Glossary

Conditional probability distribution

Correlation
Correlation coefficient
Covariance

Covariance matrix

Credible interval (region)

Dependence and independence

Event

Joint distribution
Laplace approximation

Likelihood function

Marginal distribution

Conditional probability distribution 7 (y|x) pro-
vides the plausibility of proposition y, given
proposition x.

A general term for the dependence between
pairs of random variables.

A measure for the strength of the dependence
between pairs of random variables.

A measure that shows how two random variables
depend on each other.

A symmetric matrix in which the off-diagonal
elements are covariances of pairs of random vari-
ables and the diagonal elements are variances of
random variables.

An interval (or a region in the multivariate case)
of a distribution in which it is believed that one
or more random variables (parameters in this
study) lie with a certain probability.

Two events are statistically independent if the
occurrence of one has no influence on the
probability of the occurrence of the other one
(i.e. w(x) = 7(zly)). They are dependent if
the occurrence of one has an influence on the
probability of the occurrence of the other one
(ie. 7(x) # 7(aly)):

A set of outcomes of an experiment.

A multivariate distribution.

An approximation of a distribution with a Gaus-
sian distribution centred at the MAP.

If the conditional probability distribution m(y|z)
is regarded as a function of x for given fixed y,
the function is called a likelihood function. The
likelihood describes the plausibility of a param-
eter, given observations.

A probability distribution as a function of a sin-
gle variable or a combination of subsets of vari-
ables associated with a multivariate distribution
(e.g. m(x), 7(y), m(x,y), w(x, z) and 7 (y, z), for
joint distribution 7 (x,y, 2)). A marginal distri-
bution is obtained by integrating a multivariate
distribution over one or more (but not all) other
variables.



Markov chain

Markov chain Monte Carlo (MCMC) methods

Maximum a posteriori probability (MAP) point
Mean (expected value)

Multivariate distribution

Point estimate

Population

Posterior distribution (posterior)

Posterior predictive distribution (PPD)

Prior distribution (prior)

Probability

Probability density function (PDF)
Probability distribution

Random sample

Random variable

Realisation

Sample

Standard deviation

A stochastic model to describe a sequence of
events in which the probability of each event
only depends on the previous event.

A set of techniques to draw samples (i.e. simu-
late observations) from probability distributions
by the construction of a Markov chain.

A point at which the posterior distribution is
(globally) maximum.

A measure for the central value of the underly-
ing distribution.

A probability distribution of two or more ran-
dom variables.

A scalar that measures a feature of a population,
e.g. the mean value, the MAP point.

The total set of all possible observations that
can be made.

The probability distribution that describes one’s
knowledge about a random variable (parame-
ter in this study) after obtaining new measure-
ments.

The distribution of unobserved measurements
(observations), given the measured (observed)
data.

The probability distribution that describes one’s
a-priori knowledge about a random variable (pa-
rameter in this study).

The likelihood (or plausibility) that a certain
event occurs.

The equation that describes a continuous prob-
ability distribution.

A function that provides the probabilities of the
occurrence of the possible outcomes of an exper-
iment.

A randomly chosen sample.

A variable of which the value depends on the
outcome of a random experiment.

The value that a random variable takes or the
outcome of an experiment after its occurrence.

A set of observations from a population with the
purpose of investigating particular properties of
the population.

A measure for the possible deviation of a ran-
dom variable from its mean. Large standard de-
viations indicate large possible differences; and
vice versa.



Validation point A measurement (observation) used to assess the
quality of a prediction based on the identified
parameters, that is not used for the identifica-
tion itself.

Variance The standard deviation squared.

More definitions on statistical concepts can be found in [1] and [2].
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Abstract

The aim of this contribution is to explain in a straightforward manner how Bayesian inference can be used to
identify material parameters of material models for solids. Bayesian approaches have already been used for
this purpose, but most of the literature is not necessarily easy to understand for those new to the field. The
reason for this is that most literature focuses either on complex statistical and machine learning concepts
and/or on relatively complex mechanical models. In order to introduce the approach as gently as possible,
we only focus on stress-strain measurements coming from uniaxial tensile tests and we only treat elastic and
elastoplastic material models. Furthermore, the stress-strain measurements are created artificially in order to
allow a one-to-one comparison between the true parameter values and the identified parameter distributions.

Keywords: Bayesian inference, Bayes’ theorem, stochastic identification, statistical identification,
parameter identification, elastoplasticity, plasticity

1. Introduction

The most commonly used approach to identify parameters of mechanical descriptions for solid materials is
to formulate an error function that measures the difference between the model response and the experimental
data [3]. This error function is then minimised with respect to the material parameters in order to determine
their most suitable values. Such an approach provides a deterministic estimate of parameter values, unable
to account for the unavoidable uncertainties of each parameter associated with experimental observations.

An alternative, and rather different approach is to use Bayesian inference (BI). Using Bayes’ theorem,
a probability density function (PDF), the so-called posterior distribution (or the posterior for short) can
be formulated as a function of the material parameters of interest. Subsequently, the PDF is analysed to
determine relevant summaries, such as the mean of the material parameters, the material properties at
which the PDF is maximum (called the ‘maximum-a-posteriori-probability’ point, or MAP for short) and
the covariance matrix (i.e. a matrix that measures the correlation between the parameters). The PDF can
only be explored analytically for a limited number of straightforward cases. Hence, numerical methods are
commonly employed, e.g. Markov chain Monte Carlo (MCMC) techniques [4-7]. An alternative is to first
approximate the PDF (e.g. by a Laplace approximation) and then determine the statistical summaries of
the approximated distribution (e.g. mean, MAP point and covariance matrix) [8, 9].

In contrast to deterministic identification approaches, approaches using BI can quite straightforwardly
incorporate several uncertainty sources, such as the noises coming from different experimental devices, as
well as the uncertainty caused by the fact that the model cannot perfectly capture reality (i.e. the model
uncertainty) [10]. In addition, all parameter values come with their individual uncertainty, that is also
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measured in terms of the parameter values. This is in contrast to conventional deterministic identification
approach which come with one residual as a measure for the full set of parameters, which is obviously
not expressed in terms of the parameters themselves. Additionally, BI provides an intrinsic statistical
regularisation which makes inverse problems with limited observations solvable [11]. On the other hand,
applying Bayes’ theorem for material parameter identification does require the measurement noise to be
known, i.e. the noise distributions and their parameters must be established. One must note that the noise
distribution and its parameter values can be treated as unknown parameters that need to be identified
and hence, they appear in the posterior. The numerical techniques to analyse the posterior PDFs may
furthermore need careful attention.

The developments of BI in the field of parameter identification for mechanical models started with the
identification of elastic constants. Isenberg [12] proposed a Bayesian approach for the identification of
elastic parameters in 1979. Various researchers subsequently used the framework to identify elastic material
parameters based on dynamic responses [8, 13, 14]. Lai and Ip [15] used BI to identify the elastic properties
of a thin composite plate. Daghia et al. [16] used the Bayesian framework for the identification of the elastic
constants of thick laminated composite plates in a dynamical setting. Koutsourelakis [17] used Bayesian
inference to identify spatially varying elastic material parameters. In 2010, Gogu et al. [3] presented an
introduction in the Bayesian approach for the identification of elastic constants, and compared the results
with those of a deterministic identification approach. The influence of the prior distributions was however
not systematically studied. In another study, Gogu et al. [18] used a Bayesian framework to identify elastic
constants in multi-directional laminates.

BI is also used for the parameter identification of nonlinear constitutive models. Muto and Beck [19] and
Liu and Au [20] applied the approach to hysteretic models, whereas Fitzenz et al. [21] used BI to identify
parameters of a creep model of quartz. Most [22] used a Bayesian updating procedure for the parameter
identification of an elastoplastic model without hardening (perfect plasticity). Rosi¢ et al. [23] used linear
Bayesian updating via polynomial chaos expansion for an elastoplastic system. BI is also employed for the
identification of viscoelastic material parameters in [24, 25].

Another study that uses Bayes’ theorem to identify material parameters is the work of Nichols et al. [26].
They employed the theorem to identify the nonlinear stiffness of a dynamic system. Furthermore, Nichols
et al. [26] used the method to find the location, size and depth of delamination in a composite beam.
Abhinav and Manohar [27] used BI to characterise the dynamic parameters of a structural system with
geometrical nonlinearities. The approach is also employed to assess the quality of different models with
respect to measured data (i.e. model selection): e.g. hyperelastic constitutive models for soft tissue [28§],
phenomenological models for tumour growth [29], models for damage progression in composites due to
fatigue [30] and fatigue models for metals [31]. Sarkar et al. [32] used the Bayesian method to identify
thermodynamical parameters of cementitious materials. BI is also used in the fields of heat transfer and
fluid mechanics for inverse problems [5, 33].

Bayesian inference relies on concepts that may be complex to grasp for those who are only familiar with
deterministic identification methods. The primary objective of this contribution is to show how Bayesian
inference can be applied for the stochastic identification of material parameters. We focus on elastoplastic
material models in this contribution for two reasons: (1) they are widely used in the field of mechanics, and
(2) the family of elastoplastic material models contains both simple (linear elasticity) and more complex,
nonlinear, Cy-continuous descriptions (elastoplasticity with nonlinear hardening). Our contribution focuses
on results of uniaxial tensile tests in order to be as straightforward as possible. In addition to introducing the
general idea of identification approaches based on BI as gently as possible (to our abilities), we also discuss
some more complex extensions, such as not only incorporating the error in the stress, but also incorporating
the error in the strain and the uncertainty of the model. Those extensions are not discussed in much detail,
but references to other works are included.

The structure of this article is as follows. Section 2 briefly discusses the employed material models in
this contribution. Section 3 discusses the theoretical fundaments behind Bayes’ theorem. Section 3 also
describes a Bayesian approach for the stochastic identification of elastoplastic material parameters, if only
the stress measurements include stochastic errors. In Section 4, MCMC methods as the numerical techniques
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to analyse the posterior distribution are explained. In this section, we also explain the posterior predictive
distribution (PPD) as an approach for predicting unobserved measurements. In Section 5, a considerable
number of results are presented. In Section 6, some advanced concepts, such as incorporating the error in
the strain and the model uncertainty, are discussed. We also briefly discuss how the approach differs if a
viscoelastic material model is used instead. In Section 7, conclusions are presented.

Remark 1. As mentioned before, we only consider stress-strain data coming from uniazial tensile tests in
this contribution. As the force is measured in tensile tests, the measured stress and its error is assumed to be
proportional to the measured force and its error (the parameters of its distribution are to be identified using
separate calibration experiments). Strain measurements are commonly based either on the clamp displacement
or determined using digital image correlation (DIC). In both cases, the parameters of the error distribution
of the strain can be determined using calibration experiments.

Remark 2. Throughout this paper bold letters and symbols denote vectors and matrices. Capitals further-
more denote random variables.

2. Material models

In this contribution, BI is developed to identify the parameters of four one-dimensional material models:
linear elasticity, linear elasticity with perfect plasticity, linear elasticity with linear hardening and linear
elasticity with nonlinear hardening. Hardening is considered to be isotropic and associative. For each model,
the identification is based on the results of monotonic uniaxial tensile tests. Below, material responses are
given for monotonic tensile loading.

2.1. Linear elasticity

The linear elastic model assumes a linear relationship between the stress and the strains. In the case of
uniaxial tension/compression, this writes:

o(e,x) = Fe, (1)

where o denotes the stress, € the strain, x the material parameter vector (here x = F) and E the Young’s
modulus.

2.2. Linear elasticity-perfect plasticity

The linear elastic-perfectly plastic model neglects the effect of work hardening, assuming that purely
plastic deformation occurs when the stress reaches its yield value. The total strain (e) in this contribution
is additively split into an elastic part, €., and a plastic part, €,:

€e=¢€.+¢€p, (2)

and the stress is defined as a function of the elastic strain, €.:
o(e,x) = Fe. = E(e — €p). (3)
The yield condition at which plastic yielding occurs, is written as:
flo) =lo| = oy <0, (4)

where o, denotes the initial yield stress and f the yield function. Consequently, x = [E Oy0
The flow rule for the plastic strain is furthermore expressed as:

éP - O.‘%7 (5)
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Figure 1: The stress-strain response of (a) linear elastic-perfectly plastic model, (b) linear elastic-linear hardening model and
(c) linear elastic-nonlinear hardening model during monotonic tension.

where « denotes the cumulative plastic strain. Finally, the Kuhn-Tucker conditions [34] ensure that dissipa-
tion is irreversible:

020, f(0)<0, @f(a)=0. (6)

The stress-strain response of the linear elastic-perfectly plastic model during monotonic tension can be
written as:

(e, %) FEe ife< % )
ole,x) = ) Lo
oyo ife> T2

Using the Heaviside step function (h(-)), Eq. (7) can alternatively be expressed as:

a(e,x)Ee(lh(egEyO)>+oyoh<60§)>, (8)

Fig. 1(a) presents this response graphically.

2.8. Linear elasticity-linear hardening

The linear elastic-linear hardening model is identical to the linear elastic-perfectly plastic model, except
for the yield function, which writes:

flo)=|o| —oy —Ha <0, (9)
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where H denotes the plastic modulus. Hence, x = [E oy H }T
Consequently, the stress-strain response of the model during monotonic tension writes:

E if e < 720
U(e,x):{ ‘ re=E (10)

=)

=3

oyo + Hep ife>%

which can again be expressed using the Heaviside step function:

o(e,x) = Ee(l - h(e - UEW)) + (ayo + %(e - UE’”))h(e— %) (11)

Fig. 1(b) shows this response graphically.

2.4. Linear elasticity-nonlinear hardening

The linear elastic-nonlinear hardening model also only differs from the linear elastic-perfectly plastic
model through the yield function, which writes:

f(o) =lo| =0y — Ha™ <0, (12)
where n is an additional plastic material parameter and hence, x = [E oy H n] ’
For monotonic uniaxial tension, the stress-strain response can be written as:

Ee if e < w0
o(e,x) = L oo (13)
oy + Hey, ife>=F

or using the Heaviside step function:

o(e,x) = Ee(l —h(e- Ug)) + (ayo +H(e— “(‘;;X))">h(e -, (14)

Fig. 1(c) shows this stress-strain response.

It is worth noting that Eq. (14) is an implicit function of the stress (o(e,x) appears both on the left
hand side and right hand side of Eq. (14) and cannot analytically be determined if € is known). This is in
contrast to the stress-strain expressions of the previous material models for monotonic tension (Egs. (1), (8)
and (11)), which are all explicit functions (i.e. o(e,x) can analytically be computed when one has €).

3. Bayesian inference

3.1. Concepts

We start by considering random events A and B, and the discrete probabilities of each event: P(a) and
P(b). The probability that events A and B both occur, is given by the joint probability, P(a,b), which can
be expanded as:

P(a,b) = P(a|b)P(b) = P(bla)P(a), (15)

where P(a|b) and P(bla) are conditional probabilities. Conditional probability P(a|b) expresses the proba-
bility that event A occurs, if it is certain that event B occurs. Using Eq. (15), the simplest form of Bayes’
theorem can be written as:

(16)
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If one regards two continuous random variables X € R and Y € R™m, instead of discrete variables,
where X denotes a random vector with n, unknown parameters and Y a random vector with n,, measure-

ments, Eq. (16) can be rewritten in terms of the following probability distribution functions (where 7 denotes
a PDF):

m(x)m(ylx)
m(y)

where 7(x), 7(y|x) and 7w(x|y) are referred to as the prior distribution (i.e. the PDF that includes one’s
prior knowledge), the likelihood function (i.e. the PDF of the observed data y, given unknown parameters
x) and the posterior distribution (i.e. the PDF of the unknown parameters x, given the observations y),
respectively.

