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Introduction 

patient.s~~ s~lid. tum~ws orhaematolQ&ic.al malignancies çften ~evelop 
anaenua at diagnoslS or m the cOurse ofthe~isease [h7].Many studieshave 

. shown thattreatment witherythfopoieticagent~ such as recombinant h~~ 
eiythropoietin (rHuEpo) or. darbepoetin~a1phai ean ameliorate theana.errlia 
associatedWitheaneer and eheihôthèrapy, reducethenew fOl" transfusicinS'éind 
improve quality of ·life [4jl] .. Thlstreatment îS effective in about twci-thirds of 
cancer patients. A number of disease- or chemothérapy-rëlatêdfa.ctors deter­
mine the probability of response 19~11]. Several. specifie mechanisms of 
anaenùa, 'such as.haemolysis, splenomegaly,'bleeding,haèmodilution ot inef­
fective erythropoiesis cart seriously interfere with rèsponse;aridtmioreseen 
events, such as surgery or infeçtionS, may induée teni.porary lôss 01 respohse. 
However, another i:tuportant respons~limiting factoris probablt'fûrictional iron 
deficieney, Le" an imbalahce between iron needs in the erythropoietic marrow 
and iron supply, which depends on the level of iron stores and its rate of mobil­
isation [12]. Functional irbn deficiency has been rec6gnised Jor tùany years by 
nephrologists who now apply a policy of systematic intravenous (Lv.) iron sup­
plementation [13]. This poliey has been shown to result in improvéd efficacycif 
erythropoietic agents [14], as well as in sllbstantial cost savingsbeeause of eon­
sequential erythropoietin dose reductions [15,16]. The need for adequate iron 
supply hasbeen emphasised in9ther clinical situations in which rHuEpo ther~ 
apy is usecf [17]. Surprisingly, haematologists andoneologists havé so far 
mostly ignored the question of iron requirements during rHuEpO therapy in 
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cancer patients [131. The medicalliterature scarcely addresses the topie, so that 
very few data on iton metabolism and irou ilierapy are available in these 
patients. In fuis paper, we will first review iron metabolism, a field that has 
changed dramatically over the pÇl.st 10 years foiloWing the discovery of many 
new proteins and çoncepts [18,191r and subsequently summarise its abnormali-
ties in càneer, patients. We will then review thé biological tooIs available for , 
evaluating the iron status of patients and define how these parameters can be ': 
used to detect absolute (exhaustion of ITOn stores) and functional (erythroid ' 
ffiarrow iron deficiency despite adequate iron stores) iron deficiency. Finally,we ' 
will sittlate the possible impact of functional iron deficieilcy among other fac~" 
tors potentially affecting response to erythropoietic agents. Although, while, 
awaiting the results of ongoing clinical trials, no prospective comparative data " , 
are available to provide evidence~based recommendations, the clinical exp~ri;"i2J!, 
ence in renal fallure patients as weil as other situations can provide some guid,~:',~. 
lines for, iron supplementation in cancer patients undergoing treatrnent wifb. ,,',~ 
erythropoietic agents. Therefore, preferably intravenous iron supplemeht~,'~~ 
should be given when serum ferritin is below 40-100 ]1g/l, reflecting 't1:l~:)~ 
absence of iron stores, or when the transferrin saturation is below 20%, orfuè'~~ 
percentage of hypochromie red eells is above 10%, indicating functional ii(;K~A 
deficiency even in the presence of adequate storage iron (normal or increaSE!ai~~ 
fern·tin,). . ",." ::\~ 

:"c~~! 
. ~!-'--

Iron metabolism 

:-·~~1~ 

Body iron exchange :~~! 

The human body contains 30-40 mg/kg of iron, adding up to approximately4).~ 
g in éldults [19-21]. Iron is mostly contained in haemoglobin (2.5 g), fertiQriM' 
(1 g) and other haeme and non-haeme proteins (0.5 g), while plasma irOhk;;~ 
amounts to only 3 mg. Iron exchanges are very limited. There isno active ir'd]1ti. 
excretion mechanism and iron losses are liroited to about 1 mg/ d through gàs-" 
trointestinal and skin desquamation. A nonnal western diet provides 10-15 mg 
of iron daily but only a small fraction, 1 mg in a male adult, is absorbed. Iroll 
requirements depend on àge (1.5 mg/ d during puberty), sex (1.5 mg in women '.' 
because of menstruallosses) and pregnancy (3.5 mg/ d and even 5 mg/ d in the • 
third trimester). ' 

Iron absorption by the gastrointestinal tract depends on several factors". 
including iron bioavallability [22,231. Haeme iron is better absorbed than Mn"' 
haeme iron whose absorption is redueed by low gastric acidity and a number " 
of other nutrients that interfere with absorption [22]. Iron imp,ort at the apic<:l 
surface of enterocytes is carried out by a protein called DMTl (dimetal trans­
porter 1) or Nramp2 (natural resistanee-associated macrophage protein 2), but 
to be actively transported iron must first be reduced by a ferric reductase asso­
ciated with DMTl (Figure 1) [20,24]. Within enterocytes, iron can either be 
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Transferrin 

;fig.l.~cheme of iron absorption. Iron import at the apièal surface of enterocytes Ï$ 
~&ried,(nlt by a protein ciilledDMT1 (dimetal transporter 1) or Nramp2 (natural .. . 
r~sistanceca:ssociâted macrophage protein 2), but to bë actively transporled iron must first 
be ieducedby a fetric reductase, duodenal cytochrome"b (Dçytb), associated with DMrI. 

. .' Within enterocytes, iron can either be storedin the fotm of fetritin or enter the so-called 
Jabile Iron pool. Then iron can be actively exported at the basolateral surface of 
; ep.terocytes by another protein qùled ferroportin. Ferroportin is also associated with 
, Mother protein, hephaestin, that oxidises ferrous iron back to fetric 'il;on, aUowing its 
tight binding to circulating transferrin. 

stored in the form of ferritin (and later excreted through ceIl. exfoliation). or 
enter the so-called labile iron pool whose biochemical nature remains poody 
dèfined [22]. Then iron can be actively eXported at the basolateral surface of 
e:pterocytes by another protein calIed ferroportin. Ferroportin is also associated 
with another protein named hephaestin that oXidises ferroUs iron back to ferric 
iron, alIowing its tight binding to circulating tr<mSferriJ1 [20]. 

Iron absorption is largely regulated by the level of iron stores and marrow 
. erythropoiesis [23]. Increased erythropoietic activity, such as encountered in 
chronie dyserythropoietic an~errûa or thalassaeIi]ia, results in progressive iron 
loading independently of (transfusions, through mechanisms that· remain 
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obscure. The regulation of iron absorption by tissue iroJ:l. stores could be medi­
ated by plasma transferrin saturation. Indeed diferric transferrin is taken up by 
receptors at the basolateral pole of ehterocytes, thereby increasing the labile iron " 
pool and thus répressing expressIon of DMfl. Another Protehl, called HFE, has 
been cloned [25]. While a typical mutation of thisprotein is resporisible for dys- " . 
regulated iron absorption associated with genetic haemochromatosis, ifs exact 
function remains unclear [25]. How'ever~ by interacting with bothtransfeITin 
receptor and f32-miqoglobulin at the basolateral surface of enterocytes, the HFE 
protein somehow plays an important role ,înregqlating iron abs,orption. The 
recent discovery of hepcidin, a plasma protein secreted by hepatocytes in . 

" response to iron, couId provide the missing link between marrow erythropoietic 
activity and iron stores on the O:tJ,e hand, and the level of iron absorption on the .' 
other [26]. Indeed hepcidin levels!3Ie increasedin cases of inflammation or iron; 
overload (two situations associated with decreased iron absorption) and ele- ,; 
vated in cases of anaemia, hypoxia or iron deficiency (all associated with>! 
increased absorption). However, the piitativ'e, molecular even{s triggered by," , 
hepddin in enterocytes remain,unknown [27]. 

Iron transport 

Iron isJransported in theplasma by transferrin, which possesSeS two equivalen~'l 
bitlding sites, providing for the threè forms of diferric transferrin, monoferricil 
transferrin and apotransferrin [2~l When transferrin is nearly saturated, a small,; 
arnount of highly toxic i:t6n-transferrin~bound iron (NTBI) may be encountered,' 
[21]. Iron enters cells through interaction of plasma transferrin with the trans:,; 
ferrin receptor 1 (TfR) [28,29]. The TfR isa dimeric protein with twoidenticaV 
monomers of 90,000 daltons ll:tù.<ed by two disulphide bonds. After binding.tct: 
the TfR, the transferrin~ TfR complex is internalised in' endosomes, iron ~ , 
released after acidification of the endosomes and transportedto the cytoplasm,. 
by DMT1, and the TfR re-integrates the ceil wall whileapotransfertin HL 
released back to the plasma [20,28,29]. In the cytoplasm, iron enters the labile' 
pool before being transported to mitochondria that incorporate it into haemEj., 
and other proteins [20,30]. 

Vrrtually all ceils, except mature red ceils, possess TfR, but the highestden~ 
sity is observed on erythroid precUrsors in the bone marrow, including ery-,' 
throblasts (800,000 TfR per ceil) and reticulocytes (100,000 per ceil) [30]. In a . 
normal individual, approximately 80% of body TfR are located in the 1;>one marc: 
row, but this proportion increases when erythropoiesis is stimulated (Figure 2) . 
[31]. 

The major pathways of iron transport have been identified [32]. The main cir­
cuit involves transferrin iron uptake by the erythroid marrow and its incorpo­
ration into red ceil haemoglobin, where its stays until phagocytosis of senescent 
red ceils by macrophages. Macrophages digest haemoglobin and iron enters the 
labile iron pool. Thereafter, two-thirds are rapidly (t1/ 2 30 minutes) .released 
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r~i~,2~:Maiitpathways of îron metabolism. After abs~rption byfue gastrointestinal tr<lct, 
fj.i;Rn~takeil up by transferrinthat transports it for uptake by theerytbroid marrow and 
lmt;p.tporationinto red cell haemoglobin, where its stays untilphagocytosis of senesceii.t 
. :~~g!=.~lls by macrophages. Macrophages digest h<lemoglobin and wn is released back to 

LRlw>m<i.;tr'llWeJ:Jjn. A minorfraction of transferrin îron is available for uptake by 
;ig~e:rim re:çept9W in other tissltes, in particular hepatocytes. 
p;.:;,;-~::;.);-< - -" , .... . 

,_ ~~1-?:>~~~,--' .:: _: . . ". _ _ . '. ' . . 
~R~Ç~. toplasilla transferrin and one-third. is incorporated into intracellular fer­

". 1~it1nJ:rQlhWhich it can be slowly(tl/2 7 days) released to transferrin [33]. A sec­
~ :at~g.çirclptinvolyes ironuptake by different tissues, induding hepatocytes, ànd. 
- i.~ttJ1irdoneinvolves the circulation of transferrin iron in extravascular spaces 
';[~fton the contrary to other tissues, iron exchanges with hepatocytes are bidi-
r~f!çtiona1. .... • . . . . 

i".1Attaèellular iron 

t;,'Theregulation of intracellular iron is exerted by a reciprocal control of the syn­
:tJ;iesis of ferritin and TfR [34]. Messenger RNAs of these two proteins contain in 
tfu,eiruntranslated segments loop structures called IREs (iron regulatory e1e­
'~ffits) to which cytoplasmic IRPs (iron regulatory proteins) can bind [29]. IRPI 
bmeither be a factor regulating translation or an enzyme (aconitase), depend­
J.hg on the absence or presence- of an iron-sulphur centre. When iron is lacking, 
IRPI can bind to IREs of ferritin and TfR rnRNAs: ferritin rnRNA cannot be 

. translated while TfR rnRNA is stabilised, thereby resulting in increased iron 
acqUisition through TfR and decreased iron storage fi ferritin. When iron is' 
abundant, IJ,U>1 retains its iron-sulphur centre that prevents such binding: fer­
ritin rnRNA can be translated and TfR rnRNA is degraded, thereby resulting in 
. diminished iron uptake and increased ferritin storage. Additional factors éon­
tribute tothe regulation of TfR. There is transcriptional regulation facilitated by 
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mltogens, erythropoietin or erythroid cliffereI):tüttion, as weil as post-transcrip­
tional regUlation byNO [35,36], a mol~cule 'alSi:i)p.volved in the pos~-transcrip­
tional regulation of ferritin expression [37]. lRÎ'1 'can also be activat~d by some 
cyt<:>~è~,{35,36J." " , , ',,' ' ";', . ",,~ ,,(,'~~,~' , 

Two 'typèsqf Gells, are particularlyinvolved in iron stoia'ge( U,aillely ,h~pato~ 
cytës','and, macrophiiiges / monocytes (reticuloenclothelial' Byite:iri).~p;6:hLstores 
accumulat~ in the form of ferritin and also haemosiderin, an aggtëgatedand 
pamally denatured form of ferritin [3,4L Ilerritin,is composed of 24~ubunits of 
apoferritin' arranged as an emptysbeU <;:Ol}taiJ:îing aniron ,core,with 0-4500 
atoms of iron. Serum ferritin is produced in 'pi6Pbrtion to the amount of intra~ 
cellular ferritin and thus represents a quantitative marker of iron stores even if 
it does not contain iron itself. 

-~ , , 
, " 

. '. ~ 

Iron metabolism in cancer 

Anaemia in cancer patients 

The anaenua observed in cancer patients has multip1~ mechanisms [2,3,38];,' 
Haemodilution may artificially dilute the red èell mass [39]. Bleeding, aùtoim1 ' 

muneor microangiopathic haemolysis, hypersplenism and haemophagocytosisJ 
may allreduce the red cellille span. Nutritional deficiencies, including iron/~ 
folate, vitamin B12 and global malnutrition may irnpairred cell productiorü'J 
The borie marrow may be involved by metastases, necrosis, myelodysplasia~ 
éU).d autoimmune -red œIl aplasia, or be further altered by chemotherapy and'] 
radiotherapy. These various causes have beenreviewed in detail elsewhere~ 
[40]. d' 

Neoplastic disorders, however, are often c01;nplicated by'the "anaemia of r 
chromc disease" (ACD), defined as the anaemia associated with infection;: 
inflammation, cancer or trauma, that has the characteristic picture of hypofer/' 
raemia, hyperferritinaemia, decreased transferrin concentration andincreased' 
iron stores. The pathogenef?is of ACD remams unclear but may involve the com~ 
bination of a shortened erythrocyte survival in circulation [41] with fallure 01 
the bone marrow to increase red cell production in compensation {1,42--44], ,­
Inappropriate red cell production is itself related to a combination of factors;, 
including irnpaired availability of storage iron, inadequate erythropoietin 
response to anaemia and overproduction of cytokines which are capable of;~ 
inhibiting, erythropoiesis [1-3,42,43,45]. Increased production of severa! ': 
cytokines, including IL-1 [46], TNF [47], IFN-y [48], TGF-f3 [49] and IL-6 [50] has : 
been demonstrated in a variety of cancers. In particular, TNP [51] and IL-6 [52] , 
plasma levels have been found to be elevated in some cancer patients. These' 
cytokines [1,35,42,45] are involved in the retention of iron in the reticu1oen~ 
dothelial system, gastrointestinal tract andhepatocytes [35,36,53-55], may inter- ~ 
fere with erythropoietin production by thekidney and may exert direct 
inhibitory effects on erythroid precursors. ' 



Erythropoietic Agents and Iron 205 

Iron metabolism in cancer 

Asreviewed elsewhere, iron plays an important role in the growth of malignant 
cells wlùch ciften express hlgh numbers of transferrin receptors and are capable 
of synthesising excess amounts of feITÎtin [53,56--58]. There is no indication that . 
iron supplementation may interfere with theeffect of chemotherapy, but it fhas 
been suggested that iron withhôlcling frOID tumour cells mé!y represent a defence 
syst(!m against tumour growth [59,60]. Iron metabolism is considerably alteted 
in the anaemia of chronic disease (ACD) 135,36,54,55] and particularly in cancer 

. patients [53,57]. The main picture is one. of iron-deficient erythropoiesis in the 
face of normal or increased iron stores. Serum iron and transferrin are decreased, 
while serum feITÎtin is often elevated [53,55]. As iron supply to erythroblasts.is 
in.adequate, red cell protoporphyrin is often increased [61]. However, serum lev-

