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Abstract

The investigation of nonlinear aeroelastic phenomena is becoming increasingly

important to the aerospace community. The existence of structural and aero-

dynamic nonlinearities in aircraft has always been acknowledged but, it is only

mainly with the advent of modern digital computers that their investigation has

become possible. Additionally, aircraft control systems are becoming increas-

ingly nonlinear with the introduction of Active Control Technology. The effects

of these nonlinearities on the dynamic response of aircraft have created the need

for further research into the modelling, identification and prediction nonlinear

aeroelastic systems.

This thesis deals with four aspects of nonlinear aeroelasticity. Firstly, the

effect of the common industrial approach to nonlinearity, i.e. that of linearisation,

is investigated. Six flutter prediction methods for linear aircraft are tested and

compared on linear and nonlinear mathematical models of aeroelastic systems.

The performances of the methods on linear systems are evaluated and compared.

Subsequently, their predictions predictions when applied to nonlinear systems are

assessed.

Secondly, the dynamic response of nonlinear aircraft is investigated by means

of the Harmonic Balance method and the direct integration of the nonlinear

mathematical model. Emphasis is given to the explanation of the appearance of

Limit Cycle Oscillations as Hopf bifurcations and on the control and suppression

18



of these oscillations by means of a feedback control system. The chaotic vibra-

tion of nonlinear aeroelastic systems is also investigated by means of Poincaré

diagrams and Lyapunoff exponents.

Thirdly, the identification of nonlinear aeroelastic systems is considered. Iden-

tification of aeroelastic systems is important since, especially in the case of struc-

tural nonlinearities, it is often not known whether an aircraft is linear or not

and what nonlinearities it may contain until it is tested, either on the ground

(Ground Vibration Testing) or in the air (Flight Flutter Testing). An existing

nonlinear system identification method is compared to an approach developed

during the course of the present project. The two techniques are applied to a

nonlinear mathematical aeroelastic system and to a set of nonlinear input-output

data obtained from an experimental system. Both methods were found to be able

to deal with both systems with varying degrees of success.

Finally, the gust response of nonlinear aircraft is investigated with particular

emphasis on the calculation of gust design loads. Turbulent gust clearance is a

very important part of any airworthiness testing procedure. Until recently, the

linear assumption was considered adequate by the requirements however, there is

a current shift towards setting new requirements that take into account nonlin-

ear phenomena. Eight gust load prediction methods for nonlinear aircraft(both

stochastic and deterministic) are applied to a simple and a more complex non-

linear mathematical aircraft model. The performance of the methods is assessed

with respect to both accuracy and computational efficiency.
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Chapter 1

Introduction

1.1 Flutter, Limit Cycles and Gust Response

Aeroelasticity is the study of the effects of aerodynamic forces on elastic struc-

tures. Its purpose is to analyse the mutual interaction of inertial, aerodynamic

and structural forces. One of the most important aeroelastic phenomena is flut-

ter, which is an unstable oscillation that can result in structural failure. Flutter

is a result of an unfavorable interaction of inertial, aerodynamic and structural

forces and occurs at particular airspeeds and configurations, which are different

for every aircraft. Generally, flutter is a high-speed phenomenon however, low

speed flutter is not uncommon, indeed ’no speed regime is truly immune from

flutter’ [1].

Flutter is a very dangerous phenomenon since it can cause structural fail-

ure and therefore has to be avoided. Consequently techniques for predicting the

flutter speed for an aircraft have always been sought. These techniques include

aerodynamic and structural modelling, wind tunnel and ground vibration testing

and, most importantly, flight flutter testing. The latter is probably the most

critical part of the test programme of a prototype aircraft [2] since it investi-

gates the behaviour of the aircraft itself, not of a mathematical or wind-tunnel
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model, at a range of flight conditions. The purpose of all these techniques is to

demonstrate that the aircraft is flutter-free throughout its design flight envelope.

The proof of stability is also governed by airworthiness requirements, for example

JAR 25.6.29(1) states that, for civil aircraft, the flutter speed must be at least 1.2

times the design dive speed. For detailed investigations of classical linear flutter

see [3] and [4].

With the introduction of Active Control Technology (ACT ), aeroelastic effects

other than flutter have become of interest to researchers of aeroelasticity and

aircraft designers. Aeroservoelasticity [5], which is the study of the interaction

of the control system with inertial, elastic and aerodynamic forces has become

very important over the last 25 years. ACT has been used to improve stability

(flutter suppression), maneuvrability, ride comfort and other flight characteristics

but have also introduced the potential to cause aeroservoelastic instabilities. A

further side-effect of ACT is the fact that aircraft have been made more nonlinear.

The fact that aircraft structures are nonlinear has been known for a long time.

Such nonlinearities can be caused by ’... elastic deformations in riveted, screwed

and bolted connections as well as in the structural components themselves’ [6].

Flight control systems can introduce further nonlinearities, such as pitch stops

and rate limiters. The best known effect of nonlinearities on aircraft response is

that the modal frequencies are functions of the amplitude of vibration and that

the modal dampings are functions of both the frequency and the amplitude of

vibration [6]. However, aircraft with nonlinearities are susceptible to a number

of other nonlinear aeroelastic effects including Limit Cycle Oscillations (LCO).

LCOs are stable periodic vibrations which can be caused by a number of nonlin-

earities, including bilinear springs, rate limiting and hysteresis, all of which can

be found in modern flight control systems. Reference [7] gives a number of exam-

ples of LCO occurence in aeronautical applications. Needless to say, LCOs are
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undesirable since they compromise the effectiveness of the flight control system

and can cause various components to vibrate outside their design range.

A further aeroelastic phenomenon that is of interest is the response of aircraft

to atmospheric turbulence. The importance of this phenomenon was recognized

very early in the history of aviation [8], with NASA publishing a study of the

subject in its very first report. Atmospheric turbulence excites aircraft structures,

in such a way as to give rise to a number of considerations including increased

loading of the structure, structural fatigue, difficulty in controlling the aircraft and

passenger or crew discomfort. There are a number of approaches that attempt

to combat the gust response problem. The most straightforward approach is

avoidance of severe patches of turbulence. Additionally, gust load alleviation

systems are included in the control systems of some modern aircraft to decrease

the loads applied on an airplane flying through turbulence. Finally, predictive

methods have been developed to determine the design loads on particular aircraft,

caused by turbulent patches of prescribed intensity and likelihood. This latter

approach is complicated by the presence of nonlinearities in the structure or

control system.

1.2 The current state of the art

Three aeroelastic (and aeroservoelastic) problems that are of interest within the

aeroelastic community are the prediction of the the flutter velocity of an aircraft

from flight flutter test data, the characterisation and suppression of LCOs and

the prediction of design gust loads for aircraft flying through turbulence. All of

these problems are further complicated by the presence of nonlinearities either in

the structure or the control system.
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1.2.1 Flutter prediction from flight flutter test results

The most common approach to flight flutter testing is to fly the aircraft at a num-

ber of airspeeds and excite it using any number of excitation systems, including

control surface pulses and oscillations, thrusters, aerodynamic vanes or atmo-

spheric turbulence [1]. The response of the aircraft is measured at a number of

stations on the structure and subsequently analysed to yield the natural frequen-

cies and dampings of all the significant modes. Aircraft generally have a large

number of modes however, only two or three of them contribute to flutter and,

hence, only these modes are tracked. The flutter speed is mathematically defined

as the speed at which the damping becomes zero. The calculated damping values

are plotted against airspeed and extrapolated to obtain the flutter condition.

The initial flight test is normally carried out at low altitude and an airspeed

equal to half the theoretically predicted flutter speed. Theoretical predictions of

the flutter condition can be obtained from finite element and aerodynamic mod-

elling packages. This process effectively guarantees that flutter will not occur

during the test. The excitation signal is chosen such that it excites all the signifi-

cant dynamic characteristics of the aircraft. Typically, responses are measured at

20-30 stations using accelerometers. A number of methods are can be employed

to analyse the responses and decide whether aeroelastic stability can be expected

at an increased airspeed. These methods include identification of the eigenvalues

and mode shapes of the aircraft, estimation of various stability parameters and

identification of the equations of motion of the aircraft. More details on these

methods are given in Chapter 2.

In practice, all the response analysis tools used during flight flutter tests

assume that the aircraft is linear. Recently, identification methods have been

developed for nonlinear systems, although as yet none of these methods have been

used to analyse flight flutter test data. Identification is necessary in the case where
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it is not possible to develop an adequate model of a given system analytically.

It can be argued that since a lot of nonlinearities (especially structural) are not

designed for but occur inadvertently, identification is always necessary, even in the

case where accurate models are available. In other words, a complete description

of an aeroelastic structure can only be obtained by testing the structure and using

the resulting responses to yield the equations of motion. One of the ultimate goals

of nonlinear system identification is flutter and LCO prediction for nonlinear

aircraft from flight test data.

1.2.2 Characterisation of nonlinear systems

Currently, the application of nonlinear aeroelastic research in industry is very

limited. Most aircraft structures are assumed to be linear, enabling engineers

to apply linear flutter prediction methods, as described earlier. However, in the

quest for more accurate predictions, which are rapidly becoming a necessity with

the introduction of nonlinear control systems in modern aircraft, researchers are

concentrating on nonlinear aeroelasticity.

The main aspect of nonlinear aircraft research currently concerns detailed

numerical and experimental investigations to characterize simple aeroelastic sys-

tems. The need for such investigations arises because very little is known about

the behaviour of nonlinear systems. A number of parameters such as the airspeed,

the initial conditions, and the nonlinearities present in a system, dictate whether

the response of a system will be stable, LCO, flutter, or even chaotic. Mapping

the response of a system in a large section of its parameter space [9] can lead to

a more thorough understanding of how and when bifurcations from one type of

behaviour to another occur and what are their effects on the system’s stability.

However, this procedure is almost impossible for large systems like aircraft due

to the very large number of parameters that dictate the system response. For
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example, if a real aircraft can be idealised as a system with 25 degrees of freedom

(DOF ), then its parameter-space would have 51 dimensions: initial displacement

and velocity of each DOF and airspeed. A detailed investigation of the aircraft re-

sponse at each possible value of each of the 51 parameters would be an extremely

expensive undertaking in terms of computational cost, if not impossible.

1.2.3 Gust load response

The investigation of the load response of an aircraft in the presence of a turbulent

gust is required by airworthiness regulations. Due to the unpredictable nature of

turbulence, gust load prediction is a very demanding task. Most major airworthi-

ness code such as the U.S. Federal Aviation Regulation (FAR) and the European

Joint Airworthiness Requirements (JAR) require gust load calculations for both

discrete gusts and continuous turbulence. Discrete gusts are isolated turbulent

events which are assumed to occur at intervals sufficiently large to allow the

aircraft motion to subside between occurrences. Currently both FAR and JAR

requirements assume that a discrete gust can be adequately modelled using a 1-

cosine function [10]. Continuous turbulence consists of atmospheric fluctuations

occurring in patches within which the gust velocity and the aircraft response vary

continuously. Continuous turbulence loads can only be described stochastically.

Gust load prediction for linear aircraft is by no means a trivial task however, a

number of methods have been developed, able to predict these loads adequately

given analytical structural and aerodynamic models of the aircraft under con-

sideration. Nonlinear aircraft present a much greater challenge mainly because

the principle of superposition cannot be applied. There already exist a number

of gust load prediction methods for nonlinear aircraft, none of which have yet

reached a satisfactory combination of accuracy and computational cost.
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1.3 Objectives of this work

In this thesis, all three topics mentioned in the previous section are investigated

and original contributions are made. Initially, a number of linear flutter predic-

tion methods are compared on linear systems. Subsequently, these methods are

employed to test the linearisation approach in an effort to determine how accu-

rate are the results obtained by the use of linear flutter prediction methods on

nonlinear aeroelastic systems.

A mathematical model of a simple nonlinear aeroelastic system is used to

analyse and categorize all the types of response that can occur. The main object

of this part of the work is to determine which are the adverse types of response

and to attempt to suppress LCOs.

Nonlinear system identification is approached with the desire to develop a

more general identification approach than the ones currently available. Existing

methods fail to deliver acceptable system descriptions or are uneconomical for

various types of systems e.g. large systems, coupled systems or systems contain-

ing discontinuous nonlinearities, depending on the method. An original system

identification method is developed which can identify multi-DOF nonlinear sys-

tems with any type of nonlinearity.

The final part of the work compares gust load predictions for nonlinear air-

craft obtained using a variety of existing methods. The current difficulty in gust

research is the existence of a large number of methods none of which has yet

managed to become a standard. The methods are compared with respect to the

accuracy of their predictions but also with respect to their computational cost

and efficiency.
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1.4 Summary by chapter

Chapter 2

Five existing flutter prediction methods and one method developed during the

course of this work are described and validated by means of an application to

two linear aeroelastic mathematical models, one of a simple wing and one of a

complete aircraft. The methods are evaluated and compared on the basis of the

resulting predictions. Finally, the methods are applied to the simple wing model,

this time including a nonlinearity. The effectiveness of the methods when applied

to a nonlinear system is assessed.

Chapter 3

The current state of the art in research on the effects of nonlinearities on the

behaviour of aeroelastic systems is presented. This includes methods to solve the

nonlinear equations of motion, description of nonlinear aeroelastic phenomena

such as LCOs, bifurcations, stability and chaotic response, the Harmonic Balance

Method for the prediction of the amplitude of limit cycles, energy considerations.

This material is combined to show that it is possible to control and, even suppress

LCOs by use of a suitable control system.

Chapter 4

An existing nonlinear system identification method, the NARMAX approach, is

described and validated on a simple nonlinear system. The technique is enhanced

by extending its validity to aeroelastic systems. A new identification method is

developed and successfully applied to a number of simulated nonlinear systems,

featuring a wide variety of nonlinearities. The approach is also validated on a 2

DOF experimental system with cubic stiffness.
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Chapter 5

A detailed description of turbulent gust load research is presented. Subsequently,

three continuous turbulence and five discrete gust methods are outlined and ap-

plied mathematical models of a simple and a more complete aircraft. The methods

are compared to provide criteria by which a future selection of a standard method

can be made possible.

Chapter 6

The contents of the previous chapters are summarized and the most important

conclusions are drawn out. Some suggestions for further work are presented.



Chapter 2

Flutter Prediction Using Flutter

Test Data

2.1 Introduction

This chapter deals with methods for predicting the flutter speed of aircraft from

measured flight flutter test results. Flutter is defined as the interaction of inertial,

elastic and aerodynamic forces on a structure, which produces unstable oscilla-

tions, sometimes leading to structural failure. Flutter occurs most often at high

speeds however, low-speed aircraft are also likely to flutter. Since flutter is a very

dangerous phenomenon and can occur at any speed regime, a lot of emphasis is

placed on predicting the flutter condition for every aircraft and ensuring that this

condition does not lie within the normal flight envelope of the aircraft.

During the design stage, the flutter velocity is estimated by producing detailed

mathematical and aeroelastic wind tunnel models of the aircraft under design.

These estimates have to be complemented by tests of the actual flying aircraft,

commonly termed flight flutter tests. The earliest form of flight test was to fly

the aircraft at its maximum velocity in an attempt to demonstrate its aeroelastic
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stability [1]. This procedure, however, does not attempt to determine the flutter

speed and is inherently dangerous. Flight flutter tests are much more sophis-

ticated procedures which, in general, consist of flying an aircraft at a range of

subcritical airspeeds and applying some form of excitation on the structure. The

response of the structure is measured at a number of stations and the data is used

to determine the stability at the current flight speed and predict the stability at

higher speeds. In practice, the most common response data analysis procedure

is to estimate the damping present in the aircraft response and its variation with

airspeed. The data are then fitted by a polynomial, or even by hand, to yield the

velocity at which the damping becomes zero.

Even in the days of high-speed computers and sophisticated data capturing

and analysis tools, flutter testing remains as much an art as a science. Subcritical

damping data can not always be safely extrapolated in order to obtain an accurate

prediction for the flutter velocity. Nonlinearities in the control system or in the

aerodynamics and structure of the aircraft can critically affect its aeroelastic

behaviour. Finally, the aeroelastic stability can change from positive to negative

with an increase in airspeed of only a few knots and the whole procedure is very

dangerous and time-consuming.

There are various methods for analysing response data from flight flutter tests.

The purpose of this chapter is to examine a number of existing approaches as

well as to introduce a new one. Both the efficiency and quality of the predic-

tions obtained by the methods are compared using simulated systems to provide

a comprehensive overview of contemporary flutter prediction procedures. The

effectiveness of the methods investigated when applied to systems containing

nonlinearities is also considered.

Before any flutter prediction methods are discussed, a new procedure for eval-

uating the eigenvalues of a system from response data will be introduced. The
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procedure will be used in conjunction with a number of the flutter prediction

methods investigated in this chapter.

2.1.1 Rational Fraction Polynomial Method

The standard Rational Fraction Polynomial (RFP) method [11] attempts to ex-

press the Frequency Response Function (FRF ) of a given system in terms of a

polynomial fraction of the form

H(ω) =
bnb(ω)nb + bnb−1(ω)nb−1 + . . . + b0

(ω)na + ana−1(ω)na−1 + . . . + a0

(2.1)

where H(ω) is the FRF, bi, ai are the coefficients of the polynomials and nb and

na are the orders of the polynomials. Then, bi, ai are evaluated by rewriting

equation 2.1 as


H(ω1)(ω1)
na

H(ω2)(ω2)
na

...

H(ωL)(ωL)na




= −




H(ω1)(ω1)
na−1 H(ω1)(ω1)

na−2 . . . H(ω1)

H(ω2)(ω2)
na−1 H(ω2)(ω2)

na−2 . . . H(ω2)

...
...

...
...

H(ωL)(ωL)na−1 H(ωL)(ωL)na−2 . . . H(ωL)



×




ana−1

ana−2

...

a0




+




(ω1)
nb (ω1)

nb−1 . . . 1

(ω2)
nb (ω2)

nb−1 . . . 1

...
...

...
...

(ωL)nb (ωL)nb−1 . . . 1







bnb

bnb−1

...

b0




(2.2)

which is equivalent to the form Y = −Φaa + Φbb. Finally, bi, ai are obtained by

solving equation 2.2 in a least squares sense using

Y =
(

−Φa Φb

) 


a

b


 (2.3)

In general, the coefficients ai are forced to be real by choosing na = 2 ×
m, where m is the number of modes in the system. Then, the roots of the
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denominator are m complex conjugate pairs and are also the eigenvalues of the

system. The problem with this formulation is that it is ill-conditioned, yielding

poor estimates. Orthogonal polynomials are often employed to counteract the

problem [11].

For the present work, a slightly modified approach is introduced. The coef-

ficients of both the numerator and the denominator are allowed to be complex.

In turn, this signifies that the orders of the polynomials are undetermined. Con-

sequently, an optimization procedure is employed to obtain na and nb. The

procedure for the RFP technique with complex coefficients (RFP-CC) is:

• The FRF is expressed as in equation 2.3

• The value of na and nb is set to 1.

• Equation 2.3 is solved to yield values for ai and bi. Then the root-mean-

square (rms) value of the difference between the left-hand-side and the

right-hand-side of equation 2.1 is evaluated.

• na is kept fixed while nb is allowed to increase in steps of 1 and the rms

value of the difference between the actual FRF and the polynomial fraction

is evaluated at each step.

• As nb keeps increasing, when it reaches a certain value, the Φ matrix in

equation 2.3 will become rank deficient. Then, the value of nb is reset to 1

and that of na is increased by 1.

• The optimization process is terminated when na reaches such a value that

at nb = 1 the Φ matrix is rank deficient. This occurs even when the results

are noisy.

• The rms values of the differences between actual FRF and approximation

are compared and the best-case combination of na and nb is chosen.
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The eigenvalues are, again, given by the roots of the denominator, only, in

this approach, the roots are not complex conjugate pairs. There are m roots that

approximate the m eigenvalues as well as a number of other roots that describe

the shape of the FRF away from the peaks. In this sense, the RFP-CC method

approximates the 3-dimensional landscape that is described by the FRF in the

real-imaginary-frequency space. Its ability to describe the shape of the FRF away

from the peaks means that it copes better with noise than the standard RFP, since

the extra roots of the denominator ’absorb’ the noise to a certain degree, leaving

the numerator and the approximations of the eigenvalues in the denominator to

describe the noise-free FRF.

The natural frequencies and dampings are given by

ωni
=| λi |

ζi =
<e(λi)

| λi | (2.4)

where ωn are the natural frequencies, ζ are the damping ratios and λi are the

eigenvalues. The roots that approximate the eigenvalues are separated from the

other roots by comparing the natural frequencies obtained from them to where

the peaks occur in the FRF.

Figures 2.1 and 2.2 show FRF fits for a three-degree-of-freedom wing system

using the RFP-CC method, for a clean and a noisy signal respectively. Note that

the fit creates an extra two peaks at high frequencies to accommodate the noise.

The ’true’ peaks however coincide with the ones in the original FRF.

For a large system, the FRF can not be identified in a single step. Instead,

it has to be broken down into smaller regions and each region identified sepa-

rately. Here, again, the RFP-CC method has an advantage over the standard

RFP method. When applying the latter, it has to be decided how many modes

exist in each region to be identified. However, each of the FRFs of a large sys-

tem will not necessarily contain all the modes. Additionally, such a procedure
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requires user input, in other words, the regions have to be defined by the user.

With the RFP-CC this is not a requirement since the approach does not need the

number of modes to be specified. Instead, it will fit the best-case curve through

the given data, which will include all the actual modes plus a number of other

modes. The latter can be separated from the former easily since they do not lie

in the frequency range of interest.

2.2 Flutter Prediction Methods

This section will concentrate on linear flutter prediction methods only. Nonlinear

flutter prediction methods are still in their infancy and have not found their way

in industrial applications. In section 2.5 these linear methods are applied to a

nonlinear simulated aeroelastic system in an attempt to determine whether such

an approach can deliver acceptable flutter predictions.

The methods were applied to two different simulated aeroelastic models, one

of them modelling a simple, 3-degree of freedom, rectangular wing with con-

trol surface, referred to as the Hancock model (see Appendix A) and the other

modelling a 4-engined civil transport (see Appendix G), referred to as the Sim-2

model. Figures 2.3 and 2.4 show the variation of natural frequencies and damping

ratios for both model. In the case of the Sim-2 model, only some representative

modes are plotted. The flutter speeds of the two models were calculated from the

equations of motion, using the procedures described in appendices B and C, as

• Hancock model: 44.07 m/s

• Sim-2 model (5000 ft): 398 kts

With both models, and for all the methods, the excitation waveforms used

were frequency sweeps. Additionally, all responses were contaminated by 5% rms

simulated noise to approximate the effects of experimental uncertainty. Each
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method was tested in a variety of velocity ranges, as shown in the result tables.

In each of the ranges, a number of tests were performed at increments of 7% of

the true flutter speed.

2.2.1 Damping Ratio Variation with Airspeed

Traditionally, the most widely used indicators of the stability of an aeroelastic

system are the modal dampings and their variation with free stream velocity.

At flutter, the damping in at least one of the modes will be zero, thus causing

self-excited oscillations. In the typical flight flutter test the damping ratios for

all the significant modes are evaluated at a number of subcritical airspeeds using

system identification. Then they are curve-fitted by a polynomial, or by hand,

and extrapolated to yield the flutter velocity.

The problem with this approach is that, even though the zero-damping cri-

terion is correct, the subcritical behaviour of the damping ratio is very unpre-

dictable. In the case of hard flutter, the damping drops very abruptly near the

critical velocity and therefore flutter can be encountered at what can be mistaken

for a safe flying condition. Hence, during the flutter prediction process, a lot of

emphasis needs to be given to deciding whether a particular aeroelastic system

will undergo hard or soft flutter.

There are numerous system identification methods, both in the time and the

frequency domain, that allow the calculation of the eigenvalues and, hence, fre-

quencies and dampings of a vibrating system. Here, the new version of the

Rational Fraction Polynomial method detailed in subsection 2.1.1 is used.

Method Validation

The two main considerations with any polynomial extrapolation is the order of

the polynomial used and the range of validity of the extrapolation. Figures 2.5
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and 2.6 show polynomial fits of damping data for responses without noise and

with 5% rms noise respectively for the Hancock model. The solid lines are the

fits, the circles the estimated damping ratios and the crosses the actual damping

ratios, obtained by solving the equations of motion rather than analyzing the

responses. In both cases, although the shape of the polynomial fit is accurate in

the high-velocity range, providing good estimates for the actual flutter velocity,

the fit is very poor in the lower-velocity range where the damping ratio should go

to zero since the system does not contain any structural damping. Furthermore,

the best estimate for the flutter depends on the order of the polynomial used. In

general, low order polynomials, may fail to fit the data points adequately whereas

high order polynomials will fit the data much more accurately but may fail to

extrapolate to the critical velocity, i.e. may not have a root near where the flutter

speed should be. Figure 2.7 shows the variation of the error in the flutter velocity

with increasing polynomial order, again for the Hancock model. This figure as

well as figures 2.5 and 2.6 suggest that the best order is around 5 or 6. However,

this is by no means a general result. Since, in practice, the flutter speed is not

known in advance it is impossible to predict which order of fit will give the best

estimate. Table 2.1 shows the best flutter estimates for damping data taken at

different velocity ranges and the corresponding orders, for the Hancock model.

In this table, and in all the other tables in this section concerning the Hancock

model, all speeds are expressed as ratios of true airspeed to true flutter speed.

The table shows that a range of polynomial orders (between 3 and 8) can give

the optimal results. Additionally, changing the order by one can give wildly inac-

curate results. In general, orders between 3 and 6 are the most suitable choices,

however, results can be out by up to 17.5% of the true value. Furthermore, if

too high an order is used (typically above 10, depending on how many points are

fitted) the matrix used for the polynomial fit becomes rank deficient and the fit
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Velocity Range Best Flutter Speed Estimate % Error Best Order of fit

0.23-0.43 50.3983 +14.4 3
0.23-0.57 46.3494 +5.1 3
0.23-0.70 40.0809 -9.1 4
0.23-0.84 44.0199 -0.1 6
0.23-0.98 44.2804 +0.5 8
0.45-0.66 51.7872 +17.5 2
0.45-0.79 43.6776 -0.9 4
0.45-0.93 44.0317 -0.1 5
0.68-0.88 44.1609 +0.2 3

Table 2.1: Flutter Estimates using Damping Fit Method, Hancock Model

itself fails completely.

The sensitivity of the method to noise is governed by the sensitivity of the

FRF fit method. The deteriorating quality of the latter with increasing levels

of noise affects the flutter prediction negatively, as is seen in figures 2.8 and 2.9,

where a FRF fit and a flutter prediction respectively are shown for results with

20% rms noise. The symbols on figure 2.9 are as in figures 2.5 and 2.6 with the

addition of the dashed line which denotes a best-case polynomial fit of the actual

damping ratio data. A comparison between the latter and the best-case fit of the

estimated damping ratios shows that the flutter speed has been overestimated by

quite a margin (4.4 %) and also that the estimated subcritical behaviour of the

damping curve is wrong.

Table 2.2 shows flutter speed predictions for the Sim-2 model, again using best

order polynomials. As with the Hancock model, all velocities are presented as a

ratio of the true airspeed to the flutter speed. While a range of orders between 3

and 9 yields the optimal results however, orders of 3 or 4 are most often the best.

When flutter tests are carried out close to the flutter speed, the flutter estimates

are very accurate. If the maximum test airspeed is 230 kts or less (approximately

40% lower than the critical airspeed) the errors in the flutter speed predictions

are quite large.
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Velocity Range Best Flutter Speed Estimate (kts) % Error Best Order of fit

0.23-0.43 54.2116 -88.4 3
0.23-0.57 330.7390 -17.0 3
0.23-0.70 361.7980 -9.2 6
0.23-0.84 416.6640 +4.6 6
0.23-0.98 397.1000 -0.3 9
0.45-0.66 409.6763 +2.8 3
0.45-0.79 408.6679 +2.3 4
0.45-0.93 400.4373 +0.5 4
0.68-0.88 409.9488 +2.9 3

Table 2.2: Flutter Speed Estimates using Damping Fit Method, Sim-2 model

In conclusion it has to be stated that fitting the damping ratio variation by a

polynomial is not a very reliable way of obtaining flutter predictions, especially

since the particular examples presented do not exhibit hard flutter behaviour.

Choosing the order of the polynomial fit is a very arbitrary process and noise

affects predictions in an undesirable manner. However, it is a very simple and

inexpensive way of obtaining estimates for the flutter velocity and, as such, could

be employed to confirm results obtained by a more effective flutter prediction

method.

2.2.2 Flutter Margin Method

The Flutter Margin Method (FFM ) was first presented in reference [12]. The

basis of the approach is the quest for a more fundamental stability criterion than

just tracking the damping present in the system. In its original form, the approach

only covers binary flutter however, in [13] an extension of the technique to trinary

flutter is presented.

The standard form of the equations of motion for an unforced aeroelastic

system is

Mq̈ + Cq̇ + Kq = 0 (2.5)
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where M is the generalised mass matrix, C the generalised damping matrix, K the

generalised stiffness matrix and q the generalised coordinates. If solutions of the

form q = q0 exp λt are chosen, where λ are the eigenvalues of the system and q0

arbitrary constants, and substituted in the equations of motion, the characteristic

equation of the system is obtained. The equation is polynomial with increasing

powers of λ. Routh’s stability criterion requires that, for such a system to be

stable, all the coefficients of λ along with a number of other coefficients be positive

[14]. However, for a two-degree-of-freedom system, for which the characteristic

equation is a quartic of the form

λ4 + A3λ
3 + A2λ

2 + A1λ + A0 = 0 (2.6)

the stability criterion reduces to

[
A2

(
A1

A3

)
−

(
A1

A3

)2

− A0

]
> 0 (2.7)

Hence, for a two-degree-of-freedom system there is a quantity described by

equation 2.7 which has to be positive for the system to be stable and becomes

zero when instability is reached. This quantity is termed the flutter margin and

is given by (in slightly modified form)

F =

[
A2

(
A1

A3

)
−

(
A1

A3

)2

− A0

]
=

[(
A2

2

)2

− A0

]
−

[(
A2

2

)
−

(
A1

A3

)]2

(2.8)

The application of the method is quite straightforward. For a two-degree-

of- freedom system the response to a known input at a particular (subcritical)

airspeed is recorded and the eigenvalues of the system are calculated. These are

then used to compute the Flutter Margin according to

F =

[(
ω2

2 − ω2
1

2

)
+

(
β2

2 − β2
1

2

)]2

+ 4β1β2


(

ω2
2 + ω2

1

2

)
+ 2

(
β2 + β1

2

)2

−
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(

β2 − β1

β2 + β1

) (
ω2

2 − ω2
1

2

)
+

(
β2 + β1

2

)2



2

(2.9)

which is obtained from equation 2.8, after substituting for the two sets of complex

conjugate eigenvalues, λ1, ..., λ4, such that

λ1,2 = β1 ± iω1

λ3,4 = β2 ± iω2

Using some further derivation [12], it can be shown that the Flutter Margin

is a quadratic function of the dynamic pressure, i.e.

F = B2q
2 + B1q + B0 (2.10)

where B0, B1 and B2 are coefficients to be evaluated. Hence, if the flutter margin

is known at three different airspeeds, it can be fitted by a second-order polynomial

and hence extrapolated. Flutter occurs when F = 0. In practice, to counteract

the effects of experimental uncertainty, the Flutter Margin is estimated at a wider

range of subcritical airspeeds and then fitted in a least squares sense.

The fact that the flutter margin is derived for a two-degree-of-freedom system

does not imply that the method cannot be used with larger systems. In fact,

the flutter mechanism is usually dependent on two modes only. If it is known

beforehand which two modes will cause flutter, the Flutter Margin method can

be applied successfully. It will be shown later that the method can be also applied

when there is no prior knowledge of the flutter mechanism. For a multi-degree-of-

freedom system, a search procedure can be employed to investigate the stability

of all possible modal couples.

Some experimental evaluation of the method suggests that using a quadratic

fit of the Flutter Margin can yield results that are very sensitive to errors or

uncertainty in the experimental data [15]. An alternative is to use linear extrap-

olation, again in a least squares sense. The rationale behind this approach is that
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the variation of the Flutter Margin at intermediate subcritical to critical airspeeds

is relatively linear anyway, most of its parabolic characteristics appearing at low

speeds.

For the present work, the eigenvalues of the systems investigated were again

calculated using the RFP-CC method.

Method Validation

As mentioned earlier, successful application of the Flutter Margin method to a

multi-dof aeroelastic system depends upon the knowledge of the flutter mech-

anism, i.e. which two modes will combine to cause flutter. By applying the

technique to these two modes a ’representative’ system is analysed. It is inter-

esting to note that Flutter Margins calculated from any combination of modes

containing the mode which becomes unstable at flutter will become zero at the

flutter velocity. In reference [16] it is shown that equation 2.8 can be re-written

as

F =


1 −

(
β2 − β1

β2 + β1

)2






(
ω2

2 − ω2
1

2

)2

+ (β1 + β2)
2


(

ω2
2 + ω2

1

2

)
+

(
β2 + β1

2

)2






(2.11)

It is obvious that if either β1 or β2 become zero then,


1 −

(
β2 − β1

β2 + β1

)2

 = 0

and F also becomes zero. This phenomenon is illustrated in figure 2.10 for the

Hancock model whose flutter mechanism includes the wing torsion and control

surface torsion modes, the damping of the control surface torsion mode becoming

zero at flutter. Figure 2.10 shows flutter margins calculated for all three combina-

tions of modes. In the wing bending- wing torsion case the Flutter Margin never

becomes zero. In the other two cases, which contain the control surface torsion
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mode, the Flutter Margin becomes zero at flutter. This phenomenon is due to

the fact that any system formed of two modes from another system, one of which

is unstable, will also be unstable. However, figure 2.10 shows that the variation

of the Flutter Margin with airspeed for the wing bending-control surface torsion

case is not quadratic. In other words, a number of ’spurious flutter margins’, or

parameters indicating the stability of a multi-dof system, can be formed using the

Flutter Margin methodology but these parameters will not be the Flutter Margin,

as defined by Zimmerman et al in [12]. Only if the actual flutter mechanism is

used will the Flutter Margin be obtained.

The predictions of the Flutter Margin method are also affected by the number

and location of the subcritical test. Table 2.3 shows predictions for the flutter

velocity obtained for subcritical tests carried out at various velocity ranges on

the Hancock model.

Velocity Range Flutter Speed Estimate % Error

0.23-0.43 41.0910 -6.8
0.23-0.57 45.7884 +3.9
0.23-0.70 45.1524 +2.5
0.23-0.84 44.5518 +1.1
0.23-0.98 44.1327 +0.1
0.45-0.66 44.6406 +1.3
0.45-0.79 44.8151 +1.7
0.45-0.93 44.1058 +0.1
0.68-0.88 43.7000 -0.8

Table 2.3: Flutter Speed Estimates by Flutter Margin Method, Hancock model

The table indicates that the best flutter estimates are obtained when at least

some of the subcritical tests are carried out near the actual flutter speed. However,

predictions obtained away from the critical region are still accurate to within 1%

- 3% percent. Only in the case of the first velocity range where only 4 tests are

performed at very low speeds does the prediction error increase to about 7%.

As with the damping fit approach, the Flutter Margin method’s sensitivity to
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noise depends upon that of the RFP-CC. Figures 2.11- 2.12 show the degradation

of the flutter velocity predictions with increasing noise in the responses for the

Hancock model. In the case of figure 2.11, with 10% rms noise, the flutter velocity

estimate is increased to just under 50m/s and in figure 2.12, with 20% rms

noise, to just under 60m/s (the true flutter speed being 44.0749 m/s). It is

at these conditions that [15] suggests a linear fit of the Flutter Margin gives

better estimates for the flutter velocity. However, figure 2.13 shows that this

latter approach would provide worse results than the normal quadratic fit.

The application of the Flutter Margin method to the Sim-2 model was not

as straightforward as in the Hancock case. The Sim-2 model contains 23 modes,

of which mode 12 becomes unstable at flutter. The flutter mechanism consists

of mode 12 and mode 4. The Flutter Margin variation with speed for the ac-

tual flutter mechanism is shown in figure 2.14. Notice that the variation is not

exactly quadratic since such a variation can only be obtained for systems with

no structural damping [13], whereas the Sim-2 model contains structural damp-

ing. Unfortunately, mode 4 is highly damped with respect to most of the other

modes and hence does not feature prominently in any of the FRFs, even at low

speeds. Since, for this work, the eigenvalues were obtained using a frequency do-

main method, the eigenvalue of mode 4 could not be obtained. As a consequence,

an alternative approach was used. The Flutter Margin method was applied to

the combination of modes 12 and 3, the latter being a prominent mode in the

FRFs. Equation 2.8 was applied to these two modes yielding a ’spurious’ flutter

margin which did not vary quadratically and had to be curve fitted by higher

order polynomials. Nevertheless, since the spurious flutter margin became zero

at flutter, it served as a stability parameter. Table 2.4 contains the flutter veloc-

ity predictions for the Sim-2 model. Some velocity ranges did not yield a flutter

speed at all because of the constraint that the data must be fitted by a second
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order polynomial. The noise in the Flutter Margin data caused the polynomial

to have the wrong curvature, hence never crossing the airspeed axis.

Velocity Range Flutter Speed Estimate (kts) % Error

0.23-0.43 - -
0.23-0.57 323.6037 -18.8
0.23-0.70 336.6151 -15.5
0.23-0.84 383.4589 -3.8
0.23-0.98 401.7859 +0.8
0.45-0.66 315.4346 -20.8
0.45-0.79 420.3867 +5.5
0.45-0.93 - -
0.68-0.88 - -

Table 2.4: Flutter Speed Estimates using Flutter Margin Method, Sim-2 model

2.2.3 Envelope Function

The Envelope Function was originally proposed as a tool to provide an assessment

of overall stability to complement standard analysis [17]. However, it has since

been used in practice to provide flight flutter clearance of a German high altitude

research aircraft.

The method is based on the fact that the impulse response of any damped

system is decaying, the shape of the decay in the time-domain being described

by the decay envelope. As the damping in a given aeroelastic system decreases,

the decay envelope grows wider, eventually becoming a rectangle as the damping

becomes zero. By evaluating the position of the centroid of the decay envelope

and the way that it shifts on the time axis as the damping decreases, it is possible

to assess the stability of the system.

For an aeroelastic system with impulse response y(t), the decay envelope, or

envelope function, is given by

env(t) =
√

y(t)2 + yH(t)2 (2.12)



CHAPTER 2. FLUTTER PREDICTION USING FLUTTER TEST DATA 48

where yH(t) symbolizes the Hilbert transform of the impulse response and is given

by

yH(t) =
1

π

∫ +∞

−∞
y(τ)

t − τ
dτ (2.13)

which is a convolution in the time domain. In the frequency domain this convo-

lution can be expressed as

YH(ω) = −
ω

|ω |Y (ω) (2.14)

where Y denotes the Fourier transform of y. Transforming back into the time

domain and noting that only positive frequencies are of interest

yH(t) = F−1(Im(Y (ω)) −  Re(Y (ω)) (2.15)

Im and Re denoting imaginary and real part respectively. The time centroid of

the decay envelope is given by

t̄ =

∫
tmax

0

env(t)tdt∫
tmax

0

env(t)dt
(2.16)

The upper limit of integration, tmax, serves to define the rectangle within which

the integration takes place. In the case of low damping, the response takes a

long time to decay and an upper limit other than +∞ is needed in order to make

the integration feasible. Additionally, it helps define the flutter condition. For a

single-degree-of-freedom system, when the damping is zero, the decay envelope

is a rectangle stretching to t = +∞. If that rectangle is truncated at t = tmax

its time centroid lies at t = tmax/2. For a multi-degree-of-freedom system, it is

suggested that t = tmax/2 is an adequate approximation for the position of the

time centroid [17].
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Since t̄ tends to increase as the damping drops its inverse is usually employed

as the significant shape parameter, i.e.

S =
1

t̄
(2.17)

in which case the value of S at the flutter condition is approximately S ≈ 2/tmax.

The envelope function flutter testing procedure is to evaluate S at a number

of subcritical airspeeds. The variation of S with airspeed is then curve-fitted

using a polynomial, as with the damping method, and extrapolated to the point

where S = 2/tmax, thus yielding the flutter velocity.

Method Validation

The Envelope Function procedure begins with obtaining the impulse response

of the system under consideration and then evaluating its decay envelope. Fig-

ure 2.15 shows such a decay envelope. Then the centroid of the decay envelope

is plotted against velocity and the flutter condition is located at the point where

the centroid lies at 2/tmax, as shown in figure 2.16.

The main considerations in the successful application of the method are the

number and velocity of subcritical tests, the order of the polynomial fit of the

decay envelope centroid, the value of tmax and noise. When testing a multi-degree

of freedom system a number of responses can be measured, all of which will yield

an envelope function and a shape parameter at each airspeed. Hence the shape

parameters from every measured response can be curve-fitted to yield an estimate

for the flutter velocity. Table 2.5 shows flutter predictions for the Hancock wing

with control surface model with variation of the factors mentioned above.

The poor quality of the flutter estimates is caused by the presence of noise.

Any noise present in the responses is magnified when the latter are transformed

to the frequency domain and then back to the time domain to obtain the impulse
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Range tmax Best Polynomial Order Best Flutter Speed Estimates % Error

0.23-0.43 10 2 54.7619 +24.2
8 2 49.7932 +13.0
6 2 34.7932 -21.1

0.23-0.57 10 3 43.5895 -1.1
8 3 43.1423 -2.1
6 3 44.1552 +0.2

0.23-0.70 10 3 44.2338 +0.4
8 3 44.3199 +0.6
6 4 45.1514 +2.4

0.23-0.84 10 5 42.9772 -2.5
8 5 46.1875 +4.8
6 4 45.9741 +4.3

0.23-0.98 10 6 44.0838 +0.0
8 4 44.0438 -0.1
6 3 43.9444 -0.3

0.45-0.66 10 2 41.2831 -6.3
8 2 41.0387 -6.9
6 2 42.6185 -3.3

0.45-0.79 10 3 41.0289 -6.9
8 3 43.2193 -1.9
6 3 44.3230 +0.6

0.45-0.93 10 4 44.1043 +0.1
8 4 44.1887 +0.3
6 4 44.3050 +0.5

0.68-0.88 10 2 44.4217 +0.8
8 2 44.2729 +0.4
6 2 44.6352 +1.3

Table 2.5: Flutter Speed Estimates using Envelope Method, Hancock Model
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responses. A demonstration of this is given in figure 2.17. The 5% rms error is

magnified to approximately 20% in the impulse response. This magnification, in

turn, causes significant scatter in the results for the position of the decay envelope

centroid, see figure 2.18.

Additionally, the appropriate order of the polynomial fit of the decay envelope

centroid is far from obvious. In table 2.5 very different orders are shown to give

the best flutter estimate for each test case. The problem here is, as in the damping

curve-fit method, that a single polynomial order can not be chosen to be adequate

for a variety of test cases. Finally, the value of tmax does not appear to greatly

influence the flutter predictions since table 2.5 shows that none of the three values

used yields consistently more accurate estimates.

The results presented so far tend to show that the accuracy of the envelope

function method is limited. However, when the method is used on more realis-

tic and complex systems, better quality of prediction is obtained. The envelope

method was also applied to the Sim-2 aeroelastic model (see Appendix G). Fig-

ure 2.19 shows the centroid variation for each of the 17 measuring positions for

the case where the aircraft is excited vertically at the wingtip at an altitude of

15,000 ft. Only symmetric modes were considered for this experiment. All the

centroids approach the 2/tmax value at the actual flutter speed. The advantage

of applying the method to a large system with many measurement positions is

that, even if some of the responses overshoot the decay envelope flutter criterion

because of measurement error, on average the criterion is satisfied. This can be

seen more clearly in figure 2.20 where the impulse responses were corrupted with

10% rms noise. Hence, the envelope function flutter prediction procedure can

be modified to include curve fitting of the shape parameters of all the measured

impulse responses as was done in the case of table 2.6

Notice that the polynomial order for all tests in table 2.6 is 6. Since there are
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Velocity Range Best Flutter Speed (kts) % Error

0.23-0.43 420.4711 +5.5
0.23-0.57 258.5753 -35.1
0.23-0.70 333.9946 -16.2
0.23-0.84 408.3616 +2.5
0.23-0.98 395.8387 -0.7
0.45-0.66 435.9705 +9.4
0.45-0.79 422.5396 +6.0
0.45-0.93 403.5002 +1.3
0.68-0.88 400.4848 +0.5

Table 2.6: Flutter Speed Estimates using Envelope Method, Sim-2 model, tmax =
4

many shape parameters to curve fit, there is no need to look for the optimum

polynomial fit for each one of them. Instead, all of them are fitted with the same

polynomial order. As a result, not all of the fits will yield flutter velocities and

hence, the maximum number of flutter speed estimates for each test presented

was 7 (out of 17 responses and 17 possible estimates). This fact was the factor

that determined the use of a polynomial order of 6. Other orders were tried but

it was found that they yielded less flutter speed estimates. These estimates can

be used to provide a mean estimate for the flutter velocity of the Sim-2 model.

As with the Damping and Flutter Margin methods, the Envelope method yields

much better flutter speed estimates when the test range is closer to the critical

speed.

Figure 2.20 also demonstrates that the existence of noise has a positive effect.

Noise will appear in the steady-state responses thus displacing the time-centroid

to the right and making the transient response less significant. Hence, apart from

the rigid body modes, all the flexible modes in figure 2.20 are relatively flat at

subcritical speeds. As flutter is approached, the transient response takes longer to

decay and becomes more significant, resulting in a drop in the shape parameters.

Hence, flutter is approached when the shape parameters are no longer flat. Thus,

subcritical variations in the shape parameter can be ignored, making the detection
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of flutter a simpler process. Of course, at high noise levels, this advantage is lost

since, the higher the noise amplitude, the more sudden the drop in the shape

parameter near flutter.

2.2.4 Nissim & Gilyard Method

The two methods described previously deal with attempting to evaluate the sta-

bility of a given aeroelastic system and, hence, the flutter velocity. The Nissim

& Gilyard Method (NG) [18], [19] adopts a different approach by attempting to

identify the whole system, including its aerodynamic variation with free stream

airspeed by estimating its equations of motion. Then, the identified system can

be solved for different velocities to obtain the flutter speed.

The equations of motion for a forced aeroelastic system are

M̄q̈ + C̄q̇ + K̄q = F̄g(t) (2.18)

where M̄ is the generalised mass matrix, C̄ is the generalised damping matrix, K̄

is the generalised stiffness matrix, F̄ is the forcing vector, g(t) is the excitation

function and q are the generalised coordinates. If equation 2.18 is transposed to

the frequency domain and pre-multiplied by M̄−1 the equations of motion become

{
−Iω2 + Cω + K

}
q(ω) = Fg(ω) (2.19)

where

C = M̄−1C̄

K = M̄−1K̄

F = M̄−1F̄

and multiplication by ω denotes differentiation. Dividing both sides of equa-

tion 2.19 by g(ω) and re-arranging
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CωHq(ω) + KHq(ω) − F = Iω2Hq(ω) (2.20)

where Hq(ω) = q(ω)/g(ω). For a m-degree-of-freedom system equation 2.20 can

be re-arranged and expanded as




Hq1(ω1) . . . Hqm(ω1) ω1Hq1(ω1) . . . ω1Hqm(ω1) −1

Hq1(ω2) . . . Hqm(ω2) ω2Hq1(ω2) . . . ω2Hqm(ω2) −1

...
...

...
...

...
...

...

Hq1(ωnf ) . . . Hqm(ωnf ) ωnfHq1(ωnf ) . . . ωnfHqm(ωnf ) −1







KT

CT

FT


 =




ω2
1Hq1(ω1) . . . ω2

1Hqm(ω1)

ω2
2Hq1(ω2) . . . ω2

2Hqm(ω2)

...
...

...

ω2
nfHq1(ωnf ) . . . ω2

nfHqm(ωnf )




(2.21)

where nf is the number of points used in the identification process. Equation 2.21

is of the form

TX = B (2.22)

where X is to be evaluated using a least squares procedure. Strictly speaking, nf

only needs to be equal to m for a successful identification, however, to counteract

the effect of noise in the responses, usually nf > m and the equation is solved

in a least squares sense. Additionally, because matrices T and B are complex,

noisy results cause large errors in the estimation of the equations of motion. The

solution to this problem is to solve separately for the real and imaginary parts,

i.e.




Re(T)

Im(T)


 X =




Re(B)

Im(B)


 (2.23)
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where Re denotes real part and Im imaginary part. As soon as X is evaluated,

the system is fully identified but only at a particular free-stream velocity.

For increased accuracy, multiple forcing vectors can be applied to the system.

This is particularly relevant to the case where the responses include a high level

of noise. Then, matrix F will be of order m×n, where n is the number of forcing

vectors and matrix T will change to




H1
q1

(ω1) . . . H1
qm

(ω1) ω1H
1
q1

(ω1) . . . ω1H
1
qm

(ω1) −1 0 . . . 0

...
...

...
...

...
...

...
...

...
...

H1
q1

(ωnf ) . . . H1
qm

(ωnf ) ωnfH
1
q1

(ωnf ) . . . ωnfH
1
qm

(ωnf ) −1 0 . . . 0

H2
q1

(ω1) . . . H2
qm

(ω1) ω1H
2
q1

(ω1) . . . ω1H
2
qm

(ω1) 0 −1 . . . 0

...
...

...
...

...
...

...
...

...
...

H2
q1

(ωnf ) . . . H2
qm

(ωnf ) ωnfH
2
q1

(ωnf ) . . . ωnfH
2
qm

(ωnf ) 0 −1 . . . 0

...
...

...
...

...
...

...
...

...
...

Hn
q1

(ω1) . . . Hn
qm

(ω1) ω1H
n
q1

(ω1) . . . ω1H
n
qm

(ω1) 0 0 . . . −1

...
...

...
...

...
...

...
...

...
...

Hn
q1

(ωnf ) . . . Hn
qm

(ωnf ) ωnfH
n
q1

(ωnf ) . . . ωnfH
n
qm

(ωnf ) 0 0 . . . −1




superscripts 1 . . . n denoting the response for forcing vector 1 . . . n. Matrix B will

change accordingly.

In order to obtain an identified model of the system at all airspeeds, a second

identification needs to take place at a different free-stream velocity. According to

[20] the unsteady aerodynamic matrix, Q(ω) for an aeroelastic system is given

by

Q(ω) =
1

2
ρV 2

∞


Ā0 + Ā1ω

(
b

V∞

)
+ Ā2(ω)2

(
b

V∞

)2

+
(

V∞
b

) nL∑
n=1

Ā(n+2)

ω + (V∞/b)bn




(2.24)

where ρ is the air density, V∞ the free-stream velocity, b a reference length,

nL depends upon the desired accuracy but is usually no more than four and



CHAPTER 2. FLUTTER PREDICTION USING FLUTTER TEST DATA 56

Ā0 . . . ĀnL
are matrix coefficients. For a steady, or quasisteady, aerodynamic

representation the lag terms are ignored leading to

Q(ω) =
1

2
ρV 2

∞A0 +
1

2
ρV∞A1ω − 1

2
ρA2ω

2 (2.25)

where Ai = biĀi for i = 1, 2, A0 represents aerodynamic stiffness terms, A1

aerodynamic damping terms and A2 aerodynamic inertia terms. The latter are

usually very small compared to structural inertia terms and therefore neglected.

Hence,

Q(ω) =
1

2
ρV 2

∞A0 +
1

2
ρV∞A1ω (2.26)

In other words, matrices C and K in equation 2.21 can be broken down into

structural and aerodynamic part, i.e.

C = Cs +
1

2
ρV∞A1

K = Ks +
1

2
ρV 2

∞A0

subscript s denoting structural terms. If the identification process described ear-

lier is repeated at two distinct velocities, then the structural and aerodynamic

matrices can be evaluated separately and the behaviour of the system at any

airspeed can be numerically predicted either by integrating the equations of mo-

tion or by calculating the system’s eigenvalues. Finally, the flutter speed can be

obtained by means of a suitable iterative calculation, e.g. evaluating the system

damping at increasing speeds until flutter is reached.

It should be noted that the NG method requires modal responses to work.

Consequently, if only physical coordinates, z, are available, then the modal ma-

trix, Φ, should be evaluated and used to obtain the modal coordinates from

z = Φq
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Method Validation

The NG modelling of the equations of motion of a system is very accurate for low

order models and in the absence of noise in the responses. A sample application

of the method to the Hancock wing model yields the following matrices for a

velocity of 30 m/s.

Cid =




5.1641 −0.0157 −0.0192

−54.0986 3.0709 −0.9797

104.8484 −11.9187 9.1895


 , Kid = 104




0.2866 0.0014 −0.0037

−0.3771 1.9534 −0.5034

−5.6567 −7.7934 4.6044




Fid =




2.2666

−35.4727

85.2259




where subscript id denotes identified matrix. The actual matrices for the system

are

Ca =




5.1640 −0.0156 −0.0193

−54.0959 3.0728 −0.9805

104.8440 −11.9018 9.1815


 , Ka = 104




0.2866 0.0014 −0.0037

−0.3771 1.9532 −0.5034

−5.6566 −7.7934 4.6044




Fa =




2.2664

−35.4708

85.2220




subscript a denoting actual matrices.

The equations of motion for an aeroelastic system, once identified, can be

solved by evaluating the eigenvalues and hence natural frequencies and damping

ratios at various airspeeds. Figure 2.21 demonstrates this procedure. At the

velocity where the damping ratio becomes zero, flutter occurs.

The factors that affect the accuracy of the NG method are the presence of

noise and the velocities at which the subcritical tests take place. A further consid-

eration is the number of airspeeds at which tests are carried out. The NG method
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only needs two tests at two different velocities in order to provide the complete

equations of motion. However, during the course of the present research, the

possibility that flutter predictions might improve if more than two velocities are

used was examined. The basic premise of this idea is that, if there are measure-

ment errors in the responses used in the identification process, then the identified

equations of motion will also contain errors, resulting in less accurate flutter pre-

dictions. Hence, if tests are carried out at more than two velocities and the

aerodynamic and structural matrices obtained by a least squares procedure, the

flutter estimates might improve.

To test this idea, the Hancock model was used, in the 10-30 m/s velocity range

(or 0.23Vf −068Vf ). The first test was carried out with two velocities, one at 10/s

and one at 30m/s. The second test was carried out with three velocities, one at

10m/s, one at 20m/s and one at 30m/s. In all, seven tests were carried out with

up to eight velocities, all within the same range. The responses in all the tests

were contaminated with 10% rms white noise, chosen from a normal distribution

with zero mean and unity variance. Each test case was repeated 100 times to

provide a large population of flutter speed estimates. The confidence bounds of

the mean flutter estimate for each test case were calculated using the Student’s

T test [21] with a confidence level of 1%. The results are tabulated in table 2.7

and plotted in figure 2.22.

Number of Airspeeds Flutter Speed Estimate (m/s)

2 44.0761 ± 0.0434
3 44.0931 ± 0.0600
4 44.1506 ± 0.0720
5 44.1208 ± 0.0656
6 44.0532 ± 0.0715
7 44.1218 ± 0.0564
8 44.1468 ± 0.0526

Table 2.7: Flutter estimates by the NG method using different numbers of test
speeds
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In figure 2.22, the horizontal line is the true flutter speed. It can be seen that

the best result, both in terms of mean flutter speed and confidence bounds occurs

in the case when only 2 speeds are used. This result is also obvious in table 2.7,

since the general tendency is for the confidence bounds to grow with increasing

number of test speeds. The conclusion drawn from these results is that there is

no advantage in using more than two test speeds to identify a system with NG

method.

Since only two tests are needed for a successful identification, the tabulated

results for the NG method will, by necessity, slightly differ to those for the pre-

vious methods. The velocity ranges will be the same, but there will only be two

speeds in each range, one at the start and one at the end. Table 2.8 shows flutter

predictions for the Hancock model obtained using the NG method .

Velocity range (×Vf ) Flutter Speed Estimate % Error

0.23-0.43 42.9950 -2.5
0.23-0.57 46.1450 +4.7
0.23-0.70 44.6420 +1.3
0.23-0.84 44.1040 +0.1
0.23-0.98 44.1100 +0.1
0.45-0.66 43.7340 -0.8
0.45-0.79 43.7810 -0.7
0.45-0.93 44.1420 +0.2
0.68-0.88 44.3750 +0.7

Table 2.8: Flutter Speed Estimates using NG, Hancock model

It can be seen that there is very little variation in the flutter prediction with the

velocity range, the only poor estimate occurring when the test were below 60%

of the true flutter speed. Despite the presence of 5% rms noise the predictions

are very accurate. However, as the noise level increases the quality of identifica-

tion decreases as can be seen in figure 2.23. The system identified contains no

structural damping so that the damping ratios should be zero at zero velocity but

the quality of identification in the presence of 10% rms noise is so low that the
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predicted dampings at zero velocity are non-zero. The corresponding identified

matrices in the equations of motion are

Cid =




5.6637 0.1748 −0.0954

−50.7432 −0.5380 0.7206

60.0906 −8.3478 7.4080


 Kid = 104




0.2779 −0.0207 0.0068

−0.4377 1.7631 −0.4132

−4.9510 −5.8034 3.6588




Fid =




2.6217

−31.9403

48.5328




the actual matrices being as given earlier. The adverse effects of experimental

errors can be overcome by using more than one forcing vectors during identifica-

tion. With four forcing vectors and with 20% rms noise, for the same test case,

the identified matrices are

Cid =




5.1643 −0.0155 −0.0190

−54.0989 3.0712 −0.9823

104.8461 −11.9231 9.1805


 Kid = 104




0.2866 0.0014 −0.0037

−0.3771 1.9533 −0.5035

−5.6566 −7.7934 4.6042




Fid =




2.2669

−35.4731

85.2241




i.e., as accurate as they were in the no noise test case presented earlier.

The NG method was not successfully applied to the Sim-2 model. The large

number of modes in the Sim-2 model, coupled with the fact that the equations

of motion are ’stiff’, i.e. some of the system eigenvalues are orders of magnitude

larger than the low frequency eigenvalues, caused matrix T in equation 2.22 to

be badly scaled and, hence, nearly singular. As a consequence, the resulting

equations of motion were highly inaccurate.
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2.2.5 Steady State Identification Method

This method was developed during the course of the present research as a time-

domain variation of the NG. It is based on the premise that a linear system

can be identified by only looking at its steady-state response to a known forcing

function. As a demonstration of this premise consider the following simple, 1-

degree-of-freedom, second order system

mẍ + cẋ + kx = A sin ωt + B cos ωt

The steady-state response of this system is of the form

x = C1 sin ωt + C2 cos ωt

If the excitation signal and the steady-state response are considered to be known,

it is possible to substitute back into the equation of motion and, equating sine

and cosine parts, obtain

−mω2C1 − cωC2 + kC1 = A

−mω2C2 + cωC1 + kC2 = B

which is a system of two equations with three unknowns, m, c and k. By repeating

the excitation at, say, a different frequency and recording the response, a third

equation can be generated and the system can be identified.

The Steady State Identification (SSI ) method is just an extension of this

simple procedure to a large aeroelastic system. The standard equations of motion

for such a system with sinusoidal input are

M̄q̈ + C̄q̇ + K̄q = F̄Af sin (ωt + Φ) (2.27)

Φ being the phase angle and Af the amplitude of the excitation signal. Normal-

izing by M̄
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Iq̈ + Cq̇ + Kq = FAf (sin (ωt) cos Φ + cos (ωt) sin Φ) (2.28)

where

C = M̄−1C̄

K = M̄−1K̄

F = M̄−1F̄

The ith steady-state response is of the form qi(t) = Ai sin ωt + Bi cos ωt. Substi-

tuting back into equation 2.18 gives


−ω2I




A1 B1

...
...

Am Bm


 + ωC




−B1 A1

...
...

−Bm Am


 + K




A1 B1

...
...

Am Bm








 sin ωt

cos ωt


 =

FAf




cos Φ sin Φ

...
...

cos Φ sin Φ





 sin ωt

cos ωt


 (2.29)

Re-arranging the equation results in


 −ωB1 . . . −ωBm A1 . . . Am −Af cos Φ

ωA1 . . . ωAm B1 . . . Bm −Af sin Φ







CT

KT

FT


 =

ω2


 A1 . . . Am

B1 . . . Bm


 (2.30)

Again, equation 2.30 is a system of 2m equations with (2m + 1)m unknowns.

Hence, nf more responses need to be obtained by exciting the system at nf

different frequencies (where nf is the number of frequencies). Since (2m + 1)m

is not divisible by 2m, either some of the 2m × nf equations need to be omitted

or the resulting system of equations needs to be solved in a least squares sense.
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The latter approach is much more advisable since it minimizes the effect of noise

in the measured responses. Equation 2.30 becomes




−ω1B1(ω1) . . . −ω1Bm(ω1) A1(ω1) . . . Am(ω1) −Af cos Φ

...
...

...
...

...
...

...

−ωnfB1(ωnf ) . . . −ωnfBm(ωnf ) A1(ωnf ) . . . Am(ωnf ) −Af cos Φ

ω1A1(ω1) . . . ω1Am(ω1) B1(ω1) . . . Bm(ω1) −Af sin Φ

...
...

...
...

...
...

...

ωnfA1(ωnf ) . . . ωnfAm(ωnf ) Bnf (ωnf ) . . . Bm(ωnf ) −Af sin Φ




×




CT

KT

FT


 =




ω2
1A1(ω1) . . . ω2

1Am(ω1)

...
...

...

ω2
nfA1(ωnf ) . . . ω2

nfAm(ωnf )

ω2
1B1(ω1) . . . ω2

1Bm(ω1)

...
...

...

ω2
nfB1(ωnf ) . . . ω2

nfBm(ωnf )




(2.31)

The amplitudes Ai and Bi are obtained by curve-fitting the steady-state re-

sponses in the time-domain. The transient response is allowed to decay away and

then as much of the steady-state response as possible is fitted by a sum of one

sine and one cosine in a least squares sense. This approach is very powerful in

the case of noisy results since the sinusoidal curve-fit can eliminate a lot of the

noise. In general, if the expected shape of the response is known, it is easier to

separate if from noise.

Once the matrices C, K and F are known, the identification procedure is

repeated at a different velocity and the aerodynamic matrices of the system are

evaluated as in the case of the NG method described earlier.
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Method Validation

A sample application of the SSI method is presented here, again using the 3-dof

wing system as the aeroelastic system to be identified. Using four forcing vectors

of different frequencies the identified matrices at a speed of 21 m/s, and in the

absence of any noise, are

Cid =




5.1639 −0.0156 −0.0193

−54.0361 3.0691 −0.9808

104.9539 −11.9081 9.1809


 Kid = 104




0.1120 0.0038 −0.0022

−0.1471 1.4847 −0.4256

−2.2093 −5.9786 3.8761




Fid =




0.1133

−1.7735

4.2611




the actual matrices being

Ca =




5.1640 −0.0156 −0.0193

−54.0959 3.0728 −0.9805

104.8440 −11.9018 9.1815


 Ka = 104




0.1120 0.0038 −0.0022

−0.1473 1.4847 −0.4256

−2.2096 −5.9786 3.8761




Fa =




0.1133

−1.7735

4.2611




For best results the frequencies of the forcing vectors need to lie within the fre-

quency range of the actual system’s natural frequencies. In the absence of noise

in the responses no more forcing vectors are needed than necessary to obtain

enough equations for the number of unknowns. Then the flutter velocity can be

obtained as shown earlier in the case of the NG method. Figure 2.24 shows the

damping ratio variation with velocity as obtained from the identified equations

of motion.
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A further advantage of the sinusoidal curve-fit is that it decreases the method’s

sensitivity to experimental errors. Figure 2.25 shows that the identification of

responses containing 20% rms noise is still very accurate using only the four

necessary forcing vectors. Higher levels of noise do cause degradation, as seen in

figure 2.26, but that can be rectified by the use of more forcing vectors, figure 2.27.

The true flutter speed for the system in figures 2.24- 2.27 is 42.6290m/s.

As with the NG method, only two tests at two airspeeds are required for a

successful identification. More than two airspeeds were tried but no improvement

in the accuracy of the flutter predictions was obtained. Hence, each of the results

presented in table 2.9 were obtained for the Hancock model using two tests; one

at the start of the velocity range, and one at the end.

Velocity range (×Vf ) Flutter Speed Estimate % Error

0.23-0.43 43.0600 -2.3
0.23-0.57 44.4142 +0.8
0.23-0.70 44.2872 +0.5
0.23-0.84 44.5370 +1.0
0.23-0.98 44.2410 +0.4
0.45-0.66 43.4520 -1.4
0.45-0.79 43.9870 -0.2
0.45-0.93 43.8520 -0.5
0.68-0.88 44.0920 +0.0

Table 2.9: Flutter Speed Estimates using SSI method, Hancock model

The flutter speed is consistently calculated with considerable accuracy, the

highest percentage error being 2.3 % and occurring when the two tests are carried

out at low speeds, very close to each other.

It has to be noted that any application of the SSI method at low-damping

conditions is likely to present difficulties since the method depends upon identi-

fying the steady state response of a system. If the transient response takes a long

time to decay, it is likely that some of it will still be present in the signal used

for identification, hence affecting the sinusoidal curve fit. This means that the
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method delivers the best and fastest results away from the critical regions, unlike

the FFM approach discussed earlier.

The main disadvantage of the SSI method is that it is very expensive both in

experimental and computational terms. As discussed earlier, the more degrees of

freedom in the system under investigation, the more forcing vectors are needed

for a successful identification. For a 10-dof system, 11 forcing vectors are needed,

more if there are high levels of noise present in the data.

As with the NG method, the SSI method could not be successfully applied to

the Sim-2 model. Because of the stiffness in the Sim-2 equations, the left-hand-

side matrix in equation 2.31 was found to be badly scaled and nearly singular.

Using additional forcing vectors did not solve the problem.

2.2.6 ARMA-based method

Let there be a linear 1-dof dynamical system described by the equation

mÿ + cẏ + ky = u(t) (2.32)

where m is the mass, c is the damping, k is the stiffness and u(t) is the excitation

function. Using the following expressions for the acceleration and velocity in the

equation of motion

ÿi =
yi+1 − yi + yi−1

∆t2

ẏi =
yi+1 − yi−1

2∆t

the finite difference representation of the equation of motion (using central dif-

ferences, see Appendix D) is obtained;

(
m

∆t2
+

c

2∆t

)
yi+1 +

(
k − m

∆t2

)
yi +

(
m

∆t2
− c

2∆t

)
yi−1 = ui (2.33)
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where ∆t is the time-step (or the inverse of the damping frequency).

Thus, the equation of motion can be expressed as a sum of the value of the re-

sponse of the system at three consecutive time instances equal to the value of the

forcing function at the current time instance. This is the basis of the representa-

tion of dynamical systems by ARMA (Auto-Regressive, Moving-Average) models

where the AR part denotes the terms containing y and the MA part denotes the

white noise excitation terms.

For a multi-dof system, the general form of a ARMA is [22]

2J∑
m=0

b(m)y(i + m) =
2J−1∑
m=0

a(m)u(i + m) (2.34)

where i denotes the ith time instance, a and b are coefficients and J is the order of

the model which can be equal to the number of modes of the system to be modelled

(as in the simple case presented above) but, in the presence of experimental noise,

it is usually taken to be greater than the number of modes.

In order to identify a given dynamical system, the ARMA equation is applied

to a set of single-input single-output sampled data. The unknown coefficients,

a, b and J are evaluated using a parameter estimation algorithm, the simplest of

which is the least squares procedure. This evaluation can be simplified by dividing

the ARMA equation throughout by b(2J), so that the leading AR coefficient is

always 1 and need not be calculated.

If equation 2.34 is evaluated at instances i = 1, . . . , k then the coefficients can

be obtained using



CHAPTER 2. FLUTTER PREDICTION USING FLUTTER TEST DATA 68




y(2J) . . . y(1) u(2J) . . . u(1)

y(2J + 1) . . . y(2) u(2J + 1) . . . u(2)
...

...
...

...

y(2J + k − 1) . . . y(k) u(2J + k − 1) . . . u(k)



×




b(2J − 1)
...

b(0)

a(2J − 1)
...

a(0)




= −




y(2J + 1)

y(2J + 2)
...

y(2J + k)




(2.35)

This matrix equation can be solved using any number of schemes, such as those

described in [23] and [24]. The eigenvalues of the system can be obtained by

forming the characteristic polynomial [24]

G(µ) = µ2J + b(2J − 1)µ2J−1 + . . . + b(1)µ + b(0) = 0 (2.36)

and, subsequently, evaluating its roots

µ1,2 = exp
(
(−ζω ± jω

√
1 − ζ2)∆t

)
(2.37)

where ζ is the damping ratio and ω is the natural frequency.

The choice of J is very important. In the case were there is no noise (exper-

imental or numerical) in the data used in equation 2.35 J can be equal to the

number of modes, thus yielding the finite difference coefficients.

The ARMA method, as described up to now is a system identification tech-

nique. Matsuzaki [22] suggests a procedure for using an ARMA representation

of an aeroelastic system as a means of predicting the flutter velocity. The ba-

sis of the approach is the Jury Determinant method for evaluating the stabil-

ity of a discrete-time system, which is very similar to the Routh-Hurwitz crite-

rion for continuous-time systems (used in conjunction with the Flutter Margin

method). The Jury stability criterion applies to the characteristic polynomial,
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equation 2.36, as follows:

G(1) > 0, G(−1) > 0 (2.38)

and

F±(l) = |X∗
l ± Y ∗

l | > 0, for l = 1, 3, . . . , 2J − 1 (2.39)

where X∗
2J−1 and Y ∗

2J−1 are (2J − 1) × (2J − 1) matrices defined as

X∗
2J−1 =




b(2J) b(2J − 1) . . . . . . b(3) b(2)

0 b(2J) b(2J − 1) . . . b(4) b(3)

0 0 b(2J) . . . b(5) b(4)

...
...

...

0 . . . . . . . . . . . . b(2J)




(2.40)

Y ∗
2J−1 =




b(2J − 2) b(2J − 3) . . . . . . b(1) b(0)

b(2J − 3) b(2J − 4) . . . . . . b(0) 0

b(2J − 4) b(2J − 5) . . . b(0) 0 0

...
...

...

b(0) 0 . . . . . . . . . 0




(2.41)

Consequently, the flutter condition is defined as the first airspeed at which any

of the criteria G(1), G(−1), F±(l) becomes zero. As a consequence, the sys-

tem can be identified at a range of velocities, the values of the criteria plotted

against airspeed and then curve fitted by a polynomial to yield the points were

they intersect the velocity axis and hence the flutter velocities. This particular

implementation of the Jury stability criterion is disadvantageous compared to the

Flutter Margin method in that the criteria do not vary in a predictable manner

with velocity. Instead, if polynomial fitting is attempted, the order will not be
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known and will have to be adjusted so that it gives the best result, as with the

damping fit and Envelope methods.

Method Validation

The MA (Moving Average) part of a ARMA model implies white noise excitation

however, since all the other methods were evaluated using frequency sweep ex-

citation signals, an ARMAX (Auto-Regressive Moving Average with eXogenous

inputs) model was used instead of ARMA to ensure a fair comparison of the

methods. The term exogenous inputs refers to inputs other than white noise.

The first difficulty in the implementation of the method is the evaluation of the

ARMAX coefficients. In the absence of noise, this evaluation can be accomplished

quite successfully even using a simple least squares procedure with J= number

of modes. Then, the response of the ARMAX model to a given signal is almost

identical to that of the actual system, as was found when the procedure was

applied to the Hancock model. In figures 2.28 and 2.29 all the stability criteria

are plotted for a range of velocities up to the flutter velocity for the noise-free

case. Criterion F−
5 goes negative at an airspeed very close to the actual flutter

velocity. However, it can be seen that the drop in the value of F−
5 is very abrupt.

If a curve-fit of the criterion were attempted at low subcritical speeds, it would

fail to predict flutter. References [22] and [25] suggest a linear curve-fit very close

to the flutter velocity however, such a procedure would carry considerable risks

in the case of an experimental test, be it in the wind-tunnel or in the air.

When the responses contain noise, the evaluation of an accurate ARMA repre-

sentation of an aeroelastic system becomes very difficult. A number of parameter

estimation schemes were used in the application of the method to the Hancock

wing with control surface model with 5% rms noise in the response. These in-

cluded standard Least Squares, Instrumental Matrix with Delayed Observations,
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Double Least Squares, [24] and the Recursive Filtering Method [23]. Figures 2.30

and 2.31 show the estimated stability criteria for a best-case application using

Double Least Squares and J = number of modes. Despite the noise, F−
5 is

correctly identified as the first criterion to go negative however, the curves are

obviously very rugged and would not admit a successful polynomial curve fit.

The flutter velocity was identified accurately but only after tests were performed

at a high subcritical speed. For J = 5 (number of modes +2) the resulting

criteria are worse (figures 2.32 and 2.33). The authors of [22] and [25] suggest

a Maximum Likelihood approach for the estimation of the coefficients however,

they do not mention any applications of that approach to the case were there are

measurement errors in the responses in either of these references.

The best results were obtained when using J = number of modes with Double

Least Squares. The response results were decimated, i.e. the time-step was

increased because when the time-step is very small the curve-fit is more sensitive

to corruption [24]. Table 2.10 shows flutter predictions using this approach for

the Hancock model.

Velocity Range Best Flutter Speed Estimate % Error Best Order of fit

0.23-0.43 23.7299 -46.2 2
0.23-0.57 36.3818 -17.5 2
0.23-0.70 34.8338 -21.0 6
0.23-0.84 37.2929 -15.4 9
0.23-0.98 43.9580 -0.3 7
0.45-0.66 33.6654 -23.6 2
0.45-0.79 40.2583 -8.7 2
0.45-0.93 43.3815 -1.6 5
0.68-0.88 41.4045 -6.1 3

Table 2.10: Flutter Estimates using ARMAX Method, Hancock Model

The flutter predictions in table 2.10 are worse than those obtained from all the

other methods. Even when the ARMAX coefficients are calculated successfully,

the tests have to be carried out at very high subcritical speeds to yield an accurate
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flutter velocity.

For the Sim-2 model, the best ARMAX fits were obtained using normal least

squares and J= number of modes. It was found that small amounts of noise

improved the fits. Figure 2.34 shows a sample fit. The agreement between AR-

MAX model and the Sim-2 results is very good. The performance of the ARMAX

method is generally better for the Sim-2 model than for the Hancock model. This

is due to the fact that, because of the high number of modes, there are many more

F±(l) stability criteria. Figure 2.35 shows the F+(l) and figure 2.36 shows the

F−(l) criteria for a sample application (criteria G(1) and G(−1) do not go neg-

ative). The critical criterion is F−(45) since it assumes negative values first.

Hence, the flutter velocities in table 2.11 were obtained by polynomial curve-fits

of F−(45).

Velocity Range Best Flutter Speed Estimate % Error Best Order of fit

0.23-0.43 186.091 -53.3 3
0.23-0.57 267.351 -32.9 3
0.23-0.70 372.563 -6.5 7
0.23-0.84 363.819 -8.7 5
0.23-0.98 394.513 -1.0 4
0.45-0.66 266.028 -12.1 2
0.45-0.79 350.197 -8.7 5
0.45-0.93 407.393 +2.2 4
0.68-0.88 390.476 -2.0 4

Table 2.11: Flutter Estimates using ARMAX Method, Sim-2 Model

2.3 Simulated Flutter Test

Simulated flutter tests were performed for both models using all the flutter pre-

diction methods. The procedure for all approaches (apart from the Nissim &

Gilyard technique) was as follows:
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1. The response of each model was first obtained at a low subcritical speed,

equal to 22.7% of the actual flutter speed. In the case of the Sim-2 model

the response also depends on the flight altitude which was fixed at 5000ft.

The responses were analysed to provide estimates for the damping ratios,

Flutter Margin, envelope function shape parameter and ARMA-based sta-

bility criteria.

2. The flight speed was increased by an increment equal to 7% of the actual

flutter speed and estimates of the of the four stability parameters mentioned

in step 1 were obtained.

3. The flight speed was increased again by the same increment of the ac-

tual flutter speed and estimates of the four stability parameters were ob-

tained. Each of the parameters was fitted with respect to flight speed by

a second-degree polynomial whose roots were subsequently obtained. Any

roots which were complex, lower than the current flight speed, or occurred

at points of positive curvature were ignored. The remaining roots provided

the first estimates for the flutter speed, a maximum of one estimate for

each stability parameter. Subsequently, checks were performed to ensure

that the next flight speed would not be within 20% of any of the flutter

speed estimates. At this early stage in the testing procedure, all methods

indicated stability for the next test point.

4. The flight speed kept being increased by the same increment, new estimates

for the stability parameters being obtained and added to the curve fitting

procedure. With each new estimate, higher orders of polynomial curve fits

were possible. The Flutter Margin was only fitted by 2nd order polynomials

but the other three stability parameters were fitted by polynomials of all

possible orders, the new estimate for the flutter speed being calculated as
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the mean of all the acceptable roots. After all the new estimates were

obtained, stability checks were performed for the next test speed.

5. The simulated flight test was ended at the test speed at which all methods

predicted that the next test speed would be within 20% of the latest flutter

speed estimates. For each of the methods, the final flutter speed estimate

was taken to be the first estimate at which the stability check failed.

For the Nissim & Gilyard method, the procedure was slightly different. At

each test point, only the current and initial responses were used to provide a

flutter estimate. Additionally, the NG and SSI methods were only applied to the

Hancock model flutter tests for the reasons explained in the previous section.

All results were obtained for responses contaminated by 5% rms white noise.

The noise was simulated by taking the inverse Fourier transform of a frequency

signal with constant amplitude and random phase. The simulated flutter test

procedure was repeated 30 times and the mean flutter speed prediction and 5%

confidence interval was calculated for each method. The results are tabulated in

tables 2.12 and 2.13.

Method Mean Flutter Speed Estimate (m/s) Mean Error (%)

Damping Fit 43.73 ± 1.054 -0.8
Envelope 46.00 ± 1.093 +4.4

Flutter Margin 45.34 ± 0.251 +2.9
ARMAX-based 24.50 ± 2.176 -44.4

Nissim & Gilyard 44.13 ± 0.142 +0.1
SSI 44.10 ± 0.098 +0.1

Table 2.12: Flutter predictions for the Hancock model, simulated flutter test

2.4 Comparison between the methods

From the discussion already presented, it should be clear that all the flutter

prediction methods investigated here can yield accurate predictions under certain
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Method Mean Flutter Speed Estimate (kts) Mean Error (%)

Damping Fit 394.15 ± 5.88 -1.0
Envelope 386.82 ± 2.47 -2.8

Flutter Margin 432.82 ± 5.38 +8.8
ARMAX 164.08 ± 9.87 -58.8

Table 2.13: Flutter predictions for the SIM-2 model, simulated flutter test

circumstances. The crucial consideration that divides the techniques is how wide

is this set of circumstances for each one of them. A further consideration is the

ease of use and the speed of the calculations involved. During a flight flutter test

it is often very important to know as soon as possible whether proceeding to the

next test point is safe.

The methods can be separated into two categories:

• Category 1: Methods that identify the equations of motion. This category

contains the NG and SSI methods, both of which require the degree of

freedom or modal responses. The identification requires only two tests at

two different velocities. The equations of motion can then be solved to yield

the flutter speed.

• Category 2: Methods that only require one set of measured response data.

This category contains the rest of the methods (Damping Fit, FM, Envelope

and ARMA-based). They all calculate a parameter which characterizes

the stability of a system at each test velocity. The parameter variation

with airspeed is curve-fitted by a polynomial and then extrapolated to the

condition for instability, to yield the flutter velocity.

To facilitate the assessment of the methods, tables 2.14 and 2.15 summarize

the results presented in the previous section. Errors in the estimated flutter

predictions are tabulated against speed range of the test, which is presented as a

ratio of the true flutter velocity.
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Velocity Range Damping Fit Flutter Margin Envelope NG SSI ARMAX

0.23-0.43 +14.4 -6.8 +13.0 -2.5 -2.3 -46.2
0.23-0.57 +5.1 +3.9 -2.1 +4.7 +0.8 -17.5
0.23-0.70 -9.1 +2.5 +0.6 +1.3 +0.5 -21.0
0.23-0.84 -0.1 +1.1 +4.8 +0.1 +1.0 -15.4
0.23-0.98 +0.5 +0.3 -0.1 +0.1 +0.4 -0.3
0.45-0.66 +17.5 +1.3 -6.9 -0.8 -1.4 -23.6
0.45-0.79 -0.9 +1.7 -1.9 -0.7 -0.2 -8.7
0.45-0.93 -0.1 +0.1 +0.3 +0.2 -0.5 -1.6
0.68-0.88 +0.2 -0.8 +0.4 +0.7 +0.0 -6.1

Table 2.14: Errors in Flutter Estimates using all methods, Hancock Model

As far as the accuracy of prediction and the range of parameters under which

high accuracy is maintained is concerned, the equation-of-motion-identification

methods are best, as indicated by the Hancock model results. Both the NG

and the SSI method provide consistently high quality predictions even when the

subcritical tests are carried out at relatively low velocities and under high levels

of noise. Their accuracy is derived from the fact that a number of responses to

different inputs are employed in the calculations.

On the other hand, it was found that category 1 methods could not be suc-

cessfully applied to the Sim-2 model. Only category 1 methods could provide

results for that model, the Damping Fit approach being by far the most suc-

cessful, followed by the Envelope Method. However, category 2 methods require

polynomial curve-fitting and, except in the case of the Flutter Margin method,

the order of the polynomial is unknown. One way of determining which order

of polynomial is best, is to obtain a preliminary value for the flutter velocity.

This can be provided either by using a mathematical model of the system under

consideration or from earlier flight flutter tests. Additionally, with the exception

of the Envelope method, category 2 methods are ’complementary’, i.e. they all

require a knowledge of the eigenvalues of the system. Once these have been eval-

uated for a particular test-case, flutter predictions can be obtained very quickly
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and inexpensively. Hence, the Damping fit, Flutter Margin and ARMA methods

could conceivably be applied simultaneously at each test-case.

It should be noted that the present research indicates that, for large systems,

the Damping Fit method is the most effective. This method also happens to be the

most widely used approach in practical flight flutter tests. In a purely academic

sense, category 1 methods are preferable to the Damping Fit technique because

they provide a fuller picture of the dynamics of a given system. Nevertheless,

in real applications category 1 methods are confronted by a number of practical

problems like the choice of the number of modes or the need for modal responses,

as well as mathematical problems, like ’stiff’ systems. The Damping Fit method

does not suffer from any of these difficulties. Any aeroelastic system, no matter

how complex, will yield damping data and will have zero damping at the flutter

speed.

Velocity Range Damping Fit Flutter Margin Envelope ARMAX

0.23-0.43 -88.4 - +5.5 -53.3
0.23-0.57 -17.0 -18.8 -35.1 -32.9
0.23-0.70 -9.2 -15.5 -16.2 -6.5
0.23-0.84 +4.6 -3.8 +2.5 -8.7
0.23-0.98 -0.3 +0.8 -0.7 -1.0
0.45-0.66 +2.8 -20.8 +9.4 -12.1
0.45-0.79 +2.3 +5.5 +6.0 -8.7
0.45-0.93 +0.5 - +1.3 +2.2
0.68-0.88 +2.9 - +0.5 -2.0

Table 2.15: Errors in Flutter Estimates using all methods, Sim-2 Model

A final note should be made on the ARMA-based method. Its performance

in both the stand-alone tests and the simulated flutter tests was much poorer

than the performance of any of the other methods. The Jury stability criteria,

which are employed to pinpoint the flutter velocity have a very indifferent low

subcritical variation, i.e. flat and noisy, as seen in figures 2.35 and 2.36. Only
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near flutter does the variation become significant. Hence, any polynomial curve-

fit that uses low subcritical values of the stability criteria will yield large errors.

In essence, the present research into the ARMA-based method sheds doubts on

the suitability of the Jury stability criteria for the analysis of flight flutter test

data.

In terms of computational effort, category 1 methods require more data, es-

pecially if multiple excitation vectors are used, but less test speeds than category

2 methods. As table 2.16 shows, category 1 methods are less expensive than

category 2 methods, mainly because of the smaller number of tests. The compu-

tational time and number of flops (floating point operations) data were obtained

for a speed range of 10-43 m/s for the Hancock model. Category 2 method tests

took place every 3 m/s in that range (a total of 12 m/s). Category 1 methods

were applied with four excitation vectors each. Of course, these results should

only be seen as indicators of comparative computational costs, not as absolute

assessments of the computational efficiency of each method.

Method Time (s) Flops
ARMA 103.9080 58279907
Damp 119.0050 580848971
FM 93.4040 420815792

Envelope 58.6300 111513021
NG 19.2780 16367706
SSI 23.3440 24874321

Table 2.16: Comparative computational costs

2.5 Flutter prediction for nonlinear systems us-

ing linear methods

In recent years there has been a shift in the aeroelastic community towards in-

vestigating the effects of nonlinearities on the response of aircraft. It is now
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recognized, especially with the advent of active control systems, that aircraft are

in general nonlinear structures and hence, that using linear methods to evaluate

their aeroelastic behaviour may be incorrect. The purpose of this section is to

assess exactly how inaccurate the flutter predictions obtained by linear methods

for nonlinear systems are.

First, a short overview of the effects of nonlinearities on aeroelastic systems

will be presented. A more thorough discussion of the subject will be presented in

the next chapter. Here only some basic facts will be mentioned. Nonlinearities, in

general change many of the characteristic features of a dynamic system. However,

their main effect is to alter to stability of the system. In a linear aeroelastic system

the stability is positive until the free stream velocity reaches a certain value at

which the stability becomes negative and the system is said to flutter. A nonlinear

system may become critically unstable without fluttering for a wide range of

airspeeds. The system simply undergoes non-diverging self-excited oscillations

which are termed limit-cycle oscillations (LCOs). Whether LCOs will appear

or not depends on a wide range of parameters including airspeed, amplitude of

excitation and initial conditions. For an exhaustive survey of the parameter-

space of a simple aeroelastic model see [9]. Nevertheless, at a given airspeed

higher than the LCO airspeed range the system will flutter irrespective of the

other parameters.

Another serious effect of nonlinearities on aeroelastic systems is the distortion

they cause on the FRF of the system. The FRF of a linear system will demon-

strate a number of peaks equal to the number of modes in the system. FRFs

of nonlinear systems include additional higher harmonics as in the case of fig-

ures 2.37- 2.38, for the the Hancock wing with a slightly bilinear control surface

pitch spring. Even though the system described in these figures has only three

modes there are at least 9 visible peaks in the FRF, the last one appearing at a
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frequency exceeding 200 Hz. The extra peaks are caused by the bilinear spring,

i.e. they are the frequencies of the Fourier series approximating the bilinear re-

sponse. Additionally, since the response of the nonlinear spring changes when

it is worked at different excitation amplitudes, its Fourier series also changes.

Hence, it is found that the extra peaks in the FRF change frequency with exci-

tation amplitude. A further difficulty is that, if the FRF is taken during a LCO,

the time response will be necessarily truncated and will introduce leakage in the

FRF, as in figure 2.39.

Finally, the flutter velocity itself is changed by a nonlinearity introduced to

a linear system. There is as yet no general method for predicting that change

and whether the flutter velocity will increase of decrease. One procedure that

can accomplish this prediction is the Harmonic Balance method ([26],[27]) but

its applicability is limited to systems with nonlinearities in only one mode.

The applicability of the linear flutter prediction methods presented in the

previous section on nonlinear systems will be assessed using two nonlinear versions

of the simple 3-dof wing system used earlier. The nonlinear versions are identical

to the linear version apart from featuring nonlinear control surface stiffnesses. The

first nonlinear version has a bilinear control surface spring (see figure 3.6) with

K1 = 0.5K2 = 0.5Klinear while the second has a freeplay control surface spring

(see figure 3.8) with K = Klinear and is therefore highly nonlinear. The bilinear

system will be referred to as slightly nonlinear (since it causes less distortion in the

FRF) and the freeplay system will be referred to as highly nonlinear. The flutter

velocities of the two nonlinear systems were obtained by repeated integrations as

• Bilinear: 43.50 m/s

• Freeplay: 43.65 m/s

As with the linear case, all simulations where carried out with 5%rms noise
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corruption in the responses, at test points separated by 7% of the true flutter

speed and at various velocity ranges.

2.5.1 Damping Fit method

As in the linear case, the accuracy of the Damping Fit method depends on the

performance of the RFP-CC procedure and the order of the polynomial fit. The

problem with using the RFP-CC is that, as shown earlier, the FRF of the non-

linear systems includes higher harmonics that describe the nonlinearity. If the

RFP-CC is instructed to look for only three modes then it will identify the three

higher peaks in the FRF, irrespective of whether they are real modes or har-

monics. Overspecification will lead to a fit of all the real modes and some of

the harmonics which will give a larger number of damping ratios whose variation

needs to be investigated with velocity.

Table 2.17 shows flutter predictions obtained by the damping fit method for

the bilinear system. The table shows that reasonable flutter predictions can be

obtained as long as some test are carried out to within 30% of the flutter speed.

Additionally, the best polynomial order is in most cases 2, although this may be

a system-specific result.

Velocity Range Best Flutter Speed Estimate % Error Best Order of fit

0.23-0.43 53.9334 +24.0 3
0.23-0.57 35.6001 -18.2 4
0.23-0.70 44.9294 +3.3 2
0.23-0.84 43.0155 -1.1 2
0.23-0.98 43.6665 +0.4 4
0.45-0.66 40.3442 -7.3 2
0.45-0.79 44.2339 +1.7 2
0.45-0.93 43.4231 -0.2 2
0.68-0.88 40.1717 -7.7 2

Table 2.17: Flutter Estimates using Damping Fit Method, Bilinear Hancock
Model
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Table 2.18 shows flutter predictions obtained by the damping fit method for

the freeplay system. The quality of the flutter predictions is worse than in the

bilinear case. Acceptable results were only obtained when tests were performed

within 15% of the flutter speed. Figures 2.40 and 2.41 show damping results for

the bilinear and freeplay systems, respectively. It can be seen that the damping

data for the latter are much more scattered. This scatter is caused by the fact

that the freeplay system exhibits limit cycle behaviour from speeds of 15 m/s

up to the flutter speed. The LCO causes increased distortion of the FRFs, thus

affecting the damping ratio estimates. Of course, as table 2.18 shows, despite the

LCO, it is possible to obtain some acceptable predictions for the flutter speed

if tests are carried out sufficiently close to the critical speed. This possibility

however, depends on whether the linear modes have been accurately curve-fitted

by the RFP-CC method and on the effect that the nonlinearity has on the flutter

behaviour of the system. Both the bilinear and freeplay nonlinearities investigated

in this section were chosen to cause small changes in the flutter velocity. In any

case the wisdom of testing an aircraft and measuring responses during a LCO is

questionable.

Velocity Range Best Flutter Speed Estimate % Error Best Order of fit

0.23-0.43 18.6243 -57.2 3
0.23-0.57 33.3280 -23.6 5
0.23-0.70 49.1489 +12.6 3
0.23-0.84 44.7340 +2.5 2
0.23-0.98 43.0773 -1.3 8
0.45-0.66 19.9272 -54.3 3
0.45-0.79 38.3586 -12.1 4
0.45-0.93 44.2416 +1.4 5
0.68-0.88 39.0851 -10.5 2

Table 2.18: Flutter Estimates using Damping Fit Method, Freeplay Hancock
Model

It was found that changing the amplitude of excitation changes the frequencies

of the harmonics in the FRF but it does not affect the flutter velocity. This
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observation is supported by Price et. al. in [28], [9] where the flutter boundary

is always described as a straight line in every 2D cut-away of parameter space in

which one of the variables is velocity.

2.5.2 Flutter Margin Method

Most of the findings of the previous section also holds for the Flutter Margin

method since the RFP-CC is still used to obtain the eigenvalues. Figure 2.42

shows the flutter prediction by the FM method for the bilinear system. The

actual flutter speed of 43.50 m/s is predicted inadequately. The flutter prediction

in figure 2.43 is for the freeplay system. The predicted value of 52 m/s is quite

poor compared to the actual flutter speed of 43.65 m/s.

Table 2.19 shows flutter predictions obtained by the FM method for the bi-

linear system. Compared to the results in table 2.17 obtained by the damping fit

method, the Flutter Margin method predictions are less accurate. This inaccu-

racy is caused by the fact that the FM method uses two of the system eigenvalues

to obtain the Flutter Margin. If there are significant errors in both these eigen-

values (which there will be due to the FRF distortion effect discussed previously),

then the error in the Flutter Margin data will be squared, causing increased in

accuracy in the flutter predictions.

Velocity Range Flutter Speed Estimate % Error

0.23-0.43 141.5129 +225.3
0.23-0.57 115.5411 +165.6
0.23-0.70 47.5366 +9.3
0.23-0.84 41.3696 -4.9
0.23-0.98 42.1239 -3.2
0.45-0.66 49.6976 +14.2
0.45-0.79 40.7760 -6.3
0.45-0.93 41.5856 -4.4
0.68-0.88 41.1209 -5.5

Table 2.19: Flutter Estimates using Flutter Margin Method, Bilinear Hancock
Model
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Table 2.20 shows flutter predictions obtained by the FM method for the

freeplay system. The table shows that the high sensitivity of the method to

errors in the eigenvalues is further increased by the limit cycle behaviour causing

unacceptable flutter predictions.

Velocity Range Flutter Speed Estimate % Error

0.23-0.43 20.7732 -52.4
0.23-0.57 25.3656 -41.9
0.23-0.70 29.1133 -33.3
0.23-0.84 33.0474 -24.3
0.23-0.98 35.4283 -18.8
0.45-0.66 29.9543 -31.4
0.45-0.79 34.4903 -21.0
0.45-0.93 39.3358 -9.9
0.68-0.88 38.4398 -11.9

Table 2.20: Flutter Estimates using Flutter Margin Method, Freeplay Hancock
Model

2.5.3 Envelope Function

The Envelope function method requires that the impulse response function be

obtained. This is usually accomplished not by directly applying an impulse to

the system but by obtaining the response to another type of forcing function that

excites all of the system’s natural frequencies (e.g. sine sweep or white noise

with prescribed frequencies) and then taking the inverse Fourier Transform of

the resulting FRF. The distortions in a system’s FRF caused by the presence

of a nonlinearity mean that this latter approach can cause inaccuracies. Fig-

ure 2.44 shows the estimated impulse response for the bilinear system. The early

response is reasonable however, after about 5 seconds, a second burst of activity

occurs. This second burst is termed ’non-causal response’, occurs because of the

nonlinearity and can be omitted by a suitable choice of tmax.
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Nonetheless, flutter predictions for the bilinear system are reasonably accu-

rate, as shown in figure 2.45. This fact is also demonstrated in table 2.21, where

flutter predictions for the bilinear system are presented. For tmax = 8, the entire

impulse response is used for the shape parameter calculations, including the non-

causal response. For tmax = 6, only part of the non-causal section is used and for

for tmax = 5, only the causal part is used. The astonishing result is that there

are no striking differences in the accuracy of the flutter speed predictions for the

three cases. In fact, the tmax = 8 case appears to yield slightly more accurate

estimates than the others. A possible explanation for this phenomenon might be

that, despite the presence of the non-causal response, the centroid of the enve-

lope function is still displaced towards the +∞ direction of the time axis as the

velocity increases.

The freeplay case is very similar to the bilinear case, with respect to the

accuracy of flutter predictions by the Envelope method. Figure 2.46 shows the

shape parameters calculated for the freeplay system during a sample test run.

Unlike the Damping fit and Flutter Margin methods, the accuracy of the Envelope

approach does not suffer in the presence of limit cycles caused by the freeplay

nonlinearity, as demonstrated by table 2.22.

2.5.4 Nissim & Gilyard Method

In the presence of nonlinearities, any attempt to identify the system equations

of motion will come up against considerable obstacles due to the fact that the

coefficients of the equations are not all going to be constants but some of them

will be nonlinear functions. This difficulty is augmented by the fact that, in the

Nissim & Gilyard method, the equations are pre-multiplied by the mass matrix.

Hence, if in the original equations a nonlinearity appeared in only one of the

modes, it will now appear in all modes. The variability of the equation of motion
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Range tmax Best Polynomial Order Best Flutter Speed Estimates % Error

0.23-0.43 8 2 34.0114 -21.8
6 2 35.4595 -18.5
5 2 31.2331 -28.2

0.23-0.57 8 2 43.9944 +1.1
6 2 38.0047 -12.6
5 3 43.9234 +1.0

0.23-0.70 8 6 43.4246 -0.2
6 6 37.1113 -14.7
5 4 42.2149 -3.0

0.23-0.84 8 4 43.1871 -0.7
6 3 42.5797 -2.1
5 2 42.2447 -2.9

0.23-0.98 8 2 43.4597 -0.1
6 8 43.5849 +0.2
5 8 43.3586 -0.3

0.45-0.66 8 3 37.5291 -13.7
6 2 41.3359 -5.0
5 3 43.0901 -0.9

0.45-0.79 8 3 42.5898 -2.1
6 2 42.3383 -2.7
5 2 42.9123 -1.4

0.45-0.93 8 3 43.2756 -0.5
6 3 43.7678 +0.6
5 3 43.3487 -0.4

0.68-0.88 8 2 42.2305 -2.9
6 2 41.6514 -4.2
5 2 40.6735 -6.5

Table 2.21: Flutter Speed Estimates using Envelope Method, Bilinear Hancock
model
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Range tmax Best Polynomial Order Best Flutter Speed Estimates % Error

0.23-0.43 8 2 26.0415 -40.3
6 2 24.3134 -44.3
5 2 40.2719 -7.7

0.23-0.57 8 2 36.7491 -15.8
6 4 28.2307 -35.3
5 3 29.3971 -32.7

0.23-0.70 8 2 46.0160 +5.4
6 4 44.4519 +1.8
5 7 42.2397 -3.2

0.23-0.84 8 4 44.1062 +1.0
6 2 43.2799 -0.8
5 3 42.3283 -3.0

0.23-0.98 8 11 43.5648 -0.2
6 11 43.2500 -0.9
5 6 43.7425 +0.2

0.45-0.66 8 3 38.4883 -11.8
6 3 29.5659 -32.3
5 2 38.0893 -12.7

0.45-0.79 8 3 43.6241 -0.1
6 3 41.1697 -5.7
5 2 43.8365 +0.4

0.45-0.93 8 5 43.8605 +0.5
6 6 43.0260 -1.4
5 5 42.5838 -2.4

0.68-0.88 8 5 42.5838 -2.4
6 3 38.2303 -12.4
5 2 42.5367 -2.6

Table 2.22: Flutter Speed Estimates using Envelope Method, Freeplay Hancock
model



CHAPTER 2. FLUTTER PREDICTION USING FLUTTER TEST DATA 88

coefficients means that every time a different set of response data is used to

identify the matrix coefficients different matrices will be obtained. In this respect

using multiple forcing vectors is not recommended.

Nevertheless, for a slightly nonlinear system, such as the bilinear Hancock

model used here, the Nissim & Gilyard method can still deliver reasonable flutter

predictions, by identifying a linear system . Figure 2.47 shows the flutter pre-

diction for the bilinear system. One of the damping ratios goes negative straight

away, even at very low airspeeds. However, another damping ratio goes unstable

at 49 m/s which is close enough to the actual flutter speed of 47 m/s.

Table 2.23 shows flutter predictions obtained by the NG method for the bi-

linear system. The flutter estimates are acceptable, as long as one test is made

at an airspeed higher than 80% of the true flutter velocity.

Velocity Range Flutter Speed Estimate % Error

0.23-0.43 40.9814 -5.8
0.23-0.57 41.0540 -5.6
0.23-0.70 41.4280 -4.8
0.23-0.84 43.0097 -1.1
0.23-0.98 43.5192 +0.0
0.45-0.66 42.6110 -2.0
0.45-0.79 42.6073 -2.1
0.45-0.93 42.8100 -1.6
0.68-0.88 40.1717 -7.7

Table 2.23: Flutter Estimates using NG Method, Bilinear Hancock Model

The bilinear system does not limit cycle and, consequently, causes less diffi-

culties in the identification process than the freeplay system, which does flutter.

If the NG method is applied to the freeplay Hancock model at a limit cycle, the

model will be identified as a fluttering linear system. Hence, the flutter veloc-

ity will always be the velocity at which the tests take place. This effect can be

observed in figure 2.48. The figure depicts the natural frequency and damping

ratio variation of a NG model of the freeplay system. Two tests were carried
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out, one at 21m/s and one at 41m/s. The resulting model is unstable at every

airspeed, but the damping of all three modes becomes zero at the test speeds.

This difficulty can be overcome by using data from the low frequency part of

the spectrum. The NG method only requires a relatively small amount of data

in order to perform the identification, hence choosing low-frequency points only

is not a problem. Figure 2.49 shows the spectrum of one of the responses at 41

m/s. The nonlinear behaviour is concentrated in the higher frequency part (above

40Hz), as witnessed by the numerous harmonics. The low frequency part (below

40Hz) is mainly linear. Consequently, if only the low frequency part is used in

the identification process, the method is tricked into thinking that the system

does not limit cycle and into identifying it as a stable linear system. Figure 2.50

shows, the result of using this trick. Table 2.24 shows flutter predictions obtained

by the NG method for the freeplay system. The errors in the flutter predictions

are, on average, a lot higher than in the bilinear case.

Velocity Range Flutter Speed Estimate % Error

0.23-0.43 30.0426 -31.2
0.23-0.57 34.3394 -21.3
0.23-0.70 39.7054 -9.0
0.23-0.84 42.7253 -2.1
0.23-0.98 44.0280 +0.9
0.45-0.66 39.5310 -9.4
0.45-0.79 42.2920 -3.1
0.45-0.93 44.7946 +2.6
0.68-0.88 44.6930 +2.4

Table 2.24: Flutter Estimates using NG Method, Freeplay Hancock Model

2.5.5 Steady State Identification Method

Even though the Steady State Identification method also attempts to evaluate

the matrices of the equations of motion, it does not suffer in the presence of

nonlinearities to the same extent that the Nissim & Gilyard method does. This



CHAPTER 2. FLUTTER PREDICTION USING FLUTTER TEST DATA 90

is due to the sinusoidal excitation and subsequent sinusoidal fit of the system

response. By fitting the system steady-state response by a sine function the

nonlinearity is linearised, i.e. represented by its base harmonic. The frequency

of this base harmonic is assumed to be equal to the frequency of excitation as

in the case of the Harmonic Balance method and consequently, multiple forcing

vectors can be used. To illustrate this consider a single dof system with nonlinear

stiffness described by

mẍ + cẋ + f(x) = A sin(ωt + Φ) (2.42)

where f(x) is a nonlinear function. Both the NG and the SSI methods will

attempt to fit this equation by a linear equation of the form

mẍ + cẋ + kx = A sin(ωt + Φ) (2.43)

where m, c and k are to be evaluated. Since the original equation is nonlinear,

its solution, x, can be represented by a Fourier series of the form

x(t) =
A0

2
+

∞∑
n=1

[An cos nωt + Bn sin nωt] (2.44)

The NG method will use this latter function, or rather its Frequency domain

representation, in its calculations. The SSI method however, will use the simpler,

linearised, function

x(t) = A1 cos ωt + A2 sin ωt (2.45)

i.e. it will ignore all the higher harmonics. The end result is that the NG method

attempts to fit nonlinear data to a linear model whereas the SSI method will fit

linearised data to a linear model. Hence, the resulting k value will be compliant

with the equivalent stiffness definition of the Harmonic Balance method.
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The identified matrices are not identical to those of the nonlinear system

but they approximate those of an equivalent linearised system. For the freeplay

system the identified matrices were

Cid =




5.2668 −0.0375 −0.0168

−39.1687 1.8634 −0.8452

−25.6382 −0.8822 7.9868


 Kid = 104




0.1035 0.0029 −0.0039

−0.5703 1.4907 −0.4897

1.7941 −5.9696 4.4864




Fid =




0.1170

−1.5883

2.5081




The actual matrices were

Ca =




4.9974 −0.0151 −0.0186

−52.3509 2.9737 −0.9489

101.4620 −11.5178 8.8853


 Ka = 104




0.1120 0.0030 f1(β)

−0.1473 1.4950 f2(β)

−2.2096 −6.0041 f3(β)




Fa =




0.1133

−1.7735

4.2611




where fi(β) are nonlinear functions of the control surface angle, β. Notice that

the larger differences occur on the third row of the matrices which is the control

surface equation and contains the nonlinearity. Figure 2.51 shows the flutter

prediction for the bilinear system (47 m/s exactly like the actual flutter speed)

and figure 2.51 shows the prediction for the freeplay system. The quality of the

latter is worse, 46 m/s as opposed to the actual value of 43 m/s, the reason

being that, in the case of a limit cycle caused by sinusoidal excitation, the steady

state response includes elements of both the excitation and the limit cycle, thus

corrupting the results to a degree.

The SSI method is very similar to the Harmonic Balance method except, since

only one amplitude of excitation is considered, limit cycle oscillations can not be
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Velocity Range Flutter Speed Estimate % Error

0.23-0.43 45.0780 +3.6
0.23-0.57 44.8780 +3.1
0.23-0.70 45.0350 +3.5
0.23-0.84 44.6260 +2.6
0.23-0.98 43.2870 -0.5
0.45-0.66 44.7430 +2.9
0.45-0.79 45.1100 +3.7
0.45-0.93 44.4480 +2.2
0.68-0.88 43.7820 +0.6

Table 2.25: Flutter Estimates using the SSI Method, Bilinear Hancock Model

Velocity Range Flutter Speed Estimate % Error

0.23-0.43 33.3500 -23.3
0.23-0.57 36.3973 -16.3
0.23-0.70 40.5630 -6.8
0.23-0.84 42.7150 -1.8
0.23-0.98 41.6230 -4.3
0.45-0.66 38.4320 -11.7
0.45-0.79 41.2120 -5.3
0.45-0.93 43.4360 -0.1
0.68-0.88 43.8420 +0.8

Table 2.26: Flutter Estimates using SSI Method, Freeplay Hancock Model

predicted. If multiple excitation amplitudes were used the SSI would be identical

to the Harmonic Balance method. None of the other methods presented here

have been found to have the potential to predict LCO’s.

Flutter predictions for both the bilinear and freeplay Hancock systems, using

the SSI method, are tabulated in tables 2.25 and 2.26.

2.5.6 ARMA-based method

As with the linear application of the ARMA-based method, the best results were

obtained when J =number of modes. Table 2.27 shows flutter predictions for

the bilinear Hancock model. Table 2.28 shows flutter predictions for the freeplay

Hancock model.
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Velocity Range Best Flutter Speed Estimate % Error Best Order

0.23-0.43 23.4421 -46.1 2
0.23-0.57 36.2552 -16.7 2
0.23-0.70 58.1532 +33.7 6
0.23-0.84 47.0706 +8.2 2
0.23-0.98 43.5104 +0.0 2
0.45-0.66 31.6086 -27.3 2
0.45-0.79 35.6286 -18.1 3
0.45-0.93 42.0931 -3.2 2
0.68-0.88 41.3428 -5.0 2

Table 2.27: Flutter Estimates using the ARMA Method, Bilinear Hancock Model.
Noise: 5% rms. Actual flutter speed: 43.50 m/s

Velocity Range Best Flutter Speed Estimate % Error Best order

0.23-0.43 18.9017 -56.7 3
0.23-0.57 34.3395 -21.3 3
0.23-0.70 36.9073 -15.4 3
0.23-0.84 46.5775 +6.7 2
0.23-0.98 43.0043 -1.5 9
0.45-0.66 29.6683 -32.0 2
0.45-0.79 35.7788 -18.0 3
0.45-0.93 41.3884 -5.3 4
0.68-0.88 39.0266 -10.6 2

Table 2.28: Flutter Estimates using ARMA Method, Freeplay Hancock Model.
Noise: 5% rms. Actual flutter speed: 43.65 m/s

In both cases the predictions are of poor accuracy. In fact, the better pre-

dictions are due to the fact that polynomials of varying degrees can interpret

results in a very indeterminate manner, such that there will often be at least one

polynomial which has one root close to the true flutter speed.
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2.6 Figures

Figure 2.1: FRF fit by the RFP-CC Method; no noise

Figure 2.2: FRF fit by the RFP-CC Method; 10% rms noise
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Figure 2.3: Variation of natural frequencies and dampings with airspeed, Hancock
model.
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Figure 2.4: Variation of natural frequencies and dampings with airspeed, Sim-2
model.
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Figure 2.5: Flutter prediction using damping fit; no noise

Figure 2.6: Flutter prediction using damping fit; 5% rms noise
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Figure 2.7: Variation of percentage error in flutter velocity prediction with in-
creasing polynomial order.

Figure 2.8: FRF fit by the RFP-CC Method; 20% rms noise
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Figure 2.9: Flutter prediction using damping fit; 20% rms noise
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Figure 2.10: Flutter Margin variation for the three possible flutter mechanisms,
Hancock model



CHAPTER 2. FLUTTER PREDICTION USING FLUTTER TEST DATA 99

Figure 2.11: Flutter Margin variation with velocity, 10% rms noise

Figure 2.12: Flutter Margin variation with velocity, 20% rms noise
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Figure 2.13: Flutter Margin variation with velocity, 10% rms noise, with linear
fit
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Figure 2.14: True Flutter Margin variation with airspeed, Sim-2 model
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Figure 2.15: Impulse decay envelope

Figure 2.16: Decay Envelope centroid variation with velocity
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Figure 2.17: Impulse response, 5% rms noise

Figure 2.18: Decay Envelope centroid variation with velocity, 5% rms noise
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Figure 2.19: Decay envelope variation of Sim-2 symmetric modes. No noise.
Actual flutter speed: 398 kts

Figure 2.20: Decay envelope variation of Sim-2 symmetric modes. 10% rms noise.
Actual flutter speed: 398 kts
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Figure 2.21: Damping and natural frequency by the NG method
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Figure 2.22: Accuracy of flutter estimate variation with number of speeds, NG
method
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Figure 2.23: Damping and natural frequency by the NG method, 10% rms noise

Figure 2.24: Damping and natural frequency by the SSI method
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Figure 2.25: Damping and natural frequency by the SSI method, 20% rms noise

Figure 2.26: Damping and natural frequency by the SSI method, 40% rms noise,
6 forcing vectors
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Figure 2.27: Damping and natural frequency by the SSI method, 40% rms noise,
12 forcing vectors

Figure 2.28: F stability criteria using ARMA method, no noise
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Figure 2.29: G stability criteria using ARMA method, no noise

Figure 2.30: F stability criteria using ARMA method, 5% noise, 3d order model
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Figure 2.31: G stability criteria using ARMA method, 5% noise, 3d order model

Figure 2.32: F stability criteria using ARMA method, 5% noise, 5th order model
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Figure 2.33: G stability criteria using ARMA method, 5% noise, 5th order model
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Figure 2.34: A sample ARMAX fit of the Sim-2 model response to chirp input
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Figure 2.35: F+(l) stability criteria variation with airspeed for Sim-2 model
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Figure 2.36: F−(l) stability criteria variation with airspeed for Sim-2 model
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Figure 2.37: FRF for a system with bilinear stiffness, intermediate velocity

Figure 2.38: FRF for a system with bilinear stiffness, near flutter velocity
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Figure 2.39: FRF for a system with freeplay stiffness, LCO velocity

Figure 2.40: Damping Fit flutter prediction for bilinear system
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Figure 2.41: Damping Fit flutter prediction for freeplay system

Figure 2.42: Flutter Margin flutter prediction for bilinear system
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Figure 2.43: Flutter Margin flutter prediction for freeplay system

Figure 2.44: Estimated impulse response for bilinear system
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Figure 2.45: Envelope Function flutter prediction for bilinear system

Figure 2.46: Envelope Function flutter prediction for freeplay system
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Figure 2.47: Nissim & Gilyard flutter prediction for bilinear system
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Figure 2.48: Nissim & Gilyard flutter prediction for freeplay system, high fre-
quencies
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Figure 2.49: Spectrum of the Freeplay Hancock system, 41 m/s
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Figure 2.50: Nissim & Gilyard flutter prediction for freeplay system, low frequen-
cies
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Figure 2.51: Steady State flutter prediction for bilinear system

Figure 2.52: Steady State flutter prediction for freeplay system



Chapter 3

Nonlinear Aeroelastic Systems

3.1 Introduction

In this chapter the behaviour of nonlinear aeroelastic systems is analysed, starting

with a summary of research on the subject to date. Limit cycles and Limit Cycle

Oscillations are defined and explained. One of the most widely used approaches

for predicting the existence and the amplitude of LCOs, the Harmonic Balance

method is detailed and demonstrated and its limitations are discussed. The ability

of the method to predict both stable and unstable limit cycles is suggested and

indicated by means of total energy variation with time graphs.

By use of numerical integration of a simple nonlinear aeroelastic system, the

evolution of the system from low velocity to flutter is presented as a series of

bifurcations which can induce a variety of nonlinear behaviors, such as LCOs

and chaotic motion. The existence of multiple limit cycles at a single velocity

is demonstrated, as well as the possibility that the system response can switch

from one particular limit cycle to another given the right excitation. This limit

cycle switching effect is taken advantage of to propose a simple approach for LCO

control and even suppression.

Finally, the chaotic behaviour of nonlinear aeroelastic systems is discussed.

120
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Methods to indicate and prove the existence of chaotic oscillations are presented

and demonstrated, and a rudimentary explanation for the occurance of these

oscillations is attempted.

3.2 Literature Review

Some of the earliest investigations of nonlinear aeroelastic systems were those by

Woolston et al [29], [30] and Shen [26]. Despite the lack of modern computing

facilities (most of the calculations were carried out on analogue computers) these

works established some of the basic nonlinear effects and methodologies that

are still researched today. Woolston et al determined the importance of initial

conditions in establishing the type of response of a nonlinear system and identi-

fied a new nonlinear phenomenon which they termed ”self-limited flutter”, more

commonly known as Limit Cycle Oscillations (LCO). Limit cycles were already

known from the work of Poincaré and others as bounded, unforced oscillations,

which appear as closed line-singularities in the phase-plane [31].

Shen applied the Kryloff & Bogoliuboff (harmonic balance) method [32] to

nonlinear aeroelastic problems and showed that this method could provide re-

sults that agreed with their analog computer integrations of simple and multi-dof

systems (for more details on the harmonic balance method see the relevant sec-

tion later in this chapter). Both pieces of research centred around structural

nonlinearities that are still of interest today, mainly freeplay (flat spot), freeplay

with preload, hysteresis and cubic stiffness.

Approximately 20 years later Breitbach [6] summarized some of the main

nonlinear structural effects that had been encountered up to then in aircraft. He

classified structural nonlinearities into concentrated and distributed nonlineari-

ties. The first category contained such effects as freeplay in the linkage elements

of control systems, solid friction in control cable and push rod ducts, kinematic
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limitation of control surface deflection (pitch-stops) and spring tab systems. The

second category contained nonlinear effects arising from elastic deformations in

rivets, screws, bolts and structural components. The term ’distributed’ is due

to the fact that, because of the large number of rivets, screws and bolts, these

nonlinearities can be assumed to be distributed throughout the aircraft struc-

ture. Breitbach found that the most common effect of all these nonlinearities was

to cause variations in the natural frequencies and dampings of a structure with

increasing amplitude of excitation (and, hence, response).

With the advent of the high-speed digital computer, new impetus was given

to nonlinear aeroelastic research. In [33], a mathematical model of a missile

control surface with freeplay root stiffness is investigated using both numerical

integration and the harmonic balance method. The results of the integration

serve to validate the harmonic balance results and to indicate the tendency of the

system to limit cycle. The main achievement of that particular piece of research,

though, was the fact that the system investigated incorporated two interacting

nonlinearities. McIntosh [34] et al produced a set of high quality experimental

response data from a wind tunnel model of a 2-dof wing, the first of many such

investigations to come. Dowell [35] numerically integrated the equations of motion

of a buckled plate in supersonic flow, demonstrating that chaotic motion can occur

in aeroelastic systems. He employed Poincaré plots to indicate the existence of

chaos.

A few years later Lee [36] developed an iterative method for extending the

harmonic balance technique to systems with multiple structural nonlinearities.

His approach was based on aligning the amplitude of oscillation in each spring

with the harmonic balance prediction of stiffness before computing the final sta-

bility characteristics. The method could predict accurately the amplitude of limit

cycles of large aeroelastic systems as well as the initial conditions necessary to
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cause the limit cycle oscillations. Reference [37] offers another attempt to extend

the capabilities of the harmonic balance method, this time by applying an asymp-

totic expansion to the load-displacement relationship of a nonlinear spring. The

harmonic balance method uses a single-term Fourier expansion. The increased

accuracy of the method in [37] arises from the fact that the asymptotic expansion

allows the inclusion of higher harmonics in the representation of the nonlinearity.

In reference [27] Yang and Zhao tested an experimental, two degree-of-freedom,

wing in a wind tunnel in conjunction with numerical integration and harmonic

balance analysis of a mathematical model of the same wing. Their main discovery

was that certain aeroelastic systems can undergo two or more limit cycle oscilla-

tions of different amplitudes at the same airspeed. Furthermore, they determined

that the harmonic balance method can predict all of these limit cycles as well

as additional unstable limit cycles, which do not appear in the experimental or

numerical integration results.

Brase & Eversman [38] developed a new approach for setting up and solving

mathematical models of multi-dof aeroelastic systems in three-dimensional com-

pressible flow. In general the unsteady aerodynamic forces are written in terms

of Theodorsen’ s function which is, in turn, a function of the frequency of oscil-

lation. Therefore, since the frequency can not be known before the equations are

solved and the aerodynamic forces can not be evaluated before the frequency is

obtained, various iterative schemes are usually applied. However, it is suggested

in [38] that Theodorsen’ s function can be written as a combination of a second

order polynomial and a finite series of simple poles. If this is then transformed

from the frequency to the Laplace domain, and then to the time domain, the de-

pendence on frequency can be eliminated. The result is then substituted back into

the equations of motion, direct integration of which can yield the complete time

history of the system response. Additionally, the authors of [38] observed that
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some of the solutions they obtained using their method demonstrated a ”jump

phenomenon”, which could be associated with chaotic response.

Zhao & Yang also observed chaotic behaviour with their 2-dof wing in a later

paper [39]. The chaotic motion occurred only when the airspeed was higher

than the linear divergence speed. In references, [40], [41] chaos is defined as a

”nonperiodic oscillation consisting of a multitude of frequencies and amplitudes”.

Intermittent chaotic response was encountered during wind-tunnel tests of a 2-

dof wing. The chaos was indicated by phase-plane and frequency domain plots

of the response. The authors concluded that chaos cannot be obtained from a

system with a single nonlinearity however, this has been disputed since, especially

in [28]. A helicopter blade with nonlinear hinge and nonlinear aerodynamics

was investigated in [42]. Chaotic motions were observed both as a result of the

structural and the aerodynamic nonlinearities. In this paper parameter-space

sections were used to indicate the various types of response possible depending

on airspeed and initial conditions.

A further variation on the harmonic balance was proposed in [43]. By reduc-

ing the equations of motion to a set of nonlinear algebraic equations, the linear

and nonlinear parts can be handled separately and matched using an iterative

procedure. The method is mainly used for the prediction of the fundamental

harmonic response of a system.

Another investigation of a mathematical model of a simple 2-dof wing with

root-pitch freeplay nonlinearity is described in [28]. Very detailed parameter

sections were used to describe as large a portion of the response spectrum of the

system as possible. Additionally, the authors of [28] used bifurcation diagrams

to analyse the transition from one type of response to another. Limit cycle

oscillations with more than one period were observed and explained as results of

bifurcations en-route to chaos via period-doubling. In a later paper [9], a similar
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analysis was carried out on the same wing with bilinear and cubic nonlinearities.

Additionally, Lyapunoff exponents [44] were used to prove the existence of chaos

in the response of the wing with cubic stiffness. Contrary to [39], it was found

that chaotic motion can occur at speeds lower than the linear static divergence

speed. This contradiction is explained in [9] as a consequence of the different

aerodynamic models used in the two pieces of research.

Holden et al [45] observed experimentally the same phenomenon that Zhao &

Yang reported in [27] concerning multiple limit cycles with different amplitudes

existing at the same airspeed. The authors of [45] found that, by repeating an

excitation sequence on their wind tunnel model after the model had gone into

limit cycle oscillations, they could induce the system to jump to a limit cycle

with higher amplitude. The system reverted to the original limit cycle some time

after the end of the second excitation sequence.

Further evidence of chaotic response of aeroelastic systems is given in [46] and

[47]. By employing a modelling method similar to that of [38], a finite element-

doublet lattice model of a flexible wing with freeplay in the root pitch spring is

solved. The usual types of response are encountered as well as ”chaotic jumps”

around two equilibrium positions in a double-well potential manner, similar to

those described in [38]. Reference [48] describes wind tunnel and numerical tests

of a 3-dof wing with control surface. Special significance is given to the agree-

ment of theory and experiment as well as to the importance of initial conditions

in determining the response of the system. One interesting phenomenon that the

authors of [48] reported was that, at the instances were the numerical results pre-

dicted chaotic motion, the wind tunnel model exhibited non-chaotic but irregular

motion with high levels of noise.

A further effect of nonlinearity in aeroelastic systems, internal resonance, is

investigated in reference [49]. Internal resonance is the phenomenon whereby a
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higher harmonic of a nonlinear element in a structure coincides with the natural

frequency of one of the linear modes, causing resonance. The authors of [49]

built a nonlinear wind-tunnel model in order to investigate this and other effects,

however, the model failed to demonstrate internal resonance.

Most of the current research is still at the stage of reporting results in the

attempt to gain a deeper understanding of the effects of nonlinearities to the

response of aeroelastic systems. As will be demonstrated in later sections, a

number of useful tools have been employed to this effect which, even though not

new, had not been used by aeroelasticians in the past. These tools include bifur-

cation diagrams, Poincaré plots, parameter-space sections, Lyapunoff exponents

and asymptotic expansions. Nevertheless, there is still a lack of basic understand-

ing in how to combine these tools and the results that have been produced into

a more coherent theory of nonlinear aeroelasticity.

Another common pattern in the research carried out up to now on nonlinear

aeroelasticity, is the search for a more effective version of the Harmonic Balance

method. This method is the only one available that can predict the response of

a system over a wide range of conditions without the need to carry out time-

consuming numerical integrations hence, it is used as the basis for other, more

general, limit-cycle prediction methods. Despite this effort, each new version

of the method only improves on of the aspects of the original approach. Thus,

a procedure has been developed that can be applied to systems with multiple

nonlinearities, another one improves the accuracy of the method by using higher

harmonics, etc, but no method will achieve all of the above.

3.3 Limit Cycle Oscillations

A Limit Cycle Oscillation (LCO) is a bounded, unforced oscillation around a

limit cycle, which is a closed line-singularity in the phase-plane [31]. Hence, the
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terms LCO and limit cycle should not be confused since the former is a physical

motion of the system whereas the latter is a feature of the phase plane. There

are three types of limit cycle

• Stable limit cycle

• Unstable limit cycle

• Half-stable limit cycle

Figure 3.1 shows a stable limit cycle in the phase plane. The system motion

(or trajectory) approaches the limit cycle both from the inside and outside. The

initial conditions for trajectory A are inside the limit cycle and those for trajectory

B are outside but in both cases Limit Cycle Oscillations ensue. Note that a

trajectory can not cross the limit cycle.

Figure 3.2 shows an unstable limit cycle. Both trajectories A and B move

away from the limit cycle. Trajectory A, which lies inside the limit cycle, winds

away resulting in a decaying oscillation. Trajectory B, which lies outside the limit

cycle, also winds away resulting in an unstable oscillation. Again, the limit cycle

can not be crossed. The unstable limit cycle can only be reached as time runs

backwards towards −∞ although, of course this is not physically possible.

Finally, figure 3.3 demonstrated a half-stable limit cycle. Trajectory A, which

lies inside the limit cycle, also lies on the stable side of the limit cycle and ap-

proaches it resulting in LCO. Trajectory B lies outside the limit cycle and on its

unstable side and hence moves away from it. Hence this particular half-stable

limit cycle is unstable on the outside and stable on the inside. Half-stable limit

cycle that are stable on the outside and unstable on the inside also exists. In

both cases, the limit cycle can not be crossed. A half-stable limit cycle can be

visualized as a composite of a stable and an unstable limit cycle that lie very

close together.
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It follows that LCOs can only occur around certain types of limit cycle i.e.

stable limit cycles and the stable sides of half-stable limit cycles. The mechanism

by which limit cycles dictate the motion of the system is energy-related. Around a

stable limit cycle, only a certain amount of energy is drawn from the free stream.

As a result, when a system undergoing such a LCO is displaced to a higher energy

state, it cannot maintain its energy level and winds back on the limit cycle. If

the system is at a lower energy state, it receives more energy than is dissipated

by the damping and moves up to the limit cycle. On the limit cycle, the rate

of energy input from the free-stream is equal to the rate of energy dissipation,

resulting in a stable periodic motion. An unstable limit cycle is characterized

by the fact that, if a system’s response is outside its orbit in the phase-plane,

the system continuously receives more energy than it can dissipate and diverges

whereas, if the system response lies inside the limit cycle, energy is drawn out of

the system and into the free-stream resulting in a decaying oscillation.

Limit cycles result directly from system bifurcations as a parameter is varied

[50]. In the case of aeroelastic systems, this parameter is the free-stream velocity.

In classical examples of bifurcation theory [31], the system initially has only

one singularity in its phase-plane, a stable equilibrium point. As the controlling

parameter is varied, the system bifurcates, i.e. the equilibrium point becomes

unstable and a stable limit cycle grows around it (see figure 3.4). A typical

example of this behaviour is the rotating pendulum. This type of bifurcation

results in soft self-excitation behaviour [51], which is characterized by the fact

that any infinitesimal departure from the unstable equilibrium point will result in

LCO motion. A different type of bifurcation will result in the so-called hard self-

excitation behaviour. Here, the equilibrium point remains stable but an unstable

limit cycle forms around it, followed by a stable limit cycle of a larger radius, so

that finite excitations have to be applied to the system in order to move it from
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rest onto the stable limit cycle (see figure 3.5). As will be shown later, both types

of bifurcation can be observed in aeroelastic systems.

Depending on the complexity of a given system (number of degrees of freedom,

number and type of nonlinearities), a large number of limit cycles can exist in

its phase-plane. However, their stability needs to be alternating, i.e. an unstable

limit cycle needs to lie between two stable limit cycles, or a stable limit cycle and

a stable equilibrium point.

3.4 Harmonic Balance Method

The harmonic balance method is used for a variety of nonlinear problems to

provide estimates of the stability of systems. It was first presented in the west

in reference [32] but the formulation presented here is based on references [27]

and [34]. As mentioned earlier, the crux of the harmonic balance method is to

assume that the system admits a limit cycle which is caused by a nonlinear spring.

In other words it is assumed that the displacement x of the nonlinear spring is

sinusoidal with amplitude A, i.e.

x = A sin t (3.1)

Consider a bilinear spring characterized in figure 3.6. Inside the freeplay

region (of size δ), the stiffness is K1 and outside, it is K2.

Define x as being the input to the spring and F , the force in the spring as

the output. If A < δ, then the response of the spring is linear. If A > δ, then

the force in the spring is determined by whether x is larger or smaller than δ.

Consider figure 3.7, it can be seen that, in the time domain, five distinct regions

are defined within one period, from t = 0 to t1, from t1 to π − t1, from π − t1 to

π + t1, from π + t1 to 2π − t1 and from 2π − t1 to 2, where
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t1 = arcsin
δ

A
(3.2)

The force, F , in the spring is given in terms of the displacement by

F =




K2x + (K1 − K2)δ if x ≥ δ

K1x if −δ ≥ x ≥ δ

K2x + (K2 − K1)δ if x ≤ −δ

(3.3)

Substituting for x in 3.3 and taking the first term of the Fourier expansion

of F (t) (taking into account the fact that F (t) is an odd function and therefore

only the sine term exists in the expansion) gives

F (t) =
A

π
(K2 − K1)

{
K2

K2 − K1

π − 2t1 − sin 2t1

}
sin t (3.4)

But, since Asint = x,

F = K̂x

where,

K̂ =
K2 − K1

π

{
K2

K2 − K1

π − 2t1 − sin 2t1

}
(3.5)

This is the equivalent linearized stiffness for the bilinear stiffness case. Equivalent

linearized stiffnesses for other types of non-linearities are given by

• Freeplay (see figure 3.8)

K̂ =
K

π
{π − 2t1 − sin 2t1} (3.6)

where t1 is as defined before and K is the linear stiffness.

• Cubic (see figure 3.9)

Defined as F = Kx + ex3, where K is the linear slope and e is a constant.
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K̂ =
3eA2

4
+ K (3.7)

These relationships between the equivalent linearized stiffness and the ampli-

tude of the limit cycle can prove very useful if they are combined with graphs of

the flutter (or critical) velocity of the linear model as a function of the same stiff-

ness. The end result is a plot of the possible amplitudes of limit cycles at various

critical velocities and is achieved by mapping the equivalent stiffness-amplitude

graph onto the critical velocity- equivalent stiffness graph.

The process of building up a Harmonic Balance plot can be seen in figure 3.10.

Three plots can be seen in the figure:

1. Quadrant A contains the Equivalent Stiffness vs Amplitude plot for bilinear

stiffness, obtained from equation 3.5.

2. Quadrant B contains the Equivalent stiffness vs Flutter Velocity for the

system under investigation, obtained from solving the equations of motion

with the particular equivalent stiffness.

3. Quadrant D contains the Limit Cycle Amplitude vs Velocity plot, obtained

from combining the plots in quadrants A and B.

Quadrant C contains a straight line with slope 1 and intercept zero. The

procedure is as follows.

1. A particular value of limit cycle amplitude is chosen, which gives a value of

the equivalent stiffness in quadrant A (point A1).

2. The value for the equivalent stiffness is used to give a value for the limit

cycle velocity from quadrant B (point B1).
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3. The amplitude value from step 1 is used in quadrant D (rotated by 90

degrees at point C1) along with the values of the limit cycle velocity from

step 2 to define point D1 in quadrant D.

When enough points have been drawn in quadrant D, the limit cycle velocity

vs limit cycle amplitude graph is complete. The velocity-amplitude graph is

useful in two ways. Firstly, it shows at which airspeed onwards the system is

expected to admit a limit cycle. Below that particular airspeed the response dies

down with time and the system is stable. In the case of figure 3.10 that speed

is approximately 35 m/s. The graph can also show which is the top speed at

which a limit cycle is expected. Above that speed flutter occurs. In the case of

figure 3.10, bilinear stiffness dictates that as the amplitude approaches infinity,

the equivalent stiffness approaches the outer stiffness K2 (see figure 3.6), which

is 3000 N/m. Hence, the top speed at which a limit cycle is possible is the flutter

speed of the equivalent linear system with a stiffness of 3000 N/m. Secondly, it

gives all the possible amplitudes of limit cycles taking place in between these two

speeds. This last result is approximate, especially for high amplitudes when the

linearisation starts to break down, but is a very useful guide as to what tests (on

either computer or actual models) have to be performed in order to obtain more

accurate results.

3.4.1 Harmonic balance results

Applying the harmonic balance scheme to the model of the wing with control

surface (see appendix A) confirms the claim in [36] and [34] that it is possible to

obtain two different amplitudes of limit cycles at the same velocity.

In figure 3.10 points D1 and D3 occur at the same speed but at different

amplitudes. Figure 3.11 shows how, in the case of freeplay stiffness in the wing

pitching spring, it is possible to obtain three different limit cycle amplitudes at
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the same speed in the velocity region between 35 and 45 m/sec and two in the

region 70-85 m/sec. Figure 3.12 depicts the effects of bilinear stiffness in wing

pitch. Since bilinear stiffness is a ’more linear’ freeplay case there are less possible

amplitudes at one single velocity but it is still possible to obtain two of them in

the region 70-85 m/sec. The important thing to note is that all these amplitudes

are possible because of the particular shape of the critical velocity- wing pitch

stiffness plot. If the graph was monotonically increasing only one amplitude would

be possible at every speed.

In the case of nonlinearities in the control pitching spring, the number of am-

plitudes at one particular velocity, as well as the number of regions were multiple

amplitudes are possible, is lower because the velocity-stiffness plot has only one

turning point. Only freeplay yields such behaviour, at low equivalent stiffnesses

(see figure 3.13). For bilinear stiffness to do the same, the inner stiffness has

to be so low that the bilinearity almost disappears and is replaced by freeplay

behaviour (see fig 3.14).

In references [27], [9] it is theorized, without proof, that some of the limit

cycles predicted by the Harmonic Balance method at a single airspeed are stable

and some of them unstable. The next section investigates this possibility

3.4.2 Stable and Unstable Limit Cycle Prediction

The Harmonic Balance Method does not distinguish between stable and unsta-

ble limit cycles. As a consequence, it predicts both types, as has been already

demonstrated. Figure 3.15 shows harmonic balance results (dotted line) for the

Hancock wing with control surface, superimposed over a section of the parame-

ter space (obtained from integration of the equations of motion), on which the

LCO-no LCO boundary has been plotted. The y-axis for the Harmonic balance
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results is amplitude of LCO and for the LCO boundary control surface pitch ini-

tial condition (the nonlinearity is freeplay in the control surface). The parameter

space section was obtained by means of system integration using the Runge-Kutta

scheme (see appendix D). The dotted line defines two sets of limit cycles, one set

of high amplitude and one of low. The reason why these results were included in

the same graph as the parameter space section is to indicate that the low ampli-

tude limit cycles are unstable since they correspond to the inner LCO/no-LCO

boundary, inside of which no LCO is possible. This observation was also made

in [9] without proof.

A further indication that the Harmonic Balance method predicts unstable

as well as stable limit cycles is the fact that there is a qualitative difference

between high and low amplitude limit cycles predicted by the method. This

difference concerns the way that the energy of the system varies during LCOs.

As mentioned earlier, the energy of a limit cycling system is constant. However, if

only the kinetic and potential energy are considered, their sum oscillates around

a constant value. This is demonstrated in figure 3.16, where total energy refers

to the sum of the kinetic and potential energies. The same phenomenon can be

observed in linear systems that flutter, as depicted in figure 3.17. In both the

linear and nonlinear cases, the frequency of oscillation of the total energy is twice

the frequency of the periodic motion, reflecting the fact that the potential and

kinetic energies are 90 degrees out of phase.

The qualitative difference between low and high amplitude limit cycles pre-

dicted by the Harmonic Balance method lies in the energy oscillation of the

respective equivalent linearized systems. Figure 3.18 shows the control surface

response of the low amplitude linearized system and its energy oscillation. The

total energy reaches its minima near the zero positions of the system response.

Conversely, figure 3.19 shows that, for the high amplitude linearized system, the
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total energy reaches its maxima at the zero position of the system response.

Hence, an unstable limit cycle, as predicted by the Harmonic Balance method, is

one for which the periodic variation of the total energy of the equivalent linearized

system reaches its minimum near the zero position of the system response and

vice versa, i.e. for a stable limit cycle the total energy reaches its maximum near

the zero position of the response. This phenomenon can also be observed in the

nonlinear system. Figure 3.20 shows a stable limit cycle and the corresponding

total energy variation. The latter, again, reaches its maximum at the zero po-

sition of the limit cycle. A similar plot for a nonlinear limit cycle could not be

produced since unstable limit cycles can only be reached at time t = −∞, which

poses severe numerical difficulties.

To finish off with the discussion of the Harmonic Balance method, it should

be mentioned that the end of the unstable LCO branch predicted by the method

(figure 3.21) corresponds to the point were no more low amplitude periodic solu-

tions are possible and coincides with the bifurcation to soft self-excitation. Hence,

the Harmonic Balance can predict both hard and soft self-excitation bifurcations.

The accuracy of the method suffers in the presence of bifurcations to chaotic be-

haviour at speeds lower than 18 m/s. Accuracy also suffers at amplitudes higher

than 0.08 rad as seen in figure 3.21 which shows limit cycle amplitude vs air-speed

obtained by direct integration of the system and also by the Harmonic Balance

method.

3.5 Bifurcation to flutter

As mentioned earlier, in the case of hard self-excitation, the response of a system,

i.e. whether it will limit-cycle or not, is dependent on the initial conditions.

Therefore, a complete picture of the system’s behaviour can only be obtained if

the whole of its parameter-space is investigated. The parameter-space is defined
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by the system’s initial conditions (velocities and displacements) and the free-

stream air-speed. In the case of the Hancock wing with control surface, the

parameter-space is 7-dimensional (three displacements, three velocities and the

air-speed). Consequently, the investigation of the complete parameter-space is

extremely computationally expensive and, for larger systems, becomes impossible.

However, a useful description of the system behaviour can be obtained by looking

at 2-dimensional sections of the parameter-space, as first demonstrated in [39].

To demonstrate this approach the special case of the Hancock wing with

freeplay in the control surface pitch will be investigated. The freeplay in the

control surface implies the existence of two linear systems which will influence

the behaviour of the nonlinear system.

• Inner Stiffness Linear System: This system (corresponding to low ampli-

tude responses of the nonlinear system) has zero control surface structural

stiffness.

• Outer Stiffness Linear System: This system (corresponding to high am-

plitude responses of the nonlinear system) has control surface structural

stiffness equal to the outer stiffness in the freeplay region.

Figure 3.22 shows a 2-dimensional section of parameter-space. The two di-

mensions that are considered to be variables are the initial value of the control

surface pitch and the air-speed. The other initial conditions are all set to zero.

The section was obtain by direct integration of the equations of motion. Fig-

ure 3.23 is a bifurcation diagram for the same system. A bifurcation diagram is

obtained by plotting at each airspeed the values of one of the state variables at

points where another state variable is held fixed. In the case of figure 3.23 the

control surface pitch position is plotted at points where the control surface pitch

velocity is zero. The diagram shows whether limit cycles occur and how complex
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the limit cycle motion is, over a range of airspeeds. The degree of complexity is

demonstrated by the number of distinct points in the bifurcation diagram at a

single velocity.

• One point means that there is no limit cycle motion and the system is

stable.

• Two points denote a simple closed loop (also termed Period-1) limit cycle,

an example of which is given in figure 3.24. This figure was produced using

the Hancock model with control surface and bilinear stiffness in the wing

pitch spring.

• Four points denote a Period-2 limit cycle, demonstrated in figure 3.25 This

figure was produced using the Hancock model with freeplay in the control

surface spring.

• More points denote higher complexity (Period-3, Period-4, etc). Note that,

since the bifurcation diagram is symmetric around the airspeed axis there

is always an even number of points at each airspeed where a limit cycle

is possible. The phenomenon of bifurcations to higher order period limit

cycles is called Period Doubling.

• After consecutive bifurcation to higher complexity limit cycles, the system

response can become chaotic.

In figures 3.22 and 3.23 three types of bifurcation are observed. Under 15

m/s no limit cycle occurs, the response decays to its equilibrium position. At

a free-stream airspeed of just over 16 m/s, the first bifurcation occurs. It is

a bifurcation to chaotic behaviour which lasts up to approximately 17 m/s and

causes the irregular LCO/no-LCO boundary. It should be noted that the response
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in this region is chaotic irrespective of whether a LCO occurs or not, i.e. even

the transient decay response is chaotic.

At 17 m/s a second bifurcation occurs leading to hard self-excitation be-

haviour. As a result, the equilibrium point is still stable, and a pair of limit

cycles appears around it, the inner one unstable and the outer one stable. The

wing only exhibits LCO behaviour if the initial condition is high enough to place

the response outside the unstable limit cycle.

At 27.3 m/s a third bifurcation occurs, this time inducing soft self-excitation

behaviour. The equilibrium point is now unstable and there is only one, stable,

limit cycle. At this speed, the inner stiffness linear system flutters, hence the

instability of the equilibrium point. Even infinitesimal displacements will cause

diverging response until the stable limit cycle is reached, at which point the

response becomes periodic.

At 43.5 m/s, another chaotic bifurcation occurs, which gives rise to chaotic

pockets. Finally, at 45 m/s flutter behaviour begins to appear. Initially, flutter

does not occur for every value of the initial condition. At 46.16 m/s however,

there remains no initial condition at which the response is stable. The stable

limit cycle completely vanishes, leaving only the unstable equilibrium point. The

wing’s response diverges irrespective of the initial conditions, i.e. flutter occurs.

It is interesting to note that the outer stiffness linear system flutters at 44.07 m/s.

Generally for this particular system, as seen in table 3.1, the flutter velocities of

the outer stiffness linear system and the nonlinear system are very similar.

Thus, the variation of the behaviour of an aeroelastic system with airspeed

is governed by a series of bifurcations, eventually leading to flutter. A corol-

lary of this statement is that flutter itself is also a bifurcation phenomenon [44].

Figure 3.26 shows the frequency content of the response of the nonlinear wing

model near flutter. It is obvious that none of the natural frequencies approach
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Heave (Hz) Pitch (Hz) Freeplay (Hz) Other Linear (m/sec) Nonlinear (m/sec)
Stiffness Stiffness Stiffness Parameters Flutter Speed Flutter Speed

2 5 15 t=0.03 28.5780 27.5
2 5 15 16.5416 16.5
15 25 15 27.3930 29.0
15 25 30 51.9839 50.5
7 15 25 41.1552 43.5
9 22 25 52.3069 51.0
9 22 30 57.2150 61.4
5 12 30 38.1639 38.5
5 12 30 ha=0.85 37.6082 34.6
5 12 30 ha=0.70 38.8710 39.5
5 12 30 c=0.5 49.3901 49.6
5 12 30 t=0.02 53.8739 54.5

Table 3.1: Comparison of Linear and Nonlinear Flutter Speeds. (t = thickness of
wing, c = chord-length of wing, ha = position of hinge axis in percent of chord)

or coalesce (which characterizes the linear flutter mechanism). Instead there is a

basic frequency (10.94 Hz) and 4 multiples of it (3 × 10.94, 5 × 10.94, 9 × 10.94

Hz), which is typical of a nonlinear system. The lowest frequency is very close to

the natural frequency of the two modes that merge to cause flutter in the outer

stiffness linear system.

3.6 Limit Cycle Switching and LCO control and

suppression

Limit cycle switching refers to forcing an aeroelastic system to jump from one limit

cycle to another, at the same airspeed, by applying a suitable excitation force,

as described in [45]. The authors of that paper observed limit cycle switching

when they re-applied an excitation signal after a LCO had been initiated. The

phenomenon was reproduced for the present work using the aeroelastic system

described earlier. Figures 3.27 and 3.28 show limit cycle switching and the shape

of the initial and final limit cycles in the phase-plane (Hancock wing with freeplay
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in the control surface). In fact, it was observed that the response of the system

could be changed from decaying to LCO by re-applying an excitation signal which,

on its own, would not be sufficient to cause LCO (see figure 3.29).

In the light of the previous analysis, the phenomenon can be explained in

energy terms. The application of the excitation signal supplies the system with

enough energy to raise its response to a higher energy (and hence amplitude)

limit cycle. In the case of figure 3.29, the small levels of response that are the

result of the first excitation sequence contain enough energy to push the system

response outside the unstable limit cycle and cause a LCO when the excitation

is re-applied. The corollary from this analysis is that, since a general excitation

signal is more likely to add energy to the motion, it is only possible to move

the response of a system to a higher energy level limit cycle (or from decaying

to LCO). In order to cause the system to jump to a lower level limit cycle (or

to decaying response), an energy-extracting excitation signal has to be applied.

Hence, the signal needs to contain elements of the system itself, i.e. to be the

result of a feedback mechanism rather than a standard function.

The easiest way of creating a feedback-type excitation signal that will extract

energy from the motion is to increase the effective damping of the system. Hence,

the signal consists of a velocity term fed back into the system, i.e.

F (t) = −FAβ̇ (3.8)

where F (t) is the excitation signal and FA is a constant to be determined. The

negative sign serves to force the excitation signal to act as additional damping

since F (t) will appear on the right-hand-side of the equations of motion. In

the context of the computer simulation, the feedback was not instantaneous but

lagged by one time-step. This should not have a significant effect if the period

of the motion is much larger than the time-step. The signal was constructed by



CHAPTER 3. NONLINEAR AEROELASTIC SYSTEMS 141

means of a control system whose basic functions were:

1. Detect the LCO

2. Calculate the amplitude of β and β̇ during the LCO

3. Calculate FA according to

FA =
amp(β̇)

amp(β)
(3.9)

where amp(β) denotes the amplitude of β

4. Form F (t) and feed it into the control surface

5. When the response levels have dropped stop the feedback

The scaling of equation 3.9 was found to be appropriate after a certain amount

of experimentation. In general FA can be higher than this value but, if it is too

high it can cause numerical instability.

An application of this procedure to the Hancock wing with control surface

nonlinearity system can be seen in figure 3.30. The first excitation signal is a

standard chirp of sufficient amplitude to cause a LCO. The second signal is applied

through the control system. An interval of 2 seconds between the detection of the

LCO and the application of the signal was imposed in order to make the process

clear.

It should be noted that, if the system is in a state of soft self-excitation, it

is impossible to bring it back into equilibrium. As soon as the excitation signal

stops the response will increase again, as seen in figure 3.31. In such a case the

procedure outlined in this section could only ensure that the system’s response

lies on the lowest amplitude limit cycle (if more than one limit cycles exist).
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3.7 Chaotic behaviour

To begin to investigate the reasons why chaotic motion occurs in aeroelastic

systems, consider the Hancock wing with freeplay in the wing pitch degree of

freedom. In the absence of a continuous restoring force in the freeplay region, it

is evident that θ = 0 (see equation A) becomes an unstable equilibrium point. If

the stiffness outside the freeplay region is high enough to prevent divergence, the

points θ = ±δ become stable equilibrium points, since the stiffness is driving the

wing towards them from outside the freeplay region and the lift from inside it.

Hence, the system changes to a double-well potential type of problem. A direct

consequence of this fact is the existence of many possible limit cycles centering

around any of the three equilibrium points, a few of which are shown in figure 3.32.

A further consequence is the existence of regions in parameter-space where the

behaviour is chaotic. The double-well potential problem has been identified as a

paradigm for chaotic behaviour of simple deterministic systems, as demonstrated

in reference [44]. In short, if the momentum in the motion is such that it brings the

wing near the edges of the freeplay region often, the system cannot decide which

point it is going to limit cycle around and, as a result, its oscillations jump from

the +δ to the −δ positions in an unpredictable fashion. These jumps are exactly

the same with those reported in [38] and [46]. The authors of [38] attempted to

explain them as the onset of flutter since, in their tests, the phenomenon occurs

just prior to flutter. However, this is not a general case since it was found in

this work that chaotic behaviour can be encountered in both stable limit cycles

(narrow band chaos) as in figure 3.33 and decaying motions as in figure 3.34

(intermittent chaos), i.e. far away from the flutter speed. In fact the presence

of the freeplay nonlinearity implies that there are two types of instability in the

system. The first type is the standard classical flutter and the second is static

divergence inside the freeplay region, caused by the fact that the stiffness inside
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the freeplay region is zero. It is this second type of instability that causes the

chaotic motion when combined with an aerodynamic instability.

Another effect which is closely associated with chaos is period doubling, which

has been identified as a route to chaos, a transitional effect [44], [52]. Period dou-

bling occurs when, by systematic variations in the value of a control parameter,

(in the aeroelastic case, it is usually the free stream airspeed) the number of

harmonic component motions (and their period) in a certain limit cycle doubles

with each variation. After a certain amount of increases in the number of periods,

the behaviour becomes chaotic. This type of behaviour was encountered in the

response of the Hancock wing with control surface model (as shown in figure 3.35,

where each loop in the phase-plane is a component motion) and was also reported

in [38].

The analysis presented above does not explain the occurance of chaos in every

aeroelastic system. The Hancock wing with freeplay in the control surface pitch

system will not become a double-well-potential-type problem. It will still exhibit

chaotic behaviour though, as seen in section 3.5. Furthermore, the chaotic region

lies at lower speeds than the divergence speed of the inner linear system. This

behaviour is explained in terms of inverse period doubling. As mentioned in

[9], there exist period doubling routes to chaos in the direction of both increasing

and decreasing airspeed. The bifurcation diagram of figure 3.23 demonstrates this

fact. Whether the period-doubling route will be in the increasing or decreasing

airspeed direction depends on the type and position of the nonlinearity in the

system.

3.7.1 Indicators and proof of chaotic response

The proof of chaos itself is a very delicate process. Moon [44] identifies two

indicators of chaos and one rigorous proof. These are



CHAPTER 3. NONLINEAR AEROELASTIC SYSTEMS 144

Chaos indicators

• A large number of apparently random peaks in the spectrum of the response

of a system.

• Fractal structure of the Poincaré diagram.

Rigorous proof of chaos

• Positive Lyapunov exponents

The first indicator is the least rigorous one. The peaks have to lie within a wide

frequency band and have a wide range of amplitudes. This phenomenon, though,

can also be observed in laminar (non-chaotic) systems as well as in systems whose

measured response contains high levels of noise. Hence, this indicator should not

be used on its own.

A Poincaré plot is a phase-plane plot where only sampled points of velocity

vs displacement are plotted. As such, any phase-plane plot is a Poincaré plot

since the points plotted, whether experimental or numerical, are always sampled.

However, if all the points sampled from a chaotic response are included in the

diagram, the result is an amorphous mass of points. If only points selected

according to a certain criterion are plotted then the result is a so-called strange

attractor (to distinguish it from sources, sinks, saddle points, limit cycles and

other normal attractors) whose main characteristic is fractal structure, i.e. that

it keeps the same essential structure at any magnification of the plot. For a

single dof system, the simplest criterion by which the points to be included in

the diagram are selected is to plot the system’s displacement vs velocity every

time the phase of the excitation signal assumes a given value [44]. For a non-

chaotic system undergoing a period-1 limit cycle the result is one single point,

for a period-2 limit cycle two points and so forth. The Poincaré diagram of a

system undergoing chaotic oscillations is a fractal strange attractor. The selection
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criterion for multi-dof systems is more complicated than that for single-dof. Moon

suggests to sample each mode at a vastly different sampling frequency. This

procedure however, has only been validated for 2-dof systems and only when

the system is experimental. In the case of a mathematical model, sampling at

frequencies which differ by orders of magnitude poses significant problems of

numerical stability. Reference [42] suggests a much simpler and more effective

sampling criterion. One of the displacements or velocities of one of the degrees

of freedom is plotted when the displacement of another degree of freedom is zero.

Figure 3.36 shows a strange attractor obtained from the chaotic response of the

Hancock wing with freeplay stiffness in the control surface using this criterion, in

this case β vs β̇ was plotted when γ = 0. Figure 3.37 is a Poincaré diagram of θ vs

θ̇ for the same system when γ = 0. Fractal structure of the Poincaré diagram is

not a rigorous proof of chaos, however, since there are no known laminar systems

that will display fractal structure, it is considered a very safe indicator.

Lyapunov exponents show how fast nearby orbits in phase-space converge or

diverge [53]. An orbit in phase-space describes a system’s evolution from time

zero (when all the state variables of the system have their initial conditions) to

time t when the data sequence stops. For example, figure 3.38 shows the time

domain variation and phase-space orbit of a system undergoing a limit cycle

oscillation but whose initial conditions lie outside the limit cycle in the phase

plane. Orbits 1 and 2 in figure 3.38 show the evolution of the system from very

similar initial conditions. The two orbits are very close together and merge on

the limit cycle. This would not happen in the case of a system undergoing chaotic

oscillations. Instead, the two orbits would diverge very quickly. For any system,

the existence of a positive Lyapunov exponent denotes rapid divergence of initially

close orbits and, hence, chaotic motion. Lyapunov exponents can also detect the

existence of any type of attractor, from limit cycles to strange attractors but
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without providing any quantitative details on these attractors and, hence, their

use in nonlinear system analysis is limited to the detection of chaos. Reference

[53] details numerical methods for obtaining Lyapunov exponents both from the

equations of motion of a system and from measured time data. It has been pointed

out though [28], that these methods fail in the presence of non-analytic nonlinear

functions such as bilinear or freeplay stiffness. The algorithm included in [53]

was used on the Hancock model with cubic stiffness in the control surface pitch

to prove that the system for which the Poincaré diagram is shown in figures 3.36

and 3.37 is indeed chaotic.

3.7.2 The relevance of chaotic motions in aeroelastic sys-

tems

Chaotic response is the least worrying of all nonlinear phenomena associated with

aeroelastic systems. Even though there is ample evidence that chaos can appear

in aeroelastic mathematical and wind tunnel models, it has not been reported

in practical aeroelastic applications (at least not to this author’s knowledge). In

fact, early reports of chaotic motion in wind tunnel models ([40] and [41]) were

not accompanied by rigorous attempts to prove chaos. Instead, only the multiple

frequency and amplitude criterion was used. In a more recent paper [48] where the

possibility of chaotic motions in wind tunnel tests of a simple wing was reported,

it was found that the Poincaré diagrams did not depict strange attractors but

amorphous blobs, consistent with the existence of high levels of noise.

As such, it could be argued that chaos in aeroelastic systems is much more

of a mathematical phenomenon, occurring during integrations of the equations

of motion, than a physical one. However, on an academic level and for the sake

of completeness, studies of nonlinear systems usually include a certain level of

chaotic analysis, if only to indicate the fact that chaos is very rarely of serious
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concern.
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3.8 Figures

Figure 3.1: Stable limit cycle

Figure 3.2: Unstable limit cycle
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Figure 3.3: Half-stable limit cycle

Figure 3.4: Bifurcation to soft self-excitation
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Figure 3.5: Bifurcation to hard self-excitation

Figure 3.6: Bilinear stiffness versus displacement
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Figure 3.7: Bilinear stiffness vs time

Figure 3.8: Freeplay stiffness versus displacement
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Figure 3.9: Cubic stiffness versus displacement

Figure 3.10: Harmonic balance scheme
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Figure 3.11: Harmonic balance scheme for freeplay in wing pitch spring

Figure 3.12: Harmonic balance scheme for bilinear wing pitch spring
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Figure 3.13: Harmonic balance scheme for freeplay in control surface pitch spring

Figure 3.14: Harmonic balance scheme for bilinear control surface pitch spring
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Figure 3.15: 2-D Parameter-Space section with Harmonic Balance results
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Figure 3.16: Total energy variation with time for nonlinear system during LCO

Figure 3.17: Total energy variation with time for linear system during flutter
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Figure 3.18: Comparison of response and total energy variation for equivalent
linearized system, low amplitude

Figure 3.19: Comparison of response and total energy variation for equivalent
linearized system, high amplitude
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Figure 3.20: Comparison of response and total energy variation for nonlinear
system, stable LCO

Figure 3.21: LCO Amplitude vs air-speed by Harmonic Balance and Integration
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Figure 3.22: 2-D Parameter-Space section
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Figure 3.23: 2-D Parameter-Space section
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Figure 3.24: Period-1 Limit Cycle (time domain and phase plane)
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Figure 3.25: Period-2 Limit Cycle (time domain and phase plane)
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Figure 3.26: Frequency domain representation of response near flutter

Figure 3.27: Jump from one limit cycle to another after second application of
excitation
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Figure 3.28: Initial and final limit cycles

Figure 3.29: Jump from decaying response to LCO after second application of
excitation
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Figure 3.30: LCO suppression by feedback excitation signal

Figure 3.31: Failure of LCO suppression for system in soft self-excitation condi-
tions
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Figure 3.32: Possible limit cycles in phase-plane

Figure 3.33: Narrow band chaos, wing pitch nonlinearity case
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Figure 3.34: Intermittent chaos, wing pitch nonlinearity case

Figure 3.35: Progression of period doubling with increasing airspeed
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Figure 3.36: Poincaré diagram of β for γ = 0
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Figure 3.37: Poincaré diagram of θ for γ = 0
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Figure 3.38: Evolution of close orbits in non-chaotic system



Chapter 4

Nonlinear System Identification

Methods

4.1 Overview of Nonlinear System Identification

The use of system identification methods to identify frequencies, dampings and

mode shapes is commonplace in the aerospace industry. Such methods are used

to analyse ground vibration test data in order to validate finite element models,

and also during flight flutter testing to track the stability of aircraft as the flight

envelope is expanded. There is a vast literature related to the identification

of linear systems and a wide range of methods have been implemented in the

aerospace field. However, the identification of systems that contain non-linearities

is not yet at a stage where an accurate model of a real full-sized structure, e.g.

an aircraft, could be estimated.

There already exist methods like the NARMAX model [54] [55], higher order

spectra [56] and the restoring force method which can identify nonlinear aeroelas-

tic systems given the inputs and outputs. However, these methods have still not

170
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reached the level of maturity necessary to allow their application to general aeroe-

lastic systems. Both NARMAX and the higher order spectra method are very

inefficient when it comes to identifying systems with discontinuous nonlinearities,

such as bilinear stiffness or freeplay, which are common in aeroelastic systems.

The restoring force method does not share this limitation, but its application to

multi degree of freedom systems is still problematic.

A further consideration that must be taken into account is whether the iden-

tification process is parametric. The analysis of an identified system is much

simpler when the terms in the model resulting from the identification process are

parametric, i.e. model explicitly the non-linearities present in the system. How-

ever, both NARMAX and the restoring force method yield better results when

using non-parametric as well as parametric terms. Hence the resulting model

contains terms without any physical meaning.

The effects of structural, aerodynamic and, in particular, control system non-

linearities upon the aeroelastic behaviour of aircraft is becoming of increasing

concern. Recent emphasis has been devoted to the study and prediction of

limit cycle oscillations (LCO). Although unsteady computational fluid dynam-

ics (CFD) codes are being developed to model non-linear aeroelastic behaviour,

their efficient use is a long way off, and for the foreseeable future there will be a

requirement to estimate the parameters of non-linear systems.

This part of the work examines one of the most popular nonlinear system

identification techniques, NARMAX and introduces a new method, developed by

the author, Constant Level Identification.

4.2 NARMAX

In section 2.2.6 the ARMA representation of a linear aeroelastic system was

outlined. Here, it will be shown that this representation can be extended to
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include nonlinear systems. Consider a single degree of freedom system with a

cubic stiffness non-linearity (Duffing Oscillator), whose equation of motion is

given by

mÿ + cẏ + k1y + k2y
3 = u(t) (4.1)

By applying the central difference expressions for the first and second derivatives

(see Appendix D) equation 4.1 becomes

(
m

∆t2
+

c

2∆t

)
yi+1 +

(
k1 − m

∆t2

)
yi +

(
m

∆t2
− c

2∆t

)
yi−1 + k2y

3
i = ui (4.2)

where ∆t is the time increment and i denotes a time instance. By re-arranging

equation 4.2 and regressing all the terms by one time step the following relation

is obtained

yi =


m − k1∆t2

m +
c∆t

2


 yi−1+




c∆t

2
− m

m +
c∆t

2


 yi−2+


 −k2∆t2

m +
c∆t

2


 y3

i−1+


 ∆t2

m +
c∆t

2


 ui−1

(4.3)

Equation 4.3 is, in essence, the NARMAX representation of the Duffing Os-

cillator. It contains all the terms of the ARMA model of the linear case plus a

cubic order term. A more general representation of equation 4.3 would be [57]

yi = F (3)(yi−1, yi−2; ui−1) (4.4)

where F (3) denotes a function of up to third order combinations of the terms in

brackets, i.e. terms of the form

yi−1, yi−2, ui−1, y
2
i−1, yi−1yi−2, yi−1ui−1, . . . , y

3
i−1, yi−1y

2
i−2, y

2
i−1ui−1, . . .

Of course, if it is known that the nonlinearity in the system is, say, cubic,

then only the y3
i−1 term need be retained. For the case of a general multi-dof
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system with any number of general nonlinearities, the NARMAX representation

becomes

yi = α + F (l)(yi−1, . . . , yi−ny ; ui−1, . . . , ui−nu) (4.5)

where α is a constant, l is the order of nonlinearity ny is the maximum regression

in y and nu is the maximum regression in u. This polynomial representation has

been shown to adequately describe a wide variety of nonlinear systems [55], even

though F can be any nonlinear function. Usually the term NARMAX model

defines a model of the type in equation 4.5 with the minimum ny, nu and l values

that can accurately describe the original system [54].

4.2.1 Noise model

The NARMAX description presented in the previous section is only suitable for

application on perfect response data. As with the ARMA method (section 2.2.6),

NARMAX modelling suffers in the presence of measurement errors. To overcome

this problem, Billings has suggested the estimation of a noise model, a procedure

to be carried out simultaneously with the estimation of the NARMAX model.

The noise model proposed by Billings [54] is of the form

yi = α + F (l)(yi−1, . . . , yi−ny ; ui−1, . . . , ui−nu ; εi−1, . . . , εi−nε) + εi (4.6)

where εi is the prediction error sequence, defined by

εi = yi − ŷi

ŷi being the estimate of yi obtained by using the first estimates of the NARMAX

model terms. Due to the nonlinearity of the system the noise can be both additive

and multiplicative and, hence, it is included in the linear and nonlinear terms.
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The noise model is defined as the collection of terms containing ε. What remains

is the actual NARMAX model, also termed the process model.

4.2.2 Calculation of terms and coefficients

The simplest way of calculating the NARMAX model would be to choose the

order of nonlinearity, l, as well as the regressions ny, nu and nε and then to

apply equation 4.6 to measured data of input and output using a least squares

procedure. This is not recommended for two reasons. Firstly, the object of a

NARMAX identification should be to determine which terms should be included

in the model as well as to determine the coefficients. For example, equation 4.4

contains many more terms than is necessary to describe the Duffing oscillator

(equation 4.3). An efficient NARMAX estimation algorithm should be able to

exclude all these unnecessary terms. Secondly, errors can become arbitrarily large

if the least squares matrix is close to singular, which can occur if unnecessary

terms are included [57].

The estimation method used throughout the present work is the forward re-

gression orthogonal least squares algorithm detailed in [58] and [54]. The forward

regression is used to evaluate which terms are needed in the NARMAX expan-

sion of a given system and the orthogonal least squares are used to prevent the

large errors described in the previous paragraph. The basic features of the algo-

rithm will now be described. Equation 4.6 can be written as the sum of all the

NARMAX terms

y(i) =
nθ∑

k=1

pk(i)θk + ε(i) (4.7)

where the constant dc term, α, has been neglected, pk(i) are the NARMAX

coefficients, θk are the NARMAX terms and nθ is the total number of terms.

The simple least squares solution can be obtained by solving equation 4.7 for
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i = 1, 2, . . . , ni, where ni is the number of data points used in the modelling

process. The orthogonal least squares solution can be obtained by solving the

equivalent equation

y(i) =
nθ∑

k=1

gkwk(i) + ε(i) (4.8)

where wk(i) are orthogonal. The forward regression algorithm begins with the

estimation of process terms only. All process terms pk(i) are considered as can-

didates to be the first term in the NARMAX expansion. For k = 1, . . . , nθ the

following quantities are calculated

wk
1(i) = pk(i)

ĝk
1 =

ni∑
i=1

wk
1(i)y(i)

ni∑
i=1

(wk
1(i))

2

εRRk
1 =

(ĝk
1)

2
ni∑

i=1

(wk
1(i))

2

ni∑
i=1

(y(i))2

(4.9)

where wk
1(i) is the kth candidate for w1(i), ĝk

1 is the estimated coefficient of wk
1(i)

and εRRk
1 is the error reduction ratio for wk

1(i), i.e. a quantity expressing the

reduction in error caused by the inclusion of term wk
1(i) to the model. The error

reduction ratios for each candidate term are calculated and the term with the

highest εRR is chosen to be the first term, w1(i). All the remaining terms are

again considered as candidates to be the second term, w2(i), and subsequent

terms. When choosing the tth term, the following quantities are evaluated for

each remaining candidate
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wk
t (i) = pk(i) −

t−1∑
λ=1

αλkwλ(i), where αλk =

ni∑
j=1

wλ(j)pk(j)

ni∑
j=1

(wλ(j))
2

ĝk
t =

ni∑
i=1

wk
t (i)y(i)

ni∑
i=1

(wk
t (i))

2

εRRk
t =

(ĝk
t )2

ni∑
i=1

(wk
t (i))

2

ni∑
i=1

(y(i))2

(4.10)

Again, the term yielding the highest error εRRk
t is chosen to be term wt(i).

The forward regression algorithm is terminated when the highest error reduction

ratio is less than a chosen limit, i.e.

max(εRRk
t ) ≤ Cd

In that case, there is no tth term, the total number of terms being t−1. The limit

value Cd is chosen according to the peculiarities of the data under investigation.

Typical values suggested by Billings et al are 0.001 ≤ Cd ≤ 0.5. The forward

regression algorithm determines which of the nθ terms included in the original

model, equation 4.7, are necessary to model a given set of response data. It also

provides estimates of the coefficients, ĝk, of the orthogonal terms wk(i). The first

estimate of the errors contained in the NARMAX model is given by

ε̂(i) = y(i) −
nθ∑

k=1

gkwk(i) (4.11)

The values of ε̂(i) are used to apply the forward regression algorithm to the noise

model and determine which terms should be included in the model. The selected

terms are added to the model and equation 4.11 is used to recompute the residuals
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only, this time the summation is from k = 1 to nθ+ number of noise terms. Then,

the orthogonal estimator is re-applied for each of the noise terms and the process

is repeated until the parameters converge to constant values.

The NARMAX methodology is very sensitive to a number of factors. These

are

• The choice of order of nonlinearity, l. The total number of terms in the

model of equation 4.5 increasing combinatorially with increasing order of

nonlinearity. It follows that it is advantageous to know what the order of

the nonlinearity to be identified is in order to avoid unnecessary calcula-

tions. A further corollary is that nonlinearities that do not admit an exact

polynomial fit can not be identified by a NARMAX model. Discontinu-

ous functions such as pitch stops or functions with discontinuities in slope

such as bilinear and freeplay stiffness require a large number of polynomial

terms to be fitted exactly and, hence, NARMAX identification becomes

impractical.

• The choice of regressions ny, nu and nε. Again, the larger the regressions

the larger the number of terms that need to be investigated. Billings et

al [54] suggest that it is possible to obtain a first estimate of the order of

regressions by attempting a linear NARMAX fit first (i.e. with l = 0).

• The choice of Cd. This strongly depends on the time step (or sampling

frequency) of the measured data. Generally, the smaller the time step, the

smaller Cd needs to be. However, Cd also depends on the properties of the

system under investigation.

• The number of data points used in the identification. This number should

generally be between 500 and 1000 points. In the experience of this au-

thor, increasing the number of points to more than 1000 does not alter the
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resulting NARMAX fit.

4.2.3 Application of a NARMAX model to aeroelastic

systems

The damping and stiffness of aeroelastic systems varies with free-stream airspeed.

Consequently, identifying an aeroelastic model at a particular velocity using a

NARMAX polynomial is inadequate, since the system will change at a different

velocity. In order to demonstrate the application of NARMAX to such a system,

the system in equation 4.1 will be modified. An aeroelastic system contains stiff-

ness and damping contributions by aeroelastic forces and systems which depend

on velocity. Aerodynamic damping is proportional to the velocity and aerody-

namic stiffness is proportional to the square of the velocity. Hence, an aeroelastic

form of equation 4.1 would be

mÿ + c(1 + α1V )ẏ + k1(1 + α2V
2)y + k2y

3 = u(t) (4.12)

where V is the velocity and α1, α2 are coefficients. Using the analysis detailed

previously, the discrete-time difference representation of the system is given by

yi+1 =




2 − ∆t2k1(1 + α2V
2)

m

1 +
c(1 + α1V )∆t

2m


 yi +




c(1 + α1V )∆t

2m
− 1

1 +
c(1 + α1V )∆t

2m


 yi−1

−




∆t2k2

m

1 +
c(1 + α1V )∆t

2m


 y3

i +




∆t2

m

1 +
c(1 + α1V )∆t

2m


 ui (4.13)

In other words, each coefficient is a fraction of polynomials of the form

θi =
1 + αV + βV 2

γ + δV
(4.14)
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where the unity in the numerator is a result of normalisation with the denomi-

nator.

The identification process for such a system must be repeated at four dif-

ferent velocities, in order to estimate the coefficients in the polynomial fraction.

More velocities can be used to minimise any errors using a least squares process.

However, as the velocity is varied, new characteristics of the system may become

evident in the measured output data requiring different terms in the NARMAX

expansion for successful identification. In this case the final model should include

all the terms that appear at all four velocities, even if some of these terms are

negligible at particular velocities.

In essence, the NARMAX model of an aeroelastic system is not a set of

coefficients and their corresponding significant terms but many sets of coefficients

of polynomial fractions and the corresponding significant terms.

As an example, the following system was tested to validate the algorithm

presented in this section

ÿ + 5(1 + 1.4V )ẏ + 500(1 + 0.8V 2)y + 1600y3 = u(t)

with V = 1, 2, 3, 4 and a time step, dt = 0.001. The input used was a 75%

burst chirp , with frequencies between 1 and 10 Hz. The resulting coefficients

are tabulated in table 4.1.

term α β γ δ

True yi 0 -0.0002 0.5014 0.0018
Estimated yi 0.0000 -0.0002 0.5014 0.0018
True yi−1 -0.0035 0 -1.005 -0.0035
Estimated yi−1 -0.0038 0.0000 -1.0050 -0.0032
True y3

i 0 0 -626.5625 -2.1875
Estimated y3

i 0.0006 -0.0000 -626.5625 -2.2832
True ui 0 0 1.0025×106 3.5×104

Estimated yi 0.0003 -0.0001 1.0025×106 3.2757×104

Table 4.1: True and estimated parameters of NARMAX coefficients
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Subsequently, the coefficients of the NARMAX model were evaluated for V = 5

and the response calculated. Figure 4.1 shows the agreement between the model

and actual system responses for V = 5. It should be noted though that the

variation of the system with airspeed causes some difficulties with the NARMAX

methodology. As noted already, the various parameters used in the NARMAX

estimation procedure are strongly dependent upon the particular system and set

of data. Changes in the system under investigation can necessitate changes in

these parameters. For the simple example presented above it was found that, for

high airspeeds, the value of Cd had to be decreased.

4.3 Constant Level Identification method

This section presents a method developed during the course of the present research

for the identification of non-linear multiple degree of freedom (DOF) systems with

any type of non-linearity [59]. Although the method is general, the application

described here and in [59] is suited particularly to the identification of aeroelastic

systems. A number of simulated examples, as well as an experimental application,

are employed to demonstrate the effectiveness of the method. Reference [60] gives

details of the application of the method in conjunction with gust load prediction

techniques.

4.3.1 A simple application

Consider the Duffing Oscillator and assume that the position and type of the

non-linearity, and also the number of modes (one) are known. The equation of

motion for this system is

mÿ + cẏ + k1y + k2y
3 = ug(t) (4.15)
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where m is the mass, c is the damping coefficient, k1 is the linear stiffness co-

efficient and k2 is the non-linear stiffness coefficient. Since it is known that the

non-linear term depends on y, the identification process begins with isolating

time-instances where y assumes a certain value, as shown in figure 4.2. At this

level, the non-linear term has a constant value due to its dependence on y. Thus,

the equation of motion for the system can be written as




ÿ(t1) ẏ(t1) 1

ÿ(t2) ẏ(t2) 1

...
...

...

ÿ(tn) ẏ(tn) 1







m

c

N




=




ug(t1)

...

ug(tn)




(4.16)

where N = k1y + k2y
3 and t1, . . . , tn are the instances in time that correspond to

the chosen response level. Notice that y itself does not appear in the equations

since, having a constant value, it would render the left hand side matrix singular.

Equation 4.16 can be solved using a least squares process to give m, c and N .

The equation of motion can then be re-arranged in the form

N(t) = −mÿ − cẏ + ug(t) (4.17)

to give the values of N at all time-steps.

The result of the identification process is the values of the mass and damp-

ing coefficient as well as the stiffness for all time-steps. A characteristic of this

approach, that differs from others, is that the linear and non-linear parts of the

stiffness have been merged together in one function, N . The response of the sys-

tem to any other input can be found through the use of this combined function.

However, should the elements of N need to be determined, N can be re-written

as

N = k1y + N̂
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Then, if the type of nonlinearity in N̂ is known, the linear and non-linear parts can

be separated by means of curve-fitting. For instance, if for the present example

it is known that the nonlinear term is cubic then it will also be known that

N(t) = k1y(t) + k2y(t)3

Discretizing for the jth level,

Nj = k1yj + k2y
3
j

and, expanding for nj levels,




N1

N2

...

Nnj




=




y1 y3
1

y2 y3
2

...
...

ynj y3
nj







k1

k2




which can be solved to find the unknowns, k1, k2.

Alternatively, if the nonlinear function, N̂ , is unknown but differentiable then

it can be split into the linear and nonlinear part by differentiating it twice with

respect to y, which eliminates the linear part. If the result is then integrated

while setting the constants of integration to zero, the purely nonlinear part of N

is obtained, i.e.

N̂ =
∫ ∫ d2N

dy2
dydy (4.18)

Subtracting N̂ from N gives the linear stiffness variation and a linear curve fit will

yield the linear stiffness coefficient. It should be noted though, that differentiation

and integration introduce additional numerical errors.

To illustrate the complete procedure numerically, the excitation force, ug(t),

was taken to be a sine sweep and the system parameters were set at m = 1.2,

c = 0.7, k1 = 5.8 × 103 and k2 = 1.16 × 109. Figure 4.2 shows the constant level
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displacement points that were used to start the analysis. Parameter estimates of

m = 1.199988, c = 0.700016, k1 = 5.799974 × 103 and k2 = 1.159989 × 109 were

found. Figure 4.3 shows the true and estimated cubic stiffness values. It can be

seen that for this simple case, very good quality estimates (accurate to 4 decimal

places) were obtained.

4.3.2 Procedure

The previous example demonstrated the rationale behind the proposed method

however, in order to apply it to more realistic systems, various refinements are

needed. The first crucial refinement is to multiply the equations of motion

throughout by the inverse of the mass matrix, which has the effect of ensuring

that the excitation term appears in all the equations of motion and also reduces

the sensitivity to noise and increases the speed of the computation by reducing

the number of unknowns that need to evaluated. Thus the equations become

q̈ + M−1Cq̇ + M−1Kq = M−1F (4.19)

where M, C and K are the mass, damping and stiffness matrices respectively, q

is the displacement vector and F is the excitation force vector, but now M−1F

must also be treated as an unknown. The only term in equation 4.19 which

is completely known is the acceleration q̈. As a consequence, equation 4.16 is

replaced by
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q̇1(t1) . . . q̇m(t1) q1(t1) . . . qm(t1) fx(t1) 1

q̇1(t2) . . . q̇m(t2) q1(t2) . . . qm(t2) fx(t2) 1

...
...

...
...

...
...

...
...

q̇1(tn) . . . q̇m(tn) q1(tn) . . . qm(tn) fx(tn) 1



×




Ĉi1

...

Ĉim

K̂i1

...

K̂im

F̂i

Ni




=




q̈i(t1)

...

q̈i(tn)




(4.20)

for i = 1, . . . ,m, where m is the number of modes. K̂ii, Ĉii, F̂i are the various

elements of the matrices K̂ = M−1K, Ĉ = M−1C and F̂ = M−1F . In this exam-

ple N is a vector containing all the nonlinearities in the system. Any nonlinear

terms from the damping or stiffness matrices are moved to N together with their

associated linear terms (as in the previous case of N = k1y + N̂), so that all the

elements in the matrices are linear or zero.

In equation 4.16, y was not included at all to avoid rendering the equations

singular. This should also be the case in equation 4.20, however, since the po-

sition of the non-linearity and the variable it depends on are not known, it is

impossible to pre-determine which of q1, . . . , qm, q̇1, . . . , ˙qm should be kept con-

stant and excluded. Even the number of modes ,m ,is unknown for a real system,

however, preliminary analysis would give an indication via Frequency Response

Function (FRF ) plots.

The number and types of non-linearities present in each mode are not known,

hence the procedure becomes speculative at this point. It is first assumed that

there is a non-linearity depending on, say, q1 (i.e. a stiffness non-linearity or

Coulombic friction). Then points where q1 has a constant value are identified in

the output. Assuming that enough such points have been identified in the output
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of the system, each of equations 4.20 is solved using a least squares process, each

yielding the elements of one line of the mass, structural damping and structural

stiffness matrices as well as the value of the nonlinear term. When all the sets of

equations are solved, the equivalent of equation 4.17

N = −q̈ − Ĉq̇ − K̂q + F̂ (4.21)

(where the column associated with q1 in K̂ is made up of zeros) is employed to

calculate the values of the nonlinear terms for every instant in time, since all the

other matrices are now known.

