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Introductlon

Patients w1th sohd tumours or. haematologlcal mahgnan(:les ften develop
anaemia at diagnosis or in the course of the disease [1-7]. Many studies have
‘shown that treatment with erythtopoietic agents, such as recombinant Human
eryﬂ1r0po1etm (rHuEpo) or darbepoetin-alpha, can ameliorate the anaemia’
associated with cancer and chemotherapy, reduce the need for transfusions and
improve quality of life [4,8]. This treatment is effective in about two-thirds of
cancer patients. A number of disease- or chemoﬂlerapy-related factors deteér-
mine the probability of response [9-11]. Several specific mechanisms of
anaemia, ‘such as:haemolysis, splenomegaly, ‘bleeding, haémodilution or inef-
fective eryﬂlr()pmesm cari seriously interfere with résponse,‘and 1mforeseen
events, such as surgery or infections, may induce temporaty loss’ of response.
- However, another inmiportant response-limiting factor is probably fiinctional 3 iron
deficiency, i.e., an imbalance between iron needs in the erythropoietic marrow
and iron supply, which depends on the level of iron stores and its rate of mobil-
isation [12]. Functional iron deficiency has been recognised for many ‘years by
nephrologists who now apply a policy of systematic intravenous (i.v.) iron sup-
plementation [13]. This policy has been shown to result in improved efficacy of
erythropoietic agents [14], as well as in substantial cost savings because of con-
sequential erythropoietin dose reductions [15,16]. The need for adequate iron
supply has been emphasised in other clinical situations in which rHuEpo ther-
apy is used [17]. Surprisingly, haematologists and -oncologists have so far
mostly ignored the question of iron requirements during *HuEpo therapy in
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cancer patients [13]. The medical literature scarcely addresses the topic, so that
very few data on iron mefabolism and iron therapy are available in these

patients. In this paper, we will first review iron metabolism, a field that has
changed dramatically over the past 10 years following the discovery of many

new proteins and concepts [18,19], and subsequently summarise its abnormali-

ties in cancer. patients. We will then review the biological tools available for - ' -
evaluating the iron status of patients and define how these parameters canbe. - .
used to detect absolute (exhaustion of iron stores) and functional (erythroid .-
marrow iron deficiency despite adequate iron stores) iron deficiency. Finally, we
will situate the possible impact of functional iron deficiency among other fac-
tors potentially affecting response to erythropoietic agents. Although, while
awaiting the results of ongoing clinical trials, no prospective comparative dat
are available to provide evidence-based recommendations, the clinical exper
ence in renal failure patients as well as other situations can provide some guids
Iines for iron supplementation in cancer patients undergomg treatment wit
erythropme’ac agents. Therefore, preferably intravenous iron supplemen
should be given when serum ferritin is below 40-100 ug/l, reflecting il
absence of iron stores, or when the transferrin saturation is below 20%, or t
percentage of hy‘pochromit: red cells is above 10%, indicating functional ir

deficiency even in the presence of adequate storage iron (normal or mcreaSéd
ferritin).

1f0n metabolism

Body iron exchange

The human body contains 3040 mg/kg of iron, adding up to approximately
g in adults [19-21]. Iron is mostly contained in haemoglobin (2.5 g), ferti
(1 g) and other haeme and non-haeme proteins (05 g), while plasma iro
amounts to only 3 mg. Iron exchanges are very limited. There is-no active ito:
excretion mechanism and iron losses are limited to about 1 mg/d through gas
trointestinal and skin desquamation. A normal western diet prov1des 10-15m
of iron daily but only a small fraction, 1 mg in a male adult, is absorbed. Iron"
requirements depend on age (1.5 mg/d during puberty), sex (1.5 mg in women - :
because of menstrual losses) and pregnancy (3.5 mg/d and even 5 mg/d in thel_ .
third trimester).
Iron absorption by the gas’rromtestmal tract depends on several factors,
including iron bioavailability [22,23]. Haeme iron is better absorbed than non-
haeme iron whose absorption is reduced by low gastric acidity and a number "
of other nutrients that interfere with absorption [22]. Iron import at the apical.
surface of enterocytes is carried out by a protein called DMT1 (dimetal trans--
porter 1) or Nramp? (natural resistance-associated macrophage protein 2), but
to be actively transported iron must first be reduced by a ferric reductase asso-
ciated with DMT1 (Figure 1) [20,24]. W1’chm en’cerocy‘tes, iron can either be



Erythropoietic Agents and Iron 201

2+ .
Fe ' Fes_+

{=Nramp?2) ‘
(=DCTY)

