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The Thymic Insulin-like Growth Factor Axis:

V. Geenen

Involvement in Physiology and Disease

Abstract

A repertoire of neuroendocrine-related genes is transcribed in
the non-lymphoid compartment of the thymus, transposing the
dual physiological role of this organ at the molecular level in T-
cell development towards the establishment of central T-cell
self-tolerance. The “neuroendocrine self” has been defined as a
series of antigen sequences processed from precursors predomi-
nantly expressed in the thymus and first encountered by differ-
entiating T-lymphocytes in their early life. All the members of
the insulin gene family are expressed in the thymus according
to a precise hierarchy and cellular topography, whereby IGF-II
(epithelium of the subcapsular cortex and medulla) exceeds
IGF-I (macrophages), which in turn far exceeds INS (rare subsets
of medullary epithelial cells). This hierarchy in the degree of

their respective thymic expression explains why IGF-II is more
tolerated than IGF-I, and much more so than insulin. Evidence
has been found for significant regulatory/tolerogenic properties
in the IGF-II B:11 - 25 sequence after analysis of the cytokine se-
cretion profile in peripheral blood mononuclear cells isolated
from ten DQ8+ type 1 diabetic adolescents. In the thymus, IGF li-
gands and receptors also intervene in the control of T-cell prolif-
eration and differentiation. Here, we also discuss how a disturb-
ance in the intrathymic IGF-mediated signaling could contribute
to the pathogenesis of T-cell leukemia.
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Physiology of the Thymus: a Broad Overview

Together with diversity and memory, self-tolerance is a funda-
mental property of immune response. The thymus is a unique
lymphoid structure specialized in both generation of T-cell re-
ceptor (TCR) diversity to antigens and establishment of central
self-tolerance. The latter results from the clonal deletion of self-
reactive T-cells emerging during random intrathymic recombi-
nation of variable TCR segment genes [1], as well as the genera-
tion of self-antigen-specific regulatory T-cells (Tg) [2,3]. Even
though some degree of tolerance induction occurs in primary he-
matopoietic sites (fetal liver and bone marrow), antigen-depen-
dent B cell tolerance is primarily due to absence of thymus-de-
rived T-cell help [4].

The dual physiological role of the thymus in T-cell development
(thymopoiesis) and self-tolerance induction is ensured by the
cellular components of the thymic stroma (Fig.1). Thymic epi-
thelial cells (TECs) represent around 80% of the thymic stroma
and are distributed in three regions — subcapsular (or outer) cor-
tex, inner cortex, and medulla. During embryonic development,
TECs derive from epithelial stem cells identified in the primitive
endoderm [5,6]. In the outer cortex, thymic “nurse cells” (TNCs)
are large TECs that engulf up to 50 thymocytes (immature T-
cells) inside leaflets in the TNC plasma membrane. TNCs contain
the subcellular equipment and enzymatic machinery necessary
for antigen processing and presentation [7]. Issued from bone
marrow, thymic dendritic cells (DCs) are located at the cortico-
medullary junction, while macrophages are distributed through-
out the thymic stroma without any precise topography. From
primitive hematopoietic sites, T-cell progenitors migrate into
the thymus, proliferate into the outer cortex, and pursue their
differentiation program from cortex to medulla on contact with
thymic stromal cells. Presentation of self-antigens to randomly
rearranged TCR constitutes one major component of the multiple
signaling pathways between thymic stromal cells and pre-T-
cells. This process is responsible for the deletion of self-reactive
HWT-cell T-cellsM, and is very powerful since only 1-2% of pre-T-

- Cortical TEC
O

cells will leave the thymus in a state of competence against non-
self and tolerance to self.

To explain this dual role of the thymus, the first model attributed
different properties to TECs/TNCs, DCs and macrophages. Since
DCs and macrophages are dedicated antigen-presenting cells,
they were attributed negative selection of self-reactive T-cell,
whereas TECs/TNCs would be in charge of T-cell proliferation
and differentiation. This model was abandoned when the ability
of TECs, in particular medullary TECs, to present self-antigens
and to induce T-cell negative selection was demonstrated [8]. Ac-
cording to the more recent “affinity-avidity model” [9], clonal
deletion is the fate of T-cells bearing a TCR with high affinity for
self-antigens presented at high density by thymic major histo-
compatibility complex (MHC) molecules. T-cells with a low-af-
finity TCR or confronted with self-antigens at too low density
will die of “neglect”, while those with intermediate affinity/avid-
ity will be selected for further development. It is, however, im-
portant to note that the affinity of a given TCR for its specific an-
tigen is rather low (Kp around 10-7 M), so the biological meaning
of lower affinities may be questioned.