Since the equations of motion have been multiplied throughout by the inverse

of the mass matrix there will be non-linear terms in each of the m equations 4.21,

even if there is only one non-linearity in one mode. The non-linear terms, Ni, are

then plotted against q1. If the plots are single-valued functions of q1, as in fig-

ure 4.4, then the non-linearity was assumed to depend on the correct variable and

the mode has been identified correctly. If the curve has a phase-plot-type shape,

as in figure 4.5, then it means that the non-linearity depends on some other vari-

able and, hence, the procedure needs to be repeated from the beginning, keeping

another one of q2, . . . , qm, q̇1, . . . , ˙qm constant until a successful identification is

obtained. Finally, after the nonlinear terms have been evaluated for all instants

in time, they can be curve-fitted to yield continuous functions. Alternatively, the

location of the nonlinearity can be obtained using a Hilbert transform approach

[61].

In order for the identification process to succeed, the input and output data

need to be interpolated to obtain a set of instances in time where the desired

variable has exactly the same value. This value needs to be near the equilibrium

level so that enough such points can be obtained. Cubic interpolation has been

found quite adequate, yielding sets of points that are almost exact solutions to



CHAPTER 4. NONLINEAR SYSTEM IDENTIFICATION METHODS 186

the equations to the equations of motion. The excitation force also needs to be

such that it excites all the important features of the systems, including the non-

linearity. Sine-sweep or banded random excitation are suitable since they allow

several frequencies of excitation to be applied to the system in one test.

A further consideration regarding the proposed method concerns the effect of

performing the identification procedure at various levels and not just the one.

This was tried for a few very simple test cases but was not found to improve

the accuracy of the resulting system estimates. However, in the case where a

significant amount of noise is present in the response data, it is suggested that

using a large number of levels would have a beneficial effect, since it would reduce

the effect of the noise.

Finally, it should be noted that the method will only identify systems which

contain non-linearities dependent upon one variable. For instance, it will identify

a wing with friction and freeplay in the wing-root pitch degree of freedom, however

it will not identify a system with freeplay both in the wing-root pitch and the

wing-root heave degree of freedom. This limitation comes from the fact that

the equations of motion are identified as if they had been multiplied throughout

by the inverse of the mass matrix. Hence, every non-linearity that exists in the

system appears in the equation for every mode. Since the method works on

the assumption that it is possible to keep the non-linear term in each equation

constant, two or more non-linear terms that depend on two different variables

will cause it to fail. To make the application of the method clearer, the algorithm

is presented in graphical form in figure 4.6.

4.3.3 A more complex application

The method is here demonstrated by applying it to the Hancock model with

bilinear control surface stiffness. The fact that the system is numerical implies
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that there is no measurement error, however, numerical errors are introduced by

the process of differentiation of the response (introduction of higher derivatives),

by interpolation and other effects. In order to apply the identification routine

usefully, the time step needs to be sufficiently small. The input used here was a

sine sweep. The first step is to choose the number of modes. Because the model

is simple, wing heave, γ, wing pitch, θ and control surface pitch, β are the three

DOF required for a successful identification.

According to the procedure outlined in the previous subsection, the next step

is to assume that there is a non-linearity which appears in every equation. The

search procedure is applied and results in the location of the nonlinearity in

the control surface pitch degree of freedom. Equations 4.20 are solved and the

resulting identified damping matrix was

Ĉid =




0.0381 −0.0700 0.0100

−0.1665 0.1293 −0.0387

0.2000 −0.2763 0.1159




compared to the actual damping matrix of

Ĉ =




0.0381 −0.0700 0.0100

−0.1665 0.1292 −0.0387

0.2000 −0.2763 0.1158




The identified stiffness matrix was

K̂id =




16.7993 −12.2321 0.0000

−74.6637 225.4430 0.0000

74.6637 −481.9899 0.0000




and the actual stiffness matrix was

K̂ =




16.7994 −12.2321 0.0259

−74.6637 225.4430 0.0738

74.6637 −481.9898 −0.3048
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The two sets of matrices are virtually identical apart from the last column of

K̂ which is zero in the identified case. This is due to the fact that the non-linearity

appears in all three elements of that column and the identification process merges

the linear and nonlinear parts of these elements, as in the earlier example where

N = k1y + k2y
3. However, unlike the case of cubic stiffness, the bilinear function

is discontinuous and, therefore, can not be differentiated. Additionally, since it

is linear in parts, Ni cannot be fitted by least squares as the sum of a linear and

a bilinear function. Hence, separating the linear and nonlinear parts of Ni is not

as straightforward as in the previous example.

The problem can be partly solved by considering the fact that the linear part

of Ni is made up of a structural and an aerodynamic term. Aerodynamic stiffness

terms depend on the square of the free stream velocity [18]. Hence

Ni(V, β) = (ks + kaV
2)β + N̂i(β) (4.22)

where V is the free-stream velocity, ks is the structural contribution and ka is the

aerodynamic contribution. Since the purely nonlinear term is structural, N̂i does

not depend on V . By performing identifications at two different airspeeds, ka

can be evaluated, however the linear and nonlinear structural terms will remain

merged in a new nonlinear function equal to ksβ + N̂i(β). Consequently, it is

possible to isolate the aerodynamic contribution to the linear part of the system’s

stiffness but not the structural one.

The best test of the accuracy of the method is to use the new matrices,

together with the nonlinear terms obtained to solve the identified model and

compare its response to that of the actual system. The nonlinear terms are

handled as lookup tables since their discontinuities prohibit the use of large scale

interpolation or curve-fitting.
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Figure 4.7 shows the percentage error in the identification of the control sur-

face pitch response. The peaks occur where the response is very close to zero,

otherwise the error is small. The comparison between the actual nonlinear term

in wing heave and that produced by the identification method can be seen in fig-

ure 4.8 which shows excellent agreement. Figure 4.9 shows the nonlinear surface

for the same degree of freedom, i.e. an equivalent of the restoring force surface

given by the restoring force method [62]. In figures 4.10 and 4.11 the agreement

between true and identified freeplay terms and the freeplay nonlinear surface are

plotted, respectively, again showing very good comparison.

4.3.4 Identifying hysteresis-type nonlinearities

Hysteresis is characterized by the fact that the response lies on one path while

increasing and on another one while decreasing [29]. Hence, hysteresis-type non-

linearities can be easily identified by the proposed method with a slight modifi-

cation. When isolating response levels, only points in the response which lie on

the level but have also got a first derivative with respect to time of the same sign

can be used. This is demonstrated in figure 4.12.

The simple single-degree-of-freedom system presented earlier but with hys-

teretic stiffness was identified successfully using the proposed method. For a

particular test case, the values of the parameters were m = 1.2, c = 0.7 and

k = 5.8 × 103. The identified values were m = 1.203944, c = 0.709445 and

k = 5.813631 × 103. The accuracy of these results should be compared to the

accuracy of the results at the end of section 4.3.1. The errors in the hysteresis

case are larger because the identification process is split in two parts, one part

using constant level points with positive first derivative and one part using points

with negative first derivative. Figure 4.13 shows the hysteretic stiffness variation

with y both for the actual system and the identified one. Figure 4.14 shows the
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percentage error.

4.3.5 Identification of large systems

A real system will contain a large number of modes and the identification of

the entire system will be difficult to perform accurately. So, it is of interest to

determine whether the proposed method could deliver acceptable results when

less modes are used in the identification procedure than there are in the real

system.

A second mathematical model of a wing was developed, this time without a

control surface but with a multi-mode Rayleigh-Ritz series modelling the vibra-

tion of the wing. The two wing-root rigid modes (wing-root pitch and heave) were

retained as a mechanism of introducing nonlinearities. Since in order to identify a

nonlinear system the modes that contain the nonlinearities need to be identified,

the two rigid modes always need to appear in the identification process.

The results presented in figure 4.15 are for a 5 degree-of-freedom rectangular

wing with bilinear stiffness in wing-root pitch. The Rayleigh-Ritz series contains

two bending and one torsional mode. The system was identified using models

of increasing complexity from 2 degrees of freedom to 5. Figure 4.15 clearly

shows that the quality of the identification deteriorates with decreasing disparity

between the number of modes in the actual system and the number of modes

used in the identification process. However, even in the 2-mode case, the type

and location of the nonlinearity were identified accurately.

4.3.6 Dealing with noise

It has been shown that the proposed identification method yields accurate re-

sults when applied to systems containing various types of nonlinearity and with
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varying numbers of degrees of freedom. However, all the systems used to vali-

date the method were mathematical models and, hence, their measured response

signals were noise-free. In order to obtain a successful identification using re-

sults corrupted with noise a further refinement has to be applied to the method.

The identification process has to be simultaneously performed at a number of

response levels so that errors incurred at one level due to noise corruption can be

counteracted. Hence equation 4.20 becomes


q̇1(t11) . . . q̇m(t11) q1(t11) . . . qm(t11) fx(t11) 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
...

q̇1(tn1) . . . q̇m(tn1) q1(tn1) . . . qm(tn1) fx(tn1) 1 0 . . . 0

q̇1(t12) . . . q̇m(t12) q1(t12) . . . qm(t12) fx(t12) 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

q̇1(tn2) . . . q̇m(tn2) q1(tn2) . . . qm(tn2) fx(tn2) 0 1 . . . 0
...

...
...

...
...

...
...

...
...

...
...

q̇1(t1l) . . . q̇m(t1l) q1(t1l) . . . qm(t1l) fx(t1l) 0 0 . . . 1
...

...
...

...
...

...
...

...
...

...
...

q̇1(tnl) . . . q̇m(tnl) q1(tnl) . . . qm(tnl) fx(tnl) 0 0 . . . 1




×




Ĉi1

...

Ĉim

K̂i1

...

K̂im

F̂i

Ni1

...

Nil




=




q̈i(t11)
...

q̈i(tn1)
...

q̈i(t1l)
...

q̈i(tnl)




(4.23)

where l is the number of levels used.

Multi-level identification in the absence of noise gives equally acceptable re-

sults to single-level identification, as shown in figure 4.16. However, in the pres-

ence of significant amounts of noise, single-level identification fails. The noisy
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case was simulated by corrupting the responses of the Hancock model with ran-

dom noise with a normal distribution. The identification process was then applied

at 20 levels yielding an identified system. The agreement between the responses

of the identified and the actual (noise-free) system was acceptable, as indicated

by figure 4.17, where the identified and true nonlinear terms compare favor-

ably. The identified system was obtained from data containing noise levels of 5%

rms(signal)/rms(noise).

4.3.7 Identifying systems with more than one nonlinearity

Systems with more than one nonlinearity can be identified using the Constant

Level method with one major modification. The equations of motion can not

be identified as having been multiplied throughout by the inverse of the mass

matrix, since such an operation introduces more than one nonlinear function in

each of the equations. Hence, the mass matrix has to be identified separately.

This calculation can be accomplished using the method in [63]. The approach

was applied to the Hancock model with freeplay nonlinearities in all three degrees

of freedom. Figure 4.18 shows all three actual and identified nonlinearities.

4.4 Experimental validation

The Constant Level and NARMAX identification methods were tested on a simple

experimental system with two degrees of freedom, shown in figure 4.19. Each

mass was independently supported by a couple of cantilever steel plates. The

two masses were attached to each other by a coupling spring. The nonlinearity

was cubic stiffness, approximated by a steel ruler attached to mass 2. Each mass

was independently excited by means of a shaker driven by a signal generator, the

excitation signal being measured by means of a force gauge. One accelerometer
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on each mass measured the acceleration.

The excitation signals used for the experiment were random with wide fre-

quency content. This choice was governed by the limitation of the data acquisition

software which could not generate chirp signals without significant programming

effort from the part of the user. A number of preliminary tests were performed

at low excitation amplitudes and wide frequency bands. The FRFs of the system

revealed two natural frequencies, at 22.8 Hz and 25.9 Hz. This initial series of

tests also revealed that the system was substantially linearised at low excitation

levels.

4.4.1 Identification by the CL method

The Constant Level identification method was applied to the low excitation data.

The first step was to idealize the steel ruler in figure 4.19 as a massless spring,

which is a valid simplification since the mass of the ruler was much lower than

that of Mass 1 or Mass 2. The acceleration data was integrated in the frequency

domain to yield the velocities and displacements. It was known that the nonlin-

earity was attached to mass 2, hence, for the initial application of the method,

the displacement of mass 2 was held constant. This approach yielded linearised

nonlinear terms, as seen in figures 4.20 and 4.21. The identified matrices were:

Cid =


 5.8437 −0.5241

−0.3438 4.4409


 Kid = 104


 2.3726 0

−0.3121 0




Fid =




2.8331

2.7560




When the CL method is applied to linear (or almost linear) systems, the choice

of which of the responses to keep constant is not important; the system will be

identified correctly either way. To investigate this property, the method was re-

applied, this time keeping the mass 1 displacement constant. The nonlinear terms
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were again identified as linear and the identified matrices were:

Cid =


 5.7420 −0.5065

−0.3717 4.4824


 Kid = 104


 0 −0.3139

0 2.3568




Fid =




2.8364

2.7660




i.e., almost identical to the previous case. The validity of the identified model

was tested by calculating its response to the same excitation signals that were

used on the experimental system. Figures 4.22 and 4.23 show good agreement

between true and identified accelerations.

In order to obtain visibly nonlinear results from the experimental system, the

excitation amplitude was increased to the limits allowed by the instrumentation

and the excitation frequency band was reduced to between 20 and 30 Hz, so

that more of the excitation energy affected the two modes. The sampling inter-

val was decreased to 0.001 s in order to increase the quality of the data. The

CL identification was carried out at many levels, as described in section 4.3.6.

Table 4.2 shows the percentage errors in predicted and measured acceleration

obtained with increasing number of levels. The percentage errors were obtained

as e = 100 × rms(ai)/rms(ae), where e denotes the error, ai is the acceleration

predicted by the identified model, ae is the experimental acceleration signal and

rms denotes root-mean-square value.

Number of levels % Error in Acceleration
Mass 1 Mass 2

1 4.44 4.60
2 3.73 3.94
4 3.76 3.85
6 3.77 3.92
8 3.76 3.94

Table 4.2: rms errors in prediction of response by CL method

Hence, the 4-level case was chosen. Figures 4.24 and 4.25 show the identified
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nonlinear term variation plotted against the displacement of mass 2. The curve

in figure 4.24 is still linear but figure 4.25 shows a slightly cubic variation. The

identified matrices were:

Cid =


 5.5302 −0.4777

−0.4023 4.1891


 Kid = 104


 2.2825 0

−0.3093 0




Fid =




1.5603

2.7629




Despite the more pronounced nonlinearity of the data, the damping matrix and

the first column of the structural matrix are still linear and should be almost

identical to the results presented earlier. The small deviations are due to the

lower levels of uncertainty in the second set of results, brought about by the lower

time step. The fact that the ’nonlinear’ term in mass 1 is still linear (figure 4.24)

is due to the diagonality of the mass matrix. The system was identified as if it

had been pre-multiplied by the inverse of the mass matrix but, since the inverse

is also diagonal, the nonlinearity did not appear in the equation for mass 1. The

linear part of the stiffness matrix was shown to be nearly symmetrical during

the low excitation tests. This fact was corroborated by curve-fitting the curve in

figure 4.24 by a 1st degree polynomial. The resulting polynomial was

f(y2) = −0.3081 × 104y2 − 0.0184

Substituting the slope of the polynomial in the stiffness matrix yields the com-

pleted equations of motion.


 1 0

0 1







ÿ1

ÿ2


 +


 5.5302 −0.4777

−0.4023 4.1891







ẏ1

ẏ2


 +

104


 2.2825 −0.3081

−0.3093 0







y1

y2


 +




0

fn(y2)


 =




1.5603f1(t)

2.7629f2(t)


 (4.24)
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where y1, y2 are the displacements of mass 1 and mass 2, respectively, f1(t) and

f2(t) are the excitation sequences applied to masses 1 and 2 and fn(y2) is the

nonlinear function. The latter can be estimated by curve-fitting figure 4.25 by a

cubic polynomial:

fn(y2) = 1.3036 × 109y3
2 − 5.7977 × 105y2

2 + 2.2555 × 104y2 − 0.1069 (4.25)

Note that the first order term in the expression for fn is approximately equal

to term K(1, 1), signifying that all the linear stiffness on mass 1 is provided by

the cantilever spring. The displacement y2 is of order O(10−3) and fn is of order

O(10). The terms in equation 4.25 are of order:

y3
2 : O(1)

y2
2 : O(10−1)

y1
2 : O(10)

y0
2 : O(10−1)

Hence, since the 0th and 2nd order terms can be neglected and the 1st order term

is due to the linear cantilever springs, the cubic stiffness caused by the steel ruler

is given by Kcubic = 1.3 × 109y3
2, and the equations of motion can be re-written

as 
 1 0

0 1







ÿ1

ÿ2


 +


 5.5302 −0.4777

−0.4023 4.1891







ẏ1

ẏ2


 +

104


 2.2825 −0.3081

−0.3093 2.2555







y1

y2


 +




0

1.3036 × 109y3
2


 =




1.5603f1(t)

2.7629f2(t)




(4.26)

This equation was verified by calculating its response to the same excitation

signals that were used on the experimental system, see figures 4.26 and 4.27,

which compare the identified and actual accelerations. The comparison is very
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good, the rms error being 3.76% for mass 1 and 3.85% for mass 2, as already

shown in table 4.2.

4.4.2 Identification by NARMAX

The experimental system of figure 4.19 is a multi-input, multi-output (MIMO)

system. However, to the knowledge of this author, there is no MIMO version

of NARMAX. Hence, in order to apply the NARMAX technique to the system,

exciter 1 in figure 4.19 was disconnected. The acceleration of mass 2 was taken

as the system response.

Since the experimental system had 2 degrees of freedom, the regression order

of the NARMAX model was chosen to be 2 × dof = 4. Additionally, since by

this time it was known that the nonlinearity was cubic, the nonlinear order was

chosen to be 3. Consequently, the list of possible terms included yi−1, . . . , yi−4

and ui−1, . . . , ui−4 and 2-term and 3-term combinations thereof. The forward

regression algorithm was run with three values for cd, cd = 0.001, 0.0001, 0.00001.

The percentage root-mean-square errors obtained for each value are tabulated in

table 4.3

cd % error
0.001 10.3121

0.0001 3.2407
0.00001 6.3200

Table 4.3: rms errors in prediction of response by NARMAX method

Consequently, cd = 0.0001 was chosen. It should be noted that, because the

time-step of 0.001 s was too small for successful identification by the NARMAX

technique, the data were decimated, i.e. some data-points were neglected. It was

found necessary to neglect 9 in every ten data-points, thus effectively increasing

the time-step by a factor of ten. For this case, the process terms retained, as well

as their NARMAX coefficients and error reduction ratios are shown in table 4.4.
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Term Coefficient eRR

yi−1 0.0189 0.0941
yi−2 -2.6111 96.2361
yi−4 -2.3237 3.4149
yi−6 -0.7029 0.2131
ui−6 0.0214 0.0095
ui−2 -0.7560 0.0203
ui−3 0.2772 0.0052
yi−3yi−4 0.0065 0.0014
yi−5 -0.0220 0.0005
yi−1ui−5 0.0016 0.0004
yi−3yi−6 0.0029 0.0004
yi−1yi−2yi−5 -0.0001 0.0003
yi−2ui−6 -0.0028 0.0002
yi−1yi−1 0.0005 0.0002
ui−4 -0.5424 0.0003
yi−1yi−5 -0.0004 0.0002
yi−3yi−5ui−2 -0.0001 0.0002
yi−2yi−5 -0.0020 0.0001
yi−1yi−4 0.0015 0.0002
yi−2ui−5ui−5 0.0016 0.0001
yi−1ui−3ui−5 0.0057 0.0001
yi−5ui−3ui−5 -0.0060 0.0003
ui−1 0.2362 0.0001
ui−5 0.2120 0.0002

Table 4.4: Preliminary NARMAX model for 2DOF experimental system

Subsequently, the noise model was applied. Convergence was fast, despite the

relatively large number of terms, and the final coefficients are shown in table 4.5.

The response of the NARMAX model is compared to the response of the

actual system in figure 4.28. Figure 4.29 shows a comparison of absolute error

in the estimation of the acceleration by the two methods. It can be seen from

the figure, as well as the rms errors in tables 4.2 and 4.3 that the NARMAX

errors are slightly lower than the CL errors. In conclusion, it can be said that,

when applied to an experimental system, the CL method is not as accurate as

NARMAX however, it provides the user with a better understanding of the system

under investigation. The NARMAX terms in table 4.5 do not give any physical
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Term Coefficient

yi−1 0.0198
yi−2 -2.7212
yi−4 -2.2877
yi−6 -0.7219
ui−6 0.0219
ui−2 -0.7487
ui−3 0.2996
yi−3yi−4 0.0063
yi−5 -0.0218
yi−1ui−5 0.0012
yi−3yi−6 0.0034
yi−1yi−2yi−5 -0.0001
yi−2ui−6 -0.0023
yi−1yi−1 0.0005
ui−4 -0.5443
yi−1yi−5 -0.0003
yi−3yi−5ui−2 -0.0001
yi−2yi−5 -0.0023
yi−1yi−4 0.0019
yi−2ui−5ui−5 0.0015
yi−1ui−3ui−5 0.0061
yi−5ui−3ui−5 -0.0056
ui−1 0.2453
ui−5 0.2019

Table 4.5: Final NARMAX model for 2DOF experimental system

picture of the system or the nonlinearity contained in it. In fact, in order to

obtain the NARMAX model, knowledge of the order of nonlinearity was used,

which was first obtained using the CL method. The latter can provide a much

clearer understanding of a system under investigation including position and type

of nonlinearity as well as the full equations of motion.
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4.5 Figures
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Figure 4.1: Comparison between true and NARMAX responses for airspeed-
variable system

Figure 4.2: Constant level response points used in identification process
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Figure 4.3: True and estimated cubic stiffness
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Figure 4.4: Example of successful identification by the CL method
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Figure 4.5: Example of failed identification by the CL method
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Figure 4.6: System identification algorithm
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Figure 4.7: Percentage error in identified control surface pitch response

Figure 4.8: True and identified bilinear term in wing heave
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Figure 4.9: Wing heave bilinear surface

Figure 4.10: True and identified nonlinear term in wing pitch for freeplay
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Figure 4.11: Wing pitch freeplay surface

Figure 4.12: Constant level response points used in identification of hysteresis
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Figure 4.13: True and identified hysteretic stiffness

Figure 4.14: Percentage error in identification of hysteretic nonlinear term
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Figure 4.15: Identification of a 5-dof system with 5, 4, 3 and 2-mode models )

Figure 4.16: Comparison of 1-level and multi-level identification, no noise
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Figure 4.17: Quality of identification in the presence of 5% rms noise
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Figure 4.18: Identification of a system with three nonlinearities



CHAPTER 4. NONLINEAR SYSTEM IDENTIFICATION METHODS 210

Figure 4.19: Experimental 2 DOF system layout
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Figure 4.20: Linearised identification of 2DOF experimental system, mass 1
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Figure 4.21: Linearised identification of 2DOF experimental system, mass 2
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Figure 4.22: Comparison of experimental and identified responses, mass 1, lin-
earised
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Figure 4.23: Comparison of experimental and identified responses, mass 2, lin-
earised



CHAPTER 4. NONLINEAR SYSTEM IDENTIFICATION METHODS 213

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
-3

-6

-4

-2

0

2

4

6

y2 

N
on

lin
ea

r 
te

rm
 in

 e
qu

at
io

n 
1

Figure 4.24: Nonlinear term in equation 1
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Figure 4.25: Nonlinear term in equation 2



CHAPTER 4. NONLINEAR SYSTEM IDENTIFICATION METHODS 214

1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3
-30

-20

-10

0

10

20

30

time (s)

A
cc

el
er

at
io

n,
 m

as
s 

1 
(m

/s
2 )

Identification
Experiment    

Figure 4.26: Comparison of experimental and identified (CL) responses, mass 1
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Figure 4.27: Comparison of experimental and identified (CL) responses, mass 2
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Figure 4.28: Comparison of experimental and identified responses (NARMAX)
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Figure 4.29: Comparison of CL and NARMAX error



Chapter 5

Gust Load Response of Nonlinear

Aircraft

5.1 Introduction

Atmospheric turbulence affects negatively the performance of aircraft (both mil-

itary and civil) in various ways. A few of these are:

• A Need to avoid regions of severe atmospheric turbulence.

• Ride roughness can cause discomfort and accidents to both crew and pas-

sengers.

• The shortening of aircraft life time due to metal fatigue and increased need

for aircraft inspection.

• Possible temporary or total loss of aircraft control with severe consequences.

Reference [64] describes a number of incidents where aircraft sustained sig-

nificant structural damage or even crashed as a result of encounters with

Clear Air Turbulence (CAT ).

216
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For a more detailed description of all the hazards caused by atmospheric tur-

bulence see [65], which focuses on the special case of military aircraft and the

introduction to [8].

Since very early in the history of aviation, aircraft designers have been aware

of the dangers associated with loads caused on airplane structures by atmospheric

turbulence. Consequently there has a been a sustained effort to calculate these

loads and to set suitable airworthiness requirements for design loads. References

[66] and [64] describe the evolution of both methods for modelling atmospheric

turbulence and of setting requirements.

Of particular recent interest is the calculation of the load response of an

airplane when it contains non-linearities in either the structure or in the control

system. There are various methods for predicting the load response of linear

aircraft (as will be described later) to atmospheric turbulence, however, non-

linear aircraft cause a greater challenge because they preclude superposition.

The first part of this chapter will focus on a description of the turbulent

atmosphere, and the second part will focus on gust-analysis methods for non-

linear aircraft. All methods are compared on two simulated aircraft, a simple

one, commonly known as the Noback aircraft, and a more complex model, called

the ”universal” A310 model.

5.2 Turbulent gusts and their mathematical de-

scription

In general, atmospheric turbulence can be modelled by either of two categories:

• Continuous turbulence

• Discrete gusts
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5.2.1 Continuous turbulence

The structure and properties of continuous turbulence varies with the altitude

of the flight-path. In general, the lower the altitude, the more complicated the

structure is [8]. To better explain this, it is necessary to briefly describe some

aspects of the engineering simplifications that are used to model turbulence. First

of all, it should be noted that the main difficulty with turbulence modelling is the

’closure problem’, that is, the fact that there are less describing equations than

unknowns. This necessitates various assumptions to be made about the structure

of turbulence.

It is very useful to visualize turbulence as a group of interacting eddies or

structures of varying size and kinetic energy. Then, the largest eddies are re-

sponsible for the transport of momentum and kinetic energy, which is provided

by the mean flow. Some energy is passed on to successively smaller eddies until

it is dissipated into heat by viscosity [67]. The size of the largest eddies, which

is called the integral length-scale of turbulence, is what determines a lot of the

properties and the suitable simplifications that can be applied to a given flow. At

high altitude, the turbulent length-scales encountered are large. This means that

the turbulent velocity over a passing airplane is constant, i.e. that only turbulent

translation is important; rotation and strain are negligible. This allows a wealth

of simplifications to be applied; The flow is treated as:

• frozen

• homogeneous

• isotropic and

• self-similar.

The frozen flow assumption is that turbulent velocities do not change during

the time of passage of the aircraft [8]. A visual example of this is clouds which
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take a long time to change shape or position, much longer than it takes for an

airplane to pass through them. Homogeneity means that the mean turbulent

kinetic energy present in each of the three translational velocity components is

equal. Isotropic turbulence means that the structure of turbulence is independent

of orientation, so that all average values (velocity, kinetic energy etc.) related to

the eddies do not change under rotations or reflections of the coordinate system

[67]. Self-similarity implies that velocity fluctuations at differing length scales are

related by a simple scaling up or scaling down transformation. Self-similarity only

holds true for intermediate length scales. At the bottom of the range (where en-

ergy is dissipated by viscosity) and the top (where most of the turbulent transport

occurs) it is irrelevant. These simplifications allow the modeling of the spectrum

of the turbulent flow using simple mathematical models like the Dryden or the

Von Karman spectra. Since experimental evidence favours the latter [68], this

report will not deal with the former. The Von Karman spectrum is given by [8],

[69]

Φ11(ω) = σ2
g

L

π

1[
1 +

(
1.339ω L

V

)2
] 5

6

Φ22(ω) = Φ33(ω) = σ2
g

L

2π

1 + 8
3

(
1.339ω L

V

)2

[
1 +

(
1.339ω L

V

)2
] 11

6

(5.1)

where Φ11(ω) is the longitudinal spectrum, Φ22(ω) is the transverse spectrum, L

is the length scale of turbulence and V is the horizontal airspeed, V is the free-

stream velocity of the aircraft, ω is the angular frequency and σg is the turbulence

intensity given by

σ2
g = ū2 = v̄2 = w̄2

Hence, the turbulent spectrum is fully defined with the determination of L,

V and σg. The turbulent length scale can be calculated using either the area
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under a correlation curve or a fit to spectrum. These two methods give very

different results, the problem being aggravated by the choice of experimental

data used for the calculations. A value that is usually acceptable is L = 762m

(2500 ft), (U.S. Air Force specifications [8]). The same specification requires

that the highest value of σg is 2.1m/sec for Clear Air Turbulence or 6.4m/sec for

storm turbulence. Φ22(ω) is plotted in figure 5.1 for σg = 2.1 m/s.

It should be noted at this point that empirical evidence [64] suggests that

structural loads due to transverse velocity perturbations are more significant than

those due to longitudinal ones. Hence, most gust loads calculations use the Φ22(ω)

spectrum.

As a result of the assumption mentioned earlier, continuous atmospheric tur-

bulence is most often assumed to be a stationary Gaussian process with the Von

Karman spectrum. Mathematically, it can be modelled as a white noise signal of

unity variance passed through a filter with Von Karman characteristics. Such a

filter is [70]

G(s) = σg

√
L

πV

[1 + 2.618
(

L
V

)
s][1 + 0.1298

(
L
V

)
s]

[1 + 2.083
(

L
V

)
s][1 + 0.823

(
L
V

)
s][1 + 0.0898

(
L
V

)
s]

(5.2)

where s is the Laplace variable. Instead of using a filter, the white noise signal

can be convoluted with the Frequency Response Function representation of the

transverse Von Karman spectrum [71]

G(ω) =

√
L

πV

1 +
√

8
3

(
1.339iω L

V

)
(
1 + 1.339iω L

V

) 11
6

(5.3)

The procedure would then be to take the Fourier transform of the signal,

multiply by G(ω) and then take the inverse Fourier transform.

The analysis described above is adequate for high altitude turbulence with

moderate to severe turbulent intensity. For low altitudes a different approach
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must be followed since the assumptions mentioned above can not be as readily

made. But even at high altitudes, for extreme turbulence intensity, the analysis

breaks down [69], [72]. The cause of this is that, for these extreme cases, the

assumption of self-similarity is no longer valid. The behaviour of the flow changes

from self-similar to intermittent (patches of laminar and turbulent flow) with

decreasing scale. For this special case a fractal method of analysis was proposed

in [72].

This work will not deal with the topic of low altitude gust response, since the

problem is further complicated by changes in the aircraft configuration (flaps,

landing gear etc), which are beyond the scope of this project.

5.2.2 Discrete gusts

Discrete gusts are isolated steep gradients in the horizontal or vertical air-speed.

They usually occur at the edges of thermals, wakes of mountains and temperature

inversions [8]. Even though they are highly structured compared to the chaotic

background turbulence, they are assumed to exhibit some turbulent characteris-

tics. They are usually approximated by simple mathematical functions like steps,

ramps, impulses and 1 − cos or combinations of these.

Discrete gusts can be viewed as parts of a continuous turbulence ’signal’ even

though they stand out from the rest of the background turbulence. Even in the

case of pure continuous turbulence without significant discrete events, there are

certain parts of the turbulent signal felt by the aircraft which cause the high-

est loads on the structure. Consequently, when seeking to calculate worst-case

loads on aircraft, it makes sense to search for these discrete patches of extreme

turbulence rather than treat extreme turbulence as a stationary random process

[73].
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Accordingly, most recent methods for predicting gust loads on nonlinear air-

craft are based on seeking the discrete gust, or family of discrete gusts that will

cause the largest response. Discrete gusts can be modelled in many ways. The

most common are

• Ramp gusts

• 1-cosine gusts

• Sections of a white-noise signal

• Spectral gusts

All these gust models are so-called one-dimensional models. In general, a

turbulent event will consist of velocity fluctuations in the vertical, lateral and

longitudinal directions. However, a particular load on an aircraft is usually as-

sociated with one of these components whose variation over the aircraft can be

neglected. As a consequence, the search for worst-case gusts centres on such

one-dimensional models. Figure 5.2 shows examples of ramp, 1-cosine and white

noise gusts. Figure 5.3 shows all four spectral gusts [74].

Ramp Gusts

Ramp gusts are ramp variations in gust velocity caused by discrete pulses in the

velocity gradients. The model arises from the reasoning that peaks in aircraft

response to a gust depend more on increments in velocity gradient than the

actual magnitude of the gust velocity itself [75]. Important quantities describing

a ramp gust are the total duration of the pulse, ∆t, and the maximum value of

the velocity gradient. Combinations of smooth ramp gusts can be employed to

describe the self-similar variation of a turbulent velocity component.
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1-cosine Gusts

1-cosine gusts are the most straightforward description of the extreme variation

of a turbulent velocity component. The velocity gradient first increases, then

decreases back to its original value or vice-versa. Consecutive 1-cosine gusts can

be used to describe a more complex variation in a velocity component. This

particular discrete gust model will be further analysed later in the section on the

Statistical Discrete Gust (SDG) method.

Sections of a white-noise signal

The rationale behind this particular model is based on the model of continuous

turbulence. Certain sections of a white noise turbulent excitation will cause

a peak response in an aircraft load. It stands to reason that these sections will

contain some of the characteristics present in a ”worst case” discrete gust. Hence,

a discrete gust is modelled as a section of a white noise signal leading up to a

high peak in the aircraft load response. The magnitude of the peak load response

will depend on the chosen value for the turbulence intensity, σg.

Spectral Gusts

All three of the models described above are either deterministic functions of time

or position or random functions. As such, they do not contain the appropriate

characteristics that describe turbulent events. Spectral gusts are designed to

contain these characteristics, such that their power spectral density is close to the

power spectral density of atmospheric turbulence. They are evaluated by taking

the inverse Laplace transform of existing gust filters, either the Von-Karman or

the Dryden filter [76]. Spectral gusts evaluated from the Von-Karman filter are

given by
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uG(t) = ±c0
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V is the free-stream velocity, T = L
V

and L is the length-scale of atmospheric

turbulence. Equation 5.4 defines four spectral gust shapes due to the ± signs.

All four of these shapes are shown in figure 5.3. Spectral gusts will also be treated

in a later section on the Spectral Gust Method.

5.3 Methods for nonlinear gust load prediction

There are two main categories of gust load prediction methods for nonlinear air-

craft. The first is stochastic methods which rely on generating long turbulence-

like excitation signals and looking for peak values in the load response of the

aircraft. The second category is deterministic methods which rely on determin-

istically identifying the one single discrete gust shape that will cause an adverse

load response.

Gust load prediction methods attempt to calculate design and correlated

loads. A design load is a load which has a finite but low probability of being

exceeded, usually given by airworthiness requirements. A correlated load is the

value of a load, say z, when another load, say y, assumes its design value.

5.3.1 Probability of Exceedence Criteria

The Probability of Exceedence Criteria (PEC ) method [77] is an extension of

the Power Spectral Density method (PSD) for nonlinear aircraft. The PEC is

stochastic and attempts to calculate design loads. The procedure is as follows

[78] & [77]:

1. The flight conditions at which the design loads are to be evaluated are
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prescribed and values of Uσ and b2 are determined from the airworthiness

requirements (b2 is a coefficient used in the expression for the probability

that the load will exceed the design load - its variation with altitude can

be found in [68]).