Transferrin

ig. .1 Scheme of iron absorption. Iron import at the apical surfa.ce of enterocy’ces is
ied out by a protein called DMT1 (dimetal transporter 1) or Nramp?2 (natural _ ,
istance-associated macrophage protein 2), but to bé actively ﬁanspor’fed iron must first -

‘be: reduced by a fetric reductase, duodenal cytochrome b (Dcytb), associated with DMT1.
. - Within enterocytes, iron can either be stored in the form of ferritin or enter the so-called

Llabﬂe iron pool. Then iron can be actively exported at the basolateral surface of
_ :énterocytes by another protein called ferroportin. Ferropor’sm is also associated with

. another protein, hephaestin, that oxidises ferrous iron back to ferric iron, allowing its
tlght binding to circulating transferrin.

stored in the form of ferritin (and later excreted through cell exfoliation). or
. enter the so-called labile iron pool whose biochemical nature remains poorly .
~ defined [22]. Then iron can be actively exported at the basolateral surface of
enterocytes by another protein called ferroportin. Ferroportin is also associated
with another protein named hephaestin that oxidises ferrous iron back to ferric
~ iron, allowing its tight binding to circulating transferrin [20].
- TIron absorption is largely regulated by the level of iron stores and marrow
. erythropoiesis [23]. Increased erythropoietic activity, such as encountered in
chronic dyserythropoietic anaemia or thalassaermia, results in progressive iron
loading independently of (transfusions, through mechanisms that remain
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obscure. The regulation of iron absorptlon by tissue iron stores could be medi-
ated by plasma transferrin saturation. Indeed diferric transferrin is taken up by
receptors at the basolateral pole of enterocytes, thereby increasing the labile iron
pool and thus répressing expression of DMT1. Another protem called HFE, has
been cloned [25]. While a typical mutation of this protein is responsible for dys— L
regulated iron absorption associated with genetic haemochromatosis, its exact 1
function remains unclear [25]. However, by interacting with both transferrin | -
receptor and f2-microglobulin at the basolateral surface of enterocytes, the HHFE . -
protein somehow plays an important role in regulating iron absorption. The = |
recent discovery of hepcidin, a plasma protein secreted by hepatocytes in & 7 -
.Tesponse to iron, could provide the missing link between marrow erythropoietic © .
activity and iron stores on the one hand, and the level of iron absorption on the ~
other [26]. Indeed hepcidin levels are increased ini cases of inflammation or iron :
overload (two situations associated with decreased iron absorption) and ele-
vated in cases of anaemia, hypoxia or iron deficiency (all associated with,

increased absorption). However, the. putative molecular events triggered byr'
hepcidin in enterocytes remain. unknown [27].

Iron transport

Iron is, transported in the plasma by transferrin, which possesses two equivalent
binding sites, providing for the three forms of diferric transferrin, monoferric’;-fz
transferrin and apotransfersin [21]. When transferrin is nearly saturated, a small -
amount of highly toxic non-transferrin-bound iron (NTBI) may be encountered.
[21] Iron enters cells through interaction of plasma transferrin with the trans
ferrin receptor 1 (TfR) [28,29]. The TfR is a dimeric protein with two 1dent1ca1a§f=.:
monomers of 90,000 daltons linked by two disulphide bonds. After bmdmg tg:!
the TfR, the transferrin-TfR complex is internalised in’ endosomes, iron is
released after acidification of the endosomes and transported to the cytoplasmi.
by DMT1, and the TR re-integrates the cell wall while apotransferfin isi

" released back to the plasma [20,28,29]. In the cytoplasm, iron enters the labile -
pool before being transported to mitochondria that incorporate it into haemé;
and other proteins [20,30].

Virtually all cells, except mature red cells, possess TR, but the highest den-
sity is observed on erythroid precursors in the bone marrow, including ery--
throblasts (800,000 TfR per cell) and reticulocytes (100,000 per cell) [30]. In a
norimal individual, apprommately 80% of body TR arelocated in the bone mar- -
row, but this proportion increases when erythropoiesis is stimulated (F;lgure 2)
[31]. . -

The major pa’chways of iron transport have been identified [32]. The main cir-
cuit involves transferrin iron uptake by the erythroid marrow and its incorpo-
ration into red cell haemoglobin, where its stays until phagocytosis of senescent
red cells by macrophages. Macrophages digest haemoglobin and iron enters the
labile iron pool. Thereafter, two-thirds are rapidly (t,,, 30 minutes) released
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' Mam pathways of iron metabolism. After absorptxon by the gastrointestinal tract,
is taken up by transferrin that transporis it for uptake by the erythroid marrow and
rporation into red cell haemoglobin, where its stays until phagocytosis of senescerit
ells by macrophages Macrophages digest haemoglobin and iron is released back to
ma transferrin. A minor fraction of transferrin iron is available for uptake by
1 feceptors in other tissues, in particular hepatocy’ces