Using the law of total probabilities [35] which relates the marginal probabilities (7(x) and 7(y)) to the
conditional probabilities (7(y|x)), the denominator in Eq. (17) can be written as:

m(x[y) = ; (17)

7 = [ wnlyix)ax (18)

Since the data (y) is already measured, the denominator in Eq. (17) is a positive constant number, C' € RY.
This constant number can be regarded as a normalisation factor that ensures that the integral of the posterior
(m(x|y)) over x equals 1:

r(xly) = Zr(m(ylx). (19)
Hence, one can rewrite Eq. (19) as:
m(xly) oc w(x)m (y[x). (20)

Note that the statistical summaries of the posterior distribution (i.e. the mean, the MAP point and the
covariance matrix) do not depend on the absolute posterior, but only on its shape.

In order to obtain the posterior in Eq. (20) (i.e. the PDF of the vector of unknown parameters, given the
observations 7(x|y)), the likelihood function (7 (y|x)) and the prior (7(x)) need to be formulated. First, the
likelihood function is considered.

In order to construct the likelihood function, a noise model has to be formulated and a noise distribution
(Tnoise) has to be determined. For the moment, we assume that the noise distribution is known (including its
parameters). The noise model used in this study is additive, which is frequently employed, amongst others
in [11, 16]. The additive noise model can be written as follows:

Y = f(X) + Q. (21)

where X € R"» denotes again the vector with the unknown material parameters, Y € R"™ the vector with
the measured data and € € R”™ the noise vector. f: R" — R"™ denotes the material description and is
a function of the unknown material parameters (X). Given realisations X = x and € = w, and assuming
that the parameters (X) and the error (Q) are statistically independent, the likelihood function reads:

7T(y|X) = ﬂ-noise(y - f(X)), (22)

where myeise(w) is the PDF of the noise (which is assumed to be identified based on separate calibration
experiments, see Subsection 5.1). Substitution of Eq. (22) in Eq. (20) yields:

7T(X|y) o8 7'(-(X)W]rloise (y - f(X)) (23)

A critical aspect of the Bayesian framework is the selection of the prior distribution (7(x)) [11] in which a-
priori knowledge about the parameters is translated in terms of a PDF. The influence of the prior distribution
diminishes if the number of observation increases [36], which is considered in more detail in Section 5.
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Once the posterior is formulated (Eq. (23)), the mean parameter values, MAP parameter values and the
covariance matrix can be extracted from it. We will use Markov chain Monte Carlo methods for this, since
they are the most commonly employed approaches to do so. These techniques are discussed in Subsection
4.1. Only for linear elasticity, we analytically analyse the posterior.

Remark 3. The parameters of the noise distribution can also be treated as unknown parameters that need to
be identified. In that case, they appear as variables in the posterior, together with the material parameters.
For tensile testers in well-controlled environments however, it is fair to say that the noise distribution and
its parameters can be identified using a separate calibration process (see subsection 5.1).

3.2. Application to the material responses during monotonic uniaxial tension

In this subsection, we apply the aforementioned Bayesian framework to the four material descriptions
for monotonic uniaxial tension. Effectively, this means that we replace model f(x) in Egs. (21) and (23) by
the four material responses o(e,x). We will see however that the resulting posterior distribution for linear
elasticity can be analysed analytically, but that the posteriors for the other three material descriptions need
to be analysed numerically. This is because all elastoplastic descriptions are only Cy-continuous. On top of
that, the description of the elastoplastic model with nonlinear hardening is implicit.

3.2.1. Linear elasticity
The only unknown material parameter in the linear elastic model is the Young’s modulus (F). Based on
Section 3, the additive noise model for a single stress measurement can be written as follows:

Y = Ee+Q, (24)

where Y denotes the measured stress and €2 denotes the random variable representing the noise in the stress
measurement. We consider the noise distribution to be normal (Gaussian) and hence, it can be written as:

1 w?
o) = (= ). 2

noise

Using Eq. (22), the likelihood function for a single stress measurement can now be expressed as:

1 (y — Ee)?
T(Y|E) = Tnoi — Fe) = ——ex (—7> 26
(y| ) ¢ Se(y ) msnoise P QSgOiSe ( )
Substitution of Eq. (26) in Eq. (23) then yields the following expression for the posterior:
— Fe)?
m(E|y) < W(E)exp( - (y2276)> (27)
Shoise
If we use a prior in the form of a modified normal distribution as follows:
- (E‘E)z) if £>0
a5y o {0~ ) HE=0 (28)
0 otherwise
the posterior distribution for a single stress measurement reads:
_ [E=E)? (y*E€)2]) fE>0
w(Ely) ool = [+ GEE]) e : (29)
0 otherwise

where E and sg denote the mean and standard deviation of the prior distribution, respectively. Note that
the Young’s modulus cannot be negative which is taken into account in the prior distribution (Eq. (28)).

10
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If we now consider the posterior distribution of the previous measurement to be the prior distribution of
the current measurement, the posterior for all n,, measurements can be expressed as:

nm

— (yi—Ee;)?
m(Ely) o exp( - [(E;Sf)z + S D E >0, (30)
where 7(Ely) = 7(Ely1, - ,Yn,,)- Eq. (30) can now be written in the following form:
m(Bly) o exp( = E5Eel) - p>o, (31)

where Epost and spst denote the mean and standard deviation of the posterior distribution, which is again
a normal distribution (with the condition F > 0). Both can be expressed as:

2 T, 2
_ Snoise E+8E 2. €Y 2 o2
i=1 noise®E (32)

2 2 nm 2
Shoise TSE ,21 €
i=

Epost = y  Spost —

i=1
Hence, it is possible to analytically examine the posterior distribution for linear elasticity if the noise
model is additive and the noise distribution as well as the prior distribution are (modified) normal distribu-
tions [11]. For the other cases below, we use numerical techniques.

3.2.2. Linear elasticity-perfect plasticity

The parameters to be identified for the linear elastic-perfectly plastic model are the Young’s modulus
and the initial yield stress, which are stored in the parameter vector x = [E O’yo]T. Since we consider the
same experimental equipment and conditions as in the case of linear elasticity (i.e. the measured stresses are
still polluted by noise stemming from the same normal distribution and the measured strains are still exact),
the same additive noise model applies:

Y =o(e,x) + Q, (33)

where (e, x) denotes the model response and is expressed in Eq. (8). Using Eq. (25) for the noise distribution,
the likelihood function for a single stress measurement reads:

(y_ 0(67X))2>’ (34)

2
28noise

1
7T(y|x) = 7Tnoise(y - 0'(5, X)) = Wexp( —
noise

or:

(35)

2
(= e(1 -1~ %) ) (e~ 7))
™ X) = —€X — .

(y| ) V 2T Snoise p( 2S?loise >

Taking the physical constraints into account that the Young’s modulus and the initial yield stress must
be nonnegative, the following prior distribution is selected:

, (36)

exp(_LW) if £>0and oy >0
m(x)
0 otherwise

where X denotes the mean value vector of the prior distribution and I'yx the covariance matrix of the prior.
Substitution of Eq. (33) and Eq. (34) in the reduced variant of Bayes’ formula of Eq. (23), yields the following
posterior distribution for n,, measurements:

m(xly) o exp<_ [<x—x>Tr;1<x—x> + > (y _ E(l G E)) “omh{e E))D (37)

2 252

noise

11
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We again note that the probability of obtaining a negative Young’s modulus and yield stress is zero thanks
to the selected prior distribution.

It is worth noting that the presence of the Heaviside function in the posterior makes the posterior difficult
to analyse analytically. We therefore resort to the adaptive MCMC approach in Section 5.

