drew from the 18680 generated realizations and 300
other samples from the 1868 given realizations obtained from the inverse
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Figure 18: Comparison of the generated samples and the original observations for Ĩ, θ̃, vI,
Ẽ0, ν̃0, σ̃Y0, k̃D10 , k̃

D
20 and m̃D

0 .

MFH analysis. They are reported in Figs. 18 and 19 for the purpose of com-
parison. Very good agreements between the distributions of the generated
data and the original observation data can be seen.
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6. Stochastic analysis of a transverse tensile test on a ply

In this section, in order to illustrate the applicability of the stochastic MF-
ROM, we study the response of a UD composite ply loaded in the transverse
direction. First the description of the test, in particular the discretization of
the stochastic field and of the finite elements, is detailed before applying the
stochastic MF-ROM enhanced by the non-local damage formulation. A few
realizations of the tensile tests are then studied to illustrate the stochastic
effect on a strain-stress curve. For each realization, a random field is gener-
ated by the stochastic model described in Section 5.2 and serves as input for
MF-ROM.

6.1. Tensile test setup

A composite cross-section of 500 × 250µm2 is loaded in the transverse
x-direction, with plane-strain condition along the longitudinal z-direction of
fibers, and surface-traction-free condition along the y-direction. Its finite el-
ement discretization along with the applied boundary and loading conditions
is presented in Fig. 20.

The case of the damage enhanced elasto-plastic matrix is considered in
this test. The random field of the material properties is discretized into
squares of 25×25µm2, and the random material properties of each square are
independent from the properties of the neighboring squares since the spatial
correlation vanishes as shown in [14]. The applied material properties are
realizations of the random vector βββD, which are generated values through the
process described in Section 5.2. The discretization of the random material
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Figure 20: Tensile stochastic finite element analysis: discretizations of the random field
(left) and of the finite element structure (right).

properties field is also shown in Fig. 20. In order to avoid a strong contrast
of material properties, which may lead to an artificial stress concentration,
smooth-step functions are used to describe the transition of the material
properties at the internal boundaries of the random field discretization [14].

The non-local formulation of damage is also used at the ply level in order
to avoid mesh dependency effects. At the ply level, the non-local equations
read 

∇M · σM = 0 ∀x ∈ Ω ,

p−∇ · cg · ∇p = p0 ∀x ∈ Ω ,

nM · σM = tM ∀x ∈ ∂Ω ,

nM · cg · ∇p = 0 ∀x ∈ ∂Ω ,

(69)

where σM results from the MF-ROM following the resolution process de-
scribed in Appendix C and where the anisotropic form of cg = diag

(
l2x, l

2
y, l

2
z

)
is used. In this case, we consider lx = ly = 25√

2
µm according to the size of

SVEs, 25× 25µm2, and we keep lz =
√

2 mm, since the interaction along the
fiber direction ranges on a longer distance.

Figures 21(a) and 21(b) show respectively the homogenized transverse
stress of the composite material, and the accumulated plastic strain of the
matrix at the ply loading strain εM11 = 0.08. These fields are quite even in
each 25×25µm2 random field discretization cell. Locally, the damage start to
evolve in the matrix at different strain states of composites and the different
damage evolution rates can be observed by comparing Fig. 21(c) and Fig.
21(d), in which the spots of the highest damage at the average loading strain
εM11 = 0.04 changed as the macro-strain increases to εM11 = 0.08.

The obvious effect of random material properties can be seen from Figs.
21(a) and 21(b), in which the location where a higher homogenized transverse
stress is reached in the composite material does not necessarily correspond
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Figure 21: The distributions of macro-scale stress of the composite material, accumulated
plastic strain and damage of effective matrix in the 500 × 250µm2 cross-section under
transverse loading.