< to. plasma transfemn and one-third i mcorporated into mtrace]lular fer-

om. which it can be slowly (t,,, 7 days) released to transferrin [33]. A sec-
ircuit involves iron uptake by different tissues, mcludmg hepatocytes, and
ird one ‘involves the circulation of transferrin iron in extravascular spaces
On the contrary to other tissues, iron exchanges Wlth hepatocytes are bidi-

racellular iron

e regulation of intracellular iron is exerted by a reciprocal control of the syn-
sis of ferritin and TfR [34]. Messenger RNAs of these two proteins contain in
* their untranslated segments loop structures called IREs (iron regulatory ele-
- ments) to which cytoplasmic IRPs (iron regulatory proteins) can bind [29]. IRP1
‘can either be a factor regulating translation or an enzyme (aconitase), depend-
" ing on the absence or presence of an iron-sulphur centre. When iron is lacking,
IRP1 can bind to IREs of ferritin and TfR mRNAs: ferritin mRNA cannot be
i'translated while TR mRNA is stabilised, thereby resulting in increased iron
| acquisition through TfR and decreased iron storage in ferritin. When iron is
* abundant, IRP1 retains its iron-sulphur centre that prevents such binding: fer-
' ritin mRNA can be translated and TfR mRNA is degraded, thereby resulting in
- diminished iron uptake and increased ferritin storage. Additional factors con-
. tribute to the regulation of TfR. There is transcriptional regulation facilitated by
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| rmtogens, erythropmetm or erythroid dlfferenhatlon, as well as post-transcrip-
tional regulation by NO [35,36],.a molecule’ also involved in the post-transcrip-

tional regulation of ferritin expression [37] IRP1 ‘can also be achvated by some . -
cytokmes [35,36). % s
“TWo: types of cells are partlcularly mvolved in iron storage, namely pato—
cytés’and . macrophages /monocytes (reticuloendothelial *Systein). drotiv’stores
accumulaté in the form of ferritin and also haemosiderin, an aggregated and =
partially denatured form of ferritin [34]. Ferritin is composed of 24 subunits of =
apoferritin’ arranged as an empty shell contammg an -iron .coreswith 04500 -
atoms of iron. Serum ferritin is produced in proportion to the amount of intra~

cellular ferritin and thus represents a quantitative marker of iron stores even if
it does not contain iron itself.

Iron metabolism in cancer ‘ "
Anaemia in cancer patients
The anaemia observed in cancer patients has multiple mechanisms [2,3,38]: :
Haemodilution may artificially dilute the red cell mass [39]. Bleeding, autoim:
mune or microangiopathic haemolysis, hypersplenism and haemophagocytosis ;
- may all teduce the red cell life span. Nutritional deficiencies, including iron,"
folate, vitamin B12 and global malnutrition may impair red cell productio
The borie marrow may be involved by metastases, necrosis, myelodysplasia;
and autoimmune red cell aplasia, or be further altered by chemotherapy and
radlomerapy These various causes have been reviewed in detail elsewhere
[401. : L . 1
Neoplastic disorders, however, are often comphcated by the ‘aniaemia of L
chronic disease” (ACD), defined as the anaemia associated with infection;” «
inflammation, cancer or trauma, that has the characteristic picture of hypofers: |
raemia, hyperferritinaemia, decreased transferrin concentration and increased’
iron stores. The pathogenesis of ACD remains unclear but may involve the com=.
bination of a shortened erythrocyte survival in circulation [41] with failure of ©
the bone matrow to increase red cell production in compensation [1,42-44]: -
Inappropriate red cell production is itself related to a combination of factors;-.
including impaired availability of storage iron, inadequate erythropoietin:
response to anaemia and overproduction of cytokines which are capable of.
inhibiting. erythropoiesis [1-3,42,43/45]. Increased production of several -
cytokines, including TL~1 [46], TNF [47], TFN-y [48], TGF-B {49] and IL-6 [50] has -
been demonstrated in a variety of cancers. In particular, TNF [51] and 1L-6 [52] -
plasma levels have been found to be elevated in some cancer patients. These -
cytokines [1,35,42,45] are involved in the retention of iron in the reticuloen- -
dothelial system, gastrointestinal tract and hepatocytes [35,36,53-55], may inter- -

fere with erythropoietin production by the kldney and  may exert direct
‘inhibitory effects on erythroid precursors.
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Iron metabolism in cancer

- As rewewed elsewhere, iron plays an important role in the growth of mahgnant
cells which often express high numbers of transferrin receptors and are capable
of synﬂ1e31smg excess amounts of ferritin [53,56-58]. Thete is no indication that -
iron supplementation may interfere with the effect of chemotherapy, but it/has
been suggested that iron withholding from tumour cells mdy represent a defence
system agamst tumour growth [59,60]. Iron metabolism is considerably altered

" in the anaemia of chronic disease (ACD) [35,36,54,55] and particularly in cancer

- patients [53,57]. The main picture is one.of iron-deficient erythropoiesis in the

- face of normal er increased iron stores. Serum iron and transferrin are decreased,

while serum ferritin is often elevated [53,55]. As iron supply to erythroblasts is

' inadequate, red cell protoporphyrin is often increased [61]. However, serum lev-

.- els of soluble transferrin receptor are not increased in patients with ACD and

Ny thJs may help distinguish them from patients with iron deficiency [31,62]-

--,The mechanisms responsible for the hypoferraemia and the subsequent hm-
itation of iron supply are multiple. In cancer patients, intestinal iron absorption |
impaired [63], storage iron release by hepatocytes is diminished: [64] and cells

t the reticuloendothelial system also retain iron. Indeed, although some stids |

s in tumour-bearing rats did not show it [65], the lattér was clearly demons-

fed by ferrokinetic studies using a tracer dose of heat-damaged ®Fe-labelled

d cells in man [33] as well as in animals with implanted carcinoma [66].

ithough iron supply is clearly limited, there is no alteration in the Way ’che _

ythroid marrow acquires plasma iron [33,67].

several cytokines could reproduce at least part of the picture of the anaemia -

chronic disorders. Interleukin-1 (IL-1) causes hypoferrae]ma ‘with mcreased

rage iron {68,69] at least in part through inhibition of reticuloendothelial iton
elease [70]. Other studies suggest that TNF also causes hypoférraemia tthugh

‘mhlbltlon -of macrophage iron release [71,72]. IL-6 also induces hypoferraemia

| [23] by increasing transferrin iron uptake and ferritin expression by hepatocytes

. but not Kupffercells [74]. The mechanism accounting for the retention.of iron

‘into reticuloendothelial stores appears to exist in repressed TR expression as

well as stimulated ferritin synthesis controlled by transcriptional as well as

. post-transcriptional mechanisms-[75,76]. Several cytokines may be involved

[53,54 77], particularly IL-1 [78], TNE-a [79-81] and JFN-y [80,82-84]. In addi-

tion, NO may be a mediator for the actions of several mﬂan:u:natory cytokines
[85] in particular TFN-y [82,83].

Clinical tools for the evaluation of iron metabolism

" Transferrin saturation

. Serum iron saturates serum transférrin to a certain degree and transferrin satu-~
- ration is a reflection of the equilibrium between iron supply and iron usage
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(Figure 3) [86]. Iron needs are mostly represented by erythroid:marrow activity
while iron supply is almost exclusively. determined by macrophage iron release.
Serum iron and transferrin saturation will therefore decrease when the demand
for iron is increased (increased erythropoiesis, for.instance during erythropoi-~
etin therapy) or when iron supply is impaired (iron deficiency or inflammatory
iron blockade). Serum iron and transferrin saturation are also subject to circa- -
dian fluctuations, the highest values being recorded around 11 am. This does

not, however, significantly interfere with the detection of functional iron defi-
ciency by low transferrin saturation.

Serzﬁth ferritin 2

Serum ferritin levels are directly proportional to storage iron levels in
macrophages and hepatocytes {87]. Serum ferritin is a highly specific market]
any decreased value demonstratmg exhaustion of iron stores. It is, however, not’

'very sensitive, because numerous conditions are associated with falsely ele<-

vated serum ferritin levels. These include hepatic cytolysis, inflammation, renal .

failure, hyperthy‘rmdlsm, poorly-controlled diabetes mellitus, some tumours:,

. and. the rare hyperferritin-cataract syndronie. Indeed cut-off values for ird

uations such as renal fa]lure or mﬂammaﬂon

Soluble transfemn receptor

A soluble form of the TfR (sTfR) a truncated monomer of the ce]lular TIR, cit= ', :
culates in the plasma and its conieritration is directly proportional to the total
body mass of ‘cellular TR [31]. 1t is thevefore 1arge1y influenced by the level of -
erythropoietic activity (through changes in the number of erythroblasts) and to.
a lesser extend by iron stores (through regulation of the number of TfR per-cell) -
[31]. However, as the impact of erythropoiesis quantitatively predominates; -
sTfR cannot be used as a marker of iron deficiency in erythropoieti¢ disorders.
or during treatment with rHuEpo [31]. Otherwise, it is an excellent indicator of
iron-deficient erythropoiesis [88,89]. It can be very useful for the differential
diagnosis of iron deficiency (increased sTfR and low ferritin) vs inflammatiori
(normal sTfr and ferritin) or for detecting iron deficiency in a patient-with con-
comitant inflammation (increased sTfR and normal ferritin) [90].

o

Other parameters

Additional parameters may help in the chagno&us of uon—deﬁaent erythro—
poiesis. Red cell protoporphyrin increases when erythroblasts lack iron for
haeme synthesis [61]. The percentage of hypochxomlc red cells, individually
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Flg 3. Tron metabolism i in conditions illustrating functional iron deficiency. Normal: when
senescent red cells are phagocytosed (1) by macrophages, iron is recycled into a transit
pool (2); part is stored as ferritin (hatched ared) (3) and the rest is released (4) to plasma

“transferrin (5); iron is then taken up (6) by the erythroid marrow (7) to produce normal
ted cells. Iron supply (4) by storage cells matches iron demand (6) by the erythroid

~ marrow and transferrin remains adequately (20-40%) saturated (black shading) by iron
. (9). Anaeriia of chronic disorder {ACD): iron release by macrophages is blocked and more

iron is stored as ferritin within these cells. fron supply can no longer match iron demand

- by the erythroid marrow: transferrin saturation decreases (<20%), the erythroid marrow
- becomes functionally iron deficient and new red cells are hypochromic. Treatment with

rHuEpo: the erythroid marrow expands upon intense stimulation by erythropoietin. Its

. increased demand for iron cannot be matched by storage iron release; transferrin

- saturation decreases (<20%), the erythroid marrow becomes functionally iron deficient
. and new red cells are hypochromic, ACD treated with rHuEpo: impaired iron supply and

increased iron demand combine to decrease transferrin saturation and cause functional

_ iron deficiency.
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characterised by cell haemoglobin concentration below 28 g/dl, increases over
the upper limit of 5% when erythroblasts are deprived of adequate jron supply
[91]. However, as ret{culocytes are 20% bigger than mature red cells for the
same amount of haemoglobin, they are also hypochromic-[92]. Hence, high
reticulocytosis should be taken into account in the interpretation of the per-

. centage of hypochromic red cells [93]. The haemoglobin content.of reticulocytes = -
(CHr) will also decrease when the marrow does not receive enough iron to -

_match its requirements [91,94]. As reticulocytes have a much shorter life span’
than red cells, the CHr will change much mozre rapidly than the percentage of

hypochromic red cells or red cell protoporphyrin following the recent onset of
iron-deficient erythropoiesis {95,96].

Absolute vs functional iron deﬁciéncy ,
Absoluite iron deficiericy

Absdiute iron deficiency is defined by the .exhaustion of iron stores in’
maerophages and hepatocytes [97]: One can distinguish three successive stages of;
iron deficiency (Table 1). Stage 1 corresponds {0 the progressive exhaustion ofiror;

is characterised by serum ferritin values decreased below..the normal range..
Serum ferritin is an excellent marker' of storage iron-and a decreased valie is
100% specﬂlc for iron deficiency. Stage 2 corresponds to early signs of iron defi
ciency in the erythroid marrow. This is reflected by decreased serum iron and

Table 1. Laboratory fmdmgs in absolute iron deﬂmency

Stage 1: iron deplehon )
. Ferrltm <12 ng/l1 _

Stage 2: iron-deficient erythropoiesis
Serum iron <60 pg/dl
Transferrin saturation <20%
Hypochromic RBC >5%
CHr <26 pg :
Soluble transfertin receptor >7 mg/1
Erythrocyte protoporphyrin >70 pg/dl
Stage 3: iron deficiency anaemia
e Haemoglobin <12 g/dl (female) or <13.5 g/dl (male)
e Haematocrit <36% (female) or <41% (male)
* RBC number normal then decreased
¢ MCV <80 fl (microcytosis)

e MCH <28 pg (hypoch:fomia)
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transferrin saturation (demonstrating an imbalance between iron needs and iron
supply) and increased serum transferrin. This translates into signs of iron defi-
ciency in erythroid precursors, including increased red cell protoporphyrin, sol-
uble transferrin receptor, as well as decreased CHr and élevated percentage of
“hypochromic red blood cells. Tron deficiency anaemia, characterised by decreased
haemoglobm and Hct with microcytosis (low MCV) and hypochromia (low
MCH)), is thus a late sign of advanced iron deficiency (stage 3). The number of red
blood cells first remains normal but finally also decreases as the anaemia worsens.

- Functional iron deficiency

This standard definition of iron deficiency by decreased serum ferritin levels

and the classical separation into these three stages is, however, challenged by
. new data. Indeed, iron-deficient erythropoiesis and anaemia may occur even if
- iron stores are not exhausted or are even elevated [95,96]: This is called. func-
tional iron deficiency, defined as an imbalance between iron needs in the bone-
"marrow and iron supply by macrophages (Table 2.and Figure 3). This canbe
- encountered in two different situations, corresponding to either increased. iron
}-néeds or decreased iron supply. Iron needs are increased when marrow. ery=
“throid activity is stimulated, the best example beéing provided by rHuEpo ther-'
e_ py [95,96]. Macrophage iron, originating from normal or even eleyated stores,
s well as from haemoglobin iron recycled when senescent red: blood cells are _
hagocytosed, may not be mobilised with sufficient speed to match iron needs :

- the production of new red cells. Therefore, serum iron and transferrin satu-
‘ation decrease and other signs of iron-deficient erythropoiesis appear.
Eg'}]E*‘unctm:nal iron deficiency also develops when iron release by macrophages is

ZE.Table 2 Labora’tory fmdmgs in functional iron deflaency : - .

: _Normal or increased ferritin
Laberatory signs of iron deficient erythropoiesis:
. Serum iron <60 pg/dl
Transferrin saturation <20%
. Hypochromic RBC >5%
CHr <26 pg
Soluble transferrin receptor >7 mg/1
Erythrocyte protoporphyrin >70 pg/dl
Possible signs of functional iron deﬂmency anaemia:
® Haemoglobin <12 g/dl (female) or <13.5 g/dl (male)
Haematocrit <36% (female) or <41% (male)
RBC number normal then decreased
MCV <80 {1 (microcytosis)
MCH <28 pg (hypochromia)
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impaired [1-3,42,43,45]. -A. typical -situation - corresponding .to :this pattern is
“inflammation, -due to infection, -cancer : or .inflammatory - disorders: iron:is |
sequestered within macrophages, resulting in elevated: serum:ferritin. values;
while the erythron lacks iron, as indicated by increased red cell protoporphyrin,
sTYR, as well as decreased CHr and an elevated percentage of hypochromic red =
blood cells. This may then translate into anaemia whose characteristics are iden:

tical to those of true iron def1c1ency, but for serum ferritin, which remaing nor- -
mal or elevated.

Iron deficiency during treatment with erythropoietic agents

JF_actor's influenci—ng;re_sponse to erythro‘poietic agents

! ]

A number of factors may mterfere with response to eryl:hropmehc agents m
cancer patients; reﬂectmg differences in disease- and treatment-related factors
but also large variations in dose, frequency and route of administration, dura
tion of therapy and the -response criteria used [10-12]. These include red. ce
loss resulting from: hypersplenism, haemolysis, haemorrhage or iatrogenic. ‘phie
‘botomies. Red cell production may be diminished by bone marrow infiliratio;
marrow necrosis, haemophagocytosis,. myeloflbrosm, deﬁaeﬂcy of: erythropol
etic cofactors (folic acid, vitamin B12, iron)or infections. However, the type
tumonur and moderate marrow involvement have. generally not influenced:
- response rate. Patients who have been heavily pretreated with chemother:
usually experience severe stem cell damage that should consﬂerably interfes
with response to erythropoietic agents. For patients treated concomltanﬂy w1:
chemotherapy, there-is no marked difference between these receiving platinuin
based regimens and those receiving other forms of chemotherapy. Patierits
receiving chemotherapy of moderate intensity respond as well as those not
teceiving concomitant chemotherapy, but the more inténsive chemotherapy reg-:
imens are associated with lower response rates. Finally, complications. of -
chemotherapy, such as inflammation, infections, nutritional deficiencies or .

bleeding, may have a negative impact upon response. All these factors are
reviewed in other chapters. ‘

Functional iron deficiency

-~

Functional iron deficiency is a major factor limiting the efficacy of erythropoi-
‘etic agents (Table 2). It is defined as an iton deficit in the functional erythroid .
compartment, the result of an'imbalance between iron needs in the erythroid .
marrow and iron supply (F1gure 3)."This may occur-even in the presence of
large iron stores when storage iron release is inadequate. Tron requirements are |
determined by the overall level of erythropoietic activity and iron avaﬂabﬂlty :
depends on the level of iron stores and the1r rate of mobilisation. Functional
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“iron deficiency can occur before erythropoietin therapy is started, either
because iron stores are absent (true iron deficiency) or because storage iron
release is impaired, a typical feature of the anaemia of chronic disorders [33]. It
can also develop in the course of érythropoietin therapy when iron stores
become progressively exhausted or more frequently when the increased iron
needs of an expanding erythroid marrow cannot be matched by sufficient
mobilisation of often enlarged iron stores. Iron-deficient erythropoiesis has been

- clearly identified in iron-replete subjects during red blood cell expansion by
rHuEpo [95,96]. Indeed, the vast majority of renal failure patients treated with

rHuEpo develop functional iron deficiency that seriously limits their erythro—
poietic response [98]. Similar observations have been made in patients receiving
tHuEpo to facilitate an aggressive programme of autologous blood donation
[99]. Although this has not been specifically examined in cancer patients treated .
with erythropoietic agents, there is every reason to believe that its prevalence is
also very high in this setting.

. A prediciive algorithm of response to rHuEpo has first been proposed in the

, se’fhng of angemia associated with renal failure [100]. The best prediction by

- ‘baseline parameters only was obtained with pretreatment soluble transferrin

ceptor (sTfR) and fibrinogen. There was 100% response rate when both sTfR

nd fibrinogen .were low, vs only 29% when they were both high, and 67%

hen one was low and the other high. Changes of sTfR after 2 weeks of treat-

t were also predictive. When the 2-week sTfR increment was 220%, the
esponse rate was 96%. When sTfR increment was <20 %, the response rate was

% when baseline sTfR was low and fibrinogen normal, 12% when baseline -
rinogen was elevated and 62% when baseline fibrinogen was normal but

" baseline sTfR high. :These prognostic factors illustrate the importance of the

,eaﬂy erythrop01et1c response (changes of sTfR levels), subclinical mﬂammatlon

- (ﬁbrmogen) and functional iron deficiency (baseline sTfR). _

'Punctional iron deficiency is best diagnosed by a percentage of retlculocytes

Wlth a haemoglobin content lower than 23 pg [91,95] or a percentage of

‘Thypochromic red cells greater than 10% [101], with both parameters calculated

- by some automated haematologic cell counters. Alternatively, it can also be sus-

- pected when transferrin saturation falls below 20%. On the other hand, serum

' ferritin is of very limited value because it only gives an evaluation of iron stores
without providing any hint of how these stores can be mobilised [102].

Iron supplementation

There is some concern that tumour cells may need iron for optimal growth [60],
therefore routine jron supplementation of all cancer patients receiving erythro-
poietic agents is not recommended. The same is true for oral as well as intra-
venous iron supplementation. However, this should be balanced with the fact
that transfusion of one red blood cell unit also provides a large amount (200
mg) of iron. Iron supplements should be given when absolute iron deficiency is
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suspected, i.e,, when serum ferritin is below 40-100 ug/l, a level associated
with absence of iron stores in the anaemia of chronic disorders. Otherwise, iron
supplements should be given when the transferrin saturation is below 20%, or
“the percentage of hypochromic red cells greater than 10%, and may be discon-
tinued when the patient stabilises within the normal range.

The experience in iron-replete dialysis patients [103-106] has clearly indi-
cated that oral iron supplementation is only margina]ly superior to no iron [14]
but that intravenous iron both substantially improves response when erythroQ
poietin therapy is instituted [14] and allows considerable (of the order of 40%)
reduction in rHuEpo dose requirements during the maintenance phase
[15,16,107-109]. Iron sucrese and iron gluconate are as effective for this purposé|
[110]. In predialysis patients the iv. route of iron supplementahon has alsﬁ |
proved superior to the oral route [111]. Sufficient doses should be given because '
Tow doses of i.v. iron have not been as effective in such patients [112]. Several |
guidelines have been published to provide treatment schedules with i.v. ironin
these patients[113-115]. An initial weekly loading dose of 100-300 mg i.v. frory '
is recommended during the correction phase of the anaemia, while much lowef
doses are necessary during the maintenance phase. The target serum ferritif =~
level is in the range of 200-500 ug/l, that of hypochromic red cells below 2. 5"’/‘ i
and that of transferrin saturation 25-40%. To avoid toxicity from iron excess, i.v;
iron should be withheld when transferrin saturation is above 50% and/®
serum ferritin greater than 1000 pg/1. Oral iron should only be given to patient
in whom i.v. supplements are not feasible or wha do not tolerate them. On th
other hand, low-dose intravenous iron has not been shown to be superior it
energetic oral iron supplementation in patlen’cs pursuing a programme of autol
ogous blood donation [116]. However, i.v. iron was superior to oral iron- in
patients undergoing preoperative stimulation of erythropoiesis without bloo

collection [117], but this was no longer the case when lower doses of iv. 11:01;%
were used [118].