3.2.3. Linear elasticity-linear hardening

The parameter vector for the linear elastic-linear hardening model reads x = [E oy H ]T. Assum-
ing again the same experimental equipment and conditions (and hence, the same noise model and noise
distribution), the likelihood function for a single measurement reads:

(oot e) oty

m(y|x) o exp( — 52

noise

In addition to the physical constraints for the Young’s modulus and the initial yield stress, we also use
that plastic modulus H must be nonnegative. The following prior distribution is therefore selected:

xR (x-%) . > > N
7T(X)O({exp( —— ) 1fE_0anday0_OandH_O' (39)

0 otherwise

Using Bayes’ formula, the posterior distribution for n,, measurements reads:

x-x)"T'(x—%)

r(xly) o exp< - [ :

8.2.4. Linear elasticity-nonlinear hardening

The parameter vector for the linear elastic-nonlinear hardening material description is denoted by x =
[E oy H n]T. Considering no change of experimental equipment (and hence, the same noise model
and noise distribution), the expression for the measured stress again reads as Eq. (33), where o (e, x) is given
by Eq. (14). It is important to note that in contrast to the previous cases, model response o(e,x) is not a
closed form expression (see Eq. (14)). The likelihood function for a single measurement is:

2

(y B U(G’X)) )7 (41)

252

noise

m(y|x) exp( —

where o(¢,x) is numerically determined by solving Eq. (14). Choosing the prior distribution in the form of
a modified normal distribution as:

exp(—%) if E>0and oy >0and H>0andn >0
7(x) o ; (42)
0 otherwise
and employing the Bayes’ theorem, the posterior distribution for n,, measurements reads:
Nom 9
— — — Yi — o€, X
-y e ox) | AW )
m(x|y) xexp| — 5 + 552 . (43)

12
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4. Numerical procedures

4.1. Markov chain Monte Carlo method (MCMC)

Once the posterior is constructed, it needs to be analysed to determine the statistical summaries. For
the aforementioned case of linear elasticity, the statistical summaries were established analytically, but for
the other cases we need to determine them numerically because they are only Cy-continuous. We will use a
Markov chain Monte Carlo (MCMC) technique for this.

MCMC techniques are frequently employed, derivative-free numerical approaches to investigate posteriors
[37-39]. They draw samples from the posterior to do so. Below, the fundamental concepts of the Monte
Carlo method are discussed, as well as the adaptive Metropolis algorithm to perform the sampling.

4.1.1. Monte Carlo method
The main purpose of the Monte Carlo method is to approximate integrals of the following form:
1= [ glnx)ix (44)
R™P

where 7 denotes the PDF of interest (in our case the posterior) and g : R™ — R™s denotes an integrable
function over R™. This integral can be approximated using the following quadrature:

i = Zg(xi)’ (45)

where {x;}.* denotes a set of samples drawn from the PDF of interest (7) and the hat on I represents the
numerically approximated equivalent of I. Drawing samples from 7 implies that most of the samples are in
the domain in which numerical evaluations of 7 are nonzero. Note that I converges according to [40]:

lim  — g(x;) =L (46)
The numerical approximation of the components of the covariance matrix for g(x) (f‘g) is [41]:

nsl_ 1 i (gj(xi) —Ij) ((gk(xi)_lk)a Jj=12,-- ng, E=1,2,--- ,ng. (47)
=1

1=

(fg)jk =

The mean of the posterior (Xpost) can be computed by substituting g(x) = x and m = 7o in Eq. (44),
which yields:

Kpost = / X Tpost (X)dx = lim — Z X;. (48)
R"P : R

Furthermore, the components of the posterior’s covariance matrix are approximated as follows:

(fPOSt)jk = ! i ((xl)J - (EPOS‘E)J‘) ((xz)k - (fpost)k)a J=12 ny, k=1,2,-- > Mp- (49)

i=1

ng — 1

If we assume that a sufficiently large number of samples is taken (i.e. n, is large), the MAP point can
furthermore be approximated as [40]:

MAP = argmax m(x;). (50)
Xiyi=1,..., ns
The essential part of a Monte Carlo procedure is the drawing of admissible samples (x;). Below, the
standard and adaptive Metropolis algorithms are discussed as means to draw samples. The adaptive one is
the algorithm used in Section 5.
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4.1.2. The standard Metropolis-Hastings and the adaptive Metropolis algorithms

The standard Metropolis-Hastings approach is a frequently employed MCMC algorithm [40]. The basic
idea of the Metropolis-Hastings algorithm is to explore the PDF of interest by making a random walk
through parameter space x. Considering sample x; and its evaluation of the PDF, 7(x;), new sample x,, is
proposed by drawing from a proposal distribution (g in Algorithm 1). If the PDF evaluated at the proposed
sample (7(x,)) multiplied by the evaluation of the proposal distribution evaluated at x;, given the proposed
sample (¢(x;|x,)), is larger than the PDF at the current sample (7(x;)) multiplied by the evaluation of the
proposal distribution at the proposed sample given the current sample (¢(x,|x;)), the proposed sample is
always accepted as the new sample. If 7(x,)q(x;|xp) < 7(x;)q(x,|x;) however, the proposed sample may
be accepted. The fact whether or not it is accepted depends on the ratio of scalar r in Algorithm 1. The
ratio is compared to a random number generated from a uniform distribution. If the ratio is greater than
the random number, the proposed sample is accepted. If the ratio is smaller than the random number, the
proposed sample is rejected, and the current sample becomes the new sample. Otherwise, the proposed
sample becomes the new sample. The algorithm is repeated for ng samples.

Algorithm 1 The standard Metropolis-Hastings algorithm

1: select the initial sample xy € R"»

2: fori=0,1,2,....,ns—1 do

3: draw x, € R™ from the proposal distribution ¢(x,|x;) in Eq. (53)
ﬂ'(xp)q(xilxp)>

» m(xi)q(xplx;)

> 7(-) denotes the target distribution (i.e. posterior).

4: calculate the ratio r(x;,x,) = min(l

5: draw u € [0, 1] from uniform probability density
6: if 7(x;,%p) > u then

T Xi+1 = Xp

8: else

9: Xit+1 = Xj

10: end if

11: end for

In case of a symmetric proposal distribution (as in this contribution), the following relation holds:

a(xilxp) = q(xp|xi). (51)
Consequently, step 4 in Algorithm 1 simplifies to:

: m(%p)
r(Xi, Xp) = mm(l, (%) ) (52)
Note that the Metropolis-Hastings algorithm with a symmetric proposal distribution is commonly called the
Metropolis algorithm.

A commonly employed approach to check the stability and convergence of the algorithm is to trace
the generated samples and analyse their characteristics, after the algorithm is finished. The evolution of
the mean value and the standard deviation can for instance be checked for convergence [32]. We refer the
readers for more information to the review on assessing the convergence of the MCMC by Sinharay [42].

The efficiency of the algorithm is influenced by the initial sample (x¢) and the proposal distribution (q)
[11]. The most common proposal distribution for the Metropolis-Hastings algorithm (as employed here) is
of the following Gaussian form:

1 2
aabey) = alxp i) o (= 55 i =), (53)
where v denotes the parameter that determines the width of the proposal distribution and must be tuned to
obtain an efficient and converging algorithm. An efficient starting value is v = %38 [43], where n, denotes

Vi
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the number of unknown parameters and hence, the dimension of the posterior for the cases presented above.

To overcome the tuning of v, Haario et al. [44] introduced the adaptive proposal (AP). The AP method
updates the width of the proposal distribution, using the existing knowledge of the posterior. The existing
knowledge is based on the previous samples. For sample nk+1, the update employs the following formulation:

Q(XP|X’L) ~ N(Xiv’yanK% (54)

where N (x;,7?Ry, ) denotes a normal distribution with mean x; and covariance matrix 7?R. of size

MK 3

np X n,. To establish R, , all nk previous samples are first stored in matrix K of size nk x n,. Ry, is
then computed as:
1 ~ T ~
R,. = K, 55
«= (55)
where K = K — Kiean and K oan reads:
kmcan
kmean
chan = . ) (56)
kmean
NnK Xnyp
and Kpyean denotes a row matrix of length n, which is determined as follows:
1 nK nK nK
Kmean = - ;(K)ﬂ ;(K)iz ;(K)mp ~ (57)
The following relation is used for N(x;,7?R ) in this contribution:
2 2l =T
N(x3, 7Ry ) ~ Xi + K N(0,L,.), (58)

Vi =1
where I,,,. denotes the identity matrix of size nk x nk and N(0,I,, ) denotes the nk-dimensional normal
distribution.

Note that it is computationally inefficient to update the proposal distribution after each new sample is
generated. In the numerical examples in this study therefore, updating takes place once per 1000 sample gen-
erations. Algorithm 2 shows the Metropolis-Hastings algorithm with the symmetric AP proposal (Eq. (58))
that is employed here.

Algorithm 2 The Metropolis algorithm with AP proposal

1: select the initial sample xo € R™ and set v = 238

Ve
2: fori=0,1,2,....,ns—1 do
3: draw x, € R™ from the proposal distribution ¢(x,|x;) in Eq. (58)

4:  calculate the ratio r(x;,x,) = min(l, Z((’;")))

> m(-) denotes the target distribution (i.e. posterior).

5: draw u € [0,1] from uniform probability density
6: if 7(x;,xp) > u then

T Xi+1 = Xp

8: else

9: Xit+1 = Xj

10: end if

11: per 1000 samples _

12: update matrix K

13: end for
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4.2. Posterior predictive distribution (PPD)

Once the posterior is established, the posterior predictive distribution can be used to predict new mea-
surements, given the current measurements. A comparison between the newly generated measurements and
the current (yet observed) measurements may then indicate if a different model and/or prior need to be used.
For instance, if the envelope of the new measurements differs substantially from the envelope of the current
measurements, the current measurements are unlikely to be generated using the current model and/or prior
and the user may want to select a new model and/or prior.

Considering measurements y = [yl ynm] , the posterior predictive distribution of new measure-
ment y"V for new strain €"°V, given the current measurements, reads [45]:

Ty ™) = [l a(xly, ehx (59)

where € = [61 e enm]T denotes the vector of the strains at which stresses y were measured. Note that
we have so far neglected € in the notation.

Computing the integral in Eq. (59) is usually challenging for high dimensional problems. However, the
Monte Carlo Markov chain can be employed to draw samples from the PPD for a new measurement (y"*%),
given measurement vector y. This can be achieved by employing a sampling procedure twice. First, samples
are drawn from the posterior distribution for the parameters, given the measurements (7 (x|y, €)). Note that
this is already performed during the numerical analysis of the posterior and hence, if those samples are saved,
this procedure does not have to be applied again. Second, the i** sample is replaced in 7(y"*%|x;, e"%),
which is subsequently used to generate a sample for new measurement y°".

i

5. Examples

All formulations derived in the previous section are investigated below. The effect of the prior distribution
on the posterior distribution is studied, as well as the ability of the current formulations to recover a
material parameter distribution when they are taken from a specific distribution. Also, BI’s ability to
recover correlations between different material parameters is exposed. First however, we will identify the
noise distribution and its parameters.

5.1. Noise distribution

To determine the noise distribution and its parameters, two sets of ‘calibration experiments’ can be
performed. First, a test is performed without any specimen. The stress-strain measurements of this test are
shown in Fig. 2(a). It shows that the PDF of the noise in the ‘stress measurements’ is a normal distribution
with a zero mean and a standard deviation of s;gise-

Second, the evolution of the noise distribution (including its parameters) is determined. To this purpose, a
tensile test is performed on a calibration specimen (of which the Young’s modulus is known). The artificially
generated results are presented in Fig. 2(b). The mean stress value varies linearly with the strain. Standard
deviation speise remains the same however.

Thus, the ‘noise calibration measurements’ indicate that an additive noise model can be used and the
stresses are polluted by realisations coming from a normal noise distribution with standard deviation spise.
Now, we will employ BI to identify the Young’s modulus of the linear elastic model.

5.2. Linear elasticity

Identification of the Young’s modulus. In the first example, a specimen with a Young’s modulus of 210 GPa
is considered, which is to be identified. ‘Noise calibration experiments’ were performed and the noise in the
stress follows the normal distribution of Eq. (25) with Speise = 0.01 GPa. For only one stress measurement
of y = 0.1576 GPa with corresponding strain e = 7.25 x 10™%, the posterior distribution is calculated using
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(a) Fitted noise distribution (b) The shifted noise distribution

Figure 2: Schematic of the stress-strain measurements (red circles) of the ‘noise calibration experiments’, including the noise
distributions (dashed). The theoretical stress-strain relation (which is exact for the calibration experiments) is presented as a
solid line in the diagram on the right.

Eq. (31). Selecting the prior distribution as in Eq. (28) with mean F = 150 GPa and a relatively large
standard deviation of sy = 50 GPa, the posterior reads:

m(Bly) x exp( — EEe=) B>, (60)
pos
where Epost = 212.6486 GPa and spest = 13.2964 GPa.

Fig. 3 shows this posterior distribution, as well as the prior distribution and the value predicted by the
least squares method, for one and five measurements. Fig. 4 presents the linear elastic responses for one and
for ten measurements. The figure also shows the stress-strain responses using Young’s moduli drawn from
the 95% credible region (i.e. the region that contains 95% of the posterior) of the posterior as well as the
posterior predictions. One can see that envelope associated with the 95% credible region is narrower than
the 95% prediction interval. Note that the 95% prediction interval is obtained using the posterior predictive
distribution and its upper and lower bounds read:

prediction bounds = PPD =+ 2sppp, (61)

where PPD denotes the mean of posterior predictive distribution for the new measurement (i.e. y™°% in (59))
and sppp denotes its standard deviation.

Two points can be observed in Fig. 3. First, the strain at which a measurement is made has a strong
influence on the posterior. This can be observed by comparing the posterior of Fig. 3(a) with that in
Fig. 3(b) for only one measurement (the distribution in red, denoted by w(E|y1)). The latter distribution is
significantly wider and its MAP point is relatively distant from the specimen’s Young’s modulus. Hence, a
measurement made at a comparatively large strain reduces the width of the posterior distribution (i.e. reduces
the uncertainty).

The second observation is that for an increasing number of measurements, the posterior becomes narrower
and the MAP point moves closer to the specimen’s Young’s modulus.

By comparing the MAP point for a single measurement in Fig. 3(b) (Epest = 207.2821 GPa) with the
result of the least squares method for the same measurement (Ejs = 210.2216 GPa), one can notice the effect
of the selected prior distribution. One interpretation of this is that the least squares method gives a more
accurate result than BI (although this depends the selected prior), as the result of the least squares method
is closer to the specimen’s Young’s modulus than the MAP point determined using BI. On the other hand,
the result determined using the least squares method is not the actual Young’s modulus of the specimen
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(210 GPa), whereas the posterior distribution of BI does include this value. Furthermore, the MAP point and
mean value of BI, come with an uncertainty in terms of the parameter value itself. This can be considered
as an advantage if one wants to include this uncertainty, instead of including one deterministic value.

The main point is that BI cannot be directly compared to the least squares method, because in contrast
to the latter, BI results in a posterior probability distribution that represents the probability of each possible
value to occur.

0.8 : 1 r :
ﬂ | —®
0.7+ 1 1 _ﬁ(Elyl)
0.8 m(E|y1,y2) |
0.6 - : 1 : —7(E|y1, Y2, y3)
1 7 (Ely1, Y2, Y3, Y1)
0.5+ ! ] m(Ely1, y2,Y3, Y, Ys)
’ I 0.6 + = =Least squares method |1
& 0.4 M 1 &
m(Ely) I o I
0.3+ 7(E) | 1 =T { |
| |
0.2+ ]
I |Least squares method 0.2l Ly i
0.1} : ]
I 1
0 . 1 0 il N |
0 100 200 300 400 500 0 100 200 300 400 500
E (GPa) E (GPa)
(a) One observation (b) Five successive observations

Figure 3: Linear elasticity: The prior, the posterior and the value predicted by least squares method for one measurement (a)
and five measurements (b). The distributions are not normalised. The strain at which a measurement is made has a considerable
influence on the posterior. This can be observed by comparing the posterior of (a) (7(E|y), red line) with the posterior of (b),
if only the first measurement is considered (7(E|y1), red line). An increase of the number of measurements results in narrower
posteriors, with their MAP estimates closer to the true Young’s modulus.
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Figure 4: Linear elasticity: The measurements, the posterior prediction and the stress-strain curves created using the posterior
and mean for (a) one measurement and (b) ten measurements. The envelope associated with the 95% credible region is narrower
than the 95% prediction interval.
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The influence of the prior. Now, we will study the effect of the prior distribution on the MAP point (which
is the same as the mean value for the normal posteriors in this subsection). In Fig. 5 the MAP points are
shown as a function of the mean and the standard deviation of the prior. The MAP points are presented for
different numbers of measurements. As can be seen, an increase of the number of measurements results in a
flatter surface, which means that the influence of the prior distribution decreases.

10 measurements
Bl 5 measurements
Il 1 measurement
[ True value

1000

800

600

Epost (GPa)

1000

500

0
sp (GPa) E (GPa)

Figure 5: Linear elasticity: The influence of the prior (i.e. the mean value and the standard deviation) on the resulting MAP
point for different numbers of measurements. Increasing the number of the measurements results in a flatter surface which
indicates a decreasing influence of the prior distribution.

Recovering material heterogeneity. A last important point to show using the linear elastic model is BI’s ability
(or inability for the current formulation) to capture the intrinsic heterogeneity of the material parameters.
The question here is thus if BI is able to recover the distribution of the Young’s modulus if several specimens
are tested and their Young’s moduli are taken from a specific underlying distribution. To this end, 25
specimens are considered of which the Young’s moduli are taken from a normal distribution with a mean
value of 210 GPa and a standard deviation of 10 GPa (blue curve in Fig. 6). For each specimen ten
measurements are made. The aforementioned noise model and noise distribution are applied.

The resulting posterior is presented by the red curve in Fig. 6, which is a (modified) normal distribution
with Epost = 215.3971 GPa and spost = 0.8561 GPa. The posterior is substantially narrower than the
distribution of the specimens’ Young’s moduli and hence, using the BI formulations of this contribution, the
intrinsic heterogeneity of the material itself cannot be captured. This entails that the width of the posterior
distributions (represented by spest in this subsection) is only a measure of the uncertainty of the MAP points
and the mean value and not of the material heterogeneity.
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Figure 6: Linear elasticity: The distribution of the specimens’ Young’s moduli and the resulting posterior. The PDF's are
not normalised. The current formulation is clearly not able to recover the material heterogeneity. To be able to recover the
material heterogeneity, one needs to consider both the intrinsic uncertainty of the material parameters as well as that of the
measurements.

5.8. Linear elasticity-perfect plasticity

Identification of the material parameters. In the first example of this subsection, a linear elastic-perfectly
plastically behaving specimen is considered with Young’s modulus £ = 210 GPa and yield stress o, =
0.25 GPa. Twelve measurements are generated by employing the same noise distribution as in the previous
subsection. The prior distribution of Eq. (36) is furthermore selected with the following mean vector and
covariance matrix:

2500 0

0 27778 x 1074

__ [200
~ (029

} GPa, T, = [ }GPaz. (62)

Consequently, the posterior of Subsection 3.2.2 is of the form of Eq. (37), which is investigated by the
MCMC approach given in Subsection 4.1.2. Running the chain for 10* samples whilst burning the first 3000
samples (i.e. the first 3000 samples are not used to determine the mean, the covariance matrix and the MAP
estimate) yields:

= _ [208.9859 ~ _[ 29807 4.1064 x 10~ 2
post = [ 0.2578 } GPa, Tpost = [4.1064 x107* 15067 x 10—5} GPa’, (63)
and
Top _ [208.4475
MAP = [ 0.9578 } GPa, (64)

where the hat sign (%) denotes the numerical approximation.

Fig. 7(a) shows the samples generated by the adaptive MCMC approach which are used to approximate
the posterior distribution. The domains presented in Fig. 7(b) show which of the measurements are included
in the purely elastic part and which fall within the elastoplastic part. These discrete domains are a result
of the Cy-continuity of Eq. (8). In domain ‘a’ (in which no samples are generated by the adaptive MCMC
approach), all the measurements are considered to be in the elastoplastic part. In domain ‘b’ on the other
hand, the first measurement (the one with the smallest strain) is considered to be in the purely elastic part
and the others remain in the elastoplastic part. Continuing like this, in domain ‘c’ the second measurement
is also considered to be in the purely elastic part. Finally, in domain ‘m’ all measurements are considered
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to fall within the elastoplastic domain. Based on Fig. 7(b) the MAP point is clearly located in the domain
in which the first six measurements are considered to be in the purely elastic part and the remaining in the
elastoplastic part.

The 95% credible region is shown together with the posterior distribution in Fig. 8(a). The possible stress-
strain responses inside the credible region as well as the posterior prediction are presented in Fig. 8(b). The
posterior distribution seems to be roughly of an elliptical shape with its primary axes almost along the E-axis
and oyo-axis. This entails that the correlation between the two material parameters is not significant. One
has to notice though, that the assumed prior is uncorrelated. In other words, the prior covariance matrix
(T'x) is diagonal. It is therefore interesting to investigate the influence of the off-diagonal term of the prior
covariance matrix on the posterior covariance matrix. In Fig. 9, this influence is graphically presented for the
three terms of the posterior covariance matrix (note that both the prior covariance matrix and the posterior
covariance matrix are symmetric). It seems that an increase of (I'x)12 leads to some decreasing trend for
(fpost)ll and some increasing trend for (fpost)lg. However, it is difficult to assess whether or not these
trends can be considered as meaningful.

%107
0.6 . . 8
x1073 7
1 6
E 5
&
S5 4
S
L . 4 3
K
0.1F Domain ¢ |
. |
Domain b 1
Domain a
0 ' ' 0
180 200 220 240

oy (GPa) 02 150 o (GPa) E (GPa)

(a) Samples generated by the adaptive MCMC approach (b) Samples generated by the adaptive MCMC approach
(top view) including different domains

Figure 7: Linear elasticity-perfect plasticity: Two different views of the samples generated by the adaptive MCMC approach
to approximate the posterior. The colours represent the value of the posterior, which in the left image is also shown along
the z-axis. In Fig. 7(b) several domains are shown. Each of these domains corresponds to a region for which the number of
measurements considered to be in the purely elastic part is constant (e.g zero in domain a and one in domain b).
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Figure 8: Linear elasticity-perfect plasticity: The 95% credible region and the posterior distribution (a), the measurements, the
posterior prediction and the stress-strain curves created using the 95% credible region of the posterior (b).
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Figure 9: Linear elasticity-perfect plasticity: Effect of the off-diagonal component of the prior’s covariance matrix on the

posterior’s covariance matrix. It seems that an increase of (I'x)12 leads to a decreasing trend of (fpost)ll and a increasing
trend of (Fpost)12~ However, it is difficult to assess whether or not a true trend is present in these results.
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Figure 10: Linear elasticity-perfect plasticity: Effect of the off-diagonal components of the prior’s covariance matrix on the
posterior’s covariance matrix if the measurements are generated from ten specimens with their material parameters drawn from
a normal distribution given in Eq. (65). No real trends can be observed.