to the location where a higher accumulated plastic strain is obtained in the
matrix phase; indeed, the location associated to a lower homogenized stress
associates with a SVE of low fiber volume fraction, for which the plastic
strain in the matrix phase starts to develop sooner. According to the ap-
plied damage model in this work, the earlier development of plasticity in the
matrix leads to an earlier evolution of its damage. Therefore, the location
corresponding to a high accumulated plastic strain in the matrix phase may
associate with a high damage value. However, it is only the case at the early
stage of loading as it can be seen by comparing Figs. 21(c) and 21(d). Indeed,
for the material points with effective material properties associated to SVEs
of high fiber volume fraction, the plastic strain and damage in the matrix
initiate at a higher stress state. In that case, although the level of plastic
strain is not high, the effective damage evolution in the matrix can be faster,
see Fig, 21(d), because of the localization effect in the micro-structure.
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6.2. Study of different ply realizations
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Figure 22: The strain-stress curves of five 500× 250µm2 tensile test samples.

The analysis conducted in the previous paragraph is now repeated for 18
ply realizations. The resulting strain-stress curves are presented in Fig. 22
up to the point of failure. We however note that the developed multiscale
approach looses objectivity when the homogenized stress-strain relationship
reaches strain softening onset. Beyond that point, the homogenized behavior
should be formulated in terms of other quantities for which size objectivity
can be recovered, such as fracture toughness or traction-displacement jump
softening response [89, 90, 91, 92]. With a view to the development of a
stochastic multiscale process, which can be used to carry out a complete
structural analysis including the degradation and failure of composite struc-
tures, the localization stages should thus be up-scaled using other indicator
such as fracture toughness, which also exhibits uncertainties [71, 93]. During
structural analyzes, damage localization zones can be substituted by a crack
at the onset of strain softening of local material [94, 95] and the correspond-
ing cohesive laws can be extracted from the simulations of SVEs [92, 71]. An
alternative is to extract parameters of a phase-field model [93] from lower
scale simulations. The maximum loading in the curves presented in Fig. 22
should thus be seen as a trend study and not as a rigorous failure analysis:
the presented inverse MFH analysis cannot reflect the effect of damage local-
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ization in SVEs, and the MFH analysis with the effective material properties
usually postpones the failure of SVEs, see Fig. 13. Therefore, the failure
points in Fig. 22 are postponed results comparing to the reality.

When analyzing the stress-strain curves of Fig. 22, it appears that, dur-
ing the first stage of the loading, the plies do not exhibit a difference in
their stiffness. This results from the adopted SVE micro-structure genera-
tor, which is based on the assumption that the statistical descriptors of fiber
distribution are homogeneous or stationary in space [14]. With the increase
of testing sample’s size, more and more effective properties of SVEs are used
in the analysis, leading to a convergence of the stiffness to a unique value.
However, there exists a discrepancy in the ply responses in the non-linear
stage and in the composite material strength.

7. Conclusions

In this work, a MF-ROM, which was developed for linear elastic com-
posites in [50], is extended to the non-linear regime. The main purpose
of the presented inverse MFH procedure is to improve the computational
efficiency of stochastic multiscale analyzes while relying on micro mechan-
ics models. Using the incremental-secant MFH formulation as a core, the
uncertainty observed in the response obtained by direct finite element simu-
lations of composite SVEs, and which results from the uncertainties of their
micro-structures, is represented by random effective matrix properties and
geometrical parameters. Compared to the direct finite element analyzes on
SVEs, the MF-ROM reduces not only the computational cost, but also the
order of uncertain parameters in the composite micro-structures.

The accuracy of the presented procedure is evaluated by comparing the
results of direct finite element simulations on SVE realizations with the ho-
mogenized behaviors predicted by the MF-ROM for the input parameters ob-
servations extracted using the developed inverse identification process. The
observed relative error in the loading direction is within 3.5% for the com-
posites made of an elasto-plastic matrix, and within 6%, before the softening
stage, for the composites made of a damage-enhanced elasto-plastic matrix.
When considering the stress components transverse to the loading direc-
tion or different loading conditions, the error is more important because the
considered composite material is characterized, on the one hand, by a high
volume fraction of inclusions, and, on the other hand, by a ductile matrix
phase, which correspond to a severe situation.
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A stochastic model is then built using a data-driven sampling process
in order to be able to generate random vectors as input for the MF-ROM
used in the SFEM. In order to illustrate the potential of the methodology,
the strength under transverse loading is extracted for several composite ply
realizations. However, in this proposed work, although a damage model is
considered at both scales, we did not account for the loss of objectivity in the
scale transition during local softening. In a future work, the damage to crack
transition at the onset of strain softening will also be studied in a stochastic
way to reduce the error caused by damage localization.

Appendix A. Tensorial operations and notations

• Dots and colons are used to indicate tensor products contracted over
one and two indices respectively:

u · v = uivi, (a · u)i = aijuj ;

(a · b)ij = aikbkj, a : b = aijbji ;

(C : a)ij = Cijklalk, (C : D)ijkl = CijmnDnmkl . (A.1)

• Dyadic products are designated by ⊗:

(u⊗ v)ij = uivj, (a⊗ b)ijkl = aijbkl . (A.2)

• Symbols 1 and I designate the second- and fourth–order symmetric
identity tensors respectively:

1ij = δij, Iijkl =
1

2
(δikδjl + δilδjk) , (A.3)

where δij = 1 if i = j, δij = 0 if i 6= j.

• The spherical and deviatoric operators are Ivol and Idev respectively:

Ivol ≡ 1

3
1⊗ 1, Idev = I− Ivol , (A.4)

so that for symmetric tensors aij = aji we have:

Ivol : a =
1

3
amm1 , Idev : a = a− 1

3
amm1 = dev(a) . (A.5)
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Appendix B. The Lemaitre-Chaboche ductile damage model in
non-local form

In the ”time-continuum” formulation of Section 2.1.2, a ”continuum”
elasto-plastic tangent operator such that ˙̂σ = Cep : ε̇ can be calculated from
(e.g. [96, chapter 12]):

Cep = Cel − (2µ)2

h
N ⊗N , h = 3µ+

dR

dp
> 0 , (B.1)

where µ is the shear modulus. Due to the finite increments of strain and
stress between time tn and time tn+1, the material operator is actually the
algorithmic one Calg = ∂∆σ̂

∂∆ε
and differs from Cep, [97]. In the case of the

radial return mapping assumption, the derivative of the undamaged stress
increment with respect to the strain increment reads (e.g. [96, chapter 12])

Calg = Cep − (2µ)2(∆p)
σ̂eq

σ̂eq, tr

∂N

∂σ̂
, with

∂N

∂σ̂
=

1

σ̂eq
(
3

2
Idev −N ⊗N ) .

(B.2)

In this last relation, σ̂eq, tr is the trial (elastic predictor) value of σ̂eq, and ∆p
is the accumulated plastic strain increment in the time interval. Note that
in case of plastic flow both Cep and Calg are anisotropic, and that in case of
elasticity Calg reduces to Cel.

The material operators can then be obtained. The ones related to the
Cauchy stress tensor are directly obtained following

C =
∂∆σ

∂∆ε
= (1−D)Calg − σ̂ ⊗ ∂D

∂ε
, (B.3)

Cup =
∂∆σ

∂p
= −σ̂∂D

∂p
. (B.4)

and the material operators related to the equivalent plastic strain following

Cpu =
∂p

∂∆ε
=

2µ

h
N , (B.5)

Cpp =
∂p

∂p
= 0 . (B.6)

These expressions are completed by the linearization of the damage law
(68) written in the incremental form following [88]:

∆D = (
Yn+α

S0

)s∆p , (B.7)
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where

Y =
1

2
εe : Cel : εe and Yn+α = (1− α)Yn + αYn+1 . (B.8)

It can be easily deduced that

∂Y

∂εe
:
∂εe

∂ε
: δε = αεe : Calg : δε , (B.9)

leading to

δD(ε, p) ≈ ∂∆D

∂Y

∂Y

∂εe
:
∂εe

∂ε
: δε+

∂∆D

∂p
δp

= s∆p
(Yn+α)s−1

Ss0

∂Y

∂εe
:
∂εe

∂ε
: δε+ (

Yn+α

S0

)sδp

= αs∆p
(Yn+α)s−1

Ss0
εe : Calg : δε+ (

Yn+α

S0

)sδp . (B.10)

Appendix C. MFH-homogenization based multiscale method

In this section we assume that the matrix phase ω0 follows a damage-
enhanced material law and that the inclusions phase ωI follows a damage-free
elasto-plastic model. In that case, only a non-local internal variable p related
to the matrix phase has to be considered.