: ·.ê1; of soluble transferrin receptor are not increased in pàtiénts with ACD and 
, ( tJ:ùs may help distinguish them from patients with irondeficiency [31,62]; '. 
i"'The mechanisms responsible for the hypoferraemia and the subsequentlim­
,jfa,tion of iron supply are multiple. In cancer patients, intestinal ll:0n àbsorption 
ié~ünpiùred [63], storage iron.release by hepatocytes is diininisheq[641 aI].dçe!J,s 
'1~,Qfthe reticuloendothelial system also retain iron. Indeed,.althoug1\s();n:te stû,d" 
IX.i~~ in.tumour-bearing .rats did not show it [65], the làttér was çleaJ.'ly d~1rt0-l1-: 
\ ,',%trilted by ferrokinetic smdies using a tracer dose of heat-damaged 59Fe_Iabe1lèd 
Ll:~a cells in man [33] as weIl as in animals with implanted carc1n6ma [66]. 
!/Aithough iron supply is dearly limite d, there is no alteration in the way the 
I:{.' _____ ,,'_' ___ '_ • . , . . 

\,;~tythroid marrow acquires plasma iron [33,67]. . . . . . 
\',;t';ESeveral cytokines could reproduce at least part of the pictuie of the anaeÙ1ia 
\'t,?tchro~c disorders. Interl~ukin-l (lL-l) c~us~s.~ypofetra~miawith in:r~~éd 
1.';;~tQrage ITon [68;69] at least ID part through inhibItion of retiCtÙoendothelialgon 
l'il:~léase [70]. Other studies suggest that TNF also causes hypoferraemiat1:u:-ough 
I,"'giliibitionof macrophage iron release [71,72].IL-6 also induces hypoferraetnia 
!, [73] by increasing transferrin iron uptake and ferritin expression by hepatoèytes 
'lnl.t n'Ot Kupffercells [74]. The mecharusm accounting for the retentionof iron 
'wio reticuloendothelial stores appears to exist in repressed TfR expression as 

weil as stimulated ferritin synthesis controlled by transcriptional as weil as 
p6st-transcriptional mechanisms· [75,76]. Several cytokines may be involved 

'. [53,54,77], particularly IL-1 [78], TNF-a [79-81] and IFN-y [80,82-84]. In addi~ 
tion, NO may be a mediator for the actions of several inflammatory cytokines 
[85], in particular IFN-y [82,83]. 

CIinical tools for the evaluation of iron metabolism 

. Transferrin saturation 

Serum Iron sgturates serum transferrin ta a certain degree and transferrin sam-
• ration is a reflection of the equilibrium between iron supply and iron usage 
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(Figure 3) [86]. Iron needs are mostly represented byerytJ:u:oid"martow activity 
while ITonsupply is almost exclusivelydetermined by macrophage ITon release. 
Serum ITon and transferrin saturation will therefore decreasewhenthe demand 
for ITon is increased{htcreased erythropoiesis, for ,instance during erythropoi-' 
etirt therapy) or when ITon supply isimpaired (ITon deficiency or inflammatory , 
ITon blockade) .. Serum. ITon and transferrin saturation are also subject ~ocircà­
dian fluctuations, the hîghest values being recorded around 11 am. This does 
not, however, significantly interfere with the detection of functional ITon defi­
cieney by low transferrin saturation. 

Serum ferritin 
. ; . ~ 

Serum ferdtirt levels are directly proportional to storage ITon level~ in 
macrophages and hepatocytes [87]. Serum ferritin is a highly specific marker; 
any decreased value demonstratirtg exhaustion of ITon stores. It is, however, not', 
very sensitive, because nUffierous conditions are associated withfalsely ele~, 
vàtedserum ferritirt levels. These include hepaticeytolysis, inflammation, renal 
fallure, hyperthyroidism, poorly-controlled diabetes, mellitus, some fumours," 
and,the rarehyperferritin~cata'ract syndrome. Indeed cut~off values for rroJi,': 
dèficieney can be,as high as 40-120llg/1 instead of the classical12 llg/1 in sit~i 
uations such as renalfallure or inflammation. '" r. 

Soluble transferrin receptor 
" 

" 

A soluble form of the TfR (sTfR), a trunçated monomer of the cellular TfR, CITc ' 
cUlates i.n -theplasmfl and its coneentralion isdirectly proportional to the total ' 
body mass oh:ellUlarTfR[31].Itis fuerefore largely influenced by the level of 
erythropoietic 'activity (through changes in the number of erythroblasts) and tô 

__ a lesser extend by ITon stores (through regulation of the number of TfR. per .ceUJ ' 
[31]. However,as the 'impact of erythropoiesis quantitatively predominates) , 
sTfR cannot be used as a marker of ITon deficiency in etythmpoietic disorders 
or during treatment with rHuEpo [31]. Otherwise, it is an excellent indicator of 
ITon~deficient erythropoiesis [88,89]. It can be very useful for the differential 
diagnosis of ITon deficiency (increased sTfR and low ferritin) vs inflammation 
(normal sTfr and ferritin) or for detecting ITon deficieney in a patientwith con" 
co'mitant inflammation (increased sTfR and normal ferritin) [90]. ' 

Other parameters 

Additional parameters may help in thediagnosis of ITon-deficient erythro­
poiesis. Red cell protoporphyrin increases when erythroblasts lack iron for 
haeme synthesis [61]. The percentage ofhypochro'mic red cells, individually 
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',:Fig. 3. Iron metaboIism in conditions illustrating fur),ctional iron deficiency. Normal: when 
, sen,esçent red, cells are phagocytosed (1) by macrophages, tron is recycled into a transit 