The influence of the prior on the correlation between the material parameters. The next example focuses
on the ability of the current formulation to capture a correlation between the Young’s modulus and the
initial yield stress if they are correlated. To this end, ten specimens are considered of which the material
parameters are governed by a normal distribution with the following mean vector and covariance matrix:

__[210 ~ [100 10 2
ape = [0.25} GPa, Tape = {10—4 11111 x 10—4] GPa™ (65)

For each specimen, twelve measurements are made. Using the same prior as in the previous example (see
Eq. (62)) and the adaptive MCMC approach for 10* samples whilst burning the first 3000 samples, yields:

= [211.1077 ~ [ 5531 —8.396 x 10~ 2
*post = [ 0.2519 ] GPa, Lpost = {—8.396 x 1074 1.8174 x 106] GPa”. (66)
The MAP point is given by:
5 [210.5923
MAP = [ 05521 } GPa. (67)

These results show that the correlation of the posterior is not the same as that of the distribution of the
actual material. This corresponds closely with the observation that the formulations in this contribution are
unable to capture any of the intrinsic uncertainty of the material parameters. Fig. 10 shows the effect of the
off-diagonal component of the prior’s covariance matrix (I'x) on the components of the posterior’s covariance
matrix (Fpost). Again, no real trends can be observed.
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5.4. Linear elasticity-linear hardening

Identification of the material parameters. This subsection deals with the Bayesian formulation for the linear
elastic-linear hardening material description. A specimen with Young’s modulus F = 210 GPa, initial yield
stress oy0 = 0.25 GPa and plastic modulus H = 50 GPa is regarded. Twelve measurements are created
by employing the same noise distribution as in the previous subsection. The prior distribution is given by

Eq. (39) with the following properties:

445

200 2500 0 0
X=[029] GPa, T)y=| 0 27778 x 1074 0 | GPa’. (68)
60 0 0 100

The adaptive MCMC algorithm for 10* samples whilst burning the first 3000 samples yields:

R 207.4586 R 36.5642 —1.2746 x 102 —3.7886
Xpost = | 0.2533 | GPa,Tpoe = | —1.2746 x 1072 4.0359 x 107> —2.6218 x 107%| GPa?  (69)
55.9187 —3.7886 —2.6218 x 1072 66.8214
and
- 206.9528
MAP = | 0.2548 | GPa. (70)
55.2838

Fig. 11 shows the generated samples by the adaptive MCMC approach in the £ — oyg — H space, including

a0 the projections on the £ — o9, £ — H and oy — H planes.
The 95% credible region is presented in Fig. 12(a) and the stress-strain responses associated with it, as

well as the posterior prediction are shown in Fig. 12(b).
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Figure 11: Linear elasticity-linear hardening: Samples generated by the adaptive MCMC approach to approximate the posterior

distribution and its projection on the three planes.
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Figure 12: Linear elasticity-linear hardening: The 95% credible region and the posterior distribution (a) and the measurements,
the posterior prediction and the stress-strain curves associated with the 95% credible region (b).

5.5. Linear elasticity-nonlinear hardening

Identification of the material parameters. In this subsection, twelve measurements are generated using £ =
210 GPa, 0,0 = 0.25 GPa, H = 2 GPa, n = 0.57 (which are to be identified) and the same noise distribution
as in the previous subsections. The prior distribution is selected in the form of Eq. (42) with the following

mean vector and covariance matrix:

200 2500 0 0 0
_ 0.29 0 27778x10~%* 0 0 )
x= 2.5 GPa, I'x = | 0 0.1111 0 GPa”. (71)
0.57 GPa™* 0 0 0 0.0025 GPa 2

Running the adaptive MCMC approach for 10* samples and burning the first 3000 samples yields:

210.444
~ 0.254
Xpost = | 91937 GPa,
0.5988 GPa™!
24.3496 —8.1743 x 1073 0.1501 —2.2095 x 1073 GPa™!
T —8.1743 x 1073 9.5238 x 10~° —6.8472 x 10~* 1.8694 x 10~* GPa™* GPa
post ™ 0.1501 —6.8472 x 10~4 9.5319 x 1072 5.4179 x 1073 GPa~! ’
—2.2095 x 1073GPa~! 1.8694 x 107% GPa™! 54179 x 1073 GPa~! 1.0629 x 103 GPa 2
(72)
and
210.0794
— 0.2536
MAP = 5 108 GPa. (73)
0.5978 GPa™!

The stress-strain responses associated with the 95% credible region of the posterior and the posterior pre-

diction are presented in Fig. 13.
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Figure 13: Liner elasticity-nonlinear hardening: The measurements, the stress-strain curves associated with the 95% credible
region and the posterior prediction.

6. Additional concepts for parameter identification from uniaxial tensile results

In the previous sections, we have introduced BI for the identification of elastic and elastoplastic pa-
rameters. The formulation of the framework was relatively basic. In this section, we will discuss, without
too many details, some changes to the framework if (1) a viscoelastic model is considered instead, (2) not
only the stress measurements are uncertain, but also the strain measurements, and (3) the model itself is
uncertain as well.

6.1. Viscoelasticity

Viscoelasticity differs from the aforementioned elastoplasticity by its rate-dependency (whilst no plastic
deformation occurs). Consequently, the rate-dependency must be identified, besides one or more stiffness
parameters. The rate at which uniaxial tensile tests are performed thus comes into play. On the other hand,
the mechanical responses are C4-continuous, which results in Ci-continuous posteriors. This may be con-
sidered as more straightforward to treat with MCMC approaches than the posteriors of the aforementioned
elastoplastic descriptions.

Different types of uniaxial tensile tests can be considered. In a constant rate experiment, a constant clamp
velocity is prescribed, resulting in a stress-time response. In a relaxation test, a user-selected displacement
(i.e. strain) is enforced as fast as possible in the beginning of the test and then kept constant. The result
of this is a stress-time response. In a creep test, a user-selected force (i.e. stress) is prescribed as fast as
possible in the beginning of the test and then kept constant. The result of this is a strain-time response.
In relaxation and creep tests, the stress-strain response for the material descriptions in this contribution
must be replaced by a stress-time response or a strain-time response. As these are both Cj-continuous, their
posteriors are also Ci-continuous and hence, the MCMC algorithm to explore them is easier to implement
than for elastoplasticity.

The study of Rappel et al. [25] shows that the effect of the prior on the mean and MAP point in
viscoelasticity is larger than for elastoplasticity. The influence is especially larger for the damping parameter.
Although an increase of the number of measurements decreases the influence of the prior, its influence on
the damping parameter remains recognisable. An interesting result of using BI is that it was shown that the
uncertainty level of the identified parameter values is substantially larger if uniaxial tensile tests at constant
strain-rates are used than if relaxation or creep tests are used.
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6.2. Noise in both stress and strain

Depending on the experimental setup, the strains may also be contaminated by noise. The noise of the
strains may therefore be worth to incorporate. The additive noise model if both the stresses and strains are
contaminated by their own stochastic noise, can be expressed as follows:

{Y =o(e,x) + 8y

) 74
€ =€+ Qe (74)

where € denotes the measured strain, € the true strain, €2, the error of the stress measurement and {2~ the
error of the strain measurement. Because the information from both the measured stress and the measured
strain is used here, Bayes’ formula for multiple variables must be employed [46]:

r()m()lyix, )

w(x|y,e*) = 75
O ) = el =

Since the denominator in Eq. (75) is a constant number, the equation above can be written as:
T (x[y, €") o< w(x)7(y|x, ). (76)

The likelihood function, 7(y|x, €*), must be determined by integration (over € [36]), because 7(y|x,€) can be
determined directly, but 7(y|x, €*) not. To this end, we write:

m(y|x, ) = /Oa 7 (y|x, €)m(ele*)de, (77)

where a denotes the physical upper bound of the tensile tester (i.e. the ratio of the original length of the
specimen and the maximum distance that the clamps can move). Using Eq. (74), one can express conditional
probabilities 7 (y|x, €) and m(e|e*) as follows:

{W(yx, €) =my(y — o(e, x))

m(ele*) = mex (6" — €) ’ (78)

where 7, (wy) and me«(we+) denote the noise distributions of the errors in the stress measurements and the
strain measurements, respectively. For n,, independent measurements, we write:

Nm

m(ypx, €)= [ m(uilx, ), (79)
i=1

where y = [yl e ynm] " denotes the vector with the Ny, stress measurements, €* = [6*1‘ e e;m]T the
vector with the n,, measured strains and 7 (y;|x,€}) is given in Eq. (77). Further details on the resulting
likelihoods for different material models is presented in [47].

We now focus on a simple example for linear elasticity with one measurement point, given by y =
0.1576 GPa and ¢ = 7.25 x 10~*. Both noise distributions are considered as normal distributions with a
zero mean and s, = 0.01 GPa and s.- = 0.0001 for the noise in stress and the noise in the strain, respectively.