A significant advance in our understanding of thymic physiology
was gained with the demonstration that a repertoire of neuroen-
docrine-related as well as peripheral antigen-encoding genes are
transcribed thymic stromal cells [10-15]. Based on the intrathy-
mic transcription of neurohypophysial and tachykinin genes, our
group proposed another model to explain at the molecular level
the paradox of thymus physiology. Oxytocin (OT) and neurokinin
A (NKA) are expressed in TECs/TNCs as the dominant members of
the neurohypophysial and tachykinin families, respectively
[16,17]. Thymic OT and NKA precursors engage two distinct
types of interactions with developing T-cells. On the one hand,
these precursors are the source of ligands that bind with high af-
finity to neuroendocrine receptors expressed by pre-T-cells. In
this type of cryptocrine signaling [18,19], those ligands are not
secreted but targeted to the outer surface of thymic stromal cell
plasma membrane. On the other hand, the same precursors un-

Fig.1 T-cell differentiation in the thymus
microenvironment. From primitive hemato-
poietic sites (fetal liver, then bone marrow),
possibly under the influence of still undefined
chemokines, T-cell progenitors enter the thy-
mus at the corticomedullary junction and
proliferate in the subcapsular cortex. From
outer cortex to medulla, T-cell differentiation
is promoted through different signaling

Thymic Nurse Cell
(TNC)

"
[E Subcapsular T blasts
g Small cort
“ T cells Macrophage
T progenitors E )
(from liver & Macrophage

bone marrow)

<
-
5‘ Medulkdry TEC
g
Dendritic cell
6
MHC
Self-Ag @
II TCR

Geenen V. Thymic IGF axis in autoimmunity and lymphoid leukemia -

“\
@Mulhry T cells

Migration of self-tolerant and
competent T cells (1-2%)

pathways activated from their contact with
thymic stromal cells (TNCs, cortical and med-
ullary TEC, dendritic cells and macrophages).
Engagement of TCR signaling driven by pre-
sentation of self-antigens (Ag) by thymic
MHC molecules plays a pivotal role in T-cell
negative and positive selection. At the end
of their intrathymic journey, only 1-2% of
immature T-cells leave the organ in a state
of self-tolerance and self MHGrestricted
competence. Reprinted and adapted from ref-
erence 22, Copyright 2003, with permission
from Elsevier.
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Fig.2  The dual role of thymic neuroendocrine precursors in T-cell differentiation. Precursors
encoded by neuroendocrine-related genes in thymic stromal cells (TEC, DC and macrophages
[M4>]) are the source of two types of interactions with thymocytes (pre-T-cells). B 1) They deliv-
er ligands that are not secreted but targeted to the outer surface of thymic stromal cell plasma
membrane. These ligands bind with high affinity to neuroendocrine-type receptors expressed by
thymocytes. This cryptocrine signaling in the “immunological synapse” between thymic stromal
cells and pre-T lymphocytes can activate various intracellular pathways (such as phosphoinosi-
tide turnover, phosphorylation of focal adhesion-related kinases...). B 2) Through MHC path-
ways, the antigenic processing of thymic neuroendocrine precursors leads to the presentation
of self-antigens by thymic MHC proteins. Deletion of T-cell clones bearing a rearranged TCR
specific for MHC/neuroendocrine self-antigen complexes has been proposed to be responsible
for the establishment of central immunological self-tolerance of neuroendocrine families. Reprin-

ted and adapted from reference 22, Copyright 2003, with permission from Elsevier.

dergo another type of processing and deliver self-antigens that
are presented by the thymic MHC machinery [20,21]. A negative
signal could result from this low-affinity, but specific binding of
the complex MHC/self-antigen to its cognate TCR. According to
this model, presentation of neuroendocrine self in the thymus
network is responsible for the establishment of the central T-
cell self-tolerance of neuroendocrine principles (Fig. 2) [22].

The Thymic Insulin-like Growth Factor Axis

During further experimentation with this working model, we
used in-depth immunohistochemistry (IHC) some time ago
with the objective of identifying the dominant member of the in-
sulin family expressed in the thymic environment. Using a bat-
tery of specific polyclonal and monoclonal antibodies, a strong
immunoreactivity for insulin-like growth factor (IGF) Il was de-
tected in the epithelial compartment of human and rat thymus
glands [23]. Although the protein was detected in cell bodies in
primary human TEC cultures, no IGF-II could be detected in the
incubation media. In addition, evidence was found for immuno-
reactive (IR) IGF-II at the outer surface of cultured human TEC
plasma membrane using confocal microscopy (Achour et al.,
PhD Thesis, University of Liege, Faculty of Science). IR IGF-I was
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also identified in thymic stromal cells with a thymic macro-
phage-like morphology and topography. With two monoclonal
antibodies directed against distinct epitopes of insulin, we did
not find any significant immunoreactivity in human thymic lob-
ules. Nevertheless, when reanalyzing our data in the light of re-
cent reports (see MbelowHl), some faint insulin immunoreactiv-
ity could be considered in some subsets of medullary TEC. From
those studies, we concluded that IGF-II is by far the dominant in-
sulin-related protein first encountered by immature T-cells dur-
ing their differentiation process in the thymus [23].

Van Buul-Offers et al. [24] generated transgenic mice carrying
one of three human IGF-II minigenes containing different non-
coding exons preceding the coding exons 7, 8 and 9, spaced by
truncated introns. Those constructs were placed under transcrip-
tional control of the MHC H-2K" promoter-enhancer and con-
tained the SV40 small-t intron and early polyadenylation signal.
Overexpression of IGF-II did not affect overall body growth in
these transgenic normal and dwarf mice, but provoked a marked
thymic hyperplasia suggesting a role for IGF-II in thymic devel-
opment by paracrine/autocrine action. By in situ hybridization,
transcripts of the IGF-II transgene were found at high density in
the thymic non-lymphoid medulla and in scattered positive cells
in the thymic cortex. Intense IR IGF-II staining was observed by
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IHC with the same distribution of IGF-Il mRNA [25]. Moreover,
IGF-II overexpression in these transgenic mice increases thymic
cellularity and stimulates the production of normal mature T-
cells with a slight polarization towards the CD4+ phenotype [26].

Components of the IGF axis have been further investigated in the
normal human thymus. Promoters P3 and P4 are active in the
control of IGF-II transcription by human TECs. Transcripts of
type I and II IGF receptor genes were detected in human lym-
phoid Jurkat T-cells but not in cultured human TECs. Using
Northern blot analysis, genes encoding IGF-binding proteins
(IGFBP)-2 to 6 (but not IGFBP-1) were found to be expressed in
TECs with a dominance of IGFBP-4. Lymphoid Jurkat T-cells only
express IGFBP-2, but at quite high levels [27].

The functional relevance of the thymic insulin-like growth factor
axis has been investigated using murine fetal thymic organ cul-
tures (FTOCs). Neither growth hormone nor IGF-I influenced thy-
mopoiesis in this experimental model [26]. In murine fetal thy-
mic lobes, IGF-II and IGF-I transcripts were detected in TECs and
macrophages, respectively [28]. Treatment of FTOCs with an
anti-IGF-I antibody did not affect thymopoiesis. However, T-cell
differentiation at early stages (CD4 - 8-, double negative) was se-
verely inhibited when FTOCs were treated with antibodies
against IGF-II, IGF type I receptor, and even IGF type II receptor
[29]. In addition, no significant effect on thymopoiesis or T-cell
differentiation was observed after TOC treatment with a specific
antibody directed against (pro)insulin. These findings and the
thymopoietic effects of IGF-II overexpression in a transgenic
model strongly suggest that IGF-II, rather than IGF-I or insulin,
is an important tissue factor for thymopoiesis.

Central Self-tolerance of the Insulin Family

While there is ample evidence that the thymic IGF axis is impli-
cated in regulation of T-cell development, the important ques-
tion arises as to its involvement in the establishment of central
T-cell self-tolerance. The members of the insulin gene family are
all transcribed in the thymic stromal cells with a precise topogra-
phy. As discussed above, IGF-II is transcribed by TECs in the
whole cortex and in medulla, while IGF-I is expressed by thymic
macrophages. INS is transcribed by some subsets of medullary
TECs [30], and these cells are now identified as a unique cell
type that can express “promiscuously” and randomly a large
number of tissue-specific genes with the potential of inducing
central self-tolerance in peripheral tissue antigens [15]. Thus,
immune self-tolerance of a family that is crucial for vital aspects
such as fetal development, postnatal growth, and glucose metab-
olism is established at the central level through the intrathymic
expression of INS, IGF-I and IGF-II.