The set of equations (38) was rewritten [80] as

0 = F = CSD
0 :

[
〈∆ε〉rI −

1

v0

S−1 : (〈∆ε〉rI −∆εr
M)

]
− CS

I : 〈∆ε〉rI ,(C.1)

which can be linearized as

dF =
∂F

∂〈ε〉I
: d〈∆ε〉rI +

∂F

∂〈ε〉0
: d〈∆ε〉r0 +

∂F

∆εr
M

: d∆εr
M +

∂F

∂p
dp .(C.2)

When solving FFF = 0 at constant ∆εr
M and constant p, since v0〈∆ε〉r0 +

vI〈∆ε〉rI is constant, Eq. (C.1) is solved iteratively with dF = J : d〈∆ε〉rI
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with J = ∂F
∂〈∆ε〉rI

+ ∂F
∂〈∆ε〉r0

:
∂〈∆ε〉r0
∂〈∆ε〉rI

given by

J = CSD
0 :

[
I− S−1

]
− CS

I −
∂CS

I

∂〈∆ε〉rI
: 〈∆εεε〉rI −

vI

v0

(
∂CSD

0

∂〈∆ε〉r0
+
∂CSD

0

∂D0

∂D0

∂〈∆ε〉r0

)
:

[
〈∆ε〉rI − S−1 :

(〈∆ε〉rI −∆εr
M)

v0

]
−

vI

v2
0

CSD
0 ⊗ (〈∆ε〉rI −∆εr

M) :: (S−1 ⊗ S−1) ::

(
∂S
∂〈ε〉0

+
∂S
∂D0

∂D0

∂〈ε〉0

)
−

vI

v0

CSD
0 : S−1 . (C.3)

The derivatives of the incremental-secant operators (42) read [80]
∂CS

∂〈∆ε〉r = 2Idev ⊗
[

1
6µs((〈∆ε〉r)eq)2

∆σ̂r : Idev : Calg − 2
3
µs Idev:〈∆ε〉r

((〈∆ε〉r)eq)2

]
,

∂CSD

∂〈∆ε〉r = (1−D) ∂CS

∂〈∆ε〉r − CS ⊗ ∂D
∂〈∆ε〉r ,

∂CSD

∂p
= −∂D

∂p
CS ,

(C.4)

where Calg is given in Appendix B. The derivative of the Eshelby tensor
∂S
∂〈ε〉0 =

(
∂S
∂〈ε〉0 + ∂S

∂D0

∂D0

∂〈ε〉0

)
was developed in [80].

Once F = 0 is satisfied, the effect on the strain increment in each phase
of a variation d∆εr

M at constant ∆p and vice versa can directly be obtained
by constraining dF = 0 in Eq. (C.2) leading to

∂〈∆ε〉rI
∂∆εrM

= −J−1 : ∂F
∂∆εrM

, and
∂〈∆ε〉r0
∂∆εrM

= 1
v0

(
I− vI

∂〈∆ε〉rI
∂∆εrM

)
,

∂〈∆ε〉rI
∂p

= −J−1 : ∂F
∂p
, and

∂〈∆ε〉r0
∂p

= − vI
v0

∂〈∆ε〉rI
∂p

.
(C.5)

However, when performing the inverse identification process, the MFH is not
related to a finite element formulation in which case there is no existence of
a non-local variable p. In that case, the equations here above simplifies by
removing the dependencies in p, and by performing the following substitution:

∂D0

∂〈∆ε〉r0
→ ∂D0

∂〈∆ε〉r0
+
∂D0

∂p0

∂p0

∂〈∆ε〉r0
=

∂D0

∂〈∆ε〉r0
+
∂D0

∂p0

Cpu
0 , (C.6)

with the expression of Cpu
0 given in Appendix B.
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Appendix C.1. Linearization of the non-local MFH
At the finite element level, the input of the MFH are the strain increment

∆εf
M = ∆εr

M − ∆εunload
M and the non-local variable p. The “consistent”

linearization of the homogenized stress (38) thus reads

δσM = vIδ〈σ〉I + v0δ〈σ〉0 = CMδ∆ε
f
M +C

up

M δp = CMδ∆ε
r
M +C

up

M δp . (C.7)

The two operators CM and C
up

M have been evaluated in [80] and read

CM = vICalg
I :

∂〈∆ε〉rI
∂∆εr

M

+ v0

(
(1−D0)Calg

0 − σ̂0 ⊗
∂D0

∂〈∆ε〉r0

)
:
∂〈∆ε〉r0
∂∆εr

M

, and

C
up

M = vICalg
I :

∂〈∆ε〉rI
∂p

+ v0

(
(1−D0)Calg

0 − σ̂0 ⊗
∂D0

∂〈∆ε〉r0

)
:
∂〈∆ε〉r0
∂p

−

v0σ̂0
∂D0

∂p
, (C.8)

where the phases algorithmic operators Calg
i and damage evolution derivatives

are given in Appendix B, and where the derivatives of the strain increments
in the phases are reported in Appendix C.

The linearization of the homogenized equivalent plastic strain in the ma-
trix p0 reads, see [80]

δp0 =
1

h
N : Cel

0 : δ〈ε〉0 =
2µ

h
N :

(
∂〈ε〉0
∂∆εf

M

: δ∆εf
M +

∂〈ε〉0
∂p

δp

)
,(C.9)

yielding

Cpu
M =

∂p0

∂∆εf
M

=
2µ

h
N :

∂〈ε〉0
∂∆εf

M

, (C.10)

C
pp

M =
∂p0

∂p
=

2µ

h
N :

∂〈ε〉0
∂p

. (C.11)

However, when performing the inverse identification process, the MFH is
not related to a finite element formulation in which case there is no existence
of a non-local variable p. The homogenization tensor CM should thus also
include the part resulting from the derivative of the damage variable with
respect to the local internal variable:

CM = v0

[
(1−D)Calg

0 − σ̂0 ⊗
(

∂D0

∂〈∆ε〉r0
+
∂D0

∂p
Cpu

0

)]
:
∂〈∆ε〉r0
∂∆εr

M

+

vICalg
I :

∂〈∆ε〉rI
∂∆εr

M

. (C.12)
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Appendix D. Data-driven probability sampling

.
The random samples generating process is carried out following the de-

tailed three sequential sub-processes:

1. Preparation of data-set for random samples generator. The original data-
set bi, (i = 1, ..., N) is normalized by removing the mean and scaling it to
the unit variance. The mean vector of E[b] is estimated statistically by

E[b] =
1

N

N∑
i=1

bi , (D.1)

and the empirical estimate of covariance matrix E{(b − E[b])(b − E[b])T}
reads,

[C] =
1

N − 1

N∑
i=1

(bi − E[b]) (bi − E[b])T . (D.2)

The eigen-decomposition of matrix [C] gives

[C] = [QQQ][ξξξ][QQQ]T , (D.3)

with the matrix [QQQ] = [QQQ1, ...,QQQn], where QQQk is the kth eigenvector of [C]
corresponding to the kth eigenvalue ξk, and the matrix [ξξξ] = diag[ξ1, ..., ξn].
The normalized dataset is then computed by

ηηηi = [ξξξ]−1/2[QQQ]T(bbbi − E[b]), ∀i = 1, ..., N . (D.4)

The original data-set [bbb]n×N = [bbb1, ..., bbbN ] is thus transferred to [ηηη]n×N =
[ηηη1, ..., ηηηN ].