In Fig. 14 the posteriors are shown if only the noise in the stress measurement is considered and if
the noise in the stress measurement as well as in the strain measurement is considered. The prior is also
presented, which is in form of Eq. (28) with mean E = 150 GPa and standard deviation sg = 50 GPa. Not
only is the posterior for the double uncertainty case wider than the other one, it is also asymmetric.
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Figure 14: Noise in the stress and strain: The prior and posterior if both the stress and the strain are corrupted by noise (black
dots), the posterior if only the stress is corrupted (red) and the value predicted by the least squares method (blue dashed). The
posterior for the case with noise in the stress and strain is wider than the posterior for the case with noise in the stress only.
Note furthermore that the posterior if only the noise in the stress is considered is a (modified) normal distribution (symmetric),
but the posterior if both noises are incorporated neither is a (modified) normal distribution, nor is it symmetric.

Fig. 15 shows the posterior predictions for the same case, except that ten measurements are considered.
One can see that incorporating the error results in a wider envelope that includes more validation points.
Note that the validation points are only used to assess the quality of the predictions based on the identified
material parameter (i.e. E) and not for the actual identification.

Incorporating not only the error in the stress, but also the error in the strain often results in a larger uncer-
tainty (wider posterior) and consequently, the posterior prediction interval encompasses more measurement
data. More information can be found in [47].

6.3. Model uncertainty
So far in this contribution, the modelling error (model uncertainty) has not been incorporated. However,
no model is completely correct and model uncertainty as an error source may be incorporated. A framework
able to do so was developed by Kennedy and O’Hagan [10] (the ‘KOH’ framework). In this framework, the
difference between model response o(€, x) and true response oty is written as an additive uncertainty term
[48]:
Y = opue + Q, (80)
with

Otrue = 0(€,%) + d(€,Xq), (81)

where d(e,x4) denotes the model uncertainty, which may be assumed to depend on the input (i.e. strain e
here), and x, denotes the parameter vector of the model uncertainty. Assuming that both the form and
parameters of the noise distribution of the stress measurements are known, the likelihood function now reads:

T(y|x,Xq) = Tnoise(y — o(€,%x) — d(€,%x4)). (82)

28



535

540

545

550

0.35 . . . : : 0.35 : : : : :
= =Prediction bounds = =Prediction bounds
0.3 |[__]95% prediction interval 0.3 |[[C]95% prediction interval
95% credible region curves 95% credible region curves
0.25 %* Measured value * 0.95 | %* Measured value
' —— Mean ' Mean
O Validation point 0.2 O Validation point
g g
) 15 0.15
© © 0.1
0.05
0
-0.05 ‘ ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
€ %1073 ¢ «10-3
(a) Uncertainty in both the stress and the strain measure- (b) Uncertainty in the stress only

ments

Figure 15: Noise in the stress and strain: The measurements, the validation points, the posterior prediction and the stress-strain
curves associated with the 95% credible region of the posterior for (a) noise in the stress and the strain and (b) noise in the
stress only. One can see that the uncertainty is larger for the case with noise in the stress and strain, than that for the case
with noise in the stress only. Consequently, the posterior predictions if both the noise in the stress and strain is incorporated,
includes more validation points.

Note that we have not incorporated the error in the strain measurements for simplicity. Readers are referred
to [47] for cases in which the error in the strain is also considered.
Using Egs. (23) and (82), the posterior distribution for a single measurement can be written as:

(%, xaly) oc w(y|x, xa)w(x)m(xa)- (83)

For several independent measurements, the final likelihood function is the product of the likelihood function
for each measurement:

7T(y|X7 Xd) = ﬁ 7Tnoise(yi - J(Giu X) - d(eiv Xd))~ (84)
i=1

After establishing the posterior, the posterior needs to be sampled numerically (see Subsection 4.1.1) in
order to obtain the statistical summaries (e.g. mean value, MAP point or covariance matrix). Note that
the posterior distribution of Eq. (83) is a joint distribution of x and x4. In order to sample the marginal
distribution of each parameter (e.g. the Young’s modulus), one only needs to consider the samples of that
specific parameter in the joint posterior distribution (i.e. Eq.(83)) and ignore those of the other parameters
[49].

Various formulations have been employed in different studies to express the model uncertainty term in
Eq. (81). Probably the simplest way is to represent the model uncertainty using a single deterministic
variable [50]. It can also be described by a deterministic, input-dependent function [51]. Another way
to express this uncertainty is to describe it by a random variable coming from a normal distribution and
include the parameters of this distribution in the posterior distribution [47, 48, 50]. The parameters of the
normal distribution from which the model uncertainty is originating can also be input-dependent functions
(i.e. strain) [47, 48]. The model uncertainty can also be represented as a Gaussian process [10, 52, 53]. Some
more formulations to describe model uncertainty can be found in [48].

As an example here, we consider a nonlinear curve (i.e. dashed line in Fig. 16(a)) as our true mate-
rial response, whereas the model uses linear elasticity. Thirty measurements are generated artificially (see

29



555

560

565

570

575

Fig. 16(a)). Model uncertainty is described by a random variable coming from a normal distribution with
constant parameters and hence, the mean and standard deviation of this normal distribution appear as
parameters in the posterior.

The marginal posteriors of the Young’s modulus are presented in Fig. 16(b). One can observe that the
incorporation of model uncertainty in this example results in a wider posterior distribution that includes the
true value, although its MAP point is located further away from the true value. If the error in the strain is
incorporated as well, the posterior at the true value increases even more.

The posterior predictions for these three cases are shown in Fig. 17. Incorporating model uncertainty
clearly results in a wider prediction interval. If both the error in the strain and model uncertainty are
incorporated however, the prediction interval becomes even wider and all measurement points and validation
points are present within its bounds.
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Figure 16: Model uncertainty: (a) The true stress-strain curve from which the measurements are generated, as well as the linear
stress-strain curve with the true Young’s modulus. (b) The marginal posterior distribution of the Young’s modulus with no
model uncertainty (red curve), with model uncertainty and error in the stress (blue curve) and with model uncertainty and
error in both the stress and the strain measurements (black curve). Incorporating model uncertainty results in a posterior
distribution that includes the true Young’s modulus. In case the error in the strain is considered as well, results furthermore in
a higher possibility at the true value.

7. Conclusions

Although BI has been employed in various studies for parameter identification, most may not be straight-
forward to understand for those who are new to the subject. In this contribution, we have aimed to explain
BI in a straightforward and didactic manner. For this purpose, a number of Bayesian inference formulations
are presented to identify elastic and elastoplastic material parameters from uniaxial tensile results. Elastic
and elastoplastic material models are chosen for two reasons: (1) they are widely used in solid mechanics
and (2) they include the most simple material behaviour (linear elasticity), as well as increasingly complex
descriptions such as linear elasticity-nonlinear hardening, which entails Cy-continuous, implicit responses.

The following conclusions can be made based on the examples given in Section 5:

(1) The results of BI cannot directly be compared to those of the least squares method, since the result of
BI is a distribution and that of the least squares method is a single value.

(2) If one wants to compare the two nevertheless, point estimators such as the mean and MAP point can
be compared to the results of the least squares method. It is shown in Fig. 5 that the selected prior
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Figure 17: Model uncertainty: The measurements, validation points and the posterior predictions. One can see that if model
uncertainty is considered, the prediction interval becomes wider. Furthermore, only if model uncertainty as well as the errors
in both the stress and the strain measurements are incorporated, all measured and validation points are inside the prediction
interval.

distribution may significantly influence the results. Fig. 5 also shows that the influence of the prior
decreases significantly if the number of measurements increases.

(3) The standard deviations and correlations of the material parameters established using the ‘standard’
BI formulations presented in this contribution, do not reflect the heterogeneity of the material param-
eters. In other words, they are not representative for the standard deviations and correlations of the
intrinsic material parameter distributions, but only for the level of uncertainty. The reason is that the
formulations in this contribution still assume that a unique set of parameter values is the solution of
the identification problem.
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