=

Provided that the guidelines are respec’ced the safety of systemattc iwv lron L
supplementation has been demonstrated in renal failure patients undergomg E
treatment with erythropoietic agents [106,119-122]. There are three major formﬁ .
of intravenous iron on the market (iron dexiran, iron gluconate and iron sucrosg
or saccharate) whose avaﬂabﬂlty varies from country to country. All consist of '
complexes of ferric iron surrounded by molecules ensuring its stability in
plasma. After i.v. injection, all three compounds are prlmanly taken up by cells
of the reticuloendothelial system (Figure 4). There iron is liberated from ’the
complex and released to plasma transferrin that can then transport it to the ery:
throid marrow. If too much iron is released too fast, plasma transferrin wﬂl
become rapidly oversaturated and NTBI will appear with all its potential tox1—
cities. However, the three compounds are processed by the macrophages at Very
different speeds. Iron is very slowly released over a period of weeks from irofl
dextran complexes, allowing injection of very large doses of iron in a smgle
infusion (“total dose infusion”). Iron is much more rapidly liberated from iron
sucrose and iron gluconate complexes, so that their maximum tolerated doses
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rHuEpé + lv. [ron

iv.ion HEH

RBC iron IS

in'whlch the expansmn of erythro;ld marrow by erythropo1eﬁn '
¢y. The additional ifon provided by intravenous iron

first taken up by macrphiages that process it to release ironi”
Ixon is then ava]lable for release’ by macrophages 0

f_’, fferrm satura’aon (ha’cched area) and Provmon of
. The, erythrmd narrow can further expand without ~

free iron releas‘

-Iron usage. has‘not been energetlca]ly pursued in chmcal tr1a]s of erythropm—
etic agents in cancer patients and was generally left to the discretion of the indi-
vidual investigator {13]. This was based on the false perception that cancer
patients do not really need iron together with erythropoietin because their iron
stores (ferritin)’ are -not; décreased. In addition, iron has usually been given
orally, a method proving to be of little efficacy in renal failure patients and pre-
sumably éven less effective in cancer pahents because of impaired iron absorp-
tion, another characteristic of the anaemia of chronic disorders [1 A4]. The safety
and efficacy of -intravenous iron to.correct functional iron deficiency and
improve anaemia has been well documented. in rheumatoid arthritis during
tHuEpo theiapy [125] or aftér failure of oral-iron-in juvenilé chronic arthritis,
another form of anaemia of chronic disorder [126]. Apart from anecdotal reports
ori the efﬁcacy of i.v. iron in patients failing to respond to ery’chropmetle agents,
iton supplementation has not been formally studied in the anaemia of cancer.
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Based on the experlence in renal failure patients, intravenous administration of
100-300 mg elemental iron every week or every other week during the correc-
- tion phase of anaemia will ensure the best utilisation of any given ‘dose of

rHuEpo Ongomg clinical trials are investigating the safety and efficacy of intra-
venous iron in cancer patients treated with erythropoietic agents to demonstrate |
greater efﬁcacy and/or 1ower erythropmehn reqmremen’cs

In pmcﬁce | _

Routme irén supplementaﬁon of a]l cancer pahents recelvmg ery‘thropmetlc
agents is not recommended: In addition, no guidelines have been developed g ..
'spec1f1cally for cancer patients and all recommendations can only be based on® |
the experience .in renal failure patients. The indications for iron supplementa"
tion include absolute iron deficiericy (serum- férritin below 40-100 pg/1 in-can-’
cer patients) and funchonal iron deﬁmency The lattér can be chagnosed byi'
either a transferrin saturation below 20%, a percentage of hypochromic red cells’
above 10% or a CHr'below 23 pg, even in the presence of adequate storage n:on'
(normal or increased ferritin). : : it

Intravenous” administration of 100300 mg elemental iron every week "or
every other week during the correction phiase of ariaemia will ensure the besf
~utilisation of erythropoietic agenis. Iron should be continued untll transferrin
saturation stabilises between 25 and 40% and the percentage of hypochromic

-red cells is below. 2. 5% To.avoid tox1c1ty from iron excess, i.v. iron-should be
withheld . When transferrm ‘safuration is above 5
greater than 1000 pg/ 1.

A safe, easy and often adequate schedule is 200 mg of iron sucrose (in 200 ml A
- saline over, 1 hour) per week for a total of three doses or two doses of 300 mg (in

250 inl saline over .90 minutes) given 2 weeks apart. Concomitant. administration -
with chemotherapy should be avoided because transiently elevated transfefrin
saturation may enhance the toxicity of some chemotherapeutic agents.

50% and/ Or -serum. ferrﬂ:m
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