2. Random data generating process. The following steps have to be carried
out.

• The given data-set ηηηi, (i = 1, ..., N), serves as N realizations of a
random vector VVV , which is defined on a probability space (Θ, T ,P),
with value in Rn. The non-parametric estimate of the probability dis-
tribution function (pdf) pVVV can be constructed by using the Gaussian
kernel-density estimation method, with

pVVV (ηηη) =
1

N

N∑
i=1

1

(
√

2πŝn)n
exp(− 1

2ŝ2
n

‖ ŝn
sn
ηηηi − ηηη‖2) , (D.5)
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with ‖ηηη‖2 = η2
1 + ... + η2

n, and where the multidimensional optimal
Silverman bandwith sn and parameter ŝn read

sn =

[
4

N(2 + n)

]1/(4+n)

, ŝn =
sn√

s2
n + N−1

N

. (D.6)

• Based on the normalized observation data-set [ηηη]n×N , a diffusion-map
basis [φφφ] is constructed using the Gaussian kernel, which is defined on
Rn × Rn, by

kε(ηηηi, ηηηj) = exp(− 1

4ε
‖ηηηi − ηηηj‖2), ∀i, j = 1, ..., N . (D.7)

Let [KKK] be the symmetric matrix in MN , with its entries [KKK]ij =
kε(ηηηi, ηηηj). A diagonal real matrix [ρρρ] = diag(ρ1, ..., ρN), in MN , is
first computed by

ρi =
N∑
j=1

[KKK]ij, ∀i, j = 1, ..., N . (D.8)

A symmetric matrix [Ps] is then defined as

[Ps] = [ρρρ]−1/2[KKK][ρρρ]−1/2 , (D.9)

with its eigenvalue problem defined by [Ps]ψψψ
i = λiψψψ

i, (i = 1, ..., N).
Using the definition of [Ps], Eq. (D.9), and multiplying by [ρρρ]−1/2 its
corresponding eigenvalue problem, give

[ρρρ]−1[KKK][ρρρ]−1/2ψψψi = λi[ρρρ]−1/2ψψψi , (D.10)

which corresponds to the new eigenvalue problem,

[P]ζζζ i = λiζζζ
i, i = 1, ..., N , (D.11)

where [P] = [ρρρ]−1[KKK]. The eigenvalues and eigenvectors of this new
problem are respectively λi and ζζζ i = [ρρρ]−1/2ψψψi. From the definition
of the diagonal matrix [ρρρ], Eq. (D.8), it derives that

∑N
j=1[P]ij = 1,

∀i = 1, ..., N . Therefore, it can be seen as a Markov chain transition
matrix in one step.
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Finally, the diffusion map basis is defined by [φφφ] = [φφφ1, ...,φφφN ] ∈MN,N ,
such that

φφφi = λiζζζ
i ∈ RN , ∀i = 1, ..., N , (D.12)

where λi are the eigenvalues of the matrix [Ps]. Assuming the eigenval-
ues are ordered in a descending order, it can be proved that

1 = λ1 ≥ λ2 ≥ ... ≥ λN . (D.13)

A dimension reduction can be achieved by discarding the basis vectors
corresponding to the eigenvalues which are lower than a threshold value
τ , such as

τ ≥ λm+1 ≥ λm+2 ≥ ... ≥ λN . (D.14)

The reduced basis [φφφ]r = [φφφ1, ...,φφφm] ∈MN,m, is then obtained.

Remembering that the given data-set [ηηη]n×N serves as a realization
of the random matrix [VVV ], which is defined on the probability space
(Θ, T ,P), with value in Mn,N , this random matrix [VVV ] can be repre-
sented with the reduced diffusion map basis [φφφ]r as

[VVV ] = [ZZZ][φφφ]Tr , (D.15)

and it yields

[ZZZ] = [VVV ][aaa], and [aaa] = [φφφ]r([φφφ]Tr [φφφ]r)
−1 ∈MN,m . (D.16)

In particular, using the given data-set [ηηη]n×N yields

[zzz] = [ηηη][aaa] ∈Mn,m . (D.17)

Remark: If the order reduction is not desired in the random vector
generating process, the step of diffusion map basis construction is not
necessary anymore. One can use [aaa] = [III]N×N , m = N and [φφφ]r = [φφφ] =
[III]N×N in the following steps.

• The additional realizations of the random matrix [VVV ] are computed
through Eq. (D.15) with additional realizations of [ZZZ], which are gen-
erated by solving a Itô stochastic differential equations (ISDE). It is
defined as a Markov stochastic process {([Z(r)], [Y(r)]), r ∈ R+} on
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the probability space (Θ, T ,P), with value in Mn,N ×Mn,N , indexed
by R+ = [0,+∞). The ISDE is defined as

d[Z(r)] = [Y(r)]dr , (D.18)

d[Y(r)] = [L([Z(r)])]dr − 1

2
f0[Y(r)]dr +

√
f0[dW(r)] ,(D.19)

with the initial conditions

[Z0] = [zzz] = [ηηη][aaa] , [Y0] = [N ][aaa] , [W0] = [000]n×m , (D.20)

where [N ]n×N represents the random matrix whose entries are n × N
independent random variables with normalized Gaussian distribution,
and [dW(r)]n×m = [dW (r)][aaa] with [dW (r)]n×N consisting of a n×N
independent normalized Wiener process.

The term [L([Z(r)])]n×m in Eq. (D.19) is expressed as

[L([Z(r)])] = [LLL([Z(r)][φφφ]Tr )][aaa] . (D.21)

We note [qqq] = [Z(r)][φφφ]Tr , in which [qqq] = [qqq1, ..., qqqN ] with qqqi ∈ Rn. The
columns of the matrix [LLL([qqq])]n×N read

[LLL([qqq])]:,i = −∂V(g)

∂g
|g=qqqi , ∀i = 1, ..., N , (D.22)

where the potential V(g) is defined on Rn with the values in R+, and
reads

V(g) = −log

[
1

N

N∑
j=1

exp(− 1

2ŝ2
n

‖ ŝn
sn
ηηηj − g‖2)

]
. (D.23)

In this last equation, ηηηj, ∀j = 1, ..., N are column vectors of the given
data-set [ηηη], and the parameters ŝn and sn are defined in Eq. (D.6).

• To be complete, the ISDE presented in Eqs. (D.18-D.19) is solved
with the Störmer-Verlet scheme. The continuous index parameter r is
discretized into r0, r1, ..., rl, ... with the constant sampling step ∆r and
rl = l∆r. Using the following notations [Zl] = [Z(rl)], [Yl] = [Y(rl)]
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and [Wl] = [W(rl)], the Störmer-Verlet scheme yields[
Zl+ 1

2

]
= [Zl] +

∆r

2
[Yl] , (D.24)

[Yl+1] =
1− α
1 + α

[Yl] +
∆r

1 + α

[
Ll+ 1

2

]
+

√
f0

1 + α
[∆Wl+1] , (D.25)

[Zl+1] =
[
Zl+ 1

2

]
+

∆r

2
[Yl+1] , (D.26)

where
[
Ll+ 1

2

]
=
[
L([Zl+ 1

2
])
]

and α = f0∆r/4.

The additional realizations of [ZZZ] are sampled after every M0 steps.
Let [ẑzz]k denote the additional realizations of ZZZ, which take the value of
[Zl] at l = kM0 with k = 1, ..., nMC, where nMC is the number of the
required additional realizations and M0 is a positive integer sampling
parameter. Hence, the additional realizations of the random matrix VVV
are obtained by rewriting Eq. (D.15) as

[η̂ηη]k = [ẑzz]k[φφφ]Tr ∈Mn,N , ∀k = 1, ..., nMC . (D.27)

3. Recovering generated data in the original data-set scale. According to the
original data-set normalization Eq. (D.4), the generated random data-set
[η̂ηη]k = [η̂ηηk1, ..., η̂ηη

k
N ], with k = 1, ..., nMC, can be transferred back to recover

the scale and mean of the original data-set by

b̂bbi = E(b) + [QQQ][ξξξ]1/2η̂ηηki , ∀i = 1, ..., N . (D.28)

Finally, k ×N additional realizations of βββD are generated.

Table D.4: Parameters used in the sampling process.

n N ε f0 Fac ∆r M0

11 1868 2.7318 1.5 20 0.1534 100

Practically, in this work, the order reduction is not applied, and the
parameters used in the process are given in Table D.4, where the value of
∆r, which is used in Eq. (D.24), is computed by ∆r = 2πŝn/Fac. More
details can be found in [60].
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