Experimental evidence also exists that the degree of tolerance to
a given protein is closely correlated with its intrathymic concen-
tration [31,32]. From several studies, a hierarchy appears in the
expression pattern of insulin-related genes/proteins. IGF-II, IGF-
I, and proinsulin concentrations are 96.7 £ 10.6,42.9+5.0and 1-
10 ng/g wet weight, respectively in the human thymus [33,34].
In parallel with this hierarchy, immune tolerance to IGF-II is
higher than it is to IGF-I, and much higher than to insulin. This
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is indirectly reflected by the frequency and titer of antibodies ob-
tained after active immunization with the three peptides [35].
Using the same line of reasoning, the high occurrence of anti-in-
sulin autoantibodies in the normal population [36] could be
linked to the low level of INS expression within the human thy-
mus. The IGF-II protein contains peptide sequences that have
been highly conserved throughout evolution of the insulin fam-
ily. Because of this close homology, thymic IGF-II would be a
good candidate for inducing central immune self-tolerance of
the whole insulin family although the tolerance to insulin per se
would be weaker. This again might explain why B and T-cell au-
toreactivity to insulin has been equally observed in diabetic and
related non-diabetic individuals [36].

In order to gain further insight into the immune tolerance medi-
ated by IGF-II, we have immunized wild type and IGF-II"/- mice
(heterozygote couples kindly provided by A. Efstratiadis and C.
Graham) with the whole IGF-II protein. All mice developed a pri-
mary humoral response (immunoglobulin [Ig] M directed to IGF-
I1) but, as expected, only IGF-II- mice developed IgG to IGF-II (at
high titer). This result indicates the presence of IGF-II specific
CD4+ T-cells since help provided by these latter is a prerequisite
for the Ig isotypic switch. Preliminary attempts to clone those
“forbidden” IGF-II specific T-cells have, however, failed, and en-
dogenous IGF-II invalidation seems to interfere with T-cell prolif-
eration even in presence of the IGF-II protein in fetal calf serum-
supplemented culture medium (Hansenne et al., manuscript in
preparation).

Intrathymic Development of the Diabetogenic Autoimmune
Response

Until recently, the question of a defect in the thymic establish-
ment of self-tolerance has not been intensively investigated as a
factor involved in the development of the diabetogenic autoim-
mune response specifically directed against insulin-secreting is-
let B-cells. However, data from several studies add to the confir-
mation of this hypothesis. As early as in 1982, neonatal thymec-
tomy had been shown to prevent the emergence of diabetes in an
animal model of type 1 diabetes (T1D), the Bio-Breeding (BB) rat
[37]. The therapeutic benefit of thymectomy might actually re-
sult from the removal of a defective thymic censorship responsi-
ble for continuous release and enrichment of the peripheral T-
cell pool with self-reactive T-cell clones. In contrast, the occur-
rence of diabetes is prevented by the transplantation of thymus
from diabetes-resistant (BBDR) to diabetes-prone (BBDP) BB rats
[38]. Thymus transplantation from NOD mice to diabetes-resis-
tant mouse strains was also shown to induce autoimmune dia-
betes in the recipients [39]. Bone marrow transplantation was
ineffective in preventing autoimmune phenomena in MRL/*
mice, whereas thymus transplantation proved to work [40].
Grafts of pure thymic epithelium from NOD mouse embryos to
newborn C57BL/6 athymic mice induced CD4 and CD8 T-cell-
mediated insulitis and sialitis [41]. At the histological level, a de-
fect in thymus tolerogenic function could result from disorgani-
zation in the tissue environment such as the presence of giant
perivascular spaces as observed in NOD mouse thymus [42]. Epi-
thelial defects have also been characterized in the thymus of BB
rats [43].
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The development of the diabetogenic autoimmune process may
result from a defect in the establishment of thymic central self-
tolerance through abnormalities of transcription or processing
of B-cell-specific autoantigen-encoding genes. IGF-II transcripts
could not be found in the thymus of more than 80% BBDP rats
in close agreement with the incidence of diabetes in this BB rat
strain (86%) [44]. This gene defect was specific of the thymus
since IGF-II mRNA was shown in the brain and liver of BBDR
rats. Two independent groups have shown that the levels of INS
transcripts were low in the thymus from deceased fetuses with
genetic susceptibility to T1D (presence of VNTR class I alleles),
while they were higher in thymus from fetuses bearing protec-
tive alleles (VNTR class III alleles) [33,34]. Another study has
also reported low expression of insulin within the thymus of
NOD mice [45], while mice with thymus-restricted insulin defect
developed a strong proinsulin-specific T-cell reactivity [46]. Also,
an acceleration of autoimmune diabetes is observed in NOD mice
with drastically reduced Ins2 expression [47]. Thus, thymic insu-
lin also contributes to central self-tolerance despite its low ex-
pression in the thymus. It still remains to be determined whether
this contribution could be mediated through the generation of
insulin-specific Tr cells. With regard to other B-cell autoantigens,
it is interesting to note that GAD67 is the dominant GAD isoform
expressed in the thymus whereas GADG65 is the autoantigen im-
plicated in the peripheral diabetogenic autoimmunity against -
cells [48]. An alternative splicing of IA2 occurs in the thymus,
which leads to the intrathymic presentation of IA-2 antigens dif-
ferent from those involved in the peripheral autoimmune reac-
tion directed to islet B-cells [49]. The AIRE (Autolmmune Regula-
tor) protein is a transcription factor involved in the control of in-
trathymic expression of “promiscuous” genes encoding peripher-
al autoantigens [50 - 52]. Several mutations of the AIRE gene are
responsible for the development of autoimmune polyglandular
syndrome type 1 (APS-1) or APECED syndrome (Autoimmune
PolyEndocrinopathy, Candidiasis and Ectodermal Dystrophy).
AIRE expression is maximal in the thymus [53,54], and thymus
transplantation from Aire”- mice to normal mice is followed by
the appearance of several autoimmune lesions in grafted mice
[55]. The profile of gene expression was studied by microarrays
in the thymus of Aire’- mice and thymic levels of transcripts
from several genes (including IGF-II, Ins2, Ot and neuropeptide
Y) were severely decreased in these thymus samples compared
to normal ones [55]. AIRE was further confirmed to control neg-
ative selection of pancreatic-specific T-cells [56].

Towards a Thymus-based Tolerogenic Approach for
T1D Prevention and Cure

Thus, in parallel with a physiological role of this organ in the es-
tablishment of central immune self-tolerance, a thymus defec-
tive for this censorship of self-reactivity increasingly appears to
exert a crucial influence in the development of organ-specific au-
toimmunity. As early as in 1973, Sir Frank Macfarlane Burnet hy-
pothesized and provided some preliminary data supporting this
novel concept according which the origin of autoimmunity re-
sides in a defect in self-tolerance setting (programming) during
the process of T-cell differentiation within the thymus environ-
ment [57]. Consequently, an efficient and secure prevention
and/or cure of devastating autoimmune diseases such as T1D
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could be based upon knowledge of the powerful tolerizing
mechanisms in the thymus. This strategy may first rely on the
dominant IGF-II derived thymic self-antigen(s) of the insulin
family. As previously stated, insulin is poorly expressed in the
thymus, and this fact may explain why insulin - or insulin-de-
rived epitopes - appears so immunogenic in some experimental
models [58,59]. Likewise, insulin administered either orally or
subcutaneously does not exert any significant tolerogenic effect
that could protect residual B-cell mass from the destructive auto-
immune process [60-62]. On the basis of the hierarchy in the in-
trathymic expression of insulin-related genes, we have explored
the hypothesis that IGF-II would be a more appropriate choice
for designing an antigen-driven tolerogenic approach in T1D pre-
vention. Preliminary analyses revealed that the major autoanti-
genic epitope of insulin (sequence B: 9-23) and the homologous
sequence of IGF-II (B: 11 -25) share the same affinity and equally
compete for binding to the MHC class II allele DQ8 conferring
major susceptibility to TID (Wiicherpfennig, personal communi-
cation). In a preclinical study, we investigated the cytokine pro-
file elicited by the DQ8 presentation of these sequences to
PBMCs isolated from ten T1D DQ8+ adolescents. In accordance
with a previous study [63], insulin B: 9-23 elicited a predomi-
nant immunogenic profile (high IFN-y and IL-4, low IL-10),
whereas IGF-II B: 11 - 25 treatment was associated with a regula-
tory/tolerogenic profile (high IL-10 and IL-1 (VIFN-y ratio) ([64];
Geenen et al., manuscript in preparation). From these data, it ap-
pears that IGF-II B: 11-25 may regulate T-cell activity either by
acting at the same CD4 TCR as a natural “altered peptide ligand”
of insulin B: 9-23, or by stimulating CD4+ Ty previously selected
in the thymus. These preliminary results support the idea that
IGF-II derived self-antigen(s) might constitute the base for a the-
oretical anti-T1D efficient tolerogenic (or “negative”) vaccine
[65]. It may be expected that a complete tolerogenic vaccination
procedure could include self-antigen sequences derived from
GADG67 and protein derived from alternatively spliced IA-2 that
are dominantly expressed in the thymus for presentation to pre-
T-cells.

Involvement of the Thymus in the Pathogenesis of Lymphoid
Leukemia

Besides induction of central immune self-tolerance, the other
physiological property of the thymus - T-cell generation or thy-
mopoiesis - should not be neglected. Contrary to common belief,
thymopoiesis is maintained until late in life [66], and the persist-
ence of a functional thymus plays an important role in immune
recovery following chemotherapy and highly active antiretrovi-
ral therapy [67 - 69]. In 1944, Jacob Furth and colleagues showed
that thymectomy prevents the development of lymphoid leuke-
mia in mice of the AKR strain [70]. Still more recently, this report
was selected by Donald Metcalf as one of the outstanding papers
in biology [71]. The crucial role exerted by the thymus in the de-
velopment of lymphoid leukemia in AKR mice was confirmed in
other experimental model, as shown in particular in the studies
performed by Henry Kaplan and colleagues. Thymic function
evaluated by quantification of recent thymic emigrants is severe-
ly compromised in childhood T-cell hematopoietic malignancies
[72]. So, if the development of autoimmune disease can now be
considered as resulting from a defect in thymic central negative
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selection of “forbidden” self-reactive clones, the emergence of
lymphoid leukemia may be regarded as the result of abnormal
thymic T-cell development. Amongst specific T-cell differentia-
tion products, pre-TCR mediates survival and proliferation of
late CD4 - 8- (double negative) T-cells [ 73], while mature TCRocP
regulates further development to the CD4+ and CD8+ single pos-
itive T-cells [74]. The essential role of pToc and Notch-mediated
signaling on T-cell tumor genesis and development of T-cellacute
lymphoblastic T-cell leukemia was recently demonstrated in
very elegant studies [75,76]. However, as outlined above, many
other signaling molecules present in the thymic environment
[77], including components of the thymic IGF axis, are implicated
in tight control of T-cell development.

With regard to AKR mouse, several studies have shown that this
mouse strain develops hypoglycemia and thymic hyperplasia in
association with a very high rate of spontaneous lymphoid leu-
kemia. Pansky et al. [78] reported for the first time the existence
of a biologically and IR insulin-like factor in the AKR thymus.
Some difference with native insulin appeared in this paper, how-
ever, since thymic IR insulin was assayed at 150 plU/g in acetone
extracts but could not be detected in acid-alcohol extracts (con-
trary to pancreatic IR insulin). Interestingly, the authors discus-
sed the concordance of their data with other studies of hypogly-
cemia associated with large tumors of epithelial and mesoder-
mal origin [79]. Though Ins2 is expressed in the mouse thymus,
it seems very unlikely that the very low concentration of thymic
insulin (see above) is responsible for this insulin-like immuno-
reactivity and biological activity. Most probably, this factor cor-
responds to IGF-II. The close homology between IGF-II and in-
sulin may explain significant cross-reactivity with the poorly
specific anti-insulin antibodies used at that time. In addition,
the biological effects of IGF-II are mediated by the insulin and
IGF type I receptors. Moreover, the hypoglycemic effects of IGF-
I [80] as well as the significant binding affinity of IGF-II to insu-
lin receptors may explain the biological activity of thymic ex-
tracts on glucose metabolism. Therefore, although this remains
to be demonstrated, given the impact of the IGF axis revealed in
FTOC (see above), the syndrome of hyperglycemia and lymphoid
leukemia in AKR female mice might in fact result from IGF-II
overexpression by a hyperplasic thymic epithelium with subse-
quent secretion of IGF-II in the bloodstream as well as abnormal
thymic T-cell proliferation and generation. Since thymic T-cell
subsets express different types of IGF [81] and neurohypophysial
[82] receptors, it may be expected that such neuroendocrine re-
ceptors can be identified as new cluster differentiation (CD) mar-
kers. It is worth noting that IGF type II receptors have already
been identified as CD222 [83]. Based on the mitogenic and sur-
vival-promoting activities of thymic IGFs, the use of selective
IGF receptor antagonists might well be considered in the future
as a potential adjuvant therapy of T-cell leukemia.
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