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Abstract

In order to simulate stamping processes, an explicit method, which is conditionally
stable, is generally thought to be the most adapted. Such an algorithm presents the
advantage of being non-iterative while, the contact configuration evolves rapidly,
and the conditional stability is not a disadvantage since time steps must be small
enough anyway for an accurate computation. But during the springback simulation,
an implicit method, which is iterative, presents the advantage of unconditional sta-
bility. The optimal solution is then to have both implicit and explicit methods
readily available in the same code and to be able to switch automatically from one
to the other. Criteria that decide to switch from a method to another, depend-
ing on the current dynamic, have been developed. Implicit restarting conditions
are also proposed that annihilate numerical oscillations resulting from an explicit
calculation.

Key words: Implicit, explicit, combined method, dynamics, non-linearities,
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1. Introduction

The choice of a time integration algorithm is an essential criterion to en-
sure efficiency and robustness of numerical simulations. The difficulty in this
choice resides in being able to combine robustness, accuracy and stability of
the algorithm. Implicit algorithms require iterative solutions for each time
increment (time step), contrarily to explicit ones. But, for stability reasons,
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explicit methods use smaller time steps than implicit ones. Explicit methods,
avoiding iterations and convergence problems, are therefore generally used for
highly non-linear problems with many degrees of freedom, for which itera-
tions are very expensive and convergence problems are frequent [1]. On the
other hand, for slower dynamics problems with fewer non-linearities, implicit
algorithms allow to work with larger time step size, resulting in more numer-
ical stability and accuracy [1–3]. However, in general, an actual sheet metal
forming process has some time intervals governed by high non-linear dynamics
(stamping) and others governed by slower non-linear dynamics (springback).
Then, one can take advantage from a solution method that combines both
families of integration algorithms.

A solution is to integrate over some time intervals with an implicit method
and other time intervals with an explicit one. Few works have been developed
with this latter combination. Jung and Yang [4] have simulated a stamping
process that begins with an implicit scheme and shifts to an explicit one when
a problem of convergence appears. No return to an implicit scheme is actually
planned. Another method, developed by Finn et al. [5] and by Narkeeran and
Lovell [6], simulates stamping (as a fast dynamics problem) with an explicit
scheme and springback phase (slow dynamics) is subsequently analyzed with
an implicit one. The time of transition is fixed by the user and initial conditions
for the implicit phase, such as velocities and accelerations, are set to zero.
Automatic criteria that decide to shift from a family to another have been
developed by the authors in Ref. [7] for impact problems. They depend on an
integration error (see Refs. [8,9]) that allows to determine the implicit time
step size and they also depend on a ratio between the computational time (or
CPU) needed to solve an implicit time step and the CPU needed to solve an
explicit time step. Initial conditions, when shifting from explicit to implicit,
are also defined to avoid loss of stability and convergence. In the present paper,
the formulation is enhanced and extended to sheet-metal forming problems.

2. Numerical integration of transient problems

2.1. Equations of motion

FEM (Finite Element Method) semi-discretization of the equations of mo-
tion of a nonlinear structure leads to the following coupled set of second order
nonlinear differential equations (see Refs. [10–12]):

R = Mẍ+ F int (x, ẋ)− F ext (x, ẋ) = 0 (1)

where R is the residual vector, x the vector of the nodal positions at current
time, ẋ the vector of nodal velocities, ẍ the vector of nodal accelerations.
M is the mass matrix, F int the vector of internal forces resulting from the
body’s deformation and F ext the vector of external forces. Both vectors are
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non-linear in x and in ẋ due to the presence of contact, plastic deformations
and geometrical non-linearities.

2.2. Implicit schemes

The most general scheme for implicit integration of equation (1) is a gener-
alized trapezoidal scheme [10,11,13] where updating of positions and velocities
is based on ”averaged” accelerations stemming from associated values between
tn and tn+1. It reads for instance:

ẋn+1 = ẋn + (1− γ)∆tẍn + γ∆tẍn+1 (2)

xn+1 = xn +∆tẋn +
(

1

2
− β

)

∆t2ẍn + β∆t2ẍn+1 (3)

The discretized equation of motion (1) can be rewritten under the form pro-
posed by Chung and Hulbert [13]:

Rn,n+1 = 1−αM
1−αF

Mẍn+1 +
αM

1−αF
Mẍn +

(

F int
n+1 − F ext

n+1

)

+ αF
1−αF

(F int
n − F ext

n ) = 0

(4)

where Rn,n+1 is the residual vector of time step n to n+1. Non-linear equations
(2) to (4) can be solved by a Newton-Raphson technique.