2. A representative value of the rms gust intensity, σwr, is computed using

σwr = b2

√√√√1 +
√

1 + 4(Uσ/b2)2

2
(5.5)

3. An input white noise signal with σwr is generated, passed through a gust

pre-filter and fed into the nonlinear aeroelastic model. The resulting load

time history for load y is used to calculate the probability that the design

load will be exceeded in a turbulent flow-field of intensity σwr using

P (y > yd, σwr) =
1√

2πĀσwr

∫ ∞

yd

exp

(
− y2

2Ā2σ2
wr

)
dydσwr (5.6)

where Ā = σy/σwr.

4. The design load is defined as the value of the load for which

P (y > yd, σwr) =
1

2
erfc

(
Uσ√
2σwr

)
(5.7)

where erfc is the error function complement.

Instead of calculating the probability distribution of load y, it is possible to

obtain the design load by estimating the number of exceedences, N , of this load

given by [79]

N =
Ttot

dt
P (y > yd, σwr)

where Ttot is the total length of the simulation (in seconds) and dt is the time

step. Then, the array containing the load response y is sorted from higher to
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lower values and the design load is the Nth element of the sorted array. If N is

not an integer, linear interpolation can be used to obtain the design load. This

procedure is demonstrated in figure 5.4, where the PEC method is applied to the

A310 model (see Appendix H).

According to [77], this procedure only gives an estimate of the nonlinear design

load which may be substantially different to the real value. The estimate can be

improved by repeating the procedure for two values of σw at which the value of

the following quantity is the same

exp

(
− σ2

w

2b2
2

)
erfc

(
Uσ√
2σw

)

Then, the design loads obtained for these two values of gust intensity can be

combined with the initial estimate such that

yd = 0.5yd(σwr) + 0.25yd(σw1) + 0.25yd(σw2) (5.8)

In reference [79], it is suggested that, instead of three simulations with three

different values of σw, only one simulation with σw = Uσ/2.5 can be performed.

The results will be adequate in the altitude range of 22,000ft-35,000ft since, in this

range, the value of σwr is very close to Uσ/2.5. This latter approach is also adopted

in the present work since it is suggested that increasing the total simulation length

at one value of σw improves the quality of the design load predictions by a larger

amount than increasing the number of simulations at different values of σw.

The correlated loads can be obtained using

P (z > zc|y = yd) = 0.5 (5.9)

i.e. the probability of load z to be higher than the correlated load, zc, when load

y assumes its design value is 0.5. This is implemented by extracting the value

of z at all the time instances were y = yd. The probability distribution of these
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values is then calculated and the correlated load is obtained as the load whose

probability is 0.5. As with the design load, the correlated loads can be obtained

using the number of exceedences instead of the probability distribution.

Since the PEC input to an aeroelastic model is stochastic turbulence, modelled

as white noise, in order for the method to work accurately, long simulation times

are needed so that the variance of the input is as close as possible to σw and

its mean is almost zero. However, the advantage that this method has over

some of the less computationally demanding discrete gust methods is that the

airworthiness requirements concerned are more uniformly defined [68].

Application of the Method and Examples

The method was applied to the Noback and A310 aircraft models (see Ap-

pendix H). The design values of the loads for the two models are given in table 5.1.

Noback aircraft

Load1 Load2
10.83m/s2 6.33m/s2

A310 aircraft

Load2 Load3
2.8711 × 106lb.ft 2.4608 × 105lb.ft

Table 5.1: Design loads by the PEC method for the Noback and A310 models

5.3.2 Matched Filter based 1-Dimensional search

Matched Filter Theory (MFT ) was originally developed as a tool used in radar

technology [70]. The main objective of the method is the design of a filter such

that its response to a known input signal is maximum at a specific time, which

makes it suitable for application to gust response problems. The method can only

be applied to linear systems because it makes use of the principle of superposition
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which does not apply to nonlinear systems. However, by applying a search pro-

cedure, it can be adapted to provide results for nonlinear aircraft. The method

is deterministic.

Brief Description of the Method

The technique is quite simple and consists of the following steps [70],[71], also

graphically depicted in figure 5.5

1. A unit impulse of a certain strength Kg is applied to the system.

2. The unit impulse passes through a pre-filter describing gust turbulence (usu-

ally the Von Karman Gust pre-filter).

3. The pre-filtered input is fed into the aircraft model and the response of the

various loads is obtained (e.g. wing root bending and torsional moments).

4. The response of the load whose design value is to be estimated is isolated,

reversed in time, normalized by its own energy and multiplied by Uσ, the

design gust velocity (which is determined by airworthiness requirements

[68]).

5. The resulting signal is the input that maximizes the response of the chosen

load for this particular impulse strength, Kg. It is then fed back into the

system (first the Gust pre-filter, then the aircraft model) in order to obtain

the response of the load whose design value is to be estimated and also the

responses of the other loads (which are termed the correlated loads).

6. The procedure is repeated from step 1 with a different Kg

The characterization of the method as one-dimensional refers to the variation

of Kg. The end result is a graph of peak load versus initial impulse strength. The

maximum of this function is the design load and the gust input that causes it is
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termed the Matched Excitation Waveform. It must be mentioned at this point

that the method does not guarantee that the maximum load for a nonlinear

aircraft will be obtained. As was found in [60], the variation of peak load with

initial impulse strength for some types of nonlinearities (e.g. freeplay and bilinear

stiffness) does not display a global maximum (instead it slowly asymptotes to a

certain value). This fact is corroborated by [78].

Application of the Method and Examples

The method is here applied to the Noback and the A310 models. The Matlab

implementation of the MFB 1-D method was kindly supplied by Dr W.J. Vink

of the NLR, National Aerospace Laboratory, Holland.

Figure 5.6 shows the variation of design loads with increasing linearized gain

for the Noback aircraft. Figure 5.7 shows the variation of design loads with

increasing linearized gain for the A310 aircraft. The design values of the loads

for the two models are given in table 5.2.

Noback aircraft

Load1 Load2
10.720m/s2 6.541m/s2

A310 aircraft

Load2 Load3
2.824 × 106lb.ft 2.373 × 105lb.ft

Table 5.2: Design loads by the MFB 1-D for the Noback and A310 models

Figures 5.8- 5.9 show the design load variations for the two Noback aircraft

loads with the respective gust velocity variations. Figures 5.10- 5.11 show the

design load variations for two of the four A310 aircraft loads with the respective

gust velocity variations.
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5.3.3 Deterministic Spectral Procedure

This method was first proposed by Jones [80]. In its most general form it is

based on the assumption that there exists a single deterministic input function

that causes a maximum response in an aircraft load. It states that a design load

on an aircraft can be obtained by evaluating the load response to a family of

deterministic gust inputs with a prescribed constraint. In practice, this implies

a search for the worst case gust, subject to the constraint that the energy of

the gusts investigated is constant. The method is deterministic. The procedure

consists of the following steps:

1. A model input shape in the time-domain is generated.

2. The input shape is parameterized to produce a set of describing coefficients

3. The coefficients are used to generate the input waveform

4. The energy of the input is constrained by dividing the signal by its rms

value

5. The constrained waveform is fed into a turbulence pre-filter and next through

the nonlinear aircraft system

6. The aircraft load response is assessed. If it has not been maximized the

coefficients that generate the input are changed and the process is repeated

from step 3.

This iterative procedure requires a constrained optimization scheme, to en-

sure that the maximum load has been obtained, and a model input shape. The

optimization scheme proposed in [80] is simulated annealing [81]. Another ap-

proach, proposed in [71] is to convert the constrained optimization problem to an

unconstrained one by means of the Kreisselmeier-Steinhauser function.
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As for the generation of the initial input shape, two approaches have been

proposed. In [75] a white noise gust model is used. The problem with this

approach is that it is more difficult to parameterize a random signal than a

deterministic one. In [71] the MFT 1-dimensional search results are proposed

as the input to the DSP loop which results in what is called the MFT multi-

dimensional search procedure.

The parameterization process is probably the most crucial aspect of the DSP

method. Input waveforms have to be described by a minimum number of coeffi-

cients to minimize computational cost but this description has to be as accurate

as possible. Again, two popular procedures can be found in the literature. The

first one [75] is to fit the waveform by a number of half-sinusoid (or cosinusoid)

functions. The other approach is to fit the waveform using a set of Chebyshev

polynomials [71]. In the same reference, a Fourier series approach was consid-

ered but it was found to be much more computationally expensive. One further

approach has been tried by the present author, namely the use of a sum of ex-

ponentially decaying sinusoids. This requires much fewer coefficients than any of

the other methods mentioned above, however, when used in conjunction with the

matched-filter based scheme can only be successfully applied to linear systems.

The waveform fitted is the output of the system (reversed and normalised) and,

in the case of a nonlinear system, can not be fitted in such a way.

The most common implementation of the DSP method is the Multi-Dimensional

Matched Filter Based method which is described next.

5.3.4 Multi-Dimensional Matched Filter Based Method

The Multi-Dimensional Matched Filter Based (MD-MFB) method [82], [71] for

gust load prediction for nonlinear aircraft is a practical application of the Deter-

ministic Spectral Procedure proposed by Jones in [80]. It was designed to provide
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a more computationally efficient alternative to the Stochastic Simulation Based

approach. Reference [71] shows how the method provides almost identical results

to those obtained by use of the SSB but with less computational effort. The

method is deterministic.

Brief description of the method

The MD-MFB approach revolves around the fact that the usual design envelope

analysis can be reformulated as an exactly equivalent time-domain worst-case

analysis. In other words, the search for a worst-case gust load in the presence of

a turbulence field of prescribed intensity is equivalent to the search for a design

load [75]. Hence, the simplest possible procedure for determining the worst-case

load is to simulate very long patches of turbulence and to look within the load

response of the aeroelastic system in question for the design load. This is the

stochastic simulation approach and is, generally, regarded as computationally

impractical.

The worst-case load problem can be simplified by noting that the significant

part of a long turbulent signal that causes the maximum load is short and can be

approximated as a discrete gust. Hence the MD-MFB method searches for the

single discrete worst-case gust waveform thus avoiding the need for long simula-

tion times.

The implementation of the method is as follows, also depicted graphically in

figure 5.12:

1. An initial guess for the worst-case gust waveform (or matched excitation

waveform) is obtained by use of the 1-dimensional MFB procedure.

2. The initial guess is parameterized. In the present application the parame-

terization scheme used is Chebyshev Polynomials (see appendix E).
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3. The values of the various parameters are changed and the resulting wave-

form is fed into the aeroelastic system (including a turbulence pre-filter as

described earlier).

4. The resulting maximum load is compared to the previous value for the

worst-case gust load and is accepted or rejected according to some opti-

mization procedure. The optimization procedure used for the present ap-

plication is Simulated Annealing [81] (see appendix F). The procedure is

repeated, i.e. the parameters are changed again resulting in a new gust

waveform which is then used as an input to the system, until the worst-case

gust load is obtained.

Application of the Method and Examples

Once the initial gust waveform has been parameterized, it is reconstituted from its

parameters and fed into the aeroelastic system under consideration to provide the

initial value for the design load. Since the simulated annealing algorithm works

best when used on minimization problems, the cost function used in equation F.1

is chosen to be the inverse of the maximum load. Then the procedure is as follows:

1. One of the N Chebyshev weights is randomly chosen

2. A random number between 0 and 1 determines whether the weight is going

to be increased or decreased with equal probability, i.e. if the number is

less than 0.5 then the weight will be decreased and vice versa.

3. A different random number between 0 and 10 determines how much the

weight is going to be varied by.

4. The new waveform is calculated, fed into the system and the new cost

function evaluated.
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5. Equation F.1 is applied and the new state is either accepted or rejected.

6. Steps 1-5 are repeated until a given number of states has been accepted or

rejected. Then the temperature is decreased by a set amount and steps 1-6

are repeated.

7. The optimization process is terminated when the ratio of the number of

rejected states to that of accepted states reaches a certain low value. The

last accepted state defines the worst-case gust load and the corresponding

gust waveform is the worst-case gust input.

It is obvious that the correct application of the algorithm depends on a number

of settings namely the initial value of the temperature, the temperature decre-

ment, the number of states to be evaluated between temperature decrements and

the termination criterion. As a consequence, the application of the method is

very laborious and needs to be repeated until the best settings are found. Addi-

tionally, as mentioned earlier, the procedure needs to be repeated for a certain

number of initial gust waveforms.

However, it is argued here that since the initial guess is already the result of an

optimization procedure, the application of the MD-MFB can be simplified. It can

be assumed that the initial design load is already close to the global maximum

and hence a small initial value for the temperature can be used. As a consequence,

mainly improved states are accepted and the number of accepted states is limited,

hence accelerating the occurance of the termination criterion. Additionally, the

need for repeating the procedure with different initial conditions is eliminated.

After a number of applications of the method to the Noback aircraft, it was found

that the biggest improvement on the design load was approximately 4.9% of the

initial guess and was obtained by using a relatively high initial temperature.

Using a low initial temperature the best improvement obtained was 4.4% but

with huge savings in computational cost.
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Figures 5.13- 5.15 show the results of a sample application of the MD-MFB

method. Figure 5.13 shows the convergence history of the procedure, culminating

in an improvement of around 4.2% on the design load. Figure 5.14 shows the

initial and worst-case gust waveform. The initially ’noisy’ shape of the latter

is due to the randomness in the optimization procedure. Since that part of the

waveform is not critical as far as the design load is concerned, it remains more

or less random. Figure 5.15 shows the initial and optimized load response of

the Noback aircraft. Note that, despite the fact that the system is nonlinear,

the maximum load occurs very close to the point where the excitation waveform

reaches a maximum. It can also be seen that the initial noise in the optimized

gust waveform causes a very subdued response. The design loads predicted by

the MFB M-D method for both aircraft models considered here, are tabulated in

table 5.3.

Noback aircraft

Load1 Load2
11.46m/s2 7.017m/s2

A310 aircraft

Load2 Load3
2.826 × 106lb.ft 2.379 × 105lb.ft

Table 5.3: Design loads by the MFB-MD method for the Noback and A310 models

A notable disadvantage of the multi-dimensional search is the fact that a

large number of coefficients is needed in order to parameterize high frequency

waveforms. This was especially a problem for the A310 model, where load 3

contains relatively high frequencies. The most important side-effect of this was

that numerical difficulties with convergence were encountered, of the same type

as those reported in [78].
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5.3.5 Statistical Discrete Gust Method

The Statistical Discrete Gust Method (SDG) has been introduced as a method

that employs a better description of atmospheric turbulence than the Power Spec-

tral Density method for extreme gusts on linear aircraft [73], [77], [83]. This

description is based on families of discrete 1-cosine ramp gusts. The present

description of the SDG methodology is based on a similar description in [77].

It should be noted that the method was developed as an attempt to bridge the

gap between continuous turbulence and discrete gusts methodologies and is being

continuously refined, most recently with the use of wavelets. The SDG calculates

design loads.

Brief Description of the Method

Figure 5.16 shows a single discrete gust, as used by the SDG method. Initially,

its velocity increases in a 1-cosine fashion until, at a distance H, it levels out to

the value U which is given by

U = U0H
1/3 (5.10)

if H is less than L, the length-scale of turbulence, and

U = U0L
1/3

if H ≥ L. The value of U0 is decided by the equivalence of the design value of σg

in the continuous turbulence PSD analysis to the SDG analysis as [83]

U0 =
σg

10.4

where σg is obtained from the airworthiness requirements [68].

For extreme turbulence the scaling of equation 5.10 changes to
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U = U0H
1/6 (5.11)

This is how the SDG methodology can bridge the gap between continuous tur-

bulence and discrete gusts. Continuous turbulence is assumed to be self-similar,

which is where the 1/3 scaling law comes from. Self-similarity can be modelled

as a stretching transformation. In the time-domain, if the time axis is stretched

by a certain amount, h, the dependent variable, say y(t), will be stretched by

h−λ. The similarity parameter λ can be chosen such that the function h−λy(ht)

is statistically independent of h. This value for λ can be obtained by considering

the spectrum, Φ(ω) of the process y(t), when stretched by h, which in reference

[69] is shown to satisfy

h−(2λ+1)Φ(ω/h) = Φ(ω) (5.12)

In the special case where the process y(t) is turbulent, the Von Karman spec-

trum applies, i.e.

Φ11(ω) = σ2
g

L

π

1[
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(
1.339ω L

V

)2
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6

Φ22(ω) = Φ33(ω) = σ2
g

L

2π

1 + 8
3

(
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)2

[
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V
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6

(5.13)

Simple algebra shows that the limit of both Φ11(ω) and Φ22(ω) as ω tends to

infinity (which defines the inertial subrange where self-similarity applies) is

lim
ω→∞(Φ) = Aω−5/3

where A is a proportionality constant. Equation 5.12 becomes

h−(2λ+1)A
(

ω

h

)−5/3

= Aω−5/3
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For this expression to be satisfied, h must vanish from the left-hand-side, or

−2λ − 1 = −5

3

Hence for continuous, self-similar turbulence, λ = 1/3, as in equation 5.10.

Discrete gusts are extreme events for which self-similarity breaks down. They

are larger-scale and more ordered events than the background turbulence within

which they are contained. The similarity parameter for such events is given by,

[73]

λ =
1

3
− 3 − D

3

where D is termed the active volume of turbulence and has values 2 < D ≤ 3.

For D = 3 the standard self-similar value, λ = 1/3, is obtained. For a value of

D = 2.5, the extreme turbulence similarity parameter is obtained, λ = 1/6, as in

equation 5.11. Hence, with a simple change in the scaling law, the SDG method

can be made also applicable to extreme turbulent events like discrete gusts.

At a particular value for the gust-length, H, the nonlinear aeroelastic system

under consideration will exhibit a maximum load response. The maximum value

of this maximum response, γ̄1 is an estimate for the design load, yd1. A second

estimate is obtained using a pair of gusts as shown in figure 5.17. Here, there are

three parameters that govern the gust shape, H1, H2 and the spacing between

the two gusts, S. The values of these parameters are varied until the maximum,

γ̄2, is obtained. Another two estimates for the design load are calculated using

two pairs of gusts and four pairs of gusts. Finally, four design loads are calculated

using

yd1 = p1γ̄1U0

yd2 = p2γ̄2U0

yd3 = p3γ̄3U0

yd4 = p4γ̄4U0

(5.14)



CHAPTER 5. GUST LOAD RESPONSE OF NONLINEAR AIRCRAFT 239

with p1 = 1.0, p2 = 0.81, p3 = 0.57 and p4 = 0.40. For highly damped systems

the first two design values are more important, for slightly damped ones the last

two design values predominate.

For linear systems, estimating the maximum response due to SDG gusts is

simple since superposition can be employed. For nonlinear systems this estima-

tion can only be performed by means of an optimization scheme, especially for

the longer gust-shapes. The optimization scheme chosen was again Simulated

Annealing.

Application of the Method and Examples

The application of the SDG method can be divided into four steps, depending on

the number of 1-cosine gusts present in each family of gusts.

• Step 1. One single 1-cosine gust

• Step 2. One pair of 1-cosine gusts

• Step 3. Two pairs of 1-cosine gusts

• Step 4. Four pairs of 1-cosine gusts

Each step can be performed separately. In the first and second steps, since

only one and three parameters, respectively, determine the shape of the gust, it

is more efficient not to use any optimization algorithms but to search the entire

parameter space. This calculation is not as expensive as it sounds since, for a

vertical gust, reference [83] suggests that the gust length should be between 30

and 500 ft. In the third and fourth steps, since the number of parameters is

significantly higher, optimization has to be employed.

As mentioned earlier the Simulated Annealing procedure requires an initial

guess for the gust shape that will cause the maximum response and ,consequently,
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for the maximum response itself. In contrast with the application of the algorithm

with the MFB method, when Simulated Annealing is applied to the SDG method,

the initial guess can only be a set of random values for the various parameters

that control the gust shape. Hence, in general, the initial guess will not be close to

the gust causing maximum response, which can imply longer computation times.

The procedure is as follows

1. Initial guess for the gust shape gives initial cost function

2. A random number decides whether one of the gust lengths, H, or one of

the gust spacings, S will be altered.

3. A random number decides which of the gust lengths or spacings will be

altered.

4. A random number between 0 and 1 determines whether the parameter is

going to be increased or decreased with equal probability, i.e. if the number

is less than 0.5 then the parameter will be decreased and vice versa.

5. A different random number between 0 and 1 determines how much the

weight is going to be varied by (from 0% to 100% of the original value).

6. The new gust waveform is calculated, fed into the system and the new cost

function evaluated.

7. Equation F.1 is applied and the new state is either accepted or rejected.

8. Steps 1-5 are repeated until a given number of states has been accepted or

rejected. Then the temperature is decreased by a set amount and steps 1-6

are repeated.

9. The optimization process is terminated when the ratio of the number of

rejected states to that of accepted states reaches a certain low value. The
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last accepted state defines the worst-case gust load and the corresponding

gust waveform is the worst-case gust input.

Preliminary applications of the SDG method to the Noback aircraft have

revealed that the design values obtained by the single gust and single pair of gusts

families give quite adequate results, while the optimization applications delivered

only slight if not negligible increases in the design load. Figure 5.18 shows the

evolution of maximum loads with increasing gust length for the SDG step 1. The

maximum load for the centre of gravity acceleration caused by aileron action only

is 6.4 which implies (using equation 5.14) that the design load predicted by step

1 is 6.4. The critical gust waveform and load responses are shown in figures 5.19

and 5.20.

The application of step 2 is depicted in figures 5.21- 5.22 which show critical

gust waveform and resulting load response for the total acceleration, respectively.

The maximum load is 8.4, for which, yd2 = 6.8. Hence step 2 has given an

improvement in the design load.

Figure 5.23 shows the convergence history for the application of step 3. The

basic feature of the Simulated Annealing algorithm is evident in this figure, i.e.

that the jumps in cost functions accepted become smaller as the temperature

increases. The maximum load obtained was 8.4 which is equivalent to yd3 =

4.8. The corresponding critical gust profiles and load response are shown in

figures 5.24-5.25.

The convergence time history for step 4 is shown in figure 5.26. The number of

accepted states is much higher than for step 3, reflecting the increased complexity

of the optimization problem. The maximum load obtained is again 8.4. This

corresponds to yd4 = 3.4. As a consequence steps 3 and 4 do not deliver any

improvements to the design load predicted by step 2.
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5.3.6 Indirect Deterministic Power Spectral Density Method

The Indirect Deterministic Power Spectral Density method (IDPSD) [84], [85], is

derived from the Design Envelope Analysis [68] of the continuous Power Spectral

Density method. For linear aircraft it yields design loads equal to those obtained

by the PSD method but using a deterministic input, in a similar way to the linear

MFT method. For nonlinear systems it can be extrapolated to a 1-dimensional

search procedure, equivalent to the MFB 1-D search but involving a linearized

representation of the system. The method is deterministic.

Brief Description of the Method

The IDPSD procedure is very similar to the MFB 1-D method with two main

differences. Firstly, the IDPSD method uses a different gust filter and, secondly,

the initial excitation is applied to a linearized version of the system whose output

is then reversed, normalized and fed into the nonlinear system. Hence, the MFB 1-

D method consists of a filtered impulse of variable strength fed into the nonlinear

system, the resulting gust waveform being fed into the same system. In the

IDPSD method, an initial input of constant strength is fed into a linearized

system, called the first system, whose nonlinear element has been replaced by a

variable gain. The resulting waveform forms the input to the nonlinear system,

called the second system. The search procedure consists of varying the linear

gain until the response of the second system is maximized. The IDPSD scheme

is shown graphically in figure 5.27.

The input to the first system is given by UσV (t), where Uσ is the design

gust velocity and V (t) is the Fourier Transform of the two-sided Von Karman

Spectrum, Φww(ω), given by

Φww(ω) =
L

V

1 + 8
3
(1.339ω L

V
)2

{1 + (1.339ω L
V

)2}2
(5.15)
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where ω is the radial frequency, L is the turbulence length-scale and V is the air-

craft velocity [85]. This input can be alternatively defined as the Auto-Correlation

function pertaining to Φww(ω) i.e.

V (t) = Rww(t) =
1

2π

∫ +∞

−∞
Φww(ω)ejωtdω (5.16)

Equation 5.16 can be expressed in a more practical form as the Auto-Correlation

function of the filtered MFB impulse,

V (t) =
ug(τ)ug(τ + t)

ug(τ)2
(5.17)

where ug is the MFB filtered impulse gust velocity, the overbars denote averaging

and τ is an integration variable. Figure 5.28 shows UσV (t) obtained both by

equations 5.15 and 5.17. The solid line is the Fourier Transform result and differs

from the Auto-Correlation result (dotted line) in that it takes negative values

away from the peak. As a consequence the Auto-Correlation result was preferred

for the present work.

The IDPSD Method procedure is as follows:

1. UσV (t) is formed, say using equation 5.17.

2. The input is fed into the linearized aircraft model with linear gain K and

the response of the various loads is obtained (e.g. wing root bending and

torsional moments).

3. The response of the load whose design value is to be calculated is isolated,

convoluted by V (t), normalized by its own energy and multiplied by Uσ,

the design gust velocity.

4. The resulting signal is the input that maximizes the response of the chosen

load for this particular linearised gain, K. It is then fed into the nonlinear
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system in order to obtain the response of the load whose design value is to

be calculated and also the responses of the correlated loads.

5. The procedure is repeated from step 2 with a different K.

Reference [84] suggests that the values of the linearized gain should be between

0 and 1.

Application of the Method and Examples

The Matlab implementation of the IDPSD method was kindly supplied by Dr

W.J. Vink of the NLR, National Aerospace Laboratory of Holland. Figure 5.29

shows the variation of design loads with increasing linearized gain for the IDPSD

aircraft. Figure 5.30 shows the variation of design loads with increasing linearized

gain for the A310 aircraft. The design values of the loads for the two models are

given in table 5.4.

Noback aircraft

Load1 Load2
11.03m/s2 6.72m/s2

A310 aircraft

Load2 Load3
2.826 × 106lb.ft 2.465 × 105lb.ft

Table 5.4: Design loads by the IDPSD method for the Noback and A310 models

Figures 5.31- 5.32 show the design load variations for the two Noback aircraft

loads with the respective gust velocity variations. Figures 5.33- 5.34 show the de-

sign load variations for the two of the four A310 aircraft loads with the respective

gust velocity variations.

5.3.7 Stochastic Simulation Based Method

The Stochastic Simulation Based method (SSB) models continuous turbulence

as white noise input with a Von Karman spectrum, in the same way as the PEC
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method. Hence, the SSB is stochastic and can predict calculate design loads,

correlated loads and worst-case gusts, given a target value for the design load.

The procedure is as follows [86]:

1. A Gaussian white noise signal with unity variance is generated and fed

through a gust pre-filter, such as equation 5.2. The output of the filter

is a time history of continuous turbulence data. The object is to identify

segments of this time history that lead up to peak loads.

2. A number of long time-domain simulations are performed

3. The load time histories obtained from the simulations are analysed. In-

stances in time are isolated where the load exhibits a peak near a prescribed

value or within a specified range. Then standard durations of time data

leading up to the peak values are extracted, lined up in time and averaged.

The result is ’averaged-extracted’ time-histories of the excitation waveform

(input to the gust filter), gust profile (section of turbulence data) and load.

These have been shown to be directly equivalent to results obtained by the

MFB methods [86] (see later section), if the value of the turbulence intensity

(σg) is selected appropriately.

To ensure that there is an adequate number of extracted samples so that the

final waveforms are as smooth as possible, very long simulations are required

(1000 seconds are suggested in [86]). Long simulation times also ensure that the

white noise input has a variance very close to unity and a mean very close to

zero. Finally, the extraction and averaging process must take place separately for

positive and negative peak load values.

The stochastic simulation method, as outlined here cannot be used on its own

since it requires a target load to be specified, around which it will search for

peaks in the load response. This target load value can be supplied by another
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method. The authors of [86] used the MFB multi-dimensional search procedure

to obtain the target design load value and picked peaks in the SSB load output

within ±8% of that value. Of course, the object of their work was to show

that the MFB results are equivalent to stochastic results. In a straightforward

design loads calculation it would be extremely wasteful to use two of the most

computationally expensive methods to produce the same results twice.

However, it is suggested here that the SSB method can be used to supplement

results obtained by the Probability of Exceedence Criteria method. As mentioned

earlier, the PEC method will only produce values for the design and correlated

loads. It will not calculate time-variations of the loads or the gust velocity. The

SSB, on the other hand can produce design and correlated load responses and

critical gust waveforms. Hence, the PEC method can be used to yield a target

value for the design load to be subsequently used with the SSB method.

Application of the SSB Method and Examples

The application of the SSB method is here illustrated on the A310 model (see

Appendix H). Plots of the design, correlated loads and gust shapes are shown

which were obtained using target loads from the PEC and the MFB 1-D methods.

In both cases, total of 40 200-second-long simulations were performed, each one

containing 8192 time-steps. Peaks were chosen which fell within ±2.5% of the

target loads. The value of the turbulence intensity was chosen to be Uσ/2.5, as

with the PEC method. Figure 5.35 shows the averaged-extracted load 2 varia-

tion with time together with the critical gust waveform. Figure 5.36 shows the

averaged-extracted load 3 variation and gust shape. Figure 5.37 shows the cor-

related loads obtained using the two different target loads. The design values of

the loads for the two aircraft models are given in table 5.5.
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Noback aircraft

Load1 Load2
10.81m/s2 6.31m/s2

A310 aircraft

Load2 Load3
2.8641 × 106lb.ft 2.4595 × 105lb.ft

Table 5.5: Design loads by the SSB method for the Noback and A310 models

5.3.8 Comparison between the methods

Since the absolutely correct design load cannot be obtained for a nonlinear system,

one of the methods has to be used as a benchmark. The benchmark for the

comparison of the different methods reported in this work was chosen to be the

Matched Filter Based 1-Dimensional search method. This choice was dictated by

the relative simplicity of the method and by the fact that it is less computationally

expensive than the other methods. However, the term ”benchmark” does not

imply that the design loads predicted by the MDB 1-D method are taken to be

the best estimates but that there is no separate subsection on the MFB 1-D.

The graphical comparisons between the methods presented in this section are

based on the following figures (unless otherwise stated).

• Figures 5.38- 5.39 show a direct comparison of maximum load variations

and worst-case gust velocities obtained by the SSB, IDPSD and MFB 1-D

method for the Noback aircraft model.

• Figure 5.40 compares correlated loads obtained by the three methods for

the Noback model.

• Figures 5.41- 5.42 compare the load and gust shape predictions of the three

methods on the A310 model.

• Figure 5.43 compares correlated loads obtained by the three methods for

the Noback model.
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SSB method

Despite the presence of a fair amount of noise in the SSB results, it is obvious that

the agreement between its results and those of the two deterministic methods is

very good. The only exception is the critical gust shape for Load2 of the Noback

model (figure 5.39). The SSB result for this test-case agree more closely with the

IDPSD Method results than with those calculated using the MFB 1-D.

The good agreement between the two deterministic methods and the SSB

however, heavily depends on the choice of the value of the turbulence intensity,

σg. The authors of [87] suggest that, in order to compare the two methods the

value of the turbulence intensity used with the MFB scheme should be

σg = Uσ

where Uσ is the design gust velocity. For the SSB method, the suggested value is

σg = Uσ/3

As mentioned earlier, the turbulence intensity used during the course of this work

was

σg = Uσ/2.5

This value, suggested in [79], was preferred to the Uσ/3 because it agrees more

closely with the representative, σwr (see section 5.3.1), value at normal civil air-

craft cruising altitudes.

IDPSD method

The agreement between the IDPSD and the MFB 1-D methods is, generally, very

good. For the particular case of the worst-case gust for Load2 of the Noback

aircraft (figure 5.40), the agreement breaks down to a certain extent. The figure
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shows that the gust shape estimated using the IDPSD lies between the SSB and

MFB 1-D gusts.

Since both the Noback and MFB 1-D methods are deterministic methods esti-

mating worst-case gusts there is no problem with scaling the turbulence intensity

value in order to get agreement between the two methods.

MFB Multi-Dimensional Search

Table 5.6 shows a comparison of results from the 1-dimensional and the multi-

dimensional MFB searches, obtained from the Noback and A310 models. The

table confirms what is claimed in [78] and [71], that the 1-dimensional search

provides a very good estimate of the design load. The design loads for the Noback

model have been improved upon by the MFB M-D method by up to 6.8%. How-

ever, for the A310 model, the improvement is almost negligible. The fact that

the multi-dimensional search is much more computationally expensive but only

delivers a small improvement in the final result suggests that the 1-dimensional

search is more suitable, especially in the case of the gust-load prediction for a full

aircraft, where the design loads need to be predicted at a very large number of

stations over the whole aircraft.

Load MFB 1-D MFB M-D % Improvement

Noback Load1 10.73 m/s2 11.46 m/s2 6.8
Noback Load2 6.55 m/s2 7.02 m/s2 6.7
A310 Load1 2.8242 × 106 lb.ft 2.8261 × 106 lb.ft 0.1
A310 Load2 2.3736 × 105 lb.ft 2.3793 × 105 lb.ft 0.2

Table 5.6: Comparison of design loads by the MFB-MD and MFB 1-D methods
for the Noback and A310 models

Comparative Results

Tables 5.7 and 5.8 show design and correlated load predictions obtained by the

SSB, MFB 1-D, PEC, SDG and IDPSD methods for both the aircraft models
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under investigation. There are two sets of results for the SSB method, one ob-

tained using the MFB design load as the target load and one using the PEC

design load. The IDPSD method tends to predict slightly more conservative re-

sults than the MFB 1-D method. In the case of the Noback model the IDPSD

results are closest to those obtained from the MFB M-D method. Since the SSB

and PEC are stochastic, their design load predictions change slightly every time

the calculations are performed. Consequently, there is no definitive way of de-

termining whether these predictions are generally more or less conservative than

the results obtained with the other two methods. However, it can be seen that

the SSB results based on MFB target loads agree more closely with the MFB 1-D

results and the SSB results based on PEC target loads agree more closely with

the PEC results.

Another crucial conclusion drawn from the tables is that the design load pre-

dictions of the methods agree more closely with each other than the correlated

load predictions. In reference [79] this phenomenon is also noted. Additionally,

the author of [79] shows the cause of the phenomenon to be that the theoretical

standard deviation of the design load will generally be smaller than the theoret-

ical standard deviation of the correlated loads. It is not known, however, why

this should also be the case with the deterministic methods.

Method Design Correlated Design Correlated Number CPU
Load 1 Load 2 Load 2 Load 1 of flops time (s)

IDPSD 11.04 -2.00 6.72 -1.82 4492533 35.41
MFB 1-D 10.73 -2.77 6.55 -0.23 130633 16.07
MFB M-D 11.46 -2.77 7.02 -0.23 Variable Variable

PEC 10.83 -2.24 6.33 -1.03 34005961 88.08
SDG 11.98 -3.23 5.98 -1.45 Variable Variable

SSB(MFB) 10.73 -2.58 6.57 -1.80 67884692 185.13
SSB(PEC) 10.81 -2.31 6.31 -1.30 68054593 198.29

Table 5.7: Comparison of design and correlated loads predicted by various meth-
ods for Noback a/c (all loads in m/s2)
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Method Design Correlated Design Correlated Number CPU
Load 2 Load 3 Load 3 Load 2 of flops time

IDPSD 2.8264 × 106 −5.5646 × 104 2.4649 × 105 −7.1880 × 105 2237174 24.45
MFB 1-D 2.8242 × 106 −5.1097 × 104 2.3736 × 105 −5.9080 × 105 66310 18.73
MFB M-D 2.8261 × 106 −5.1097 × 104 2.3793 × 105 −5.9080 × 105 Variable Variable

PEC 2.8711 × 106 −4.4959 × 104 2.4608 × 105 −8.5987 × 105 34086207 100.93
SDG 2.7919 × 106 −4.1455 × 104 2.2386 × 105 −6.7905 × 105 Variable Variable

SSB(MFB) 2.8229 × 106 −4.9609 × 104 2.4145 × 105 −6.6719 × 105 69251847 275.21
SSB(PEC) 2.8641 × 106 −5.6184 × 104 2.4595 × 105 −7.4691 × 105 69111494 274.85

Table 5.8: Comparison of design and correlated loads predicted by various meth-
ods for A310 (all loads in lb.ft)

The tables also compare the computational expense of the SSB, MFB 1-D,

PEC and IDPSD methods. All the tests were performed on a PowerTower Pro

225, PowerMacintosh compatible computer with a 225 MHz 604e processor run-

ning MacOS 8.1, using Matlab Student Edition, version 4.1. Neither the CPU

time nor the number of floating point operations (flops) figures are absolute. CPU

time depends on the computer used and the software installed and the number

of flops performed depends on the programming and on the routine that counts

the flops. The Matlab manual makes it clear that its flop counting routine does

not count all the flops. It specifically states that ”It is not feasible to count abso-

lutely all floating point operations, but most of the important ones are counted”.

Nevertheless there is a clear pattern to the results in the tables. The least com-

putationally expensive method is the MFB 1-D and the most computationally

expensive one is the SSB, with the IDPSD and PEC methods lying somewhere

in between. The CPU time and number of flops for the multi-dimensional MFB

and SDG methods are labeled ”variable” in the table since the method relies on a

directed random search. Hence, the duration of the calculations is different every

time the procedure is applied, but always much longer than the duration of any

of the other methods.
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5.4 Figures

Figure 5.1: Von Karman Power Spectral Density (transverse)

Figure 5.2: Examples of ramp, 1-cosine and white noise gusts
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Figure 5.3: The four spectral gusts
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Figure 5.4: Selecting the design load with the PEC method
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Figure 5.5: Matched Filter Based 1-Dimensional Search Scheme
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Figure 5.6: Variation of Maximum Loads with Impulse Strength for Noback air-
craft, using MFB 1-D

Figure 5.7: Variation of Maximum Loads with Impulse Strength for A310 aircraft,
using MFB 1-D method
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Figure 5.8: Design Load1 and critical gust shape for Noback a/c by MFB 1-D
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Figure 5.9: Design Load2 and critical gust shape for Noback a/c by MFB 1-D
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Figure 5.10: Design Load2 and critical gust shape for A310 by MFB 1-D
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Figure 5.11: Design Load3 and critical gust shape for A310 by MFB 1-D



CHAPTER 5. GUST LOAD RESPONSE OF NONLINEAR AIRCRAFT 258

Figure 5.12: Matched Filter Based Multi-Dimensional Search scheme
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Figure 5.13: Convergence History of MD-MFB method

Figure 5.14: Comparison of Initial and Optimized Matched Excitation Waveforms
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Figure 5.15: Comparison of Initial and Optimized Load Responses

Figure 5.16: Single Statistical Discrete Gust



CHAPTER 5. GUST LOAD RESPONSE OF NONLINEAR AIRCRAFT 261

Figure 5.17: Pair of Statistical Discrete Gusts

Figure 5.18: Variation of Maximum Load with Gust Length, SDG step 1
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Figure 5.19: Critical Gust Waveform, SDG step 1

Figure 5.20: Maximum Load Response (Total Acceleration), SDG step 1
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Figure 5.21: Critical Gust Waveform, SDG step 2

Figure 5.22: Maximum Load Response (Total Acceleration), SDG step 2
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Figure 5.23: Convergence History for SDG step 3

Figure 5.24: Critical Gust Waveform, SDG step 3
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Figure 5.25: Maximum Load Response(Total Acceleration), SDG step 3

Figure 5.26: Convergence History for SDG step 4
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Figure 5.27: IDPSD procedure

Figure 5.28: Fourier Transform and Auto-Correlation Representations of the
IDPSD Gust Input
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Figure 5.29: Variation of Maximum Loads with Linearized Gain for Noback air-
craft, using IDPSD method

Figure 5.30: Variation of Maximum Loads with Linearized Gain for A310 aircraft,
using IDPSD method
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Figure 5.31: Design Load1 and critical gust shape for Noback a/c by IDPSD
Method
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Figure 5.32: Design Load2 and critical gust shape for Noback a/c by IDPSD
Method
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Figure 5.33: Design Load2 and critical gust shape for A310 by IDPSD Method
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Figure 5.34: Design Load3 and critical gust shape for A310 by IDPSD Method
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Figure 5.35: Design Load 2 and critical gust for A310 model using the SSB
method
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Figure 5.36: Design Load 3 and critical gust for A310 model using the SSB
method



CHAPTER 5. GUST LOAD RESPONSE OF NONLINEAR AIRCRAFT 271

ssb(mfb)
ssb(pec)

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1
x 10

6

time (s)

C
or

re
la

te
d 

lo
ad

 2
 A

31
0 

(lb
.ft

)

0 2 4 6 8 10 12 14 16 18 20
-1.5

-1

-0.5

0

0.5

1
x 10

5

time (s)

C
or

re
la

te
d 

lo
ad

 1
 A

31
0 

(lb
.ft

)

Figure 5.37: Correlated loads (for Load 2 and Load 3) for A310 model using the
SSB method
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Figure 5.38: Comparison between SSB, MFB 1-D and IDPSD for Noback a/c
Load 1 (Design load and gust shape)
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Figure 5.39: Comparison between SSB, MFB 1-D and IDPSD for Noback a/c
Load 2 (Design load and gust shape)
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Figure 5.40: Comparison between SSB, MFB 1-D and IDPSD for Noback a/c
(Correlated loads)
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Figure 5.41: Comparison between SSB, MFB 1-D and IDPSD for A310 Load 2
(Design load and gust shape)
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Figure 5.42: Comparison between SSB, MFB 1-D and IDPSD for A310 Load 3
(Design load and gust shape)
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Figure 5.43: Comparison between SSB, MFB 1-D and IDPSD for A310 (Corre-
lated loads)



Chapter 6

Conclusions

This work has considered a number of different aspects of the modelling of non-

linear aeroelastic systems. Improvements have been made in the identification of

nonlinear systems and also in the control of Limit Cycle Oscillations. Original

comparisons of flutter prediction and gust load prediction techniques on nonlinear

aeroelastic systems have been made.

In chapter 2 six different linear flutter prediction methods were tested on a

mathematical representation of an aeroelastic system and their performance was

evaluated. The criteria used in this evaluation were the quality of predictions and

method complexity. The Nissim & Gilyard and the Steady State Identification

methods were found to consistently provide the most reliable predictions for the

simple Hancock model however, they failed completely for the larger Sim-2 model.

The Flutter Margin method can yield acceptable results when applied to an

aeroelastic system whose flutter mechanism is known but it requires flight tests

to be carried out at relatively high subcritical airspeeds in the presence of high

levels of noise corruption. The Damping Fit and Envelope Function method were

found to give the best results for the Sim-2 model. The ARMA-based method

was found to suffer in the presence of measurement error, mainly because of the

inaccuracy of the ARMA fitting procedure.

275



CHAPTER 6. CONCLUSIONS 276

The linear flutter prediction approaches where also applied to nonlinear sys-

tems in order to evaluate their performance in the presence of nonlinearities. It

was found that all of the methods can provide flutter predictions of varying ac-

curacy for a slightly nonlinear system. Highly nonlinear systems however, cause

some of the methods to fail, especially in the presence of limit cycles. The Steady-

State Identification technique was found to produce the best results because of

its tendency to linearise the system response. None of the methods were found

to be able to predict limit cycles with the possible exception of the SSI method

after further development.

In chapter 3, the current state of the art in the investigation of nonlinear

aeroelastic systems was presented. Most recent research is in the process of

generating data rather than analysing and explaining them. By using basic bi-

furcation theory and the Harmonic Balance method, a preliminary analysis of the

behaviour of a simple, simulated, nonlinear system was attempted. The analysis

confirmed a number of conclusions that have been reached by other researchers.

Specifically, the strong dependence of nonlinear behaviour on initial conditions

was confirmed as well as the partitioning of the multi-dimensional phase-space

of nonlinear systems caused by singularities such as limit cycles. These are two

very important problems encountered in the field of nonlinear vibrations since,

despite the improved performance of modern computers, it is still not feasible

to calculate the response of a nonlinear aeroelastic system at every possible (or

significant) combination of initial conditions and airspeed.

The analysis presented in chapter 3 has, however, led to a simple control

scheme for taming, or even suppressing, LCOs. Nevertheless, the effectiveness of

this scheme depends on the stability of the various point and line singularities in

the phase-space of a given nonlinear system. For a more mathematical analysis

of the feasibility of LCO control see [88].
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The simulated aeroelastic system investigated also exhibits chaotic oscillations

at particular combinations of initial conditions and airspeed. Poincaré plots and

Lyapunov exponents were used to confirm that the behaviour was chaotic.

In chapter 4 two identification methods for nonlinear systems were presented.

The NARMAX method was used to introduce the concept of nonlinear system

identification and to demonstrate its feasibility on aeroelastic systems. An aeroe-

lastic version of the NARMAX approach was introduced, based on expressing

the NARMAX coefficients as polynomial fractions, evaluated at a number of air-

speeds.

A new method for identification of nonlinear aeroelastic systems was proposed,

based on the restoring force method. The main thrust of the technique consists

of curve fitting the system at time instances where the response of a degree of

freedom and, hence, the non-linearity dependent on it, has a constant value. The

method was demonstrated on a simple single-degree-of-freedom system and then

applied to a multi-degree of freedom system representing a rigid wing, yielding

in both cases models whose response was in very good agreement with that of

the actual systems. The method was found capable of identifying a wide range

of nonlinearities including discontinuous and hysteresis-type nonlinear functions.

Finally, the method was applied successfully to an experimental 2 DOF system

with cubic nonlinearity.

In chapter 5, five methods for predicting design gust loads for nonlinear air-

craft were compared on two simulated gust response models. The methods in-

cluded two stochastic techniques, the PEC and SSB and three deterministic ones,

the MFB 1-D and multi-D, the IDPSD and the SDG. For nonlinear aircraft, there

exists no approach that will yield the ’correct’ design loads. In reference [74] it

is proposed that a stochastic simulation, given a ’specific’ turbulent patch, can
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be assumed to yield the true design load. This proposal however, is an assump-

tion designed to facilitate the foundation of an ’International Cooperative Effort’

to validate deterministic gust methods, rather than an attempt at calculation

of correct design loads. Hence, in the present work, more emphasis was given

on conservatism rather than absolute accuracy. For the simple Noback aircraft,

the MFB multi-D yielded the most conservative results, whereas for the Airbus

model, the PEC method was more conservative. Another important aspect of

the comparison was computational effort. The MFB 1-D was found to be the

cheapest method to apply.

All the developments summarized above are seen as a stepping stone towards

the modelling and identification of full scale nonlinear aircraft.

6.1 Suggestions for further work

The work presented in this thesis is by no means complete. Aeroelasticity seems to

be an inexhaustible source of interesting but complicated problems to be solved.

In this section, some avenues of further research into the topics investigated in

the present thesis are presented.

Robust flutter prediction methods from flight test data, such as the µ method

presented in [89] and [90] seem to hold much promise for the future. The inves-

tigation of flutter prediction techniques presented in chapter 2 could be widened

to include robust approaches. Then, the criteria for the comparison of methods

should also include the size of the test matrix for flutter clearance, since the

promise of robust flutter prediction is to reduce these matrices [90].

The verdict on the linearisation of nonlinear systems presented in this work

was that linearisation can work for systems with mild nonlinearities but will

generally fail for highly nonlinear systems. The problem with this verdict is that,

unless nonlinear identification is performed, it can be impossible to know whether
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the nonlinearities present in a system are mild or not. However, since nonlinear

identification of real aircraft is still not feasible, linearisation will be a necessity

for the near future. Hence, there is scope for the development of a procedure that

could indicate the confidence margin of linearised flutter predictions.

The CL method for identification of nonlinear systems, presented in chapter

4, can be improved in two ways. Firstly, more extensive experimental verification

should take place, especially on continuous systems with distributed nonlinearity.

Theoretically, the method should work for such a system, by identifying it as

a series of discrete elements attached to discrete nonlinearities. However, this

approach requires some type of mass appropriation to be carried out first, as

discussed in section 4.3.7. Another approach for the identification of systems

with many nonlinearities, that could potentially dispense with the need for mass

appropriation, is the design and use of excitation signals that excite only one of

the nonlinearities at a time.

The evaluation and comparison of gust load prediction methods presented

in chapter 5 could be improved by including the latest version of the Statis-

tical Discrete Gust method which employs wavelets to simulate discrete gusts

[91]. Additionally, the response of aircraft to other than lateral gusts should be

researched, as in [92] which investigated the effects of side gusts. Such an inves-

tigation would be a stepping stone towards gust load prediction involving gusts

impacting on aircraft from all directions.
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Appendix A

Hancock model with control

surface

The mathematical model chosen to investigate nonlinear aeroelastic behaviour

was a rectangular wing of flat plate section, of thickness t, with a control surface.

It is based on the Hancock model [3] i.e. it is assumed to be rigid and is attached

to a rigid wall at its root via two rotational springs, one in the pitch and one in

the yaw direction. It has one extra degree of freedom, the control surface pitch.

A diagram of the wing can be seen in figure A.1.

The first part of the modeling of the flutter equations involved writing the

displacement of the wing-control surface assembly in the z-direction in terms of

the displacements in the y and x directions and the angles γ, θ and β, as defined

in figure A.1. The diagram in figure A.2 shows this procedure in more detail.

According to this diagram (and the middle diagram in figure A.1) the vertical

displacement of the main wing, zw (for x < xc) is given by (assuming that all

displacement angles are small)

zw(x, y) = yγ + (x − xf )θ

and the vertical displacement of the control surface, zc (for x > xc) is given by:
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zw(x, y) = yγ + (x − xf )θ + (x − xh)β

The equations of motion for the system were arrived at by use of Lagranges

equation:

d

dt

(
dT

dq̇i

)
+

dV

dqi

= Qi (A.1)

where T is the kinetic energy, V is the potential energy, Qi are the generalised

forces applied to the system (in this case aerodynamic forces) and qi are the

generalised displacements (in this case γ, θ and β). Terms that are equal to zero

have been omitted from the equation.

For this system the kinetic energy is given as the sum of the kinetic energies

of the main wing and the control surface, i.e.

T = Tw + Tc =
1

2

∫ s

0

∫ xc

0
ż2

wdm +
1

2

∫ s

0

∫ c

xc

ż2
cdm

Substituting for zw and zc yields the following expression for the kinetic energy.

T =
γ̇2

2
Iγ +

θ̇2

2
Iθ +

β̇2

2
Iβ + γ̇θ̇Iγθ + γ̇β̇Iγβ + θ̇β̇Iθβ (A.2)

where,

Iγ =
∫ s

0

∫ c

0
y2dm , Iγθ =

∫ s

0

∫ c

0
y (x − xf ) dm

Iθ =
∫ s

0

∫ c

0
(x − xf )

2 dm , Iγβ =
∫ s

0

∫ xc

c
y (x − xh) dm

Iβ =
∫ s

0

∫ xc

c
(x − xh)

2 dm , Iθβ =
∫ s

0

∫ xc

c
(x − xh)

The potential energy is given by

V =
1

2
Kγγ

2 +
1

2
Kθθ

2 +
1

2
Kββ2 (A.3)
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where Kγ, Kθ and Kβ are the stiffnesses of the springs restraining motion in the

γ, θ and β directions respectively.

By substituting equations A.2 and A.3 into A.1 the following expression for

the equations of motion is obtained:




Iγ Iγθ Iγβ

Iγθ Iθ Iθβ

Iγβ Iθβ Iβ







γ̈

θ̈

β̈




+




Kγ 0 0

0 Kθ 0

0 0 Kβ







γ

θ

β




=




Qγ

Qθ

Qβ




(A.4)

The aerodynamics of the flat plate with control surface airfoil were modeled

according to references [93] and [94] and then, using steady strip theory, they were

generalised for the whole wing. The effect of the control surface is to displace

the lift curve of the airfoil in the horizontal direction, as seen in figure A.3. So,

for a positive (nose up) control deflection, the lift curve is displaced upwards,

as shown below. The main effect this has on the behaviour of the airfoil is

that for zero angle of attack, it produces lift, ∆Cl. Accordingly, for zero angle

of attack, there is a moment around the aerodynamic centre, ∆Cmac . In other

words, the lift coefficient of the wing with control surface deflection is given as

the superposition of the lift coefficient without deflection and ∆Cl. Similarly for

the moment coefficient around the aerodynamic centre with the difference that

this quantity is zero for symmetrical wing sections, therefore the total moment

coefficient is equal to ∆Cmac . These two incremental quantities can be evaluated

using the method described in [93], resulting in (where α is the angle of attack)

Cl = 2πα + ∆Cl = 2πα + [2(π − θh) + 2 sin θh] β

Cmac = 0 + ∆Cmac =
[
1

2
sin θh(cos θh − 1)

]
β (A.5)

where (xh being the position of the hinge axis, as defined in figure A.2),

θh = cos−1
(
1 − 2xh

c

)
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However, the moment coefficient around the aerodynamic centre is not very

useful in this instance since the wing is attached to the wall at its flexural axis.

Therefore the moment coefficient has to be evaluated around the flexural axis too.

This is accomplished by taking moments about the flexural axis and obtaining

Mfa = Mac + ecL

or,

Cmfa
= Cmac + eCl

where e is the ratio of the distance between the flexural and aerodynamic axes.

Hence,

Cmfa
= 2πeα +

{
[2(π − θh) + 2 sin θh] e +

[
1

2
sin θh(cos θh − 1)

]}
β (A.6)

In order to complete the aerodynamic modeling it is necessary to determine

the value of the control surface moment coefficient around the hinge axis. This can

be calculated by evaluating the pressure distribution around the control surface

only and then summing it while taking moments about the hinge axis. However

this is a very laborious process and if the method of [93] is used, it involves

calculating the integrals of infinite series.

Two alternative approaches were identified and tried. The first one was to

solve for the flow around the wing section using the vortex panel method in a

manner similar to the procedure in [95]. This produced good results and also

gave an insight into the aerodynamic intricacies of the model. Figure A.4 shows

a typical pressure distribution around a flat plate with control surface deflection.

The control causes a second peak in pressure near the hinge axis which accounts

for the increase in lift. However, this is again a complicated procedure and does

take up a lot of useful computing time. As a consequence, a third approach was

used, found in [94]. It yields the following result.
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Cmha
= −T12

2
α − T12T10

2π
β (A.7)

where,

T10 =
√

1 − d2 + cos−1 d

T12 =
√

1 − d2(2 + d) + cos−1 d(2d + 1)

d = 2xh
c − 1

The easiest way of incorporating results (5), (6) and (7) into the equations of

motion is to express the three coefficients as follows.

Cl = a1α + a2β

Cmfa
= b1α + b2β

Cmha
= c1α + c2β

(A.8)

where,

a1 = 2π a2 = [2(π − θh) + 2 sin θh]

b1 = 2πe b2 =
{
[2(π − θh) + 2 sin θh] e +

[
1
2
sin θh(cos θh − 1)

]}
c1 = −T12

2 c2 = −T12T10
2π

Taking a small strip dy of the wing, the total lift on it, dL is given by

dL =
1

2
ρV 2cCldy =

1

2
ρV 2c(a1α + a2)βdy

where V is the free stream velocity. The angle of attack, α, is the sum of the

geometrical angle of attack, θ, and the dynamic angle of attack caused by the

vertical movement of the wing. Hence,

α = θ +
γ̇y

V

Similarly, the other two aerodynamic coefficients for the strip dy can be formed

and the three coefficients can then be expressed as
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dL =
1

2
ρV 2c

[
a1

(
θ +

γ̇y

V

)
+ a2β

]
dy

dMfa =
1

2
ρV 2c2

[
b1

(
θ +

γ̇y

V

)
+ b2β

]
dy

dMha =
1

2
ρV 2c2

[
c1

(
θ +

γ̇y

V

)
+ c2β

]
dy (A.9)

Furthermore the work done by the aerodynamic force and moments on the wing

is given by

δW = −
∫ s

0
dLyδγ +

∫ s

0
dMfaδθ +

∫ s

0
dMhaδθ (A.10)

where the negative sign is due to the fact that γ is defined positive downwards

whereas L is positive upwards. Finally, the equations of motion can be completed

by writing the generalised forces Qi in terms of the work done on the wing as

follows.

Qγ =
∂(δW )
∂(δγ)

, Qθ =
∂(δW )
∂(δθ)

, Qβ =
∂(δW )
∂(δβ)

Combining the expressions above with equations A.1, A.4 and A.9 gives the

full equations of motion for the wing with control surface model in a free stream

of velocity V.


Iγ Iγθ Iγβ

Iγθ Iθ Iθβ

Iγβ Iθβ Iβ







γ̈

θ̈

β̈




+
1
2
ρV sc




s2a1
3 0 0

− scb1
2 0 0

− scc1
2 0 0







γ̇

θ̇

β̇




+




Kγ 0 0

0 Kθ 0

0 0 Kβ







γ

θ

β




+
1
2
ρV 2sc




0 sa1
2

sa2
2

0 − cb1
2 − cb2

2

0 − cc1
2 − cc2

2







γ

θ

β




=




0

0

0




(A.11)

In order to improve the accuracy of the model, two more terms were added to

approximate aerodynamic unsteadiness. These terms were the first order aero-

dynamic derivatives around θ and β. The final form of the equations of motion
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is as follows:


Iγ Iγθ Iγβ

Iγθ Iθ Iθβ

Iγβ Iθβ Iβ







γ̈

θ̈

β̈




+
1
2
ρV sc




s2a1
3 0 0

− scb1
2 −c2Mθ̇ 0

− scc1
2 0 −c2Mβ̇







γ̇

θ̇

β̇




+




Kγ 0 0

0 Kθ 0

0 0 Kβ







γ

θ

β




+
1
2
ρV 2sc




0 sa1
2

sa2
2

0 − cb1
2 − cb2

2

0 − cc1
2 − cc2

2







γ

θ

β




=




0

0

0




(A.12)

To make the study of the model more complete it was decided to excite the

main wing by an external force which could be applied anywhere on the wing,

vertically and at given x and y-positions. The work done by such a force is given

by

δW = F [yffδγ + (xff − xf )δθ]

where F is the magnitude of the force and (xff , yff ) is the position of the forcing

function. Therefore, the generalised forces in the γ and θ coordinates (the control

surface is not excited and there is no generalised force in the β coordinate) are

Qγ =
∂(δW )
∂(δγ)

= Fyff

Qγ =
∂(δW )
∂(δθ)

= F (xff − xf )

As a consequence, the right hand side of the equations of motion changes to:




Fyff

F (xff − xf )

0
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Figure A.1: Diagram of the Hancock wing with control surface

Figure A.2: Flat plate wing section
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Figure A.3: Effect of control surface

Figure A.4: Pressure distribution over a flat plate with control surface



Appendix B

The eigenvalue method

The equations of motion for a linear aeroelastic system without excitation can be

solved using the eigenvalue method. The method works by reducing the second

order problem to a first order one and then evaluating the eigenvalues of the

resulting matrix. For a demonstration of the procedure consider the following

equations of motion.

Mq̈ + Cq̇ + Kq = 0 (B.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix

and q is the displacement vector. If equation B.1 is combined with

Mq̇ − Mq̇ = 0

the following system is produced.
 0 M

M C







q̈

q̇


 +


 −M 0

0 K







q̇

q


 =




0

0




This system of equations can be simplified by multiplying throughout by the

inverse of the first matrix, resulting in
 I 0

0 I







q̈

q̇


 +


 −M−1C −M−1K

I 0







q̇

q


 =




0

0
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which can be rewritten as

−ṗ + Qp = 0 (B.2)

by setting,

p =




q̇

q


 , Q =


 −M−1C −M−1K

I 0




The system has now been reduced to a first order eigenvalue problem. It can

be easily solved by letting p = Peλt. The solution yields as many pairs of complex

conjugate solutions as there are modes in the system. By writing

{−λI + Q}Peλt = 0

and then solving for λ the following eigenvalues are obtained

λ1,2,...,2(m)−1,2(m) = −ζω ± iω
√

1 − ζ2

where ζ is the damping ratio, ω is the natural frequency of the motion and m is

the number of modes. A number of very important pieces of information can be

deduced from these two parameters. The damping coefficient determines whether

the motion is stable or not. Positive damping coefficient implies stable motion

whereas negative implies flutter. The critical flutter speed occurs when one of

the damping ratios is equal to zero. The natural frequencies determine exactly

how unstable the system is and which two modes are coupling to cause flutter.

For more details on the eigenvalue method see reference [95].



Appendix C

Pinpointing the flutter velocity

The most commonly used flutter criterion for a known linear aeroelastic system

is the zero damping criterion. A number of approaches can be used in order to

determine at which exact velocity the damping in at least one of the modes of

the system becomes zero, when the equations of motion are known. Throughout

the present work, quasi steady aerodynamic models are used, in which case there

is no need for frequency matching. This simplifications enables the use of the

following algorithm:

1. The procedure starts at a velocity at which the system is known to be

stable. This velocity could be V=1 m/s but, in order to save computing time

higher velocities can be used. The eigenvalues of the system (and, hence,

the natural frequencies and damping ratios of each mode) are calculated

at this velocity using the eigenvalue method. Then, all the dampings are

checked to make sure that none of them are equal to or less than zero.

2. The velocity is increased by a set amount, ∆V (10 m/s is most convenient).

The damping ratios are again evaluated and checked.

3. If all the dampings are greater than zero the velocity is again increased and

the procedure returns to step 2. If one of the dampings is less than zero, the
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velocity is decreased by ∆V and ∆V itself is divided by 10. The velocity is

increased by the new ∆V and the procedure continues from step 2.

4. When a velocity is reached at which the damping is positive but less than

a required small value (which depends upon the desired accuracy), the pro-

cedure stops and the the current velocity is taken to be the flutter velocity.

Other procedures could be used but this approach is most convenient since,

in general, more than one modes of an aeroelastic system will flutter, at different

velocities. The flutter velocity, however, is the first velocity at which the zero

damping criterion is reached and the method described above will always pinpoint

this particular velocity.



Appendix D

Finite difference solution

The equations of motion of a system (whether linear of nonlinear) can be inte-

grated numerically to give the complete time history of the system for a particular

set of airspeed, initial conditions, and excitation force. This can be done using

various methods, two of which were used with this project. The first method

was the Runge-Kutta method, applied by means of a computer package called

Simulink [96], operating within the MATLAB [97] environment. This method is

of high order (fifth) accuracy and can be applied easily using Simulink but the

package itself allows very little control over the solution procedure and makes it

very difficult to identify what has, or may have, gone wrong. For this reason, an

alternative method of solution was sought in the form of finite differences [98].

This method is of lower accuracy than the Runge-Kutta method (second order)

but is very stable and easy to apply. The basis of the finite difference method is to

write functions as the first term of their Taylor expansion. Thus, derivatives can

be approximated in terms of their previous and/or currant and/or future values.

The Taylor expansion of a discretized function of time, f , at time instance j + 1

in terms of fj is
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fj+1 = fj + ∆tḟj +
∆t2

2
f̈j + ... (D.1)

where ∆t is the time step. If terms of order ∆t2 and higher are ignored then

ḟj =
fj+1 − fj

∆t
(D.2)

This expression is called the forward difference representation of ḟ and is of

first order accuracy. If the Taylor expansion of f is written for −∆t

fj−1 = fj − ∆tḟj +
∆t2

2
f̈j + ... (D.3)

and 2nd order terms are ignored as previously, the backward difference represen-

tation of ḟ is obtained

ḟj =
fj − fj−1

∆t
(D.4)

which is again of 1st order accuracy. If equations D.1 and D.3 are subtracted

then the central difference representation can be obtained

ḟj =
fj+1 − fj−1

2∆t
(D.5)

which is of 2nd order accuracy (since the 2nd order terms are not ignored but

cancel each other out). Finally, if equations D.1 and D.3 are added, the central

difference representation of f̈ can be obtained as

f̈j =
fj+1 − fj + fj−1

∆t2
(D.6)

Consequently, by discretizing a function and expressing f(t) as fj, expressions

for its first and second derivatives can be obtained, albeit with numerical errors,

the order of which depends on the type of finite difference representations used.
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For dynamical systems, central differences are most suitable because of their

higher accuracy. The equations of motion for such a system are

Mq̈ + Cq̇ + Kq = F

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix,

F is the excitation vector and q is the vector of generalised coordinates. After

discretization, these equations can be rewritten using equations D.5 and D.6 as

M
qj+1 − qj + qj−1

∆t2
+ C

qj+1 − qj−1

2∆t
+ Kqj = Fj

Moving all j and j − 1 terms to the right hand side

(
M

∆t2
+

C

2∆t

)
qj+1 = Fj +

(
M

∆t2
− K

)
qj +

(
− M

∆t2
+

C

2∆t

)
qj−1 (D.7)

Hence, equation D.7 can be solved at every step j to obtain qj+1 provided that

qj and qj−1 are known. This is called a time-marching solution. For the scheme

to work, the values of q1 and q2 must be known. The initial conditions will yield

q1 but q2 can only be obtained using a forward difference representation of the

equations of motion at j = 1, assuming that all the second derivatives are zero

at that particular instance. Hence, using equation D.2,

C

∆t
q2 = F1 + Kq1 +

C

∆t
q1 (D.8)

Nonlinear systems can also be solved using the time-marching finite difference

scheme, however, only in the case where the nonlinear functions in a given system

depend only on q (i.e. nonlinear stiffness), so that the nonlinearity is moved to

the right-hand side of equation D.7. If the nonlinear function depends on q̇

(nonlinear damping) then the first derivatives have to be expressed as backward

differences, which creates numerical difficulties since the second derivatives have
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to be expressed as central differences. These difficulties can be overcome however,

this is beyond the scope of the present work since only stiffness nonlinearities were

solved by finite differences.



Appendix E

Chebyshev Polynomials

Chebyshev polynomials approximate a function, f(x), by a series of weighted

orthogonal polynomials given by [98]

Tn+1(x) = 2xTn(x) − Tn−1(x)

T0(x) = 1

T1(x) = x




(E.1)

Then, the function can be written as

f(x) =
ao

2
+

∞∑
i=1

aiTi(x) (E.2)

and the weights, ai are obtained, due to the orthogonality property, using

ai =
2

π

∫ 1

−1

f(x)Ti(x)√
1 − x2

dx (E.3)

The integration needs to be performed carefully since the integrand becomes

infinite at the integration limits.

The sum in equation E.2 is infinite but, in practice, only a small number of

polynomials is enough to approximate the function. For example, figures E.1

and E.2 show how the quality of a fit is improved by increasing the number of

polynomials from 30 to 40. Hence the parameters describing the function are the
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weights ao, . . . , aN . Reference [82] recommends Chebyshev Polynomials for the

parameterization of gust waveforms indicating that less parameters are required

than if Fourier Series were used.
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Figure E.1: Gust Waveform Fit by 30 Chebyshev Polynomials

Figure E.2: Gust Waveform Fit by 40 Chebyshev Polynomials



Appendix F

Simulated Annealing

Simulated Annealing [81], [60]is an optimization process approximating the way

alloys are annealed, i.e. heated up and then left to cool down naturally so that

the energy of their crystal structure is minimized. Once the parameter space of

a particular optimization problem is defined, the simulated annealing algorithm

alters randomly one or more parameters and produces the corresponding cost

function that is to be optimized. Then the algorithm determines whether the

new state is to be accepted or rejected by applying the condition

J = exp
(
−cnew − cold

T

)
≥ rand (F.1)

where cnew is the cost function of the new state, cold is the cost function of the

previous state, T is a relaxation coefficient termed the temperature and rand

is random number between 0 and 1. The criterion is written for the case of a

minimization problem. The role of the temperature is to allow the system to

exit local optima and move towards the global optima. When the temperature

is high, worse states can be accepted as well as better ones. As the temperature

decreases less ’bad’ states are accepted and the system is moved towards its global

optimum.
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More specifically, the application of the Simulated Annealing method to a

minimization problem starts with a high temperature value. Minimization implies

that the cost function, c, needs to be minimized. There are three possible cases

1. If the cost function of a new state, cnew, is less than the cost function of the

previous state, cold, then, from equation F.1, J > 1 and the new state will

be accepted since rand assumes values between 0 and 1.

2. If the cost function of a new state is equal to the cost function of the previous

state, J = 1 and the new state is accepted.

3. If the cost function of a new state is greater than the cost function of the

previous state, 0 < J < 1, and the new state is only accepted if J > rand.

At the start of the procedure the temperature is high which means that J

will often be greater than rand and a lot of worse cases will be accepted. As

the temperature decreases, J also decreases, meaning that gradually fewer

worse cases will be accepted.

It should be noted that the algorithm is not guaranteed to deliver the absolute

optimum. This would only be possible with an exhaustive search of the parameter

space. However, its capability to avoid local optima means that the final state

will be very close to the global optimum. The best guarantee that the optimum

has been reached is to repeat the procedure from different initial states and to

choose the most common final state.



Appendix G

Sim-2 aeroelastic model

The Sim-2 model is a mathematical aeroelastic model that describes the behaviour

of a 4-engined civil transport. The model contains the equations of motion for

the aircraft in the form of structural and aeroelastic modal mass, stiffness and

damping matrices. There are two sets of matrices, one for symmetric modes (21

flexible and 3 rigid body) and one for antisymmetric modes (20 flexible and 3 rigid

body). The symmetric and antisymmetric behaviors are uncoupled and can be

solved separately. In physical space, the aircraft can be excited at 17 excitations

positions shown in figure G.1.
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Figure G.1: Sim-2 aeroelastic model



Appendix H

Gust load response models

Two simulated symmetrical aircraft models were used in this research, both of

which were kindly provided by Dr W.J. Vink of the National Aerospace Labora-

tory, NLR, in Holland. Descriptions of the models can also be found in [79]. The

first model, commonly known as the Noback aircraft, is a simple, 2-dof model

of a large transport aircraft with a load alleviation system. The two degrees of

freedom are pitch and heave and the load alleviation system feeds back the centre

of gravity acceleration to aileron deflection. The model has two load outputs:

• load 1: Centre of gravity acceleration (m/s2)

• load 2: Centre of gravity acceleration caused by aileron action only (m/s2)

A Simulink block diagram of the Noback aircraft is shown in figure H.1.

The second model represents a A310 aircraft with two rigid-body degrees of

freedom, pitch and heave, and three symmetric flexible degrees of freedom. The

control system of the aircraft feeds back the centre of gravity acceleration to the

ailerons and the spoilers. The deflections of both the ailerons and the spoilers

are limited between 0 and 10 degrees. The model has four load outputs:

• load 1: Engine lateral acceleration (ft/s2)
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• load 2: Wing bending moment (lb.ft)

• load 3: Wing torsion (lb.ft)

• load 4: Load factor (ft/s2)

A Simulink block diagram of the A310 model is shown in figure H.2.
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Figure H.1: Simulink diagram of nonlinear Noback Aircraft

Figure H.2: Simulink diagram of nonlinear A310 aircraft