/ 

, pool (2); part is stored as ferritin (ha.tched area) (3) and the rest is released (4) to plasma 
:transferrin (S);ironiS then taken up (6) by the erythroid marrow (7),to produce normal 
:t'éd cells. Iron supply (4) by storage cells matches iron demand (6) by thé erythroid 
IÎlarrow and transferrin remains adequately (20-40%) saturated (black shading) by iron 
(5). AnaemÎll of chranic disarder rACD): iron release by macrophages is blocked, and more 
iron is stored as ferritin within these cells. Iron supply can no longer match iron demand 
b.y the erythroid marrow: transferrin saturation decreases «20%), the erythroid marrow 
becomes functionally iron deficient and new red cells are hypochromic.' Treafment with 
rHuEpa: the erythroid marrow eXpands upon intense stimulation by erythropoietin. Its 
incteased demand for iron cannot be matclled by storage iron release; transferrin 
saturation decreases (<20%), the erythroid marrow becomes functionally iron deficient 
and new red cells are hypochromic. ACD treated with rHuEpa: impaired tron supply and 
increased iron demand combine to decrèase transferrin saturation and cause functional 
iron deficiency. 
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characterised by cell haemoglobin concentration below 28 g/ dl, increases over 
the upper limit of 5% when ,erythroblasts ,are deprived of adequate iron supply 
[91]. However, as retiClÙocytes are 20% bigger than lllature red cellsfor the 
same amount of haemoglobin, they arealso hypochromic{92]. Hence" high 
retiCulocytosis should be taken into acco'unt in the interpretation of the per-

, centage of hypoclu:omic ted cells [93]. ,The.ha~moglobin content,of reticulocytes 
(CHr) will also decrèase whert the marrow'does not receive enough' iron to 

, match its requirements [91,94]. As reticulocytes have a much shorter life span 
than red cells, the CHr will change much more rapidly than the percentage of 
hypochrornic red cells or red cell protoporphyrin followîng the recent onset of 
iron-deficient erythropoiesis [95,96]. ' 

Absolute vs functional'iron deficieney 

Absolute iTon deficiertcy 

Absolute iron deficiency is definedby the exhaustion of iron stores in J 
macrophages Md hepatocytes [9710 One can distinguish three successive stages oLi 
iron deficiencyJJ~blè 1). St\l&,~ 1 corresponds~<f~the progressive eXhaustion ofirorl) 
stores but willio'4,t signUicant effect on marroW erythroid function. This situation'l 
is characterised by serum ferritin values decreased ·below.the normal range.' 
Serum ferritin is an excellent marker of storage iron -and a decreased value :is1 
100% specifie for iron deficieney. Stage 2 corresponds to early signs of iron defH., 
cieney in the erythroid marrow. This is' reflected by decreased serumiron and! 

Table 1. Laboratory findings in absolute iron deficiency 
. . .-- ,~._,.. : -. . - -' ._,' 

Stage 1: iron depletion 

• Ferritin <12 ].lg!l 

Stage 2: iron-deficient erythropoiesis 
• Serum iron <60 ].lg/ dl 
• Transferrin saturation <20% 
• Hypochromic RBC >5% 

• CHr <26pg 
• Soluble transferrin receptor >7 mg/l 
• Erythrocyte protoporphyrin >70 ].lg/dl 

Stage 3: iron deficiency anaemia 
• Haemoglobin <12 g/ dl (female) or <13.5 g/ dl (male) 
• Haematocrit <36% (female) or <41% (male) 
• RBC number normal then decreased 
• MCV <80 fi (microcytosis) 
• MCH <28 pg (hypochromia) , 

'i' 

/ 

:-,-" 

;- ; 
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transferrin saturation (demonstrating an imbalance between iron needs and ITon 
supply) and :increased serum transferrin. This translates :into signs of ITon defi­
cieney in erythroid precursors, including increased red ceIl profoporphyrin, sol­
Uble transferr:in receptor, as weIl as decreased CHr and eJ.evated percentage of 
hypochromic red blood cells. Iron deficieney anaemia, èharaeterised by decreased 
haemog16bin and Het with microcytosis (low MGV) and hypochromia (lciw 
MCH),is thus a late sign of advanced ITon deficieney (stage 3). The number of red 
blood eells first rema:ins normal but finally also decreasesas the anaemia worsens. 

Functional iron deficiency 

TJ:ùs standard definition of iron deficieney by decreased serum ferritin levels 
and the classical separation :into these three stages is, however; challenged by 
new data. I:n:deed, ITon-deficient erythropoiesis and anaemia may oecur even. if 
ITon stores are not exhausted or are even elèvated [95,96}': This is called fune" 

.. ponal ITon deficieney, defined as an imbalanee between ITon needs in the bone 
.piarrow and iron supply by macrophages (Table 2 and Figure 3). This eanbe 
\~eounten~d :in two different sJtuatiorts, corresponding to either inereased ITon 
iileeds .or decreased ITon supply. Iron needs are increased when marrow. erye, 

thrbid activity is stimulated, the best example bèing providedby rHuEpo tl).~r~ 
.~py[95,96]. Macrophage iron, originating from normal or even eleyated st()res 
l\l..sweIl as from haemoglob:in ITon recycled wheil senesce~t red blocid eeUs are . 
i Pllil-gocytosed, may not be mobilised with sufficient speed to matchirQn~eeds . 
ildr the production of new red ceIls. Therefore, serum ITOn. and transferrmsatu­
\'l'apon decrease and other signs of ITon-deficient erythropoiesis appear. 
iFtlnctional ITon deficiency also develops when iron release by macrophages is , . 

. Tilb1e 2. Laboratory findings in functional ITon deficiency 

Normal or increased ferritin 
Laboratory signs of ·iron deficient erythropoiesis: 
• Serum iton <60 llgl dl 
• Transferrin saturation <20% 
• . Hypochromic RBC >5% 
• CHr <26pg 
• Soluble transferrin receptor >7 mg/l 

. • Erythrocyte protoporphyrin >70 llgl dl 

Possible signs of functional iron deficiency anaemia: 
• Haèmoglobin <12 g/dl (female) or <Ù5 g/dl (male) 
• Haematocrit <36% (female) or <41% (male) 
• RBC number normal then decreased 
• MCV <80 fi (microcytosis) 
• MCH <28 pg (hypochromia) 
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impaired 11-3,42,43,4;5]. A typicalsituatioI).corresponding .. to;this pattern is 
inflammation, ,·due tQ infection, -cancer' or ,inflanirrLatory' disordéts: iron; is 
sequestered withinmacrophages; resulting inelevated, serum..ferritin, values; , " 
while the erythron lacl<s iron, as indicated byfucreased red.cell-protbporphyrinji \ 
sTfR, as weil as decreased CHr and an elevated percentage of hypochromic.: red . 
blood ceUs. This may then translate into 'anaemia whose characteristics !lIe iden~ 
tical to those of true iroIi. deficiency; but for serumferritin, which remain$ nor-
mal or elevated. 

Iron deficiency during treatment with erythropoietic agents 

Factors influencing response toerythropoietic agents 
., 

A number of factors may interfere with response toerythropoietic agentsirl.,·. 
cancer patients; reflecting differences in disease- and treatrnent-relatedfactorsj . 
but also large variations in dose, frequency and route of administration, dutil\' 
tion oftherapyand the ·response criteria used [10-12]. These ,include red c~11;}; 
lossresulting fromhyper;;plenism; haemolysis, haemorrhage or iatrogenicphl.~,:::~ 
botornies~ Redceil productipn may be diminished by bone marrow"infiltrati6Bl;;~ 
marr6w nectosis,. haemophagocytosis,. myelofibrosis,deficiency' of erythrCipcr,lf~J 
etic cofact()rs{folic acid, vitaiTùn Bn, iron)'OI infections. Boweve:t, thetype_.~f;j\ 
tumo;t.tr and moderate marrow involvement havegenerally not jnfiuencedcffi.~fl 

, response rate. Patients who have been heavily pregeated withchemothe:r~I%~ 
usuqlly experienéesevere stemceil damage that should considerablyinterfetê"i0 
withresponse toerythropoietic agents. For patients treated concornitantly wiJl{~0 
chem.otherapy,there:is no marked difference between those receiving platinUIIl\i'~ 
based regimens and: those receiving .other forros of chemotherapy.· Patierù:~~\ •• 
receiving chemotherapy of mo'derateintensity respond as weil as thosenot,d 
receiving concomitant chemotherapy, but the more intensive chemothetapy reg-' 
imens are associated with lower response rates. Finally, complications 6f 
chemotherapy, such as inflammation, infections, nutrition~ def;iciencies 01:' . 

bleeding, maY have a negative impact upon response. Ail these factors are 
reviewed in other chapters. 

Functional iron deficiency 

Functional iron deficiency is a major factor limiting the efficacy of erythropoi- . 
. etic agents (Table 2). It is defined as aniron deficit in the functioIi.al erythroid . 
compartnlent, the result of an' imbalancé between iron needs in thé erythroid . 
marrow and iron supply (Figure 3).' This may occur· even in the presence of 
large iron stores when storage iron release is inadequate. Iron reqillrements are : 
deterroined by the overill level of erythropoietic activity and iTon availability 
depends on the level of iron stores and their rate ofmobilisati6it. Functional 
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, iron deficiency can occur before erythropoietin therapy is started; eHher 
because iron stores are absent (true iron deficiency) or because storage iron 
release is impaired, a typical feature of the anaemia of chronic disorders [331. It 
can also develop in the course of èrythropoietin therapy when iron stores 
become progressively exhausted or more frequently when the increased iron 
needs of' an expanding erythroid marrow cannot be matched by sufficient 
mobilisation of often enIarged iron stores. Iron-deficient erythropoiesis has been 
clearly identified in iron-replete subjects during red blood ceil expansion by 
rHuEpo [95,96]. Indeed, the vast majority of renal failurepatients treated with 
rHuEpo develop functional iron deficiency that seriously limits their erythro­
poietic response [98].Similar observations have been made in patients receiving 
rHuEpo to facilitate an aggressive programme of autologous blood donation 
[99]. Although fuis has not been specifically exarnined in cancer patients treated 
with erythropoietic agents, there is every reason to believe that its prevalence is 
als6 very highin tl;ùs setting. 

A predictive algorithm of response to rHuEpo has first been proposed in the 
sE;ltting of anaemia associated with renal failure [100]. The best prediction by 

" >Ra,ijeline parameters only was obtamed with pretreatment soluble transferrin 
,f~.c::E;lptor (sTfR) and fibrinogep. There was 100% response rate whenboth sTfR 
f@9 fibrinogenwere low, vs only29% when theywere both high, and 67% 
,';wl}e:tl. cine was low ànd the other high. Changes of sTfR after 2 weeks of treat.,. 
iB:lxnt werè also predictive. When the 2-week sTfR increment was :2:20%, the 
"~~sponse rate was 96%. When sTfR increment was <20 %, the response rate WqS 

'T9Q% when baseline sTfR was low and fibrinogen normal, 12% yvhen baseline 
fiqfinogen was elevated and 62% when baseline fibrinogen was normal' but 

,kiiseline sTfR high., These prognostic factors illustrate the importance of the 
early erythropoietic resp6nse (changes of sTfR levels), subclinical inflammation 
(fibrinogen) and functional iron deficiency (baseline sTfR). 

, F:unctional iron deficiency is bestdiagnosed by a percentage of reticulocytes 
• 'with a haemoglobin content lower than 23 pg [91,95] or a percentage of 
, hypochromic red cells greater than 10% [101], with both parameters calculated 
, by sorne automated haematologic tell counters. Alternatively, it can also be sus­
, pected when transferrin saturation fails below 20%. On the other hand, serum 
, ferritin is of very limited value because it only gives an evaluation of iron stores 

without providing any hint of how these stores can be mobilised [102]. 

Iron supplementation 

There is sorne concern that turnour cells may need iron for optimal growth [60], 
therefore routine iron supplementation ofall cancer patients receiving erythro­
poietic agents is not recommended. The same istrue for oral as well as intra­
venous iron supplementation. However, this should be balanced with the fact 
that transfusion of one red blood cell unit also provides a large amount (200 
mg) of iron. Iron supplements should be given when absolute iron deficiency is 
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suspected, i.e., when serum ferritin is below 40-100 p:g/l, a level associated 
with absence of iron stores in the anaemia of chronic disorders. Otherwise, iron 
supplements should be given when the transferrin saturation is below 20%, or 
the percentage of hypochromic red cells greater than 10%, and may be discon­
tinued when the patient stabilises within the normal range. 

The experience in iron-replete dialysis patients [103-106) has clearly indi .. 
cated that oral iron supplementation is only marginally superior to no ironI14) 
but that intravenous iron both substantially improves responsè when erythroe 
poietin therapy is instituted (14) and allôws considerable (of the order of 40%f 
reduction in rRuEpo dose requirements during the maintenance phase~ 
[15,16,107-109). Iron sucrase and iron gluconate arè as effective for fuis purpos~ 
[110). In predialysis patients the i.v. route of iron supplementation has als~ 
proved superior to the oral route [111). Sufficient doses should be given becaus~~ 
low doses of i.v. iron have not been as effective in such patients [112). Sever~i 
guidelines have been published to provide treabnent schedules with i.v. ironirJ1 . 
these patients.[113--115]. An initial weekly loading dose of 100-300 mg i.v. iron," 
is recommended during the correction phase of the anaemia, whlle much lowe~ 
doses are necessary during the maintenance phase. The target serum ferritii{ 
level is in the range of 200-500 p:g/l, that of hypochromic red cells below 2.59~ 

. .. . ~ 

and that of transferrin saturation 25-40%. To avoid toxicity from iron excess, LYi" '" 
iron should be withheld when transferrin saturation is above 50% andl dr11 

serum ferritin greater than 1000 p:g/l. Oral iron should only be given to pati~t~ . 
in whom i.v. supplements are not feasible or whQdo not tolerate them. On ~~ ',', ' 
other hand, low-dose intravenous iron has not been shown to be superior \t~::; 
energetic oral iron supplementation in patients pursuing a programme of auto11 
ogous blood donation [116). However, i.v. iron was superior to o~al iron ~ 
patients undergoing preoperative stimulation of erythropoiesis without bloo41 . 
collection [117), but fuis was nO longer the case when lower doses of i.v. iro~ '.,' .. 
were u~ed [118). .. . . .' .;~ 

Provlded that the gmdelines are respected, the safety of systematic 1.v. rro!! 
supplementation has been demonstrated in renal failure patients undefgoin:~ 
treabnent with erythropoietic agents [106,119-122). There are three major form§ , 
of intravenousiron on the market (iron dextran, iron gluconate and iron sucros~ 
or saccharate) whose availability varies from country to country. Ali consist 01 ' 
complexes of ferric iron surrounded' by molecules ensuring its stability ïrl 
plasma. Mer i.v, injection, all three compounds are primarily taken up by ce~ 
of the reticuloendothelial system (Figure 4). There iron is liberated from th~ 
complex and released to plasma transferrin that can then transport it to the ery~ 
throid marrow. If too much iron is released too fast, plasma transferrin will 
become rapidly oversaturated and NT_BI Will appear with all.its potential toxii 
cities. HO\\Tever, the three compounds are processed by the macrophages at very: 
different speeds. Iron is very slowly released over a period of weeks from iron 
dextran complexes, allowing injection of very large doses of iron in a singl~ 
infusion ("total dose infusion"). Iron is much more rapidly liberated from iron 
sucrose andiron gluconate complexes, so that their maximum tolerated dose~ 
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rHuEpo + Lv. Iron 

LV.Iron •• 

Fig;,,,,.Cdrre~6~Ûfundionàl iron deficiency:py intr~~enou:s iron~ The.pÜùn airo*~ '/ 
J:tWi;e~,~tt~.çiÇJWg18ff~~ plood cell.,iron,·ru, descri1?ed. in the tl:ilid. p,anel otFigl,ITe3 0,' .' ' •• 

. :'~bpQi~~tM~4Êy'!jI;l.yvhiCh the exp~ioIlof ery:thrqid n,V\1T9~bY~qI?9.~eWï •.. 
càüS'és.ftfu'êtiâtiai1ion: aefiêiëri ' .. 'Thùddiû.oiiiù ii:üi1. rbv'idéd h' iiiti:àvifubus iron ", >-,.,c.,.""·",,., ., •••. ",e".<".>".:-•• , .. ey . '" ':-,"'" p, . " Y'" " " .' " .•. ' 
Pt8.(i1\~(d.~tt~9-;~~Y~'~!,?Jifst ;taken up bY, rp.àcrôphages that pl:ocessi\: to réleà.se iron ' 
.fiôttiJg~;if~!fglY;c~t9n.lP!~)(i Iron is thenavaihi.blefor releaseby macrôphagesto' ,' .. ' 
Pl,~~l~mç()ippin~tionwith theiron retycled from phagocytosed red cells,.·· 

~I,~~~t=r~~~~"l;lk~=(.m ..... 
~".,":" . 

", _.j.,z~:%_~~~{~i~6~~::~t~:f.!:, :~~/. - " .. ,S .:;:':.:;;, __ : _ ,- '.~ . : .' . '-. ._~. ". . 
'. ~~Wt~;l;9'âpprci~W~1y:400 mg and 100 mg iron, respectively. Onthè {)thet 
h~\}/~.§n1.~ê;k.f;t:~,l:i~~q,'i:î,eriass(jciated with rare but potentially fatal ,anàphy~ 

'~~~Jlïil~~1~,~:fiI'1~dr;=!=!:e[~~k~~~:7u~~:~el1i~j 
~hl<~~~~~gt141~-\Rf~f~rred ,intravenous compounds[113]. -Iron sUCrose has,the 
a<\v.aritag~i(:#~()~g1ûgher Iron doses tobe given at once, becauseironglu~ 
conatèàt:coPlparable'::di;>ses would be associated with greater toxicity due to 
freèiron reîë~§i;.? '.. . . 

. Iron usagehàs 'hotbeen energetically pursued ln clinical trials of erythropoi­
etic agents in cancer patients and was generally left tothe discretion of the indi" 
vidual investigator [13l.This was based on the false perception thatcancet 
patients do not really need iron together with erythropoietin because their iron 
storeS (ferritih) arenot, deqeased. In addition, ironhas usûally been given 
ora:lly, ,a m.ethod pr0VÎllg tQ be of little efficacy in tenal fallure patients and pre­
s,~ably êyep. less effeS;ti:1ê jJ:l' Cancer patientS' becimse -of impàired iron absorp~ 
non, another characteristic .6fthe anaemia of chronic disorders [1,44]. The safety 
and efficacy of, Ïntravenous iron to. correct functional iron deficiency and 
irnprove anaemia has'been weil documènted, in rheumatoid arthritis during 
tHuEpo theh'PYl125] or afte'r fallure of oral'iron'in juvenilé chronic arthritis, 
élI10ther fqrrp. of anaemia of cJtronic disordet[126]. A part from _ anec;dotal reports 
QIi the effi~aèyof Lv. iron in patients failing to respond to erythropoietic agents, 
iron supplementation has not been formally studied in the anaemia of . cancer. 
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Based on the experience irl_!:~~a! failurepatients, intravenous aclnûnistratiol} of' 
100-30Q mg elemental iron every week or every other week ditring the correc­
tion phase of anaemia will ensure the best utilisation of any given 'dose of 
rHuEpo. Ongoirlg clirlical'trials are irlvestigatiilgthe safety !llld efficacy of irltra- .. 
venoUs iron in cancer patients treated with erythropoietic agents to demonstrate' 
greater efficacy and/ or ~ower erythropoiétln requirements. . 

II!- practice .. ~ - . 

Ro~tineir6n supplem~~t~~~n' of all canè~r·· patieiùs'r~èeiving e~opoietic' 
agents is not recominended. In addition, no guidelines have been developed-llf 

'specifically for CanCer patients and an recommendations can only be based orl~ 
the experiEmce,irl renal failure patients. The~indications foriron suppleinenta,',J 
tion irlclude absolute iron deficiency (s~ fèrritin below 4(),-olOO pg!i rn: can~" 
cer patients)i).Ild functional irondeficiency. The lattér cari. be diagnosedby;; 
either a transferrirl s.aturation below 20%, a percentage,of hypochrqmic red <:ells.' 
above 10% or aCHrbelow 23 pg, even in the presence of adequate storage iroh 
(normal or in,creasedferritin).' J"~ 

Intra:vehotis' administration of 10(}..300 mg elemental iron everyweek. '~# . 
every other week durirlg the con:ection ph.ase of artaein:ia will ehS1ITe thé liesf 
utilisation of erythropoietic agents. Iron should be continued until transferrin 
satUration stabilises bt;tween 25 and 40% and the percentage of hypochromic 
red cells is below2.5%.To,avoid toxicity from iron excessiLv.iron<should.be 
withheld. when, transferrinsaturation ·is above 50% and/ or . serum ferritirl 
greater thail1000 llg/l. ," ,,,; 

A safe, easyand often adequate schedule is 200 mg pfironsucrose (in 200inl 
. saline over, 1 hour) per weèk for a total of three c\oses or two doses of 300 mg (in 

250 inl salineover.90 minutes) given 2 weeksapart. Concomitant administration 
with chemotherapy shouldbe avoided because transiènUy elevated transfe:t':Qn 
satUration may enhance the toxicity of sorne chemotherapeutic agents. 
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