2.3. Explicit Scheme

Chung and Hulbert [14] have extended their implicit scheme to an explicit
one, taking αF = 1 in equation (4). Its principal advantage is its numerical
dissipation property. Time integration is then given by:

ẍn+1 =
M−1 (F ext

n − F int
n )− αM ẍn

1− αM

(5)

ẋn+1 = ẋn +∆t [(1− γ) ẍn + γẍn+1] (6)

xn+1 = xn +∆tẋn +∆t2
[(

1

2
− β

)

ẍn + βẍn+1

]

(7)

This scheme is conditionally stable and the time step size is limited. The
critical time step size depends on the maximal model frequency ωmax, but
also on the spectral radius (ρb):

∆t = γs∆tcrit = γs
Ωs (ρb)

ωmax

(8)

with [14]:

Ωs (ρb) =

√

√

√

√

12 (1 + ρb)
3 (2− ρb)

10 + 15ρb − ρ2
b + ρ3

b − ρ4
b

(9)
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In equation (8), γs is a safety factor (< 1) that accounts for the destabilizing
effects of non-linearities.

2.4. Implicit time step size control

The implicit time step size control is the one proposed by Géradin [8],
extended to highly non-linear problems by Noels et al. [9]. This scheme con-
tinuously adapts time step size to the evolution of physical modes and keeps
time step size constant during long time intervals. The current time step size
is estimated on the basis of an integration error.

The integration error eint is deduced from truncated terms of equation (2)

and equation (3). This error is of the third order: O
(

1

6
∆t3 ˙̈x

)

' O
(

1

6
∆t2∆ẍ

)

.
To have a problem independent error, it is made non dimensional, using x0

(the initial position vector) and a reference error ε (see Refs. [8,9] for details).
To take into account the rotation, the integration error is then rewritten by
taking the variation of the nodal acceleration modulus (N is the number of
nodes)[7]. Finally, it leads to:

eint =
∆t2

6

∑N
i=1 ∆ ‖ẍi‖

ε ‖x0‖
(10)

Time step size is deduced from the integration error defined in equation (10)
and from a tolerance PRCU fixed by the user (10−4 is a typical value). The
relation to be verified is:

eint < PRCU (11)

The new time step size ∆tnew to reach a reference integration error (half of the
tolerance PRCU) is deduced from the current time step size (∆tcur) and from
the current integration error (eint,cur), using the following relation developed
by Géradin [8]:

(

∆tnew
∆tcur

)η

=
PRCU

2eint,cur
(12)

with η ∈ [2, 3] a user specified parameter [8,9].

3. Shifts from an algorithm family to another

This section exposes the methodology of the shifting methods. More details
can be found in Ref. [7].

3.1. Shift from an implicit algorithm to an explicit algorithm

First the ratio r∗ between the CPU needed for an implicit time step compu-
tation and the CPU needed for an explicit time step computation, is evaluated.
In this paper, this ratio is actualized for each step, in order to be able to shift
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from a method to another for non-linear simulation. One shifts to an explicit
method if:

µ∆timpl < r∗∆texpl (13)

where ∆texpl is evaluated from equation (8). The factor µ is taken greater
than unity (typical values are discussed in section 4.) to avoid shifting from
a method to another too frequently. This methodology allows to take into
account the number of degrees of freedom, the algorithm’s current efficiency,
the residual tolerance required and the non-linearities evolution.

3.2. Shift from an explicit algorithm to an implicit algorithm

While the method used is an implicit one, the explicit time step size can
always be easily computed from equation (8). When the current method is
explicit, the implicit time step size, which correctly integrates the problem, is
not directly accessible. Using developments of section (2.4.), nodal acceleration
variations can provide us with this implicit time step size. Using equation
(12), one sees that acceleration variations are proportional to ∆tη. Inverting
equation (10), the implicit time step size becomes (with N the number of
nodes):

∆timpl =

[

6
PRCU

2
ε ‖x0‖ (∆texpl)

η−2

∑N
i=1 ∆ ‖ẍi‖

]

1

η

(14)

Therefore the explicit to implicit shift criterion is similar to equation (13). It
yields:

∆timpl > µr∗∆texpl (15)

with ∆texpl the current explicit time step size.

3.3. Initial conditions when shifting to an implicit scheme

Classical explicit schemes such as the central difference method [10] are
well known to generate oscillatory (though stable) solutions. Two solutions
are provided here to stabilize and balance the Gauss points values and the
nodal values.

First, numerical oscillations of the Gauss points values and of the nodal
values are annihilated thanks to the numerical dissipation property of the
generalized-α explicit scheme. Indeed, when equation (15) is satisfied, thus
resulting in the choice to switch to implicit, at step number n (at time tn), r

∗

explicit steps occur with a spectral radius ρb (section 2.3.) set equal to zero (ρb
is a user defined parameter). Thus, numerical oscillations have been greatly
reduced at time tn+r∗ (Fig. 1).

The second step in the algorithm is to determine a balanced configuration at
time tn+r∗+r∗∗ . Therefore, we act in two stages. First an explicit solution using
r∗∗ (r∗∗ will be defined on next paragraph) explicit steps is computed. This
solution results in xexpln+r∗+r∗∗ , ẋ

expl
n+r∗+r∗∗ and in ẍexpln+r∗+r∗∗ . From the Gauss point
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Fig. 1. Transition scheme from an explicit scheme to an implicit one.

values and the nodal values obtained at time tn+r∗ (where numerical oscilla-
tions have been reduced), we compute an implicit step of size tn+r∗+r∗∗-tn+r∗

that uses xexpln+r∗+r∗∗ , ẋ
expl
n+r∗+r∗∗ and ẍexpln+r∗+r∗∗ as predictor values. This proce-

dure proved to be very effective in order to restart an implicit solution based
on an explicit unbalanced solution. The methodology is illustrated on Fig. (1).
This balanced solution is reached considering an implicit time step size equal
to ∆tr∗∗ = r∗∗∆texpl. In general, the iterative process necessary to reach this
equilibrium quickly converges and this allows to begin the implicit method
with a balanced solution at time tn+r∗+r∗∗ . Anyway r∗∗ must be defined. It is
equal to µr∗ or limited to a user defined parameter (e.g. 100).

4. Numerical example

The numerical example consists in a sheet metal forming process of an
”S”-shaped rail (thickness e = 0.92mm) (see Ref. [15] for more detail on the
benchmark). A description of the sheet and of the die is given in Fig. (2).
Properties of the material are: density ρ = 8900kg/m3, Young’s modulus E =
206000N/mm2, Poisson’s ratio ν = 0.31, initial yield stress σ0 = 158N/mm2

and hardening parameter h = 1000N/mm2. There are 1800 elements (30 in
length, 30 in width and 2 through the thickness). The finite elements use se-
lective reduced integration, to avoid volumetric locking resulting from the in-
compressibility condition of plastic deformations. There are 8 deviatoric Gauss
points and 1 volumetric Gauss point per element.

The simulation compares the solutions obtained with the proposed com-
bined implicit-explicit algorithm with full implicit and full explicit algorithm.
For the full implicit and the combined implicit-explicit schemes, the stamping
process is simulated in a time of 5ms (a very short time that does favor the
explicit scheme). It consists of a doped stamping process with the true den-
sity of the material but with a shorter time of stamping. The dies are removed
in a total time of 1s to simulate springback of the sheet. However, for the
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Fig. 2. Description of the ”S”-shaped sheet forming.

full explicit process, these times lead to a very expensive computational time
(several weeks). Therefore, the stamping process and the springback process
are doped (stamping process is simulated in 0.5ms and springback process is
simulated in 1.5ms). The parameters η of equation (14) and µ of equations
(13, 15) are respectively taken equal to 2.5 and 1.5. Decreasing η or µ will
result in more shifts from a method to another and thus will degrade the ef-
ficiency of the algorithm. Since a return to an implicit scheme leads to some
iterations (section 3.3.), computation costs can increase. Numerical parame-
ters used for the time integration scheme are for the implicit scheme (section
2.2.): αM = −0.97, αF = 0.01, β = 0.9801, γ = 1.48, tolerance on the Newton-
Raphson residual= 10−7 and PRCU = 10−4. For the explicit simulation of the
combined implicit-explicit scheme, the parameters are (section 2.3.): ρb = 0.2,
αM = −1.6, β = 5.5, γ = 3.1 and γs = 0.9. For the full explicit scheme, ρb is
taken equal to zero (αM = −1, β = 2.5, γ = 2.5) to dissipate the whole kinetic
energy during the springback process. The frictional contact simulation uses
the penalty method with a normal penalty of 106 and a tangent penalty of
105. The Coulomb friction coefficient is equal to 0.2.

During the stamping process (from time = 0s to time = 5ms), the com-
bined scheme shifts 5 times from an implicit scheme to an explicit scheme,
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Fig. 3. Deformation and von Mises stress (N/mm2) after stamping of the ”S”-shaped
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Fig. 4. Deformation and von Mises stress (N/mm2) after springback of the
”S”-shaped sheet.

when problems of convergence appear, before returning to the implicit scheme.
During the 5ms of the stamping process, there are about 3ms computed with
an implicit scheme and 2ms with an explicit scheme. The solution obtained
at the end of the stamping is illustrated in Fig. (3). During the springback
the implicit scheme is selected until the end of the springback process (1s).
The solution obtained after springback is illustrated in Fig. (4). It appears
that a simulation of the springback with a (doped) explicit method leads to
a totally different solution (although the kinetic energy is dissipated thanks
to the dissipative explicit algorithm) and that the combined implicit/explicit
method gives the same solution as the full implicit method. The CPU needed
for the combined implicit-explicit simulation is the lower one (16.7 hours),
while the full implicit computation requires 23.3 hours and the full (doped)
explicit computation requires 29.4 hours.

5. Conclusions

An integration scheme that combines implicit and explicit schemes was pre-
sented. This scheme integrates some time intervals with an implicit scheme,
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and others with an explicit scheme. First, automatic criteria that decide to
shift from an algorithm family to another were developed. Next, stable bal-
anced initial conditions have also been proposed when shifting from an explicit
algorithm to an implicit algorithm. Finally, a numerical example of sheet metal
forming was proposed that confirms the interest of the combined algorithm.
In this example, the stamping was processed with an explicit scheme when
divergence problems appear. On the other hand, the springback process was
performed with an implicit scheme that has a dynamic balanced solution.
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