

Impact of Unified User-Story-Based Modeling on
Agile Methods: Aspects on Requirements, Design and

Life Cycle Management
by Samedi Heng

A thesis submitted in fulfillment of the requirements for the degree of

Doctor in Economics and Management Sciences
of the Université catholique de Louvain

Examination Committee:
Prof. Manuel Kolp (UCLouvain), Advisor

Prof. Yves Wautelet (KULeuven), Co-Advisor
Prof. Jean Vanderdonckt (UCLouvain), Examiner

Prof. Isabelle Mirbel (Université Nice Sophia Antipolis), Examiner
Prof. Vincent Englebert (UNamur), Reader

Prof. Per Agrell (UCLouvain), President of the jury

February 2017

To my parents,

for your hard work and sacrifices to support our family and, more importantly,
your vision that only better education can improve our standards of living to

increased enjoyment and happiness.

Acknowledgements

As long as I remember, writing a PhD thesis has always been a dream. It
has been a unique experience comparable to no others I have had before. It
took me six years to finally made it to the end. This would not have been
possible without the precious help and encouragements from the people I thank
hereafter.

First, I would like to express my sincere gratitude to my supervisors Profs.
Manuel Kolp and Yves Wautelet. Yves once told me that the path to the
PhD is made of ups and downs; downs can be the periods when most of the
improvements are there to put yourself into question which is, by nature, the
essence of any scientific work. My personal path has also been made of these
with a down peak in 2013. Both of you helping me back on my feet in a hard
but fair manner made of interventions and coaching but also encouragements,
advices, and amusement.

Manuel, many thanks for the opportunities you have offered me: the teaching
and research assistant position at the Louvain School of Management (LSM)
and Louvain Research Institute in Management and Organizations (LouRIM)
which led me to the honor of being one of your PhD students. You have
provided me with the chance, support and liberty to achieve this work. This,
of course, has also impacted my private life because I not only found a PhD
supervisor in you but also a true and sincere friend. I would like also to extend
my acknowledgements to your wife, Ai Vi, for her hospitality and kindness.

I deeply respect and admire Yves! You have provided me continuous and
constructive feedback on my research to ultimately build this thesis. It would
truly not have been possible to achieve and finish this work without your help,
Yves; the contents, approach and writings have tremendously evolved because
of your rigorous guidance. Many thanks for your time, coaching and the many
discussions we have had along the way.

Next, I thank the other members of the jury, Profs. Isabelle Mirbel, Jean
Vanderdonckt, Vincent Englebert and Per Agrell for accepting to participate in
the jury of this thesis and their valuable feedback. Jean in particular, thank
you for your gentleness, encouragement, and simple and clear explanations.

My sincere thanks also go to Prof. Christelle Scharff for allowing me to
participate in the global software development project from 2011 to 2013 from
which I have learnt about user stories, agile methods and the case study used
in this thesis, and Prof. Stephan Poelmans and Velghe Mattijs for the help
building the contributions with respect to the experimentations on user stories
included in this thesis.

A warm regard also goes to Sandrine Delhaye for helping and facilitating
my PhD process.

My gratefulness also goes to my colleagues in Center of Management Infor-
mation Systems (CEMIS) at LouRIM. I especially want to thank Prof. Marco
Saerens, Thanh-Diane Nguyen, Soreangsey Kiv, Sodany Kiv, Sylvie Baudine,
Mathieu Zen, Iyad Khaddam and Jorge Luis Perez Medina for their helpful
discussions regarding teaching, research and also social life.

I am grateful for the help of Thavorac Chun for implementing CASE-Tool
during his research stay at CEMIS in 2014 during 2 months.

My sincere appreciation also goes to Vietnamese, Taiwanese, Pilipino and,
of course, Belgian friends for being friendly and sharing fun with our family.

I am very thankful to Cambodian friends in Belgium and the Netherlands
who have helped our family and have made our life joyful during all these years.
In particular, Samnang Nary, thank you for your assistance and care to our
family.

Last but not least, I would like to thank my family: my parents, parents-
in-law, wife and children, for their support and encouragement, and above all,
their care and love. Thank you, Rachana, for accepting to be part of my PhD
journey. I know you have had a hard time adapting to the live in a country with
a culture and language you were not familiar with but in the end you were able
to adapt and enjoy Belgian life, so far away from where we were born. It took
me longer than I expected, but I made it for you and our family. Therefore,
this PhD thesis is also dedicated to you! Marissa and Matisse, thank you for
your everyday smile. Love you all!

Samedi Heng

vi

Abstract

User stories (US) are the most commonly used requirements artifacts within
agile methods such as XP and Scrum. They are written in the form of text
of maximum two lines in natural language using prose or following a specific
template. Traditionally, they are written down on an index card and posted on
a wall or whiteboard for analyzing and monitoring the progress of the project.
This performs well when the number of US is limited; but not so well when
the number of US is large. In practice, many templates have been proposed
with no semantic associated to each syntax used in the templates. This leads
to series of issues looking alike different stakeholders interpreting the purpose
of the US differently and results in making the whole set difficult to structure
and analyze. In the end, this translates in misinterpretation of requirements.

This thesis starts with studying existing US templates in order to build a
(consistent) unified model for their use with, for each keyword, a syntax and
associated semantic. Particularly, this thesis studies US templates following
the structure: As [WHO], I want [WHAT], so that [WHY]. Additionally, we
also build a derived graphical representation for representing a US set to better
analyze dependencies and alternatives of US. This notably allows building
a view of the system-to-be on multiple aggregation level. A coarse-grained
view can help the development team to better manage the life cycle of the
application development by selecting relevant US to be developed within the
coming iteration(s). Additionally, a fine-grained view allows dealing with the
details of the functions to be developed.

This thesis is organized as follows. Part I introduces the work. Part II
presents the related literature review—i.e., agile software development, require-
ments engineering and requirements engineering in agile methods. Part III
exposes the unified model for US template which is the pillar of the thesis and is
used as a foundation for the other contributions of the thesis. The unified model
was constructed based on empirical data collected from the web and scientific
literature. The adopted concepts are the Role in the WHO dimension; the
Capability, Task, Hard-goal and Soft-goal in the WHAT dimension; and, finally,
the Task, Hard-goal and Soft-goal in the WHY dimension. We also provide a
well-defined semantic associated to each of these syntaxes; most of them come
for the i* framework. Part IV presents the Rationale Tree (RT), a goal-based
graphical representation for representing US sets. It indeed allows analyzing the
dependencies between US set in a US set—this allows us to better understand
the implications in terms of business value offered by their development as well
as to get a multiple level view of the system-to-be. Basically, a RT is built out

of a US set tagged following the proposed unified model. This part also exposes
an empirical study on the ability of understanding the constructs of the unified
model for tagging a US set and ultimately building a RT out of a US set. The
experimentations were conducted with 3 groups: IT Students, Business Students
and Researchers. The results have shown that, when tagging a US, identifying
the right concept—especially for functional elements where granularity plays
an important role—can only be done when evaluating a consistent US set as
a whole and thus not on an individual basis. Part V provides an alternative
approach for graphically representing a US set based on the (industry adopted)
Use-Case model. The latter model is nevertheless intended to only provide a
coarse-grained representation of the system-to-be. Finally, Part VI concludes
the thesis and discusses future work.

viii

Table of contents

List of figures xiii

List of tables xv

I Introduction 1

1 Introduction 3
1.1 Research Context . 3
1.2 Reading Map and Contributions 5
1.3 Limitations . 6

II Literature Review 9

2 Agile Software Development 11
2.1 The Emergence of Agile Methods 11
2.2 Agile Methods . 13

2.2.1 The Manifesto for Agile Software Development 13
2.2.2 Agile Methods in Practice 15

2.3 Overview of the Main Agile Methods 18
2.3.1 eXtreme Programming 18
2.3.2 Scrum . 22

2.4 Conclusion . 25

3 Requirements Engineering: an Overview 27
3.1 Requirements Engineering Basic Notions 27

3.1.1 Requirement: Definition 27
3.1.2 From Requirement to Requirements Engineering 28

3.2 Abstraction Levels for Requirements Representation and
Management . 28
3.2.1 Dimensions in Requirements Engineering 28
3.2.2 Modeling Requirements 29

3.3 Requirements Engineering: Dynamic Perspective 30
3.3.1 Basic Stages and Areas in Requirements Engineering . . 30
3.3.2 Towards a Requirements Engineering Process 33

3.4 Categories of Requirements . 34

Table of contents

3.4.1 Functional Requirements 34
3.4.2 Non-functional Requirements 34
3.4.3 Quality Requirements 35
3.4.4 Features of High-Quality Requirements 35

3.5 Using Natural Language for Requirements 36
3.5.1 Natural Language: Pros and Cons 36
3.5.2 Use of Structured Natural Language 37

3.6 Using a Graphical Model for Representation Requirements . . . 38
3.6.1 Overview . 39
3.6.2 The UML Use-Case Model 40
3.6.3 The i* Framework . 43

3.7 Conclusion . 48

4 Requirements Engineering in Agile Methods 49
4.1 Requirements Engineering Activities in Agile Methods 49
4.2 User Stories: the Requirements Artifacts of Agile Methods . . . 50

4.2.1 User Story Overview . 51
4.2.2 Features of High-Quality User Stories 51
4.2.3 User Story Templates 54
4.2.4 User Story, Epic, and Theme 56
4.2.5 User Story versus others User Requirements Artifacts . 56
4.2.6 Pros and Cons of using User Stories 61

4.3 Visualizing and Modeling Requirements with User Stories . . . 62
4.3.1 User Role Modeling . 63
4.3.2 The Product Backlog 63
4.3.3 User Story Mapping . 65
4.3.4 Models and User Stories 66

4.4 User Story Based Planning in Agile Methods 68
4.4.1 Iterative Planning with User Stories 69
4.4.2 Selecting User Stories for an Iteration 69

4.5 Conclusion . 70

III Towards More Formality in Agile Methods’
Requirements Engineering 73

5 Unifying and Extending User Story Models 75
5.1 Research Context . 75
5.2 Related Work . 76
5.3 Research Method . 77

5.3.1 Building the Dataset . 77
5.3.2 Descriptive_Concepts in User Stories 79
5.3.3 Building the Candidate Model 79
5.3.4 Validation . 80

5.4 Selected Semantic Associated to the D_C Class Instances . . . 80
5.4.1 The WHO Dimension . 81
5.4.2 The WHAT Dimension 82
5.4.3 The WHY Dimension 85

x

Table of contents

5.5 A Unified Model for User Story Templates 86
5.6 Validation . 87
5.7 Threats to Validity . 88
5.8 Conclusion . 88

IV Graphically Representing User Story Elements:
Identifying Granularity, Interdependencies and Scope of
Requirements 91

6 Building a Rationale Tree for Evaluating User Story Sets 93
6.1 Research Context . 94
6.2 Related Work . 94
6.3 Research Method . 96

6.3.1 Macro-level: Ways to Organize User Stories 96
6.3.2 Micro-level: Decomposing a User Story in

Descriptive_Concepts 97
6.4 Graphical Notation for US Dependency Analysis: Micro-Level . 98

6.4.1 The WHO Dimension: Graphical Notation 98
6.4.2 The WHAT and WHY Dimensions: Graphical Notation 99
6.4.3 Linking Descriptive_Concepts of the Unified User Story

Model . 99
6.5 Towards a Rationale Analysis for User Stories Hierarchy and

Grouping: From Micro to Macro Level 100
6.5.1 A Top Level Hard-goal (End), One Mean 101
6.5.2 A Top Level Hard-goal (End), Several Means 103
6.5.3 A Top Level Task, a Direct Decomposition 105

6.6 Impact on the Agile Software Process 106
6.6.1 Impact of Changing Requirements 106
6.6.2 Impact Iterative Planning 106
6.6.3 Generic Iterative Planning Template 107

6.7 A CASE-Tool for Automating the Approach and Round-Tripping
Between Views . 108

6.8 Validity, Threats to Validity, Scalability of the Approach and
Future Work . 109

6.9 Conclusion . 111

7 On the Interpretation of Granularity and Interdependencies of
User Story Elements with the Rationale Tree 113
7.1 Research Context . 113
7.2 Research Method . 114
7.3 Feasibility Study Design . 114

7.3.1 Process for Building the Feasibility Study 114
7.3.2 Assignment and Measured Variables 115
7.3.3 Case Studies . 116

7.4 Data Collection . 119
7.5 Analyzing the Results . 120

7.5.1 The Knowledge of Participants in Modeling 120

xi

Table of contents

7.5.2 The Tagging of User Story Elements 122
7.5.3 Analyzing the User Story Model with Rationale Tree . . 125
7.5.4 Analyzing the Experience of Test Subjects 132

7.6 Limitations of the Feasibility Study 137
7.7 Conclusion . 137

V An Alternative Graphical Representation for User
Story Elements: Suitability of the Industry-Adopted
Use-Case Model 139

8 Bridging User Story Sets with the Use-Case Model 141
8.1 Research Context . 141
8.2 Related Work . 142
8.3 Running Example . 143
8.4 User Stories Integration through a Use-Case Diagram 143

8.4.1 The Role . 143
8.4.2 Hard-goal, Task and Capability 144
8.4.3 The Soft-goal . 145

8.5 Automating the Approach and Round-Tripping Between Views 147
8.6 Impact on Produced Software: Future Work 148
8.7 Conclusion . 149

VI Conclusion 151

9 Conclusions 153
9.1 General conclusions . 153
9.2 Summary of the main Contributions 153
9.3 Future Work . 154

9.3.1 Improvement on User Story Model 154
9.3.2 Using Rationale Tree in Software Development Process 156

References 159

Appendix A List of Publications 171

Appendix B User Story Templates Dataset 173
B.1 Introduction . 173
B.2 User Story Templates Set . 173
B.3 Summary of User Story Templates’ Elements 183

Appendix C Descriptive_Concept’s Definitions 185

Appendix D Feasibility Study User Stories 191

xii

List of figures

1.1 Reading map of the thesis. 6

2.1 Agile methods timeline. 13
2.2 Agile manifesto values. 14
2.3 The 2015 CHAOS report conducted by Sandish Group 16
2.4 Survey of most adapted agile methods 17
2.5 Survey of most adapted agile practice 17
2.6 XP’s project lifecycle . 21
2.7 The burndown chart . 23
2.8 Scrum’s project lifecycle . 25

3.1 The three dimensions of requirements engineering 29
3.2 Level of requirements and their relationships. 29
3.3 Requirements engineering disciplines 31
3.4 Requirements in software development 32
3.5 Spiral requirements engineering process 34
3.6 A taxonomy of non-functional requirements 35
3.7 IEEE Std 830 document structure 37
3.8 Requirements template . 38
3.9 Essential Use-Case elements . 41
3.10 An example using modeling elements of Use-Case diagrams . . . 41
3.11 The i* elements. 44
3.12 Strategic Dependency model for Meeting Scheduling 46
3.13 Rationale Dependency model for Meeting Scheduling 47

4.1 User story index card . 51
4.2 Quality user story framework 53
4.3 Connextra user story card. 54
4.4 Requirements in IEEE-830 style 57
4.5 Scenario in Human-Computer Interaction Design 58
4.6 An example of a Persona . 59
4.7 An example of Hierarchical Task Analysis 60
4.8 User Stories on Scrum Board. 64
4.9 Prioritized product backlog . 64
4.10 User Story Mapping template. 66

xiii

List of figures

4.11 Possible modeling techniques used as a complementing view to
user stories. 68

4.12 General process for iterative planning in agile methods 70

5.1 Followed research process. 77
5.2 The Descriptive_Concept class. 79
5.3 Unified model for user story Descriptive_Concepts. 86
5.4 Elements coverage in the Carpooling and CalCentral case studies. 88

6.1 US as Macro-Level structures: Meta-Model. 97
6.2 US as Macro- and Micro-Level structures: Meta-Model. 98
6.3 Icons used within the representation of the user story elements

using the Strategic Rationale reasoning. 99
6.4 Top-Level Hard-goal, One Means-End decomposition. 103
6.5 Top-Level Hard-goal, several Means-End decompositions. . . . 105
6.6 Portfolio optimization problem. 107
6.7 The supporting CASE-Tool. 109

7.1 Research method for feasibility study. 114
7.2 Type solution of Case 1 in the feasibility study. 118
7.3 Possible solution of Case 2 in the feasibility study. 119
7.4 Average understandability score of the different elements. . . . 124
7.5 Average scores on Case 1 and Case 2. 132
7.6 Understandability of the theory. 133
7.7 Average general perceived difficulty to model both cases. 135
7.8 Perceived difficulty by the test subjects. 136
7.9 Graph difficulty Case 1 versus Case 2. 137

8.1 Use-Case diagram: Canonical form and carpooling example. . . 146
8.2 The supporting CASE-Tool. 148

9.1 Process fragment for integrating Agent-Oriented development in
agile methods. 156

xiv

List of tables

2.1 Dependencies of agile manifesto values and principles 15

3.1 Template for textual Use-Case documentation 43

4.1 Requirements engineering implementation in XP and Scrum . . 50
4.2 The five templates for writing user stories. 55
4.3 User story coverage and complexity. 56
4.4 The comparison between user story and other user requirements

artifacts . 61

5.1 Instances for Descriptive_Concept and related syntax. 81

6.1 US set 1 sample issued of the ClubCar application development. 102
6.2 US set 2 sample issued of the ClubCar application development. 104

7.1 US set in Case 1 of the feasibility study. 117
7.2 US set in Case 2 of the feasibility study. 118
7.3 Expertise of participants with i* framework. 121
7.4 Expertise of participants with user story. 121
7.5 Tagging of the US elements in Case 1. 122
7.6 Tagging of the US elements in Case 2. 123
7.7 Understandability of the difference between the elements. . . . 124
7.8 Kruskal-Wallis test on the understandability scores of the different

elements. 125
7.9 Descriptive statistics of the number of elements and links modeled.128
7.10 Kruskal-Wallis test on the modeled elements and links. 128
7.11 Evaluation criteria in quoting the US models. 129
7.12 Descriptive statistics of the global score. 130
7.13 ANOVA test on the global performance scores. 130
7.14 Results of the post-hoc test of Bonferroni. 130
7.15 The paired-sample t-test on the score of both cases. 132
7.16 Kruskal-Wallis test on the global perceived difficulty. 135
7.17 Kruskal-Wallis on the perceived difficulty of step 1 to 5. 136

8.1 US sample of the ClubCar application development. 144
8.2 Mapping a user story set with the Use-Case diagram. 147

xv

List of tables

B.1 Keywords for searching user story templates. 173
B.2 User story templates found in formal source. 174
B.3 User story templates found in informal source. 176
B.4 Syntax used in user story template 183

C.1 Selected syntaxes of Descriptive_Concept 185
C.2 Definitions of Role. 185
C.3 Definitions of User. 186
C.4 Definitions of Actor. 186
C.5 Definitions of Goal. 186
C.6 Definitions of Feature . 187
C.7 Definitions of Functionality. 188
C.8 Definitions of Capability. 188
C.9 Definitions of Task. 188
C.10 Definitions of Activity. 189

xvi

Part I

Introduction

1

Chapter 1

Introduction

This chapter introduces the whole thesis. This chapter is organized as follows.
Section 1.1 overviews our research context in software development. Section 1.2
provides the reading map and contributions of this thesis. Finally, Section 1.3
discusses the limitations of the thesis.

1.1 Research Context

For decades software has been developed in order to make use of the full potential
of hardware. With the evolution of the ideas and concepts in the Information
Technology (IT) field, the potential use of software systems has drastically
grown. It is now of vital importance for organizations to have adequate IT tools;
these at best bring a competitive advantage and at worse allow to compete
with the same tools as competitors. In parallel, the complexity of the working
environment has significantly evolved and continues to evolve leading to the
necessity of having the right methodological tools within a defined IT adoption
situation. Large software developments can indeed hardly be developed in an
ad-hoc manner. Therefore, professionals need to follow a defined set of practices
grouped in a development methodology. Nevertheless, if the latter is too rigid in
its Project Management (PM) or poorly defines adequate Engineering Practices
(EP), its application may lead to an incapacity to adapt to requirements changes
coming directly from the user or from the software environment.

In order to properly deal with scalability without killing all the potential
for changes and innovations along the development life cycle, a right balance
has thus to be found within the amount of PM activities as well as the relevant
EP and their level of formality. Too rigid PM practices hamper communication
with stakeholders (such as the ability to detect changes that need to be made)
as well as the management of the implementation of the changes identified. On
the opposite, no PM at all leads to chaos. Similarly, well designed requirements,
design, implementation, test, . . . models (part of the method’s EP) allow to
represent complex software problems and solutions in relevant manner. Ideally,
these should allow an adequate and aligned representation of what users are
truly expecting from the system. If such models are expressed in natural
language, everything can be said or expressed. If they are expressed in a
very formal manner, they lose part of their expressiveness but will be more

3

Introduction

straightforwardly to use (or even possibly automated) for forward engineering
activities, consistency checking, traceability and other EP. The right balance
has thus to be found depending on the nature of the covered software problem.

In software problems of limited size where innovation is important, little or
no PM can be performed in order to allow immediate adaptation of the software
product when changes occur in the user requests or enterprise environment. The
method can then essentially focus on EP. If the software problem is broad(er)
in size, the software solution is likely to support (more) complex processes. In
such a case, PM activities are necessary in order to coordinate the different
parts of the system; formal EP including precise software modeling also increase
in importance in order to coordinate (engineering) activities and be able to
capture all of the aspects of the software problem and solution. In such a
case, iterative and incremental development through sets of short iterations
allows PM activities to guide the production of relevant artefacts yet allowing
to make changes and learn through user experience. Finally, in huge software
projects, PM activities are a must have and advanced EP should allow the
representation and realization management of complex processes on multiple
levels of granularity. Iterative and incremental development is here also from
primary importance but since the software problem is larger in size, the scope
elements for each iteration can be broader with a possible impact on the
iterations’ duration.

The initial aim of this doctoral thesis is to overview the potential improve-
ments that can be made to agile methods on the basis of their requirement
representation artifacts (which is part of its EP). We take the perspective that
such improvements can only be identified/shown/proved if one or a set of de-
pendable elements are changed at a time. Existing agile methods have reached
various maturity levels and, within the improvements that we suggest in this
thesis, the aim is not to evaluate this maturity or redefine entirely a method but
rather to be able to anchor to existing methods to inherit its benefits and try
to address some of its issues. This means that we intend to plug-in to existing
agile software development methods to bring improvements on defined elements
(starting from EP but also with an impact on PM).

More precisely, starting from the discussed findings and this research point
of view, this doctoral thesis studies how we can improve an agile software
development methodology starting from one of its core EP namely user story-
based modeling. User Stories (US) are known for decades in the world of agile
software development, they are simple sentences written in natural language
possibly following a defined template. More specifically, we focus on the
ones following a template that relates a WHO, WHAT and (possibly) WHY
dimension to depict user requirements. These are typically found in the eXtreme
Programming (XP) and Scrum agile methods. The willingness is to improve the
requirements engineering stage by better managing US in order to deal with
scalability issues often reported as problematic in the world of agile methods.

For this purpose, US models and their structure need to be carefully ana-
lyzed and rationalized in order to exploit them in a systematic manner. The
opportunity for more structuring of US and their constituting elements make
sense only if filtering can be done on the basis of elements granularity. This is

4

1.2 Reading Map and Contributions

the purpose of defining precise semantics associated with accurate syntaxes for
tagging US elements. This way we can distinguish the nature and granularity
of US elements to reach the first objective of this thesis unifying US-based
modeling.

When unified US-based modeling can be reached, the opportunity for a
graphical representation of US can be studied. Goal-Oriented Requirements
Engineering (GORE) with its advanced representation abilities is chosen, in the
doctoral thesis, for building a graphical representation of US elements in the
form of a Rationale Tree (RT). The interpretation of the US elements nature
and grain is tested among groups of students and researchers. In parallel of
US modeling, the industry has also adopted UML Use-Case models for the
representation of coarse-grained requirements. Bridging those views is promising
on the condition that they may be kept consistent. Together, these contributions
aim at fulfilling the second objective of the thesis improving the requirements
engineering stage of agile methods through graphical representation of structured
US elements.

Finally, all these contributions, once applied within an agile method, have an
impact on the overall PM of the agile project. More specifically, the graphical
requirements models (i.e., through the RT or the Use-Case approach) built-up
can be used for life cycle management. Indeed, scope elements can be identified
graphically. They then can be used as scope elements for iterative planning
within the planning game. Along the contributions, we will thus discuss the
third contribution of the thesis improving the life cycle management of agile
methods through requirements models.

1.2 Reading Map and Contributions

This thesis consists of six parts and nine chapters. Figure 1.1 provides the
structure and reading map of the thesis. Between the parentheses of some
chapters is the name of the conference in which the content of the chapter is
published.

This doctoral thesis starts with a general literature review; Chapter 2
positions the domain of agile software development methods, Chapter 3 provides
a basic overview on requirements engineering, and Chapter 4 overviews the
requirements engineering techniques used in agile methods. The purpose of
each of these chapters is to develop a general overview of the subject without
relating each element of theory to a specific scientific contribution of the thesis.

The dissertation has, indeed, been built as a set of individual contributions
presented individually from Chapter 5 to 8. For each of these chapters, the
specific contributions, related work and research method are systematically
discussed in the chapters themselves.

Chapter 5 overviews the different US templates available in formal (i.e.,
scientific publications) and informal (e.g., blogs, web sites, . . .) sources. It
associates semantics from GORE framework to each of the keywords (syntaxes)
found. After a selection process, a unified (meta-)model for US templates is
built. This contribution is validated on sets of examples. It constitutes the
main pillar (foundation) onto which all the other contributions are built.

5

Introduction

Structure of the Thesis

Background

P
ar

t V
I

Chapter 9

P
ar

t I

Chapter 1

P
ar

t I
I Chapter 2 Chapter 3

Chapter 4

P
ar

t I
II

Chapter 5 (CAiSE2014)

Chapter 7 P
ar

t I
V

Requirements Analysis

Chapter 6 (RCIS2016) Chapter 8 (MReBA2016)

P
ar

t V

Conclusion

Fig. 1.1 Reading map of the thesis.

Chapter 6 overviews how a RT can be built using the US unified model. The
tagging of US elements gives information about the nature and granularity of
elements; with the use of that information a first graphical representation can
be made. Then by domain analysis, US elements can be graphically linked for
analysis. Consistency, alternatives, scope elements for PM, etc. can be studied
from the graphical representation. The feasibility of the proposal is shown on
an illustrative example in the field of carpooling.

Chapter 7 overviews the perception of software modelers of the RT built up
in chapter 6. Modelers are made of groups of students and researchers; their
perception of the elements’ granularity and the links they identify between the
US elements is evaluated through their overall performance on two modeling
exercises. The performance is then balanced through their modeling experience.

Chapter 8 overviews another graphical notation for US models. GORE
models are, on the opposite of UML Use-Case models, far from being industry
adopted. That is why we consider using the US template meta-model in order to
build a UML Use-Case diagram serving as a complementary (and not concurrent)
graphical view to the US set. The feasibility of the proposal is shown on an
illustrative example in the field of carpooling.

1.3 Limitations

Once again, the limitations for each of the developed contributions are depicted
on a case by case basis in the relevant chapters; we will here overview the
limitations of model driven development based on US in the fashion of the
contributions of the thesis.

6

1.3 Limitations

The adoption of the contributions of the thesis in real life cases widely
depends on the consistency of the input US sets as well of the adequate tagging
and domain analysis performed on the basis of the US elements. The consistency
in requirements can be evaluated using the RT but a completely inconsistent
US set will require a lot of further domain analysis activities; this has a strong
impact on the cost of applying that contribution.

We also highlight that:

• All the contributions developed in this thesis need to gain maturity
through their use. In this dissertation, we indeed have applied most of
the elements just on one to a few cases. However, it should be tested
on more case studies so that the knowledge of the issues related to the
practical application can be highlighted. This is particularly true for
building the RT where only an accumulation of empirical data can lead
to better guidelines and a higher level of automated support;

• We have several times identified scope elements for managing the iterative
development life cycle but did not furnish a whole method in order to
manage them. Custom work could be done in order to give ways to
identify critical requirements to be prioritized first for prototyping in the
iterative development life cycle;

• The contributions of this thesis are mostly designed for software problems
not aiming to support heavy industrial processes with lots of realization
paths. To such an end, other processes allowing workflow based modeling
are often better suited.

7

Part II

Literature Review

9

Chapter 2

Agile Software Development

This chapter provides a brief and basic introduction to agile methods. The
latter constitutes the software development methodology’s family in which the
contributions of the thesis take place.

This chapter is structured as follows. Section 2.1 provides historical back-
ground on agile methods and their evolution. Section 2.2 exposes the agile
manifesto and a recent survey on most adopted agile methods. Section 2.3
exposes two agile methods—i.e., eXtreme Programming and Scrum. Finally,
Section 2.4 concludes the chapter.

2.1 The Emergence of Agile Methods

Since the emergence of software in the 50s, many software development method-
ologies have been proposed and developed in order to reduce software cost
and produce software satisfying user needs with an adequate level of quality
[83, 93]. Agile Methods have emerged in 2001 as a reaction to traditional
development methodologies lacks; AgileManifesto [94] acknowledges the “need
for an alternative to documentation driven, heavyweight software development
processes”. Generally speaking, the traditional methodologies are characterized
as plan-driven, document-oriented, process-oriented and based on formal commu-
nication [2, 81, 116, 131]. In ‘traditional’ software development methodologies,
the new software is built using a predefined and extensive plan that is strictly
followed during the development cycle [86]. In addition, each phase finishes with
well-defined documents so that they can be used in the next phase by the same
or another team [81, 121]. Just to name a few, traditional methodologies include
the V-model [54], the Spiral Model [18], the Rapid Application Development
(RAD) [95], or the Rational Unified Process (RUP) [78].

The waterfall model proposed by Royce in the 70s is the oldest development
life cycle in the software engineering history [81]; it provides the basis for
software development activities. The waterfall model consists of a series of
sequential activities and each activity must be finished before the next one
can start. It begins with elicitation and documentation of the complete set
of requirements followed by software design, implementation, and testing; the
software is fully delivered at once at the end of the project. In addition, each

11

Agile Software Development

step is planned in detail with formal documentation and strictly followed during
the development [131].

The waterfall model works well for projects where requirements can easily
be determined in advance, but does not perform well for the development of
user intensive software projects and/or for key innovative projects. Indeed
according to Larman and Basili [81], many waterfall-based projects reported
failure during the 80s and recommended that software should be developed
iteratively and incrementally. The perceptions of requirements as well as the
requirements themselves are likely to evolve [48, 81, 119]. In addition, customers
have difficulty in stating their needs at the beginning of the project and expect
more from their software [81, 131, 153].

Developing software iteratively induces producing an executable release at
the end of each iteration. Customers are thus able to evaluate a concrete product
in order to provide feedback leading to refining or add new requirements for the
next iteration. Meanwhile, developing software incrementally allows the same
requirement to be addressed into multiple iterations starting with basic support
and progressively developing into full workable software. Therefore, strictly
defining and fixing requirements early on into the project is not a relevant
practice in user intensive software development. Several methodologies such
as Spiral, V-model, RAD and RUP were later proposed to fix the problem of
the waterfall model. However, these methodologies are still process-oriented,
document-oriented and plan-driven [2].

Meanwhile, practitioners in the industry were also seeking for new ways for
developing software due to the aforementioned flows of the waterfall approach.
They made experimentations with real software development teams using it-
erative and incremental development and other best practices in engineering
field [2, 35]. As the result, many initiatives such as Scrum [126], eXtreme
Programming (XP) [14], Dynamic Systems Development Method (DSDM) [133],
Crystal [34], Feature-Driven Development (FDD) [107], etc. have been proposed
under the name lightweight methodologies and later known as agile methods
after the creation of the agile manifesto (see Section 2.2.1). These are iterative,
incremental, less-documented and people-oriented. The latter methods are in
fact inspired from the best practices of Toyota [59] which are described in the
paper entitled “The new new product development game” [135].

Since the creation of the agile manifesto, many methods have been proposed
under the category of ‘agile’. There are different views on what agility and
agile mean. Nonetheless, most of agile methods are, in practice, a collection of
different practices (or techniques) that share the same values and basic principles
[35]. Figure 2.1 provides an overview of the evolution of agile methods; other
agile methods exist in literature and practice. This figure has built from
the presentation of Gaetano Mazzanti [ref1] and based on the research of
Abrahamsson et al. [4].

1http://www.slideshare.net/mgaewsj/agile-principles-agile-people

12

2.2 Agile Methods

Analysis

Implementation

Integration

Testing

Design

The new new product development Scrum

eXtremme Programming (XP) Dynamic systems development
method (DSDM)
Feature-Driven
Development (FDD)

Crystal

Adaptive Software
Development(ASD)

Kanban

Agile Manifesto

1993

1996

2001

Pragmatic
Programming (PP)

2002

2004

AgileModeling

ScrumBAN

OpenUP

Fig. 2.1 Agile methods timeline.

2.2 Agile Methods

In this section, we explore the agile manifesto and discuss agile methods in
practice. Section 2.2.1 exposes the agile manifesto and Section 2.2.2 provides
the state of the art of agile methods in practice.

2.2.1 The Manifesto for Agile Software Development

The agile manifesto is the result of the meeting that took place at Utah,
2001 and made of seventeen software developers who are “representatives from
eXtreme Programming, Scrum, Dynamic Systems Development Method (DSDM),
Adaptive Software Development (ASD), Crystal, Feature-Driven Development
(FDD), Pragmatic Programming (PP), and others sympathetic” [94]. The main
goal of this meeting was to discuss the practices of each methodology that were
successful in software development in the late 90s and to try to understand
the common ground of each methodology. According to Sommerville [131], the
manifesto is “a set of principles encapsulating the ideas underlying agile methods
of software development”. The manifesto for agile software development
consists of four values and twelve principles.

As shown in Figure 2.2, the manifesto is written in a structured sentence
with the word over in the middle. The right parts are written in normal style,
whereas the left parts are written in bold. This means that agile software
development recognizes the values in the right part; additionally, it emphasizes
more on the values in the left part [7].

As can be derived from Figure 2.2, agile methods focus on individuals
and interactions more than on processes and tools. Hunt [66] states that
project success relies mostly on the people involved and the way in which they
communicate more than on the processes, methodologies and tools that are
used. In these methodologies, producing a working piece of software is more
important than producing comprehensive documentation. This second principle
entails three main implications for agile approaches [62]. First of all, since the
project team focuses on the development of a system, only those documents
that are actually required for the development process are produced. Secondly,
the actual development of the system (i.e., coding) is started as soon as possible

13

Agile Software Development

Manifesto for Agile Software Development

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on
the right, we value the items on the left more.

Fig. 2.2 Agile manifesto values.

to improve the understanding of both developers and clients concerning the end
product that has to be developed. The third and final implication concerns the
certainty for the users that they get a bugless software solution that meets all
their needs. The two other values comprise the intensive customer involvement
and participation and the ability to respond to change.

The twelve principles of the manifesto are listed below. These principles
are used for guiding the software development to support the four values of the
manifesto. Table 2.1 shows dependencies between agile manifesto values and
principles.

1. “Our highest priority is to satisfy the customer through early and continu-
ous delivery of valuable software;

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage;

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter time scale;

4. Business people and developers must work together daily throughout the
project;

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done;

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation;

7. Working software is the primary measure of progress;

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely;

14

2.2 Agile Methods

9. Continuous attention to technical excellence and good design enhances
agility;

10. Simplicity—the art of maximizing the amount of work not done—is es-
sential;

11. The best architectures, requirements, and designs emerge from self-organizing
teams;

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behaviour accordingly” [94].

Table 2.1 Dependencies of agile manifesto values and principles (from [75]).

20

Table 2.2: Dependencies of Agile Manifesto values and principles (from [59]).

Principle

Value
1 2 3 4 5 6 7 8 9 10 11 12

Individuals and interaction over

process and tools
x x x x x x

Working software over

comprehensive documentation
x x x x x x

Customer collaboration over

contract negotiation
x x x X

Responding to change over

following a plan
x x x x (x)

12.At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly.

2.5 Agile Methodologies in Practices

2.5.1 eXtreme Programming

Extreme Programming (XP) could be considered to be a primary methodology that made

ASD got attention; it was a dominant methodology in the late 90s to 00s before Scrum has

begun the dominant Agile methodology
6
. It had been developing by Kent Beck during his

consulting to Smalltalk projects in the late 80s and early 90s [12, 96]. It was created to answer

the long development cycles of the waterfall model. XP focuses on software quality

improvement and responsiveness to vague or rapid changes of customer’s requirements [3]; it

was built based on values of simplicity, communication, feedback, courage and respect [12].

The characteristics of XP are short development cycles, incremental planning, continuous

feedback, reliance on communication, and evolutionary design [12]. It promises to reduce

project risk, improve responsiveness to business changes, improve productivity throughout

the life of the system, and add fun to building software in teams—all at the same time [96].

XP Roles

XP defines seven roles for running the XP project.

• Programmer: Programmers write the codes and assure the code is simple to the best of

their knowledge. They normally work in pair for writing the code.

• Customer: Customers write the user stories, give the priority to each user story and set

the scope of implementation. Then, they write the test scenarios for each user story

and make the acceptance tests.

• Tester: Testers help customers write the test scenarios and do the testing of the project

progressively.

6
http://martinfowler.com/bliki/ExtremeProgramming.html

2.2.2 Agile Methods in Practice

Methods for agile software development consist of a set of practices and principles
for software development that have been created by experienced practitioners.
Agile methods can be seen as a reaction to plan-based or traditional methods
which emphasize “a rationalized, engineering-based approach” [49].

Since the creation of the agile manifesto in 2001, agile methods have gained
a lot of popularity due to their success in software development. According to
the 2015 CHAOS report [61] published by the Sandish Group, agile methods
are more successful and less failing comparing to waterfall-based ones. Figure
2.3 exposes the result of the CHAOS report related to success and failure of
using agile and waterfall methods in software project.

15

Agile Software Development

Fig. 2.3 The 2015 CHAOS report conducted by Sandish Group (from [61]).

According to the report conducted by the VersionOne in 2016 [143], Scrum
has become the most popular agile methodology with a use of 58% in overall agile
projects and XP has become unpopular with a use of only 1% (see Figure 2.4).
XP has nevertheless been famous in the world of agile methods; it encompasses a
lot of relevant engineering practices of software development like for example the
User Stories, Pair Programming, Planning Game, Open Workspace, Continuous
Integration and Collective code ownership. These techniques are still popular
and used in many other agile methods. This can be seen in Figure 2.5; however,
some names have been slightly changed but consist of the same practice. In
addition, a practice as user stories does not appear but in fact, user stories are
the main artifacts for performing Story Mapping. Therefore, user stories are
also part of the most used techniques.

16

2.2 Agile Methods

VERSIONONE.COM 9

AGILE METHODS AND
PRACTICES

Agile
Methodologies Used
When asked what agile methodology
is followed most closely, nearly 70% of
respondents practice Scrum (58%) or
Scrum/XP hybrid (10%).

58%
Scrum

10%
Scrum/XP
Hybrid

8%
Custom Hybrid

(multiple
methodologies)

7%
Scrumban

5%
Kanban

2% I Don’t Know

<1% Agile Unified Process (AgileUP)

1% XP1% DSDM/Atern

1% Feature-Driven Development (FDD)
1% Agile Modeling

2% Lean Development

3% Other

3% Iterative Development

Agile Techniques Employed
More than 39% of the respondents practiced Kanban within their organizations, up
from 31% in 2014. Conversely, iteration planning dropped slightly from 71% in 2014
to 69% in 2015, likely indicating a transition to more flow-based methods such as

Lean and Kanban.

TOP 5 AGILE
TECHNIQUES

83% 82% 79%

74% 69%

DAILY
STANDUP

PRIORITIZED
BACKLOGS

SHORT
ITERATIONS

RETROSPECTIVES
ITERATION
PLANNING

}

Fig. 2.4 Survey of most adapted agile methods (from [143]).

V
E
R
S
IO
N
O
N
E
.C
O
M

10

A
g

il
e

T
ec

h
n

iq
u

es
 E

m
p

lo
y

ed
C
o
n
ti
n
u
e
d
...

P
E
R
C
E
N
T
 O

F
 1
0
0

A
G
IL
E
 M
E
T
H
O
D
S
 A
N
D
 P
R
A
C
T
IC
E
S

D
a
ily
 s
ta
n
d
u
p

P
ri
o
ri
ti
z
e
d
 b
a
c
k
lo
g
s

S
h
o
rt
 i
te
ra
ti
o
n
s

R
e
tr
o
sp
e
c
ti
v
e
s

It
e
ra
ti
o
n
 p
la
n
n
in
g

R
e
le
a
se
 p
la
n
n
in
g

U
n
it
 t
e
st
in
g

T
e
a
m
-b
a
se
d
 e
st
im
a
ti
o
n

T
a
sk
b
o
a
rd

It
e
ra
ti
o
n
 r
e
v
ie
w
s

C
o
n
ti
n
u
o
u
s
in
te
g
ra
ti
o
n

D
e
d
ic
a
te
d
 p
ro
d
u
c
t
o
w
n
e
r

S
in
g
le
 t
e
a
m
 (
in
te
g
ra
te
d
 d
e
v
 &
 t
e
st
in
g
)

C
o
d
in
g
 s
ta
n
d
a
rd
s

K
a
n
b
a
n

O
p
e
n
 w
o
rk
 a
re
a

R
e
fa
c
to
ri
n
g

T
e
st
-D
ri
v
e
n
 D
e
v
e
lo
p
m
e
n
t
(T
D
D
)

S
to
ry
 m
a
p
p
in
g

A
u
to
m
a
te
d
 a
c
c
e
p
ta
n
c
e
 t
e
st
in
g

C
o
n
ti
n
u
o
u
s
d
e
p
lo
y
m
e
n
t

C
o
lle
c
ti
v
e
 c
o
d
e
 o
w
n
e
rs
h
ip

P
a
ir
 p
ro
g
ra
m
m
in
g

A
g
ile
 g
a
m
e
s

B
e
h
a
v
io
r-
D
ri
v
e
n
 D
e
v
e
lo
p
m
e
n
t
(B
D
D
)

A
g

il
e

in
 O

u
ts

o
u

rc
ed

 D
ev

 P
ro

je
ct

s
N
e
a
rl
y
 7
0
%
 o
f
re
sp
o
n
d
e
n
ts
 a
re
 o
u
ts
o
u
rc
in
g
 d
e
v
e
lo
p
m
e
n
t

p
ro
je
c
ts
.
O
f
th
e
se
,
2
0
%
 a
re
 u
si
n
g
 a
g
ile
 p
ra
c
ti
c
e
s
to
 m
a
n
a
g
e

th
e
 m
a
jo
ri
ty
 o
f
th
e
se
 o
u
ts
o
u
rc
e
d
 p
ro
je
c
ts
.

8
3

%

8
2

%

7
9

%

7
4

%

6
9

%

6
3

%

6
3

%

5
9

%

5
5

%

5
4

%

5
0

%

4
9

%

4
5

%

4
4

%

3
9

%

3
8

%

3
7

%

3
3

%

3
0

%

2
8

%

2
7

%

2
5

%

2
4

%

16
%

10
%

*R
e
sp
o
n
d
e
n
ts
 w
e
re
 a
b
le
 t
o
 m
a
k
e
 m
u
lt
ip
le
 s
e
le
c
ti
o
n
s.

Fig. 2.5 Survey of most adapted agile practice (from [143]).

17

Agile Software Development

2.3 Overview of the Main Agile Methods

Within this section, we provide an overview on the two agile methods—i.e.,
eXtreme Programming (XP) and Scrum. Interested readers about other agile
methods could refer to [3, 4, 35, 49, 59]. Section 2.3.1 reviews the XP methodol-
ogy and Section 2.3.2 reviews the Scrum methodology. The XP has been chosen
because it focuses on relevant engineering practices for agile development while
the Scrum integrates project management in the same family of methods.

2.3.1 eXtreme Programming

XP could be considered as a primary methodology that made agile software
development get public attention; it was a dominant methodology in the late
90s to 2000 before the rise of Scrum [ref2]. XP had been developed by Kent
Beck during his consulting time with Smalltalk projects in the late 80s and early
90s [15, 24]. It was created as an answer to the long development cycle of the
waterfall model. XP focuses on software quality improvement and responsiveness
to vague or rapid changes in customer’s requirements [4]; it has been built based
on values of simplicity, communication, feedback, courage and respect [15].
The characteristics of XP are short development cycles, incremental planning,
continuous feedback, reliance on communication, and evolutionary design [15].
It promises to reduce project risk, improve responsiveness to business changes,
improve productivity throughout the life of the system, and add fun to building
software in teams—i.e., all at the same time [24].

2.3.1.1 XP Roles

Following Beck and Andres [15], XP defines seven roles for running the XP
project:

• Programmer : Programmers write the code and ensure it is simple to the
best of their knowledge. They normally work in pair for writing the code;

• Customer : Customers write user stories, give the priority to each user
story and set the scope of the implementation. Then, they write the test
scenarios for each user story and make the acceptance tests;

• Tester : Testers help customers write the test scenarios and do the testing
of the project progressively;

• Tracker : Trackers help programmers and customers better estimate their
efforts for implementation by giving feedback on each iteration;

• Coach: Coach is the person who is responsible for the whole XP process.
The coach guides programmers and customers to be in the XP process;

• Consultant: Consultant is an external person who possesses the specific
knowledge that could help programmers when they encounter technical
problems;

2http://martinfowler.com/bliki/ExtremeProgramming.html

18

2.3 Overview of the Main Agile Methods

• Manager (Big Boss): Manager takes the final decisions during the XP
process.

2.3.1.2 XP Artifacts

Following Beck and Andres [15], the artifacts produced within an XP project
are:

• User Story Card: It is an index card that contains a requirement in form
of a user story. It also contains the short description of requirements,
priority, effort, and test scenarios. Programmers use it for implementation,
discussion and planning;

• Task List: It is a listing task that programmers need to build in order to
accomplish a user story. This helps programmers to estimate the effort
and planning;

• CRC Card: CRC stands for Class-Responsibility-Collaboration. It con-
tains the responsibilities and collaborators of classes (Object-Oriented)
that allow the team to do the design of the system;

• Customer Acceptance Test: The test scenarios that customers write in
order to validate the implementation. Normally, it is writing on the user
story card;

• Visible Wall Graphs: It is a graphical board on which the progression of
the team is displayed—e.g., how many user stories are under development,
tested and accepted? It allows the team to communicate and see the
progress of the project. It is displayed publicly to everybody in the team.

2.3.1.3 XP Practices

Following Beck and Andres [15], the 13 practices of XP are:

• Planning: This practice represents the meeting between customers and
programmers for the planning; it happens once per iteration. The planning
game consists of two steps. First, programmers estimate the effort needed
for implementation of each user story, second customers decide on the
scope of the iteration. Finally, they together determine the release date;

• Small/short release: This practice encourages programmers to build small
and workable parts of the system for customers in a short period of time.
As a result, customers are able to give feedback early. If the release is
accepted, it is ready to go-live. If not, a new version will be built in the
next iteration;

• Metaphor : A metaphor is “an object, activity, or idea that is used as a
symbol of something else” [ref3]. Instead of a formal architecture, XP uses
a metaphor as a simple common vision of how the system works. It is
simple, so everybody understands it and can use it to guide their design;

3http://www.merriam-webster.com/dictionary/metaphor

19

Agile Software Development

• Simple design: The team is recommended to produce the simplest possible
solution that is implementable for now. The complex and extra code is
not necessary and it needs to be discarded immediately. Programmers
regularly ask themselves, is it the simplest solution they have got?

• Testing: Every function needs to be tested. The test plans are written by
customers before the implementation. The test of each function has to be
conformed to the test scenarios;

• Refactoring: At the end of each iteration, the team needs to restructure the
system by removing duplication, improving communication, simplifying
and adding flexibility. However, the behaviors or functionalities of the
system are kept unchanged;

• Pair Programming: Two programmers work together, sitting side by side,
on the same code on a single computer. One writes the code and the other
reviews it. This results in better design, better testing, and better code;

• Collective ownership: The code in XP is not belonging specifically to
any pair programmers, but to everybody in the team. Anyone is able to
change any part of the code. This practice could be dangerous to some
extent if someone works blindly on code (s)he does not understand;

• Continuous integration: The new code is integrated into the current
system as soon as it is ready. The system is thus built many times a day;
the integration test must pass for each new build. This ensures that the
system keeps running properly;

• 40-hours week: XP limits the working hour for programmers to only 40
hours maximum per week. No two overtime weeks in a row are allowed;

• On-site customer : The XP methodology requires customers to sit with
programmers to answer questions, resolve disputes, and set priorities. It
is not necessary with the real costumers, but it could be proxy-customers;

• Just rule: Programmers need to respect several rules defined by the team.
It is not a standard and rigorous rule. Teams can change rules to adapt
to the culture of the team members. What is important is that everybody
in the team understands and accepts to use these rules;

• Open workspace: It is preferable for the XP team to work in an open space.
The configuration of the room should enable face-to-face communication
of developers and direct discussion.

2.3.1.4 XP Process

Following Abrahamsson et al. [3], the XP process could be viewed as divided in
six phases of which Figure 2.6 gives a graphical representation. These phases
are:

20

2.3 Overview of the Main Agile Methods

Fig. 2.6 XP’s project lifecycle (from [3]).

• Exploration: During this phase, customers write requirements in the form
of user story cards—i.e., function or functionality they want for the system.
Each user story card consists of one and only one function or functionality.
It is not necessary to have a complete list of the user stories in this phase,
they can be added afterwards when the project evolves;

• Planning: Developers and customers, together, do the planning—i.e.,
the developers estimate the efforts for implementing each user story and
customers, on their side, give the priority to user story and set the scope
of the iteration;

• Iterations to release: Developers start to build the architecture of the
system for the first iteration and then followed by a subsequent iteration
of coding, testing and integration. Every new piece of function is tested
and validated with customers before go-live. It is important in XP to
keep the system running during the development;

• Productionizing: More integrated tests need to be done during this phase.
The team members have to make sure that the system runs well with
new functions. Developers have to repair the problem as soon as possible.
Changes are still found during this phase and it could be treated in the
next iteration;

• Maintenance: Customers use the system while developers keep developing
and improving the system. If customers find a malfunction or unsatisfied
function, they can inform developers team. It is possible for them to add
new user stories. Developers, on their side, try to treat new user stories
as early as possible in the following iteration;

• Dead: It is the final phase of the project. This phase could be happen
in two different ways. If customers are happy with the system and have
no more user stories to add. The system keeps running and generates
business value for customers; it is a successful project. Therefore, the

21

Agile Software Development

team members produce some documentation for the system. If customers
are not happy with the implementation they decide to stop the project; it
is a failure project.

2.3.2 Scrum

The Scrum methodology was introduced for software development by Jeff
Sutherland and later got the interests from Mike Beedle and Ken Schwaber in
the early of the 90s. This methodology is inspired from the paper entitled “The
new new product development game ” [135]. The term ‘scrum’ comes from a
strategy in the game of rugby where it denotes “getting an out-of-play ball back
into the game” with teamwork [134].

Following Abrahamsson et al. [4], Scrum focuses on the project management
aspects for software development. It does not provide software development
techniques, methods, and practices for the implementation process; it is free
to developers to use any specific practice. Scrum works well together with XP
and also with other agile methods [ref4]. The three pillar concepts of Scrum
are transparency, inspection, and adaption [136]. Another important aspect of
Scrum is to have a common definition on what is defined as a completed item
[136]. Basically, Scrum is an iterative and incremental method based on short
time-box iterations (known as the black-box) of maximum 30 days which is
known as a ‘sprint’; each sprint produces a piece of workable software.

Originally, Scrum only consists of practices. Later, the authors were inspired
by the values of agile manifesto and finally came out with five values. Following
Schwaber and Beedle [126], the five Scrum’s values are commitment, focus,
openness, respect and courage.

2.3.2.1 Scrum Roles

Following Abrahamsson et al. [3], and Tsui et al. [136], the Scrum methodology
principally consists of the three follwing roles:

• Scrum Master : Scrum Master is a new role in software development that
was introduced by Scrum. This role ensures and keeps track of the team
to follow the values and practices of Scrum, and facilitates every event of
Scrum to keep the team productive. The Scrum Master is not a manager
role, but it is rather a coach of the team; it is also part of the development
team. The Scrum Master interacts with the development team, customers
and also the management during the project;

• Product Owner : This role represents officially the voice of customers and
ensures that the team delivers value to the business; the latter role is
normally selected by the Scrum Master, customers, and management. The
product owner is responsible for creating and prioritizing the Product
Backlog, setting the scope of the sprint, and reviewing and accepting the
software at the end of each sprint;

4https://www.scrumalliance.org/community/spotlight/mike-cohn/april-2014/scrum-xp-
better-together

22

2.3 Overview of the Main Agile Methods

• Development Team or Scrum Team: It is the development team of the
project; it is usually constituted of 3 to 10 developers. It is a self-organizing
team that is involved in estimating, creating the Product Backlog (de-
scribed in the next section), decomposing task for implementation of each
Product Backlog item, and reviewing Product Backlog, etc.

2.3.2.2 Scrum Artifacts

Scrum defines three main artifacts to be used for controlling the project [136,
156]; sometimes, they are also called as practices of Scrum [3]. These artifacts
are openly accessible by everybody in the team [156] and are the following:

• Product Backlog: It is a list that stores the current requirements of
the product; it does not constitute the complete requirements set of
the software because the items that have already been implemented
are discarded from the Product Backlog and other items can be added
afterwards. An item of the Product Backlog normally consists of a feature,
a functionality of the system and its priority; sometimes, it is a user story
card;

• Sprint Backlog: It is like to the Product Backlog, but it is for a sprint; it
is the subset of the Product Backlog. The Product Owner decides and
selects which Product Backlog item should go into the current Sprint
Backlog for the implementation; normally, it will produce a workable
software at the end of the sprint. Every item in the Sprint Backlog is
further decomposed in a set small task and each task is assigned to specific
developer;

• Burndown Chart: It is the chart that displays the remaining efforts of the
project. It is a tool for measuring the progress in software development
[ref5]. It is updated at the end of each sprint by the Scrum Master. Figure
2.7 exposes the Burndown Chart.

Fig. 2.7 The burndown chart (from [ref6]).

5http://www.mountaingoatsoftware.com/agile/scrum/release-burndown

23

Agile Software Development

2.3.2.3 Scrum Practices

Following Tsui et al. [136], the Scrum consists of four practices, sometimes
called Scrum Events. These practices are:

• The Sprint Planning Meeting: It is happened before each new sprint
starts; it involves Product Owner, Scrum team and Scrum Master. They
define a general goal of each sprint which is a high-level success criteria
for that sprint. The Product Owner gives the priority to the items in the
Product Backlog and selects the items that are valuable for the current
business and driven by the sprint goal; these items are later stored in the
Sprint Backlog. The Scrum Team decomposes the Sprint Backlog items
into small tasks and reorganizes the team for accomplishing the Sprint
Backlog. Requirements changes and re-prioritizations are not allowed
during the sprint;

• Daily Scrum: It is a short meeting (maximum 15 minutes) that occurs
every day during the sprint. It is often called ‘Scrum’. The goal of the
meeting is to make sure that the team members are on the track. It is a
session of asking three famous questions: 1) What have you done since
the last Scrum? 2) What will you do between now and the next Scrum? 3)
What got in your way of doing work? If a member encounters a problem,
(s)he can ask for help from others. This meeting is normally organized by
the Scrum Master;

• Sprint Review: It is held one or two days before the end of the sprint. It is
achieved for presenting the result of the sprint to the Product Owner, and
customers; however, this event is informal. The participants review and
assess the new release. During this review, participants determine what is
finished and what is not; this results in productivity of the team which is
measured as velocity, then the Scrum Master can update the Burndown
Chart. The result of this review could bring out the new requirements—
i.e., the Blacklog items, and sometimes change the direction of the system
being built;

• The Sprint Retrospective: It is held immediately after the Sprint Review;
it does not take a long time. The Scrum Master and Product Owner
are recommended to join this meeting. The team considers three things:
What went well? What didn’t? and What improvements could be made
for the next sprint? It is essential for the team to have this meeting for
the self-evaluation and self-improvement.

2.3.2.4 Scrum Process

Following Abrahamsson et al. [3], the Scrum process could be viewed as divided
in three phases of which Figure 2.8 gives a graphical representation. These
phases are:

• PreGrame: Scrum starts with the requirements gathering by creating
the Product Backlog. It is not required to have a complete Product

24

2.4 Conclusion

Fig. 2.8 Scrum’s project lifecycle (from [3]).

Backlog; the Product Backlog can be updated after each sprint. This
phase is separated into two sequential steps: Planning and Architecture.
During the planning, each item in the Product Backlog is estimated with
priority and efforts for implementing that item, and the scope of the sprint
is set—i.e., moving the selected items from Product Backlog to Sprint
Backlog, with schedule and cost. The architecture defines how the items
in the Sprint Backlog are implemented; it involves the system architecture
modification and high level-design;

• Development: This phase is also called Game Phase. It is the phase that
is known as the ‘black-box’; the team commits to the implementation of
the Sprint Backlog. Any change including requirements, priority, efforts,
etc. are not allowed;

• PostGame: It is the end of the project. The project can enter into
this phase when there are no new requirements and clients agree on the
system. It is time for the integration the whole system, global testing and
documentation.

2.4 Conclusion

This chapter has presented the state of the art of the agile methods. Agile
methods are a collection of methodologies that follow the four values and
twelve principles of the agile manifesto. The manifesto aims at guiding agile
methods rather than being a methodology on its own. Statistically speaking,
agile methods are more successful than traditional methods. As a consequence,
many agile methods have been proposed over the years. The agile methods are

25

Agile Software Development

generally characterized as iterative, incremental, less-documented and people-
oriented. In addition, this chapter has reviewed two agile methods—i.e., XP
and Scrum—which are relevant to this thesis.

26

Chapter 3

Requirements Engineering: an Overview

This chapter defines, positions, and overviews the different aspects of the
Requirements Engineering (RE) discipline. Basically, it focuses on relevant
concepts of RE related to our research context.

This chapter is structured as follows. Section 3.1 positions RE with respect
to the overall software engineering field. Section 3.2 discusses different levels
of abstraction of requirements. Section 3.3 explores the dynamic dimension
of requirements—i.e., the RE process. Section 3.4 exposes different categories
of requirements. Section 3.5 explains the advantage of using natural language
for writing requirements. Section 3.6 overviews the modeling approach for
documenting requirements. Finally, Section 3.7 concludes the chapter.

3.1 Requirements Engineering Basic Notions

This section aims at providing general concepts related to RE. Section 3.1.1
defines the requirement concept, while Section 3.1.2 discusses different definitions
of RE.

3.1.1 Requirement: Definition

The Merriam-Webster defines a requirement as “something that is needed or that
must be done” or “something that is necessary for something else to happen or
be done” [ref1]. This general definition of requirement highlights the notions of
need and necessity. We will further overview the notion in the field of software
development in the rest of the section.

The standard definition of requirement is provided by the Institute of Elec-
trical and Electronics Engineerings (IEEE standard 610–Glossary of Software
Engineering Terminology) [69]. It is defined as “(1) A condition or capability
needed by a user to solve a problem or achieve an objective. (2) A condition
or capability that must be met/possessed by a system or system component to
satisfy a contract, standard, specification or other formally imposed documents.
(3) A documented representation of a condition or a capability as in (1) or (2)
above”.

1http://www.merriam-webster.com/dictionary/requirement

27

Requirements Engineering: an Overview

Following Hull et al. [65], IEEE24765:2010 [71], Pohl [113] and Van Lam-
sweerde [139], requirements can be defined as unambiguous, testable and measur-
able statements—based on the system-as-is and new technologies—that comprise
a set of objectives, conditions, properties, capabilities, qualities, constraints and
assumptions concerning the system-to-be. Within this context, the system-as-is
comprises the current system that (partially) needs to be replaced by a new
one (i.e., the system-to-be) for several possible reasons.

3.1.2 From Requirement to Requirements Engineering

RE is an emerging field that becomes a subarea of software engineering. The
goal of RE is to make the requirements stage in software system development
more systematic and disciplined [159]. The concerns of RE are the elicitation,
modeling, evaluation, specification, analysis, communication, documenting and
evolution of the objectives, functionalities, qualities and constraints of the
system to be developed [63, 139]. Nowadays, a lot of definitions for RE are
available in literature.

One of the oldest definition of RE is provided in [161]; RE is defined as
“... the branch of software engineering concerned with the real-world goals for,
functions of, and constraints on software systems. It is also concerned with the
relationship of these factors to precise specifications of software behavior, and
to their evolution over time and across software families”.

Van Lamsweerde [139] defines RE as “a coordinated set of activities for
exploring, evaluating, documenting, consolidating, revising and adopting the
objectives, capabilities, qualities, constraints and assumptions that the system-
to-be should meet based on problems raised by the system-as-is and opportunities
provided by new technologies”.

Based on a wide range of other definitions in literature, RE is a process where
stakeholders and their needs concerning the system-to-be (i.e., requirements)
are discovered, defined and that subsequently are modeled, analyzed, negotiated
and documented.

3.2 Abstraction Levels for Requirements Representation
and Management

This section focuses on the abstraction of requirements. Section 3.2.1 exposes
the three dimension of RE. Section 3.2.2 overviews the three level abstraction
of requirement.

3.2.1 Dimensions in Requirements Engineering

According to Van Lamsweerde [139], the problem world can be divided into
three different dimensions. RE is responsible for finding out why a system-to-be
is necessary (i.e., the WHY dimension), what problems need to be solved (i.e.,
the WHAT dimension) and who has an interest in the system-to-be (i.e., the
WHO dimension). These different dimensions are represented in Figure 3.1.

28

3.2 Abstraction Levels for Requirements Representation and Management

A. van Lamsweerde, Systematic Requirements Engineering - From System Goals to UML Models to Software Specifications. Wiley, 2008.

1.9

The system-to-be is intended to address those problems based on technology opportunities. It will do
so only if the software-to-be and the organizational and physical components defining the environment
will cooperate effectively. In the UWON library system-to-be, the new software has to cooperate
effectively with environment components such as patrons, staff personnel, anti-theft devices, digital
libraries, and external library systems. In the WAX train system-to-be, the train control software has to
operate in conjunction with environment components such as track sensors, train actuators,
passengers, information panel devices, and so forth. In the meeting scheduling system-to-be, the
scheduler software has to cooperate effectively with environment components such as meeting
initiators and participants, e-mail systems, e-agenda managers, the communication network, and so
forth. In the end, what really matters is the satisfactory working of the software-environment pair.

The problem world then may be structured along three dimensions. We need to figure out why a
system-to-be is needed, what needs must be addressed by it, and who in this system will take part in
fulfilling such needs (see Fig. 1.2).

The WHY-dimension

The contextual reasons for a new system version must be made explicit in terms of objectives to be
satisfied by it. Such objectives must be identified with regard to the limitations of the system-as-is and
opportunities to be exploited. This requires some careful analysis. What are those objectives
precisely? What are their ramifications? How do they interact? How do they align with business
objectives?

As we will see it more throroughly in subsequent chapters, such analysis along the WHY dimension is
in general far from simple.

Acquiring domain knowledge. We need to get a thorough understanding of the domain in which the
problem world is rooted. This domain might be quite complex in terms of concepts, regulating laws,
procedures, and terminology. If you are not sufficiently convinced by the complexity of library
management or meeting scheduling, think of domains such as air traffic control, protontherapy, power
plants, or stock exchange. (Chapter 2 will present techniques to help us acquire domain knowledge.)

Evaluating alternative options in the problem world. There can be alternative ways of satisfying the
same identified objective. We need to assess the pros and cons of such alternatives in order to select a
most preferable one. (Chapters 3 and 16 will present techniques to support this task.)

Figure 1.2 – Three dimensions ofRequirements Engineering

Objectives

System-to-beSystem-as-is

Problems,
 opportunities,

domain knowledge

!!!!

Services,

constraints,

assumptions

Satisfy

Assigned to

WHY ?

WHAT ?

WHO ?Software-to-be Existing softwareDevicesPersons

Environment

Fig. 3.1 The three dimensions of requirements engineering (from [139]).

3.2.2 Modeling Requirements

Requirements in software development can be represented at various levels of
abstraction—i.e., different levels of abstraction and detail [131]. Good separation
of requirements abstraction provides a better mean for communicating among
various types of stakeholders [131]. Following Sommerville [131], and Wiegers
and Beatty [155], software requirements could be classified into three levels of
abstraction: business requirements, user requirements, and system requirements.
This is shown in Figure 3.2.

Business
Requirements

User
Requirements

System
Requirements

Fig. 3.2 Level of requirements and their relationships.

3.2.2.1 Business Requirements

Business requirements are high-level requirements. They describe why the orga-
nization is implementing the system—i.e., “the business benefits the organization
hopes to achieve” [155]. Requirements are normally expressed in term of visions,
goals, and business’ objectives.

3.2.2.2 User Requirements

User requirements specify what services the system is expected to provide and
the constrains under which it must operate so that end-users can perform their

29

Requirements Engineering: an Overview

tasks or archive their goals [131, 155]. They are the result of the requirements
elicitation task with clients and end-users. User requirements can be materialized
as statements written in natural language with formal and informal digrams
[79, 131]. In practice, the IEEE-830, Use-Cases, User Stories, and event-response
tables are used for writing user requirements [155].

3.2.2.3 System Requirements

System requirements are derived from user requirements; they are therefore
more detailed than user requirements and describe what exactly has to be
implemented [131]. The system requirement’s documents (sometimes called
functional specification [131]) are the result of the analysis of developers or
software analyst during the design phase. A mathematical model or a graphical
model such as data-flow diagrams, object class hierarchies, etc. are generally
used for system requirements [131]. An appropriate analysis allows a good
derivation of system requirements from the user ones which is important to
ensure that the design of the system always fulfills client’s needs [92].

The terms system in this sense is not just any information system. It
can be referred to all software or it can include both software and hardware
subsystems. Van Lamsweerde [139] further distinguishes this concept into
system requirement and software requirement. A system requirement
is a statement formulated in terms of environmental phenomena that prescribes
something that has to be implemented in the system-to-be in a cooperation with
other system components. For example, “All train doors shall always remain
closed while a train is moving” is a system requirement and “The doors’
state output variable shall always have the value ‘closed’ when the measured
speed input variable has a non-null value” is a software requirement. The
latter kind of requirements comprise statements that are to be enforced solely
by the system-to-be and these requirements are only formulated in terms of
phenomena that are shared between the software and its environment. In this
thesis, we do not distinguish both concepts and we use them interchangeably.

3.3 Requirements Engineering: Dynamic Perspective

This section focuses on the activities involved in RE and its process. Section
3.3.1 exposes the activities involved in RE. Section 3.3.2 presents the RE process.

3.3.1 Basic Stages and Areas in Requirements Engineering

Following Wiegers and Beatty [155], RE could be divided into two mains
areas: requirements development and requirements management. The purpose
of requirements development is to identify, analyze, agree upon, and record
requirements. This discipline is further composed of four activities: requirements
elicitation, requirements analysis, requirements specification, and requirements
validation. The purpose of requirements management is simply to manage
changes in requirements. Figure 3.3 depicts the relationship between different
RE activities; these activities are explained in this section.

30

3.3 Requirements Engineering: Dynamic Perspective

Requirements Engineering

Requirements
Development

Requirements
Management

Requirements
Elicitation

Requirements
Analysis

Requirements
Specification

Requirements
Validation

rewrite
re-evaluate

clarify

correct and close gaps

Fig. 3.3 Requirements engineering disciplines (from [154]).

3.3.1.1 Requirements Elicitation

The requirements elicitation activity is concerned with understanding the ap-
plication domain, services the system should provide, system performance,
hardware constraints, etc. [131]. The clear understanding of the needs of
stakeholders, the system constraints as well as the limitations and deficiencies
of the system-as-is are of critical importance [13, 32, 52, 102]. Information that
has been gathered during this activity often has to be interpreted, analyzed,
modeled and validated. That is also the reason why this activity of eliciting
requirements is often related to the other activities of the RE process [102].
According to Chemuturi [31], Paetsch et al. [106], Pohl [113], Van Lamsweerde
[139], and Wiegers and Beatty [155], there are, in practice, many techniques
that can be used for eliciting requirements from stakeholders; these include
interviews, Use-Cases, scenarios, user-task elicitation, user stories, observation
and social analysis, focus groups, brainstorming sessions, prototyping.

Many authors describe the elicitation of requirements as being the start
of the RE process, Van Lamsweerde [139] nonetheless describes another task
prior to this activity of eliciting requirements as being the first RE activity:
the domain understanding. This task consists of analyzing the strengths and
weaknesses of the system-as-is and the identification and understanding of
the ‘problem domain’. Consequently, the domain understanding is concerned
with the rationale and motives for developing and implementing a new system.
During this activity it is of primary importance to get a clear view on the relevant
stakeholders that need to be involved in obtaining a good understanding of the
business environment in which the system-as-is is situated. The importance of
a good domain understanding in RE is actually also recognized by [32, 52, 106],
but, unlike Van Lamsweerde, these authors describe the domain analysis as
being part of the elicitation activity.

31

Requirements Engineering: an Overview

3.3.1.2 Requirements Analysis

During the requirements analysis activity, requirements gathered in the elicita-
tion activity are analyzed and modeled. It consists of checking and analyzing re-
quirements for necessity, consistency, completeness and feasibility. Furthermore,
conflicting, overlapping and omitted requirements are identified. Conflicting
stakeholder concerns, that result in inconsistent requirement specifications, are
solved through prioritization. Through dialogue with customers, a priority
is attributed to the requirements. An analysis of both risk and impact of
requirements is also included in this activity [52, 106].

Within this activity, modeling tasks are also performed. Models make
requirements easier to understand because they imply the possibility of collecting,
processing, organizing and analyzing smaller amounts of relevant information.
In practice, there are many techniques, modeling notations and languages. The
most popular ones are Unified Modeling Language (UML) [44], Specification
and Description Language (SDL) [132], Structured Analysis Structured Design
(SASD) [157], Petri Nets [99], Goal-based techniques [139, 159], etc.

3.3.1.3 Requirements Specification

Requirements specification is aimed at communicating the requirements between
stakeholders and developers by means of the requirements document which
directly results from activities performed within the different processes in the
RE cycle. In this activity, requirements and features of the system-to-be, which
are the result of the previous activities, are detailed, structured and documented
[155]. The resulting requirements document is used in different activities of
software development as shown in Figure 3.4.

A. van Lamsweerde, Systematic Requirements Engineering - From System Goals to UML Models to Software Specifications. Wiley, 2008.

1.31

• Types of developer involved. The skills required in an outsourced project might be limited to
implementation skills whereas an in-house, greenfield project might require advanced analysis
skills.

• Specific uses of the requirements document. In an outsourced project, the RD is often used as an
annex to the call for tenders, as a base for evaluating submitted proposals, and as a basis for
progress monitoring and product evaluation.

1.1.9 Requirements in the software lifecycle

As we saw it before, the requirements document is the main product of the RE process. It defines the
system-to-be in terms of its objectives, constraints, referenced concepts, responsibility assignments,
requirements, assumptions, and relevant domain properties. It may also describe system variants and
likely evolutions.

Requirements engineering is traditionally considered as the preliminary phase of a software project.
The requirements document may indeed be used subsequently in a variety of contexts throughout the
software lifecycle. Figure 1.7 summarizes the impact of the requirements document on various
software engineering artifacts. The arrows there indicate impact links (which may be bidirectional).
Let us briefly review lifecycle activities where the requirements document may be used.

Software prototyping. In development processes that integrate a prototyping phase, the requirements
already elicited provide input for building an initial prototype or mockup.

Architectural design. A software architecture defines the software organization in terms of
configurations of components, connectors capturing the interactions among components, and
constraints on the components, connectors and configurations (Shaw and Garlan, 1996; Bosch, 2000).
The designed architecture must obviously meet the software requirements. In particular, architectural
choices may have a deep impact on non-functional requirements (Perry and Wolf, 1992). The
requirements document is therefore an essential input for architectural design activities such as:

• the identification of architectural components and connectors,

• their specification to meet the requirements,

• the selection of appropriate architectural styles,

Figure 1.7 – Requirements in the software lifecycle

Impacts on

Requirements

Document

Project estimations

(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,

proposal evaluation

Quality Assurance

checklists

Project contract

Software evolution

directives

Software documentation

Acceptance test data

Implementation

directives
User manual

Fig. 3.4 Requirements in software development (from [139]).

In practice, requirements could be documented in three forms: informal,
semi-formal and formal [114, 131, 139]. The informal form consists of using
natural language or ad-hoc diagrams for documenting requirements. The formal
form consists of using a rigorous mathematical basis or well-defined graphical
notation with well-defined semantic for documenting requirements. Finally, the
semi-formal consists of using natural language augmented with some (graphical)
notations in formal approach [79]. Following Van Lamsweerde [139], the semi-

32

3.3 Requirements Engineering: Dynamic Perspective

formal approach remains the most used technique for documenting requirements
in software projects.

3.3.1.4 Requirements Validation

Requirements validation aims at validating and verifying requirements. It
ensures that all gathered, modeled and documented requirements actually
fulfill the need of all different stakeholders in an accurate and complete way.
This activity is performed by using the requirements document, organizational
standards and organizational knowledge as input [106]. According to Bourque
and Fairley [22], techniques used for requirements validation are requirements
reviews, prototyping, model validation and acceptance tests.

3.3.1.5 Requirements Management

Requirement management is a process in itself. It comprises all activities that
are associated with change control, version control, requirements tracing, and
requirements status tracking [155]. Traceability is a technique used to keep the
relationships between requirements, design, and implementation of a system in
order to manage changes.

3.3.2 Towards a Requirements Engineering Process

According to Van Lamsweerde [139], there are data dependencies among the four
activities of requirements development. This means that requirements analysis
requires input from requirements elicitation; requirements specification requires
inputs from requirements analysis and requirements validation requires inputs
from requirements specification [139]. In practice, these activities are very often
intertwined and interrelated with possible overlap; therefore, these activities
should not be applied in a strict sequence [131, 139, 155]. The process used
for requirements development is widely dependent on the software process and
methodology used for project [155]. In traditional software development with a
waterfall life cycle, these activities are also categorized as phases since every
activity has to be completed before the next one can be started.

In practice, the RE process is often iterative [131]. Van Lamsweerde [139]
and Sommerville [131] represent the RE process with all its activities as being
driven by a spiral model (see in Figure 3.5). Every iteration—as presented
in Figure 3.5—is caused by a need of revising, adapting or extending the
requirements that have already been identified, documented and validated. This
trigger for a new iteration can either occur during the RE process itself, during
other phases in the software development or even after the new system has been
released and implemented.

33

Requirements Engineering: an Overview

R
equirem

ents M
anagem

ent

Requirements Development

Requirements
Elicitation

Requirements
Analysis

Requirements
Validation

Requirements
Specification

Requirements Engineering

System
Requirements

Document

Fig. 3.5 Spiral requirements engineering process (adapted from [131]).

3.4 Categories of Requirements

Requirements are traditionally classified into two kinds: Functional and Non-
functional requirements [79, 131]. Recently a new category has been added
and studied in the RE research community: the Quality requirements [139].
This section is sturctured as follows. Section 3.4.1 overviews the functional
requirements. Section 3.4.2 describes the Non-functional requirements. Section
3.4.3 provides descriptions of quality requirements. In addition, we provide the
characteristics of high-quality of requirement in Section 3.4.4.

3.4.1 Functional Requirements

Functional requirements describe services the system should provide, how the
system should react to particular inputs and how the system should behave in
particular situations [131]. These requirements address the what aspects depicted
in Figure 3.1. They describe what the developers must implement to enable
users to accomplish their tasks [155]. In addition, functional requirements can
be high level and general (user requirements) or they can be detailed, expressing
inputs, outputs, exceptions, and so on (system requirements) [79].

3.4.2 Non-functional Requirements

There are various definitions for non-functional requirements. The basic defi-
nition refers to them as statements for quality aspects of the system such as
“-ilities” (e.g., usability) or “-ities” (e.g., integrity) or some others (e.g., perfor-
mance, user-friendliness, coherence). Sommerville [131] defines non-functional
requirements as “constraints on the services or functions offered by the system.
They include timing constraints, constraints on the development process, and

34

3.4 Categories of Requirements

constraints imposed by standards. Non-functional requirements often apply to
the system as a whole, rather than individual system features or services”.

Van Lamsweerde [139] defines non-functional requirements as “constraints
on the way the software-to-be should satisfy its functional requirements or on
the way it should be developed”. He also provides the taxonomy classification for
non-functional requirements (see Figure 3.6).

A. van Lamsweerde, Systematic Requirements Engineering - From System Goals to UML Models to Software Specifications. Wiley, 2008.

1.17

Functional requirements. Such requirements define the functional effects the software-to-be is
required to have on its environment. They address the “WHAT” aspects depicted in Fig. 1.2. Here are
some examples.

The bibliographical search engine will provide a list of all library books on some given subject.

The train control sofware shall control the acceleration of all system trains.

The meeting scheduler shall determine schedules that fit the diary constraints of all invited participants.

The effects characterized by such requirements result from operations to be automated by the
software. Functional requirements may also refer to environment conditions under which such
operations should be applied. For example,

Train doors may be opened only when the train is stopped.

The meeting scheduler shall issue a warning when the constraints entered by a participant are not valid.

Functional requirements characterize units of functionality that we may want to group by overall
functionality the software should support. For example, bibliographical search, loan management, or
acquisition management are overall functionalities of the library software-to-be. Units of functionality
are sometimes called features in some problem worlds –e.g., call forwarding or call reactivation are
features generally provided in telephony systems.

Non-functional requirements. Such requirements define constraints on the way the software-to-be
should satisfy its functional requirements or on the way it should be developed. For example,

The format for submitting bibliographical queries and displaying answers shall be accessible to students
having no computer expertise.

Acceleration commands shall be sent to every train every 3 seconds.

The diary constraints of a participant may not be disclosed to any other invited participant.

Categories of non-functional requirements. The wide range of such constraints makes it helpful to
classify them in a taxonomy (Davis, 1993; Roberston, 1999; Chung, 2000). Specific classes can then
be characterized more precisely. Browsing through the taxonomy may help us acquire instances of the
corresponding classes that might have been overlooked (Section 2.2.7 will come back on this).

Fig. 1.5 outlines one typical classification. The taxonomy there is not meant to be exhaustive although
it covers the main classes of non-functional requirements.

Quality requirements constrain software effects on the environment to have additional, quality-related
characteristics. They are sometimes called “quality attributes” in the software engineering literature.

Figure 1.5 – A taxonomy of non-functional requirements

Non-Functional Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software

interoperability

Convenience

Interface

User

interaction

Device
interaction

Subclass link

Accuracy

Cost

Fig. 3.6 A taxonomy of non-functional requirements (from [139]).

In addition, the difference between functional and non-functional require-
ments is that a functional requirement is completely satisfied and non-functional
requirements are only satisfied up to a certain level.

3.4.3 Quality Requirements

According to Van Lamsweerde [139], quality requirements complement the what
aspects with how well aspects of requirements. He defines quality requirements
as “additional, quality-related properties that the functional effects of the software
should have”. Quality requirements are previously known as ‘quality attributes’
of non-functional requirements; they appear on the left-hand side of Figure 3.6.

3.4.4 Features of High-Quality Requirements

Concerning high-quality requirements, there are various lists of criteria for
writing good requirements provided by different authors; and most of them are
similar. According to Bijan et al. [17], Hull et al. [65], IEEE29148:2011[72],
Roman [120], and Van Lamsweerde[139], hight quality requirements must be
complete, precise, pertinent and adequate so that the system-to-be satisfies all
objectives and actually tackles all problems that have been identified using the
system-as-is as input. Unambiguity and consistency are two other important
features of good requirements. It should not be possible to interpret a require-
ment in more than one way and all requirements should be compatible (i.e.,
non-contradictory). For the sake of sound project management, requirements
have to be measurable and have to be implemented within a certain budget and
schedule (i.e., feasible). Requirements also have to be testable since they are used
to check whether or not the designed software product provides a solution for
the defined problems and needs. Furthermore, requirements should be specified
in a structured way so that they are comprehensible for all stakeholders involved
in the software development project. Requirements should be written in short

35

Requirements Engineering: an Overview

sentences and short paragraphs in an active voice and only one process verb per
sentence and each sentence possesses only one requirement [114].

However, it is not possible to fulfill all the aforementioned characteristics in
practice. For example, it is hard to have complete requirements at the beginning
of the project [53]. Stakeholders have their bounded rationality to express their
needs during a limited time frame; new needs always appear when stakeholder
see and use system [153].

3.5 Using Natural Language for Requirements

In this section, we provide an overview of using Natural Language (NL) in
RE. Section 3.5.1 discusses the basic characteristics of NL in RE. Section 3.5.2
explains the use of structured NL to overcome some challenges of prose NL.

3.5.1 Natural Language: Pros and Cons

NL, particularly prose, has been wildly and commonly used for writing require-
ments since the beginning of software engineering [114, 131]. It consists of using
our daily language such as English, French, Dutch, German, etc. for formulating
and documenting requirements [114].

According to Pohl [114], Sommerville [131] and Van Lamsweerde [139], the
prose provides several advantages over other approaches for expressing and
writing requirements. It is expressive, intuitive and universal. The latter means
that NL can be used for writing requirements in any area and domain. Intuitive
refers to NL is basically an every-day language; therefore requirements can be
understood by any stakeholder without additional training [114, 139]. Finally,
expressive refers to the fact that NL provides no limitation for writing any kind
of requirements [139].

On the other hand, NL are notoriously prone to many problems [114, 155,
139]; basically, it can be an obstacle to get good requirements (see Section
3.4.4). The drawback could result in risks and/or possible pitfalls in succeeding
a software project [43]. The major disadvantage of NL is ambiguity—i.e.,
ambiguities are adherent to NL. Ambiguity in NL refers to the possibility to
interpret them in more than one way; this can be harmful for a software project
[97, 139]. When using NL for documenting requirements as a whole, additional
drawbacks appear. The most frequent ones are forward references and remorse.
Forward references refers to “requirements document item making use of problem
world features that not defined yet” and remorse refers to a “requirements
document item stating a problem world feature too late or incidentally” [97,
139]. Moreover, it is also hard to localize specific information in a long list of
requirements. Last but not least, it is hard to build a supporting tool allowing
to do automated analysis due to the absence of formalization.

Sommerville [131] recommends simple guidelines for writing requirements in
order to reduce the aforementioned problem; they are described as follows:

• Build a standard format and ensure that all requirements definitions
adhere to that format;

36

3.5 Using Natural Language for Requirements

• Use language consistently to distinguish between mandatory and desirable
requirements. For example, use ‘shall’ for mandatory requirements and
‘should’ for desirable requirements;

• Use text highlighting (e.g., bold, italic, or color) to pick out key parts of
requirements;

• Do not assume that reader understands a technical software engineering
language. The jargon, abbreviation and acronyms must be avoided for
writing requirements;

• Try to associate a rational with each requirement. The rational should
explain why the requirements have been included.

3.5.2 Use of Structured Natural Language

According to Sommerville [131], Structured Natural Language (SNL) “is a way
of writing system requirements where the freedom of the requirements writer
is limited and all requirements are written in a standard way”. Following Van
Lamsweerde [139], there are two rules that have to be respected when writing
and documenting requirements: the global and the local rule.

The global rule is concerned with how the requirements documents should
be organized as a whole. Basically, these include rules for grouping related
requirements and a global template for standardizing the requirements structure;
this is commonly known as Software Requirements Specification (SRS). In
practice, we use the template proposed by the standardization institute such
as IEEE-830 Standard [68]. Figure 3.7 is an example of requirement document
template. However, this thesis is not concerned by the global rule; it is more
concerned on the local rule.

Fig. 3.7 IEEE Std 830 document structure (from [68]).

The local is concerned about how each requirements statement is written.
There are several techniques allowing writing each requirements statements

37

Requirements Engineering: an Overview

[139, 155]. As an example, we can use table for writing complex requirements,
programming language or even a predefined template. Our research is more
concerned about using predefined template. Pohl [114] defines a requirement
template as a “blueprint for the syntactic structure of individual requirements”.
Figure 3.8 is an example of template of how each requirement should be strictly
written; more templates could be found in [114].

5.2 Requirement Construction using Templates 55

In step 3, any kind of system activity that is specified by a requirement of

the system is documented using exactly one of three requirements tem-

plates. These requirements templates are described in more detail in the

following sections.
After performing steps 1 through 3, the structure of the requirement

has been developed (see figure 5-2). The words that are written in angle

brackets must be replaced accordingly.

Figure 5-2 The core of a requirement and its legal obligation

Type 1:

Autonomous system activity

The first template type is used when requirements are constructed that

depict system activities that are performed autonomously. The user does

not interact with the activity. We define the following requirements

template:

<Process verb> depicts a process verb as described in step 2, e.g., print for

print functionality or calculate for some calculation that is performed by

the system.
Type 2:

User interaction

If the system provides a functionality to a user (for example, by means

of an input interface), or the system directly interacts with a user, require-

ments are constructed using template type 2:

The user that interacts with the system is integrated into the requirement

through <whom?>.

Type 3:

Interface requirement

If the system performs an activity and is dependent on neighboring

systems, the third template type is to be used. Whenever messages or data

THE SYSTEM

<system name>

SHALL

WILL

PROVIDE <whom?> WITH

THE ABILITY TO <process

verb>

BE ABLE TO

<process verb>

<process verb>

SHOULD

MAY

THE SYSTEM SHALL/SHOULD/WILL/MAY <process verb>

THE SYSTEM SHALL/SHOULD/WILL/MAY provide <whom?> with the ability to

<process verb>

Fig. 3.8 Requirements template (from [114]).

A requirement template has several advantages to overcome the flows of
NL described in Section 3.5.1. According to Pohl [114], Sommerville [131] and
Van Lamsweerde [139], this technique is helpful for presenting requirements in
a standardized form and so to build high quality requirements. The template
increases the expressiveness, understandability, uniformity, and traceability. In
addition, by using a template, the problem of ambiguity of requirements and
variability of requirements can be reduced.

It is nevertheless sometimes difficult to write requirements by respecting a
template for some particular problems [131]. For example, it is difficult to write
requirements about how the system state change, how users interact with the
system and how sequences of actions are performed. Other techniques such as a
graphical model can better explain the problem. Following Pohl [114], using a
template can be an obstacle to the creativity of the development team so that
Pohl recommends to use requirement templates complementarily to other tools.

3.6 Using a Graphical Model for Representation Require-
ments

This section aims at reviewing the relevance of requirements graphical modeling
languages. Specifically, we focus on the Use-Case model and the i* framework.
Section 3.6.1 provides background of graphical modeling languages. Specifi-
cally, we discuss on the advantages of Goal-Oriented Requirements Engineering
(GORE) over the traditional RE. The next two sections focus on reviewing the
basic notions of the both techniques. Section 3.6.2 briefly revises the Use-Case
model. Finally, Section 3.6.3 provides the basic notions of the (GORE) i*
modeling framework.

38

3.6 Using a Graphical Model for Representation Requirements

3.6.1 Overview

Graphical modeling is a kind of modeling that uses a graphical notation in a
model [131]. According to Wiegers [155], due to the limitation of short-term
human memory, people have difficulty in analyzing long lists of requirements for
inconsistencies, duplication, and extraneous. He argues that visual requirements
models, in the sense of graphical models, can help us to identify missing,
extraneous, and inconsistent requirements. Pohl [114] defines a model as “an
abstract representation of an existing reality or a reality to be created”. Van
Lamsweerde [139] defines a model as “an abstract representation of the target
system, where key features are highlighted, specified and inter-related to each
other”. The latter author states that a ‘good’ system model may act as a driving
for the RE process, because:

• “It provides a comprehensive structure for what needs to be elicited, evalu-
ated, specified, consolidated and modified;

• It allows us to abstract from multiple details of focus elicitation, evaluation,
specification, quality assurance and evolution on key system aspects;

• It defines a common interface between those various RE activities, each
acting as a producer or consumer of portion of it;

• It provides a basis for early detection and fixing of errors in requirements,
assumptions and domain properties;

• It facilitates the understanding of complex systems and their explanation
to stakeholders;

• It provides a basis for making decisions among multiple options and for
documenting such decision;

• It defines the core RE artifact from which the requirements document can
be generated” [139].

According to Pohl [114], a graphical model is normally defined by two
elements—i.e., syntax and semantic. Syntax refers to “the syntax of a modeling
language defines the modeling elements to be used and specifies the valid com-
binations thereof ” and semantic refers to “the semantics defines the meaning
of the individual modeling elements and serves therefore as a foundation for
the interpretation of the models”. The model could be informal, formal, and
semi-formal depending on the degree of formalization of each model.

There are many graphical models existing in software engineering literature
and requirements engineering literature [114, 131, 155]. Basically, we can classify
those graphical models into two types: conventional and goal-oriented. Goal-
oriented or GORE consist in using the goal concept as modeling element. The
conventional model does not include the goal concept. Van Lamsweerde [139]
define a goal as “a prescriptive statement of intent that the system should satisfy
through the cooperation of its agents”. The most used conventional diagram are
Use-Case model, activity diagram, state machine, data flow diagram, etc. Among

39

Requirements Engineering: an Overview

these most are industry adopted. GORE model nevertheless remain research
frameworks that are not industry adopted. KAOS [139] and i* framework are
examples of GORE framework.

GORE framework have emerged due to the lacks of traditional RE [80, 140];
it has been gaining interest and attention in the literature during the last
decades [138]. According to Anton [10], Lapouchnian [80], Pohl [114], and Van
Lamsweerde [138, 139], GORE has several advantages over traditional RE. In
the traditional approach we can only capture WHAT and WHO dimensions,
while GORE also deals with the WHY dimension. This allows GORE to build a
deeper rationale behind a requirement which leads to a better understanding of
the system-to-be. In addition, GORE can also improve the requirements process,
better identify irrelevant requirements, provide more stable requirements, assure
the completeness of project, and ease of communication among stakeholders.

3.6.2 The UML Use-Case Model

Use-Case modeling was originally proposed by Jacobson et al. [73] in the early
90s for modeling requirements in Object-Oriented software development and has
been widely used as a technique to support requirements elicitation and analysis
[23, 131]. The model aims at capturing the interaction between actors and the
system. Fundamentally, the Use-Case model is based on two concepts that are
used in conjunction with one another: the Use-Case diagram and the Use-Case
specification. The Use-Case diagram has become a fundamental feature of the
Unified Modeling Language (UML) [104]. In this thesis, we specifically review
the UML Use-Case [104].

3.6.2.1 The UML Use-Case Model Elements

Figure 3.9 exposes the most essential modeling elements of the UML Use-Case
model which are related to this research; the interested reader can refer to the
OMG Unified Modeling Language Specification [104] for more information.

According to Pohl [114], the most important Use-Case model elements are:

• Use-Case: A Use-Case specifies some behavior that a subject can perform
in collaboration with one or more Actors;

• Actor : An Actor models a type of role played by an entity that interacts
with the subjects of its associated Use-Case. Actor may represent roles
played by human users, external hardware, or other systems;

• System boundary: System boundaries within a Use-Case diagram separate
the parts of the Use-Case that are part of the system from the parts
(people or systems) that are outside the system boundary;

• Extend relation: An extend is a relationship from an extending Use-Case
to an extended Use-Case that specifies how and when the behavior defined
in the extending Use-Case can be inserted into the behavior defined in
the extended Use-Case;

40

3.6 Using a Graphical Model for Representation Requirements

Nodes

[Name] Use Case

[Name]

Actor (person)

<<system>>

[Name]

Actor (system)

[Name

System boundary

Use Case 1

Use Case 2

<<extend>

Use Case 1

Use Case 2

<<include>

[Name]

Use Case 1

Relation

between actors

and use cases

Relations

Fig. 3.9 Essential Use-Case elements (adapted from [114]).

• Include relation: Include is a directed relationship between two Use-Cases,
indicating that the behavior of the included Use-Case (the addition) is
inserted into the behavior of the including Use-Case.

3.6.2.2 The UML Use-Case Diagram

The Use-Case diagram is a composition of actors and Use-Cases with links to
each others by the means of relation (see Figure 3.10). It allows to document
the interrelations of the functionalities of a system and the relations between
these functionalities and their environment from a user’s perspective.

 Navigation System

Navigate to destination
Extension Points :

avoid congestion

Download

traffic information

Retrieve

current position

Input

destination

Driver

<<system>>

Traffic information

server

<<system>>

GPS satellite system

Fig. 3.10 An example using modeling elements of Use-Case diagrams (from
[114]).

Figure 3.10 presents an example of Use-Case Diagram of a Navigation System.
The model comprises of the Use-Cases Navigation to destination, Download
traffic information, Retrieve current position, and Input navigate

41

Requirements Engineering: an Overview

to destination and the actors Driver, Traffic information server, and
GPS satellite system.

Specifically, the include relations are used to link the Use-Case Navigate to
destination with the Use-Cases Input destination and Retrieve current
position. The relationship depicts that the interaction steps defined in the
Use-Case Navigate to destination adhere to the interaction steps defined in
the Use-Cases Input destination and Retrieve current position.

The Use-Case Download traffic information is related to the Use-Case
Navigate to destination with the extend relation. The relationship de-
picts that the interaction steps defined in the Use-Case Download traffic
information are included in the interaction steps of the Use-Case Navigate
to destination when the condition Avoid congestion is attained. The ex-
tension point Avoid congestion depicts the steps in the Use-Case Navigate
to destination at which the additional interaction steps are being executed.

3.6.2.3 Use-Case Specifications

Basically, the Use-Case diagram provides an overall view of the system—i.e.,
the system’s relevant functionalities from a user’s perspective and specific
relationships between the functionalities of the system or between functionalities
of the system and aspects in the system’s context. Nevertheless, the detail of
interactions of a Use-Case are not documented in the Use-Case diagram; they
are documented in other form, for example, by using a simple text description
or a structured description in a table or a sequence diagram [131].

In general, the details of a Use-Case are documented in a textual specification
with a defined template. There are many templates available in the literature;
we specifically present, in Table 3.1, a reference template for writing a Use-Case
Specification. An explicit example of Use-Case specification can be found in
[114, 131, 155].

Essentially, the Use-Case Specification template contains the following at-
tributes:

• Attributes for unique identification of Use-Cases (rows 1 and 2);

• Management attributes (rows 3 through 7);

• Attribute for the description of the Use-Case (row 8);

• Specific Use-Case attributes—e.g., the trigger event (row 9), actors (row
10), pre- and post-conditions (rows 11 and 12), the result of the Use-Case
(row 13), the main scenario (row 14), alternative and exception scenarios
(rows 15 and 16), and cross references to quality requirements (row 17).

42

3.6 Using a Graphical Model for Representation Requirements

Table 3.1 Template for textual Use-Case documentation (from [114]).

Template for Textual Use-Case Documentation
N. Section Content / Explanation
1 Designation Unique designation of the Use-Case.
2 Name Unique name of the Use-Case.
3 Authors Names of the authors that were involved in this

Use-Case description.
4 Priority Importance of the Use-Case according to the ap-

plied prioritization technique.
5 Criticality Criticality of the Use-Case, e.g., with respect to

how much damage a failure of the Use-Case may
cause.

6 Source Designation of the source from which the Use-Case
was elicited ([stakeholder | document | system]).

7 Person responsi-
ble

The stakeholder who is responsible for this Use-
Case.

8 Description Brief description of the Use-Case.
9 Trigger event Name of the event that triggers this Use-Case.
10 Actors List of all actors that are involved in this Use-Case.
11 Pre-conditions List with all necessary constraints that must be

met before the Use-Case can begin execution.
12 Post-conditions List of all states the system can be in immediately

after the execution of the main scenario.
13 Result Description of the results that are produced during

Use-Case execution.
14 Main scenario Description of the main scenario of the Use-Case.
15 Alternative sce-

narios
Description of the alternative scenarios of the Use-
Case or list of the trigger events of alternative
scenarios. Often, post-conditions different than
those described in (12) may hold.

16 Exception scenar-
ios

Description of the exception scenarios of the Use-
Case or list of the trigger events of exception sce-
narios. Often, post-conditions different than those
described in (12) may hold.

17 Qualities Cross references to quality requirements.

3.6.3 The i* Framework

The i* framework is a GORE framework that was originally proposed in [159].
The framework attempts to articulate a notion of distributed intentionality:
actors depends on other actors for goals to be achieved. This has shift the
requirements modeling and analysis towards one that is based on analyzing and
describing social relationships among actors [159]. In addition, the framework
focuses on providing an answer to the why-question behind the what and how
aspect of a project [160]. This framework has been adapted and adopted in
many fields including requirements engineering, business redesign, business
organization, security, etc. Typically, this framework has become the prime

43

Requirements Engineering: an Overview

requirements model for agent-oriented software engineering, though the Tropos
methodology [29]. Since November 2008, the i* framework has become part of
ITU Standard2.

Fundamentally, the i* framework is composed of two models: the Strategic
Dependency (SD) and the Strategic Rationale model (SR) ones [159]. The
SD model is used for representing the dependency relationships between the
different actors within the organization. The SR model represents the rationales
of the different actors concerning the different organizational processes. We
review both models in the following sections. We do not however review all of
the feature of i* framework but only the basic features that are relevant to this
thesis; the interested reader can find more information in [159].

3.6.3.1 The i* Framework Elements

This section provides the syntax and semantic of the i* framework elements used
in both the SD and SR models. Figure 3.11 shows the graphical representation
of the elements; following Yu et al. [159], the elements are:

[Name]

[Name]

Nodes

[Name] Use Case

[Name]

Actor (person)

<<system>>

[Name]

Actor (system)

[Name]

System boundary

Use Case 1

Use Case 2

<<extend>

Use Case 1

Use Case 2

<<include>

[Name]

Use Case 1

Relation

between actors

and use cases

Relations

Nodes Relations (SD)

Relations (SR)

Actor

Actor Boundary

Hard-goal

Soft-goal

Task

Resource

Role

Hard-goal dependency

Soft-goal dependency

Task dependency

Resource dependency

Task

Decomposition

Hard-goal

Means-End

Soft-goal

Contribution

Fig. 3.11 The i* elements.

• Actor : “An actor is an active entity that carries out actions to achieve
goals by exercising its know-how”;

• Role: “A role is an abstract characterization of the behavior of a social
actor within some specialized context or domain of endeavor”;

• Hard-goal: “A hard-goal is a condition or state of affairs in the world that
the actors would like to achieve”;

2http://www.itu.int/rec/T-REC-Z.151/en

44

3.6 Using a Graphical Model for Representation Requirements

• Soft-goal: “A soft-goal is a condition or state of affairs in the world that
the actor would like to achieve. But unlike a hard-goal, there are no
clear-cut criteria for whether the condition is achieved, and it is up to the
developer to judge whether a particular state of affairs in fact achieves
sufficiently the stated of soft-goal”;

• Task: “A task specifies a particular way of attaining a goal”;

• Resource: “A resource is the finished product of some deliberation-action
process”;

• Dependency Link: It represents a dependency relation between two actors.
There are four types of dependency within the i* framework: Hard-goal,
Soft-goal, Task, and Resource; the detail of each dependency is described
in the following section;

• Decomposition Link: A task element is linked to its component nodes by
decomposition links. A task can be decomposed into four types of elements
(i.e., subgoal, subtask, resource, and/or a Soft-goal) which correspond to
the four types of elements. The task can be decomposed into one to many
of these elements. These elements can also be part of dependency links in
SD model(s) when the reasoning goes beyond an actor’s boundary;

• Means-end Links: The Means-end links indicate a relationship between
an end and a mean for attaining it. The ‘mean’ is expressed in the form
of a task, since the notion of task embodies how to do something, while
the ‘end’ is expressed as a goal. In the graphical notation, the arrowhead
points from the means to the end;

• Contribution Links: The Contribution link can be used to link any of the
elements to a soft-goal to model the way any of these elements contribute
to the satisfaction or fulfillment of the soft-goal.

3.6.3.2 Strategic Dependency Model

The SD model aims to capture the intentional structure of a process instead
of the usual nonintentional and nonstrategic process models of activities and
entities. The SD model is actually a graph representing network of actors
with intentional dependency relationships among actors; the dependency is
known as strategic dependency. A dependency (called dependum) describes the
need of participation or agreement in order to accomplish a particular goal of
the depender actor from the dependee actor. This model particularly allows
identification of stakeholders, the analysis of opportunities and vulnerabilities
and the identification of relationship patterns.

Basically, there are four types of dependum: Hard-goal, Soft-goal, Task, and
Resource. Therefore, Yu et al. [159] highlight that the SD model has four types
of dependencies, these are:

• Hard-goal dependency: The depender depends on the dependee to bring
about a certain state in the world. The dependee is given the freedom to
choose how to do it;

45

Requirements Engineering: an Overview

• Soft-goal dependency: A depender depends on the dependee to perform
some task that meet a softgoal;

• Task dependency: The depender depends on the depeendee to carry out
an activity. A task dependency specifies how the task is to performed but
not why;

• Resource dependency: One actor (the depender) depends on the other
(the dependee) for the availability of an entity (physical or informational).
By establishing the dependency, the depender gains the ability to use this
entity as a resource.

Meeting

Initiator

Enter Available

Date

Meeting

Scheduler

D

Proposed

Date

D

Attends MeetingD

D

Enter

DateRange

D
D

Meeting

ParticipantD

D

Agreement

D

D

MeetingBe

Scheduled
D

D

Actor
Goal Task Resource

Dependency Link

Softgoal

D

Legend:

Fig. 3.12 Strategic Dependency model for Meeting Scheduling (adapted from
[159]).

The Figure 3.12 presents an example of SD model for Meeting Scheduling
with the support of Meeting Scheduler system. The main functionality of
Meeting Scheduler is to find the best date in order to maximize the number of
participants from ranges of date provided by the Meeting Initiator for organizing
a meeting. The system systematically communicates with Meeting Participants
for their availabilities on those dates range and the system chooses the best
date for the meeting.

The Meeting Scheduling’s SD model consists of two human actors—i.e., the
Meeting Initiator and the Meeting Participant; and one system actor—
i.e., the Meeting Scheduler. The Meeting Initiator depends on the Meeting
Participant for the goal Attends Meeting. The Meeting Initiator de-
pends on the Meeting Scheduler for the goal MeetingBeScheduled; while the
Meeting Scheduler depends on the Meeting Initiator for the task Enter
DateRange. Once the dates range are entered, the Meeting Scheduler depends
on the Meeting Participant for the task Enter Available Date. Then, the
Meeting Scheduler merges all availability dates provided by the participants

46

3.6 Using a Graphical Model for Representation Requirements

for the best date with maximum number of participants and communicate that
date to participants and wait for their agreements. Therefore, the Meeting
Participant depends on the Meeting Scheduler for the resource Proposed
Date and the Meeting Scheduler depends on the Meeting Participant for
the resource Agreement.

3.6.3.3 Strategic Rationale Model

The SR model aims at capturing intentional elements of actors and their ratio-
nale behind each dependency relationship. It allows visualizing the intentional
elements into the boundary or an actor in order to refine the SD model to add
reasoning ability. This model is based on the elements of SD model.

The SR model basically consists of four main elements—i.e., hard-goal,
soft-goal, task and resource—and three type of links—i.e., means-end link,
decomposition link and contribution link. Figure 3.13 exposes an example of SR
model for the Meeting Scheduler described in the previous section.

Meeting

initiator Organize

Meeting D

MeetingBe

ScheduledQuick Low Effort

LetScheduler

Schedule

Meeting

Obtain

Agreement

Schedule

Meeting

Schedule

Meeting

Find Agreeable

Slot

|

Participate in

Meeting

Attends

Meeting

Attend

Meeting

Arrange

Meeting

Convenient

(Meeting, Date)

Quality

(ProposedDate)

Low Effort
Agreeable

(Meeting, Date)

+

Find

AgreeableDate

UsingScheduler

Agree to Date

+ User

Friendly
|

+

Enter

AvailableDate

Proposed

Date

Meeting

participant

D

D

D

Meeting

Scheduler

+|

Obtain

AvailableDate

Merge

AvailableDate

MeetingBe

Scheduled
Enter

DateRange

D

D

D

D

D

Agreement

D

Richer

Medium

|

FindAgreeable

DateByTalking

ToInitiator

+

+

D

D

Actor
Actor

Boundary Goal Task Resource
Dependency Link Means-End Link Decomposition Link

Softgoal

D

Contribution Link

Legend:

Fig. 3.13 Rationale Dependency model for Meeting Scheduling (adapted from
[159]).

47

Requirements Engineering: an Overview

Figure 3.13 shows an example of an SR diagram refined from the SD diagram
presented in Figure 3.12; we partially describe it here. We can see that the strate-
gic dependencies are linked to the intentional elements. We observe that the
Meeting Scheduler has a main task ScheduleMeeting. This task is decomposed
with a task decomposition link into the hard-goal Find Agreeable Slot and
two tasks Obtain AvailableDate and ObtainAgreement. The hard-goal Find
Agreeable Slot is the end achieved by the mean task MergeAvailableDate.
Likewise, the Meeting Initiator has the main task OrganizeMeeting which
is decomposed into two soft-goal Quick and Low Effort and a hard-goal
MeetingBeScheduled. The latter is the end for the task ScheduleMeeting and
LetSchedulerScheduleMeeting. The task ScheduleMeeting contributes nega-
tively to both soft-goals Quick and Low Effort. The task LetSchedulerSched
uleMeeting contributes positively to the soft-goal Low Effort.

3.7 Conclusion

This chapter has presented a basic overview on RE. It focuses mainly on
RE activities and requirements artifacts such as the use of NL for writing
requirements as well as graphical models for modeling requirements. More
precisely, it has overviewed two graphical models that are relevant to this thesis,
the i* framework and the Use-Case model.

Since its critical and fundamental importance has gradually been recognized,
RE has gained a lot of interest in both literature and software industry during
the last decades. Missing, poorly communicated, inconsistent, incomplete and
ambiguous requirements are major threats for the success of a software project
in that it increases the likelihood of developing a wrong system. This could
potentially lead to huge losses. Without RE, software developers should not know
what to develop, users should not know what to expect and, more importantly,
project teams should be unable to verify if the designed system meets the initial
business needs.

The complexity of (large) software systems leads to the necessity to use
advanced development methodologies allowing to increase the level of under-
standing of the problem continuously over the Software Development Life Cycle
(SDLC). In this, waterfall based SDLC fail to furnish a constant reevaluation of
the current software problem understanding as well as the capacity to embrace
identified requirements changes. RE should thus not be considered as a phase
achieved once and for all in the SDLC but repeated iteratively along the software
development like in agile methods. This is studied into the next chapter.

48

Chapter 4

Requirements Engineering in Agile
Methods

Requirements Engineering (RE) is an essential discipline for any software
development methodology. However, the approach for modeling requirements of
each methodology might be different from one to another. The waterfall model
addresses RE as a single phase. Requirements are modeled and documented
before the other phases of software development are tackled. In agile methods,
on the other hand, RE activities are continuous along the development life
cycle. RE activities take place just before each iteration starts. In addition,
agile methods have proposed User Stories (US), the main requirements artifact
for conducting RE activities. Most of RE activities in agile methods that have
been proposed adhere to US artifacts. The main focus of this chapter is to
study the US within agile methods. Particularly, we concentrate on reviewing
different techniques for visualizing US, but also models that are often used by
agile practitioners next to US. Furthermore, we briefly overview planning within
agile methods.

This chapter is structured as follows. Section 4.1 discusses the relationship
between RE activities and agile practices for conducting requirements. Section
4.2 discuses requirements artifact proposed by agile methods—i.e., the US.
Section 4.3 reviews different visualizing techniques for US and models used by
agile practitioners next to US. Section 4.4 provides a brief overview on planning
within agile methods based on US artifacts. Finally, Section 4.5 concludes the
chapter.

4.1 Requirements Engineering Activities in Agile
Methods

RE and agile methods are often seen as being incompatible since RE is frequently
conceived as a phase heavily relying on documentation for sharing knowledge
[106]. However, the study in [146] reveals that RE is critical for project success
in agile methods. According to Ramesh et al. [117], agile RE practices generally
do not follow the RE principles. Nonetheless, agile methods do address all the
RE activities (see Section 3.3.1) [13, 91, 117]. Table 4.1 provides the mapping
of XP’s and Scrum’s practices with RE activities.

49

Requirements Engineering in Agile Methods

Table 4.1 Requirements engineering implementation in XP and Scrum (from
[91]).

RE activity XP’s practice Scrum’s practice
Requirements
Elicitation

•Requirements elicited as
stories;

•Product Owner formu-
lates the Product Backlog;

•Customers write user sto-
ries.

•Any stakeholder can par-
ticipate in the Product
Backlog.

Requirements
Analysis

•Not a separate phase; •Backlog Refinement Meet-
ing;

•Analyze while developing; •Product Owner prioritizes
the Product Backlog;

•Customer prioritizes the
user stories.

•Product Owner analyzes
the feasibility of require-
ments.

Requirements
Specification

•User stories & Acceptance
tests as requirements docu-
ments;

•Face-to-face communica-
tion.

•Software products as per-
sistence information;
•Face-to-face communica-
tion.

Requirements
Validation

•Test Driven Development
(TDD);

•Review meetings.

•Run acceptance tests;
•Frequent feedback.

Requirements •Short planning iteration; •Sprint Planning Meeting;
Management •User stories for tracking; •Items in Product Backlog

for tracking;
•Refactor as needed. •Change requirements

are added/deleted to/from
Product Backlog.

Agile methods are often applied in an environment where requirements are
unstable or unknown and change is the norm. In such situations, it is hard
to build high-quality requirements documents as recommended by RE (see
Section 3.4.4). These have lead to some agile RE practices. Particularly, XP
has proposed US for writing requirements. US have become fundamental in
agile methods. We will discuss about the latter in the next section.

4.2 User Stories: the Requirements Artifacts of Agile
Methods

This section studies US in detail. Section 4.2.1 provides an overview of US.
Section 4.2.2 provides different frameworks for writing quality US. Section
4.2.3 explores the US templates. Section 4.2.4 presents several concepts used

50

4.2 User Stories: the Requirements Artifacts of Agile Methods

next to US. Section 4.2.5 provides the differences between US and some other
requirements artifacts. Finally, Section 4.2.6 provides the advantages and
disadvantages of using US in an agile project.

4.2.1 User Story Overview

US are the main requirements artifacts of agile methods. US have initially
been proposed by Kent Beck in eXtreme Programming (XP) for the value of
simplicity [16]. It has, since then, been adopted by other agile methods (e.g.,
Scrum, AgileModeling [7], ...). Beck and Fowler [16] argue that “the [user
story] is the unit of functionality in an XP project. We demonstrate progress by
delivering tested, integrated code that implements a [user story]. A [user story]
should be understandable to customers and developers, testable, valuable to the
customer, and small enough so that the programmers can build half a dozen
in an iteration”. In addition, they describe US as “a chunk of functionality
(some people use the word feature) that is of value to the customer”. Cohn [38]
describes US as “a short, simple description of a feature told from the perspective
of the person who desires the new capability, usually a user or customer of the
system”.

Basically, US are written by end-users; this implies the end-user to be part of
the software development process like in End-User Development (EUD) [84]. It
is a text of maximum of two lines written in the everyday or business language
(thus natural language) by the end-user of a system. According to Beck and
Fowler [16], the best US should describe something important to the end-user,
and, the shorter the US the best. Traditionally, US are written down on index
cards (see Figure 4.1) but nowadays also through the use of specially designed
Computer Aided Software Engineering (CASE) tools (i.e., software such as
Excel, JIRA1, etc.) allow us writing and managing US [48].

Fig. 4.1 User story index card (from [8]).

4.2.2 Features of High-Quality User Stories

Beck and Fowler have initially provided several principles of how US should be
written in [16]. These are: (1) US must be understandable to the customer ; (2)
Each US must provide something of value to the customer ; (3) Developers do

1https://www.atlassian.com/software/jira

51

Requirements Engineering in Agile Methods

not write US ; (4) US need to be of a size that several of them can be completed in
each iteration; (5) US should be independent of each other, and finally; (6) Each
story must be testable. Nevertheless, several explicit models for high-quality US
have been developed for improving requirements in agile methods. We describe
the INVEST model, the INSERT model and the Quality User Story Framework
in the following subsections.

4.2.2.1 INVEST Model

The INVEST model was proposed by Bill Wake [36, 83, 145]. According
to Wake, a good US must respect the six attributes of the INVEST model.
These attributes are Independent, Negotiable, Valuable, Estimable, Small, and
Testable; these attributes constitute the INVEST acronym. Following Cohn [36],
Leffingwell [83], Patel and Ramachandran [108], and Wake [145], we describe
these attributes as follows:

• Independent: This means that each US must not depend on any other US;
it means that a US can be prioritized, developed, tested and, potentially,
even delivered on its own. Dependency between US leads to prioritization,
estimation and planning difficulty;

• Negotiable: US should be written to capture the essence of requirements
and not their details. The details of US are later co-developed by develop-
ers and end-users. By doing this, we can keep US negotiable. According
to Leffingwel [83], a US should not serve as a contract; it is rather a place-
holder for requirements to be discussed, developed, tested, and accepted.
Ideally, US contain one to two phrases that act as a reminder in order to
have a conversation and possibly some notes about issues that are to be
solved during the conversation with the end-user;

• Valuable: US are written is such a way that provides benefits and value to
end-users. That is why, in agile methods, it is recommended that end-users
write US instead of developers. It allows them to better prioritize the
different US within the development schedule;

• Estimable: It is important that, for each US, the development team is
able to provide an estimation of its complexity, amount of work and time
required to transfer it into a working software code. The estimation is
based on the team’s experience; a good estimation has a positive impact
on team’s predictability;

• Small: US should be small enough so that they can be implemented in
one iteration; therefore, they provide value to customer. When US are too
big or too broad it becomes hard to estimate, so that they are useless in
planning activities. These types of US are known as Epic US; they need
to be spitted into smaller and estimable US [39]. Conversely, there can
also be too small; these are also problematic for the planning. These US
should be combined with each other to make a bigger one [39], Theme
US ;

52

4.2 User Stories: the Requirements Artifacts of Agile Methods

• Testable: Each US should be written in such a way that it is possible to
test whether or not the desired functionality is successfully implemented
and transferred into working code.

4.2.2.2 INSERT Model

As for the INVEST model, Patel and Ramachandran [109] proposed another
acronym for representing quality features of US in XP which is know as the
INSERT model. INSERT stands for Independent, Negotiable, Small, Estimable,
Representation of user functionality, and Testable.

The differences between the INSERT and INVEST models are the Repre-
sentation of user functionality and Value characteristics. Following Patel and
Ramachandran [109], it is difficult to have tools or documents proving that US
are valuable to the customer. In addition, the authors claim that their model
improves the requirements elicitation process of US in XP and results in writing
higher quality US.

4.2.2.3 Quality User Story Framework

Recently, Lucassen et al. [89] have proposed a framework for writing quality
US. Figure 4.2 exposes this Quality User Story Framework. The qualities of
US are defined at three levels: Syntactic, Semantic, and Pragmatic. Following
Lucassen et al. [89], the syntactic quality level is concerned with “the textual
structure of a user story without considering its meaning”. The semantic quality
level is concerned with “the relations and meaning of (parts of) the US text”.
Finally, the pragmatic quality level is concerned with “choosing the most effective
alternatives for communicating a given set of requirements”.

TABLE I
QUALITY USER STORY FRAMEWORK

Criteria Description
Syntactic
- Atomic A user story expresses a requirement for exactly one feature
- Minimal A user story contains nothing more than role, means and ends
- Well-formed A user story includes at least a role and a means
Semantic
- Conflict-free A user story should not be inconsistent with any other user story
- Conceptually sound The means expresses a feature and the ends expresses a rationale, not something else
- Problem-oriented A user story only specifies the problem, not the solution to it
- Unambiguous A user story avoids terms or abstractions that may lead to multiple interpretations
Pragmatic
- Complete Implementing a set of user stories creates a feature-complete application, no steps are missing
- Explicit dependencies Link all unavoidable, non-obvious dependencies on user stories
- Full sentence A user story is a well-formed full sentence
- Independent The user story is self-contained, avoiding inherent dependencies on other user stories
- Scalable User stories do not denote too coarse-grained requirements that are difficult to plan and prioritize
- Uniform All user stories follow roughly the same template
- Unique Every user story is unique, duplicates are avoided

Fig. 1. Quality User Story Framework

quality characteristics were not developed with user stories nor
agile development in mind.

The Agile Requirements Verification Framework [5] defines
three high-level verification criteria for requirements in an
Agile environment: completeness, uniformity, and consistency
& correctness. The framework proposes specific criteria to be
able to apply the quality framework to both feature requests
and user stories. Many of these criteria, however, require
supplementary, unstructured information that is not captured
in the primary user story text, making them inadequate for
dumb RE tools and our perspective.

With this in mind, we take inspiration from the verification
framework [5] to define a new Quality User Story (QUS)
Framework (Figure 1 and Table I). The QUS Framework only
focuses on the information that is derivable from user story

texts themselves, disregarding all requirements management
concerns such as effort estimation and additional information
sources such as descriptions or comments. The QUS Frame-
work comprises 14 criteria that influence the quality of a user
story or set of user stories. Because user stories are entirely
textual, we classify each quality criteria according to three
concepts borrowed from linguistics, similar to Lindland [15]:

Syntactic quality, concerning the textual structure of a user
story without considering its meaning;

Semantic quality, concerning the relations and meaning of
(parts of) the user story text;

Pragmatic quality, regarding choosing the most effective al-
ternatives for communicating a given set of requirements.

In the next subsections, we introduce each criterion by
presenting: (1) a comprehensive explanation of the criterion,
(2) an example user story that violates the specific criterion,
and (3) why the example violates the specific criterion. The
example user stories originate from two real-world user story
databases of software companies in the Netherlands. One
contains 98 stories that specify the development of a tailor-
made web information system. The other consists of 26 user
stories from an advanced health care software product for
home care professionals. We refrain from disclosing additional
application details due to confidentiality constraints.

A. Syntax

a) Atomic: A user story should concern only one feature.
It is tempting to combine multiple features in one user story
when they are related or similar. Not doing this, however,
makes estimation of the expected effort more accurate. In
theory the combined effort estimation of two small, clear-cut
user stories is more accurate than the estimation of one larger,
more opaque user story. The user story in US1 consists of two
separate requests, the act of clicking on a location and the
display of associated landmarks. The requirements engineer
should split this user story into two autonomous user stories.

Fig. 4.2 Quality user story framework (from [89]).

53

Requirements Engineering in Agile Methods

4.2.3 User Story Templates

Kent Beck, the main artisan of US states that “the best user story is a sentence
or two that describes something important to customer”. He adds that US should
be written in “plain English” [16]. He also provided an example of a US—e.g.,
“The system should check the spelling of all words entered in the comments field.”
This US structure is very similar to the IEEE-830 style (see Section 4.2.5). In
[36], the way of writing US has been changed; Cohn writes it as “A user can
post her resume”. We can observe that US are written from the perspective of
the customer rather than of the system. In addition, he also suggests to include
‘user role’ into the US. Therefore, instead of writing a US as “A user can post
her resume” this US can be written as “A Job Seeker can post her resume”.
By respecting this way of writing, developers have the feeling of fulfilling real
customer needs.

Later, Cohn took lesson from the work performed at Connextra and widespread
the template used by that company. Figure 4.3 exposes the US that was written
at Connextra [ref2]. According to Cohn [36], the template is structured as
follows: I as a <role> want <function> so that <business value>. Cohn has
proposed another template in [37], namely As a <type of user> I want <capa-
bility> so that <business value>. He has proposed many templates structured
similarly but the key words of each segment are changed. His latest template is
structured as follows: As a <type of user>, I want <some goal> so that <some
reason> [ref3]. Following Cohn, the ‘so that’ clause is optional.

Fig. 4.3 Connextra user story card.

Other agile practitioners have suggested and published their own template.
For example, Jeff Patton has proposed a US template structured as follows: As
a <type of user> I want to <perform some task> so that I can <achieve some
goal> [ref4]. Nonetheless, those templates are structured like those of Cohn.
Generally, the US template is structured as follows: As [WHO], I want [WHAT]
so that [WHY]. A collection of this kind of template is presented in Appendix B.
Significantly, there are two templates which are structured differently. The first

2http://agilecoach.typepad.com/photos/connextra_user_story_2001/connextrastorycard.html
3https://www.mountaingoatsoftware.com/agile/user-stories
4http://jpattonassociates.com/

54

4.2 User Stories: the Requirements Artifacts of Agile Methods

one was proposed by Chris Matts in 2011 [ref5]. The template is structured
as follows: In order to <receive benefit> as a <role>, I want <goal/desire>
(see [27]). This template allows us to emphasize on the ‘value’. The second
one, is the 5Ws template and it is structured as follows: As [WHO] [WHEN]
[WHERE], I [WHAT] because [WHY] [ref6].

According to our observation on the different ways for writing US, we would
classify US templates into five categories. Table 4.2 provides the five templates
with descriptions and examples.

Table 4.2 The five templates for writing user stories.

Template Description and Example
Kent’s Template It refers to the way of writing US proposed by Kent

Beck in [16]. US are written in prose.
E.g., The system should check the spelling of all words
entered in the comments field.

Cohn’s Template 1 It refers to the way of writing US proposed by Cohn
in [36]. US are written in prose but explicitly include
the ‘user role’.
E.g., A Job Seeker can post her resume.

Connextra’s Tem-
plate or

It refers to the template proposed by Connextra and
later made publicly available by Cohn. The US consists
of three parts (i.e., [WHO], [WHAT] and [WHY]) and
in general it is structured as follows: As [WHO], I
want [WHAT], so that [WHY].

Cohn’s Template 2 E.g., As a creator, I want to upload a video so that
any users can view it.

Chris’s Template It refers to the template proposed by Chirs in his blog.
Similarly to Connextra’s template, this template also
has the same three parts but they are structured differ-
ently. The template is structured as follows: In order to
<receive benefit> as a <role>, I want <goal/desire>.
E.g., In order to increase the number of sales of our
print consumables, as a marketing manager, I want
customers to register their e-mail addresses.

5Ws Template US is composed of five parts—i.e., [WHO],
[WHAT], [WHERE[, [WHEN], and [WHY]. The
US can be structured as follows: As [WHO]
[WHEN] [WHERE], I [WHAT] because [WHY] or
[WHO][WHAT][WHEN][WHERE][WHY] [ref7].
E.g., WHO: As an Instructor
WHAT: Selects multiple students (at once) and adds
them to a discussion group
WHEN: After determining what students go in which
groups

5http://antonymarcano.com/blog/2011/03/fi_stories/
6http://www.ambitiousmanager.com/user-stories-explained/
7http://blog.agilejedi.com/2008/03/writing-user-stories-5-ws-way-writing.html

55

Requirements Engineering in Agile Methods

WHERE From the student listing screen
WHY: To get students into discussion groups

Table 4.3 provides the coverage of each US template regarding the three
dimensions of RE (see Section 3.2.1). The complexity of writing US using each
template is also provided.

Table 4.3 User story coverage and complexity.

US Template RE Dimension Coverage ComplexityWHO WHAT WHY
Kent’s Template X Easy
Cohn’s Template 1 X X Easy
Cohn’s Template 2 X X X Medium
Chris’ Template X X X Medium
5Ws Template X X X Difficult

4.2.4 User Story, Epic, and Theme

Within agile methods driven by US, the Epic and Theme concepts are often
used to facilitate the planning, prioritizing and organizing of US [36, 122].

Some US are large in size and cannot be implemented in one iteration. Cohn
[39] defines such US as Epics. Following Cohn [39], there is no clear defined
size of US to be called Epic or not. An Epic US is simply referred to a US that
cannot be implemented in one iteration. The Epic US needs to be decomposed
into sets of smaller US. In some cases, some Epics are too large and they can
be subdivided into sub Epics [39].

According to Cohn [39], Theme is a collection of logically related US. Unlike
an Epic US that is not decomposed into enough detail yet, a Theme is a
collection of multiple pieces of smaller US.

4.2.5 User Story versus others User Requirements Artifacts

There are several requirements artifacts in the RE literature. Some are seen as
overlapping with US and some can be seen as complementary. This section aims
at comparing US with IEEE-830 documents, Use-Cases, Scenarios, Personas,
and finally, User-Task Models. According to Alexander and Maiden [6]; and
Wiegers and Beatty [155] there are some confusions between US with IEEE-830
documents, Use-Cases, and Scenarios. However, US, Personas, and User-
Task Models are commonly used within User-Centered Design [130]. Sections
4.2.5.1, 4.2.5.2, 4.2.5.3, 4.2.5.4, and 4.2.5.5 provide a brief description of each
aforementioned models while Section 4.2.5.6 provides the comparison of US
with all of these models.

4.2.5.1 IEEE-830 documents

The IEEE-830 is a template standardized by the Institute of Electrical and
Electronics Engineers (IEEE) in 1998 for documenting software requirements

56

4.2 User Stories: the Requirements Artifacts of Agile Methods

specification [68]. As briefly depicted in Section 3.5.2, it provides global rules for
structuring requirements documents and local rules for specifying requirements.
The latter recommends to write requirements following the template “The
system shall ...”; Figure 4.4 provides examples of requirements written following
IEEE-830 style.

 1. The system shall allow a company to pay for a job posting
with a credit card.
1.1. The system shall accept Visa, MasterCard and

American Express cards.
1.2. The system shall charge the credit card before the job

posting is placed on the site.

1.3. The system shall give the user a unique confirmation
number.

Fig. 4.4 Requirements in IEEE-830 style (from [36]).

According to Cohn [36], a US and an IEEE-830 statement are different in
nature. Indeed, the IEEE-830 statement focuses on writing a software attribute
whereas a US focuses on describing a user goal. By focusing on user goals for
new software rather than on a list of attributes of new software, we are able to
design a solution that better fulfills the user needs [36].

4.2.5.2 Use-Cases

As previously described in Section 3.6.2, the Use-Case model aims at capturing
the interaction between actors and the system. According to Cohn [36], a
Use-Case is “a generalized description of a set of interactions between the system
and one or more actors, where an actor is either a user or a system”. Use-Cases
can be either modelled in a diagram, the Use-Case diagram, or written as
text in a template, the Use-Case specification (see Section 3.6.2). Within the
latter, there are two sections for writing the main and alternative scenario of
a Use-Case; these scenarios are referred to as Use-Case scenario and they are
different from the scenario in Human-Computer Interaction Design (see next
section).

According to Cohn [36], and Alexander and Maiden [6], the main difference
between US and Use-Case is their scope. The scope of a US is smaller than the
one of a Use-Case. A US is intentionally kept small so that it can be executed
and developed in at most an iteration. However, a US can be compared or
aligned with a Use-Case scenario [36].

Contrarily, customized Use-Cases like essential Use-Cases [40] are compara-
ble to US. An essential Use-Case is “a use case that has been stripped of hidden
assumptions about technology and implementation of detail” [36]. According to
Cohn [36], the user intentions of the essential Use-Case could be directly inter-
preted as a US. Similarly, Wiegers and Beatty [155] argue that a US sometimes
covers the same scope as an entire Use-Case but, in other cases, a US represents
just a single Use-Case scenario. We share the same view of the latter. This
subject is also studied in Chapter 8.

57

Requirements Engineering in Agile Methods

4.2.5.3 Scenario

We refer to the concept of scenario which is defined in Human-Computer
Interaction Design (see [28] for details). According to Cohn [36], a scenario is “a
detailed description of a user’s interaction with a computer”. Following Carroll
[28], scenarios include the following characteristic: a setting, actors, goals or
objectives, as well as actions and events. Figure 4.5 depicts an example of a
scenario.

 1. The system shall allow a company to pay for a job posting
with a credit card.
1.1. The system shall accept Visa, MasterCard and

American Express cards.
1.2. The system shall charge the credit card before the job

posting is placed on the site.

1.3. The system shall give the user a unique confirmation
number.

Maria is thinking about making a career change. Since the glory days of the dot-com boom she
has worked as a tester at BigTechCo. A former high school math teacher, Maria decides she’ll
be happier if she returns to teaching. Maria goes to the BigMoneyJobs.com website. She
creates a new account with a user name and password. She then creates her resume. She wants
to find a job as a math teacher anywhere in Idaho but preferably near her current job in Coeur
d’Alene. Maria finds a handful of jobs that match her search criteria. The job that intrigues her
most is with the NorthShore School, a private high school in Boise. Maria has a friend, Jessica,
in Boise whom she hopes may know someone at NorthShore. Maria enters Jessica’s email
address and forwards the job link to her with a note asking if she knows anyone at the school.
The next morning Maria gets an email from Jessica saying that she doesn’t know anyone at the
school, but she knows of the North Shore School and it has a wonderful reputation. Maria
clicks on a button that submits her resume to North Shore.

Fig. 4.5 Scenario in Human-Computer Interaction Design (from [36]).

According to Cohn [36], the main difference between a US and a scenario lies
in their scopes and details. Scenarios are more extensive and detailed than US.
In fact, scenarios could be seen as large Epics containing a lot of possible US.
In addition, a US is generally written in a structured sentence while a scenario
is written in a free style.

4.2.5.4 Personas

Persona is a User-Centered Design technique proposed by Alan Cooper [41].
Personas are not users, nor roles and nor actors of the system [ref8], they are
neither the real people. Personas are rather hypothetical archetypes of actual
users; they represent real people throughout the design process and they are
described as if they were real people—i.e., they are defined with significant
rigor and precision [41]. Unlike user, role and actor, a persona is described by a
name, a photo, a long narrative text describing its personalities, its needs, its
goals, etc. in a single page. There are many ways for writing personas, some
templates use US in personas for describing personas’ needs and vice-versa—i.e.,
use persona in the WHO dimension of US [64]. The latter refers to the persona
stories which are not in the scope of this thesis. Figure 4.6 provides an example
of a persona using US (but they do not follow any US templates) for describing
their needs.

8http://www.agilemodeling.com/artifacts/personas.htm

58

4.2 User Stories: the Requirements Artifacts of Agile Methods

personas (ASPs) [12,13] as a means of exploring and documenting stakeholders’

quality concerns in a lightweight manner well suited to the agile project environment.

The approach we describe in this chapter emerged from our own experiences

in the TraceLab project [14], a US$2 Million endeavor funded by the US National

Science Foundation and developed by researchers at DePaul university, the College

of William and Mary, Kent State University, and the University of Kentucky. The

core part of the project involved developing an experimental environment in which

researchers can design experiments using a library of pre-existing and user-defined

components, execute their experiments, and then comparatively evaluate results

against existing benchmarks.

Early in the project, it became apparent that there were some challenging and

conflicting quality goals that would impact both the time to market and the long-term

adoption of the system. To fully explore and understand the impact of early archi-

tectural decisions, we developed a set of personas, such as the one shown in

Figure 4.1. Each persona represented distinct sets of users’ needs, especially those

needs which impacted major architectural decisions. The personas were initially

developed through a series of brainstorming activities by the core project team. They

were then presented to collaborators from all participating universities as part of the

Tom:

Age: 59, Professor

Tom is a long-time traceability researcher. He has published

numerous papers that have focused on tracing from source code to

design and requirements. He has focused on using LDA, LSI, and

various probabilistic approaches. He has also developed algorithms

for visualizing the results of his traces.

Tom prefers coding in C++ on Linux. He plans to contribute

components to the TRACY project; however, he already has an

established traceability research environment and therefore may not

use all the TRACY features himself.

My user stories:

1. I need to be able to write components in C++ and integrate them easily

into TraceLab experiments.

2. Experiments that I run using TraceLab must not take about the same

amount of time to run as my existing experiments.

3. I need to be able to run TraceLab on Linux.

4. I need accessibility to benchmarks so I can compare new algorithms and

techniques against previous results.

5. I need access to datasets with existing trace matrices.

My anti-stories:

1. I won’t use TraceLab if it is buggy and keeps breaking.

Fast trace retrieval
Platform selection
Language selection
Reliability
Extensibility
Ease of component
upload
Ease of installation
Highly intuitive
interface
Extensive document
compatibility
Data confidentiality
Broad adoption

Personalized background
details

Persona picture,
name tag, and role.

Persona-related
user stories i.e.
win scenarios

Persona-
related loss-
scenarios

List of quality
concerns
extracted from
all personas.

Each concern is
marked to show
relevance to this
persona.

FIGURE 4.1

Lightweight personas used as part of the agile development process to highlight quality

concerns (i.e., nonfunctional requirements). Personas are used to drive architectural design

and to evaluate and validate candidate design solutions.

854.1 Introduction

Fig. 4.6 An example of a Persona (from [33]).

Personas and US are different in nature. Personas are used to model real
users of a system; whereas, US are used to express user requirements or needs. As
mentioned before, US can be used to describe personas’ requirements. Cohn [36]
suggests to use personas for writing US; they allow to discover new requirements.

4.2.5.5 User-Task Models

User-Task Models, or task models, are commonly used to model the interaction
between users and systems in User-Centered Design [85]. The task models are
often used for describing the tasks that users can perform with a system. A
task represents a specific action that a user can undertake in order to reach
a goal; a goal “is either a desired modification of state or inquiry to obtain
information on the current state” [98]. Many task models have been proposed in
the literature [47]. Each task model addresses different aspects of user interface
design, and has different formalities, expressivenesses and complexities [85]. In
this thesis we rather compare US to the Hierarchical Task Analysis (HTA) [9].
Indeed, according to Limbourg and Vanderdonckt [85], the HTA task model
has a lower complexity than other task models. Figure 4.7 exposes an example
of an HTA task model.

The main difference between task models and US is their nature. US are
rather requirements artifacts; whereas, task models are analysis artifacts. This
means that they are built from others artifacts such as scenarios, US, etc. [130].
Another difference is the models themselves—i.e., US are text-based while task
models are generally graphical hierarchical trees. However, US can be used as
inputs for constructing task models [130]. A US can be transformed into a task
of task models.

59

Requirements Engineering in Agile Methods

Fig. 4.7 An example of Hierarchical Task Analysis (from [9]).

4.2.5.6 Comparison between User Story and other User Require-
ments Artifacts

Despite the differences discussed in the previous sections, we further compare
US with the aforementioned models regarding to five dimensions in order to
justify our choice of studying in US for this thesis. The five dimensions are
Length, Scope, Lifespan, Expressiveness, and Degree of agility. The length
refers to the length of the text used for naming elements of the models. The
scope refers to the scope of the model—i.e., business value, user requirements,
software specification, etc. The lifespan refers to the usage of the models along
the software development cycle. The expressiveness refers to the ability of
representing or describing any information that users want to express within
the requirements by using these models. Finally, the degree of agility refers to
the ease and flexibility in changing the models. We give more priority to the
latter.

We use US as the baseline for the comparison; we use this symbol “+/-”
for the neutral. The symbols “-”, “- -”, “+”, and “++” for representing lower,
lowest, higher and highest respectively. The given scores are based on our won
interpretation.

Based on the results in Table 4.4, we can see that the scope, level of detail
and expressiveness of US are lower than other models. The length of US, on
the other hand, has a better score compared to some models. Importantly,
the degree of agility of US is higher comparing to other models. We argue
that by using graphical models for modeling US or using graphical models
complementarity to a written US set allows to reduce some drawbacks in level
of detail and expressiveness. These subjects will be addressed in Chapters 6
and 7.

60

4.2 User Stories: the Requirements Artifacts of Agile Methods

Table 4.4 The comparison between user story and other user requirements
artifacts

Length Scope Level of
Detail

Lifespan Expressi
veness

Degree of
Agility

US +/- +/- +/- +/- +/- +/-
IEEE-830 +/- - +/- - +/- -
Scenario + + ++ - + -
Use-Cases - ++ ++ + +/- - -
Persona ++ + + - + -
User Task - ++ ++ ++ ++ - -

4.2.6 Pros and Cons of using User Stories

This section provides the advantages and disadvantages of using US in software
development. Section 4.2.6.1 exposes the advantages of US while Section 4.2.6.2
provides the drawbacks of using US in software development.

4.2.6.1 Benefits of using User Stories

The first advantage of US is the emphasizes on verbal communication for
gathering requirements [36]. The goal of US consists in writing down desired
pieces of functionality in only a few sentences. Consequently, the written US
do not contain the required level of detail. In order to be able to develop
the different US, the development team has to step into conversation with the
customer in order to gather the remaining details that are missing on the story
cards. This shifts from writing document in ‘traditional’ methods to verbal
communication. Therefore, it allows and promotes rapid feedback cycles that
result in a better understanding of the required functionalities of the system.

Since requirements are written by the customer rather than developers in
daily language (i.e., natural language), a second advantage is the comprehensi-
bility of the US. The absence of an abundant use of both technical and business
jargon results in a better understanding of the different US for both developers
and users/customers. Furthermore, Cohn [36] claims that US are the right size
for planning activities. Another advantage of US is that they encourage the
team to defer detail [36]. This can be beneficial for the project because a lot
of high-level US can be written at the start of the project, what might give
the customer and users the opportunity to get a clearer look and feel with the
system to be developed. The remaining required level of detail can then be
gathered subsequently. US also stimulate the accumulation of tacit (i.e., hidden
and intangible) knowledge across the team. The more conversations that are
held between developers and the on-site customer, the more knowledge that
builds up within the development team.

US also contain the major advantage of being compatible with iterative
development, what makes them ideal for usage in agile methods. This benefit is,
among other things, reflected in the fact that not all US have to be written at
the start of the project. Furthermore, the use of US allows to start with an Epic

61

Requirements Engineering in Agile Methods

US that is split into smaller US later on the project. Since US heavily focus
on conversation and contain the ability to be written and rewritten in various
levels of detail at any moment during the project, they support opportunistic
and agile development. By using US as requirements artifacts, project teams get
rid of the I’ll know it when I see it (IKIWISI) syndrome [19] where users have
difficulties in providing a clear view on what they want and expect from the
system to be developed. Additionally, the US approach contains the possibility
to embrace changing requirements during the project cycles [100]. Since US are
used within agile methods, a US driven process encourages participatory design
where one or more customer representatives become part of the development
team. Several studies have shown that user involvement is an important success
factor in software development [51, 142].

4.2.6.2 Drawbacks of User Stories

Opposed to the benefits of using US as requirements artifacts in agile methods,
there are some critical drawbacks related to their usage [36]. First of all, using
US in large projects can become difficult and complex. In such projects it can
become hard to maintain a clear view on the relationships between the different
US. Secondly, when traceability is required, some additional documentation might
be required. Latter necessity in situations where traceability is required conflicts
with the values and principles of the agile manifesto that encourages the use of a
minimal amount of documentation within the project. Furthermore, US are not
adequate artifacts to use with an organization in which management style and
culture mandates more formal documentation [6]. Another set of drawbacks
are the ones that also correspond to those of natural language requirements in
general. Natural language (and thus also US) can be interpreted ambiguously
[6, 57] what makes the project prone for communication errors. However,
using US templates like that ones exposed previously could overcome the latter
drawback (see Section 3.5.2). Following Pichler [ref9], US are “not able to
express relationships between different features and to describe workflows”. Last
but not least, US driven projects depend on the availability of the customer
[100]; in some projects it is hard to always have the customer on ones side.

4.3 Visualizing and Modeling Requirements with User
Stories

Traditionally, US are written on physical index cards (or sticker notes) and
stored on a whiteboard. Nonetheless, with the CASE-Tool they are rather
stored in the form of a list. As evoked requirements analysis in agile methods
are based on these artifacts. A US is moved around the US set during the
analysis. The understandability of the requirements depends on how the US
set are physically distributed on the whiteboard or in the list. On the other
hand, from the perspective of requirements engineering, modeling requirements
visually plays an important role for better understanding requirements [155];
however, agile methods consider formal models as harmful to agile principles.

9http://www.romanpichler.com/blog/user-story-modelling/

62

4.3 Visualizing and Modeling Requirements with User Stories

In practice, we observe that some agile practitioners are using visual models
to improve the analysis of US [146]. Therefore, this section aims at reviewing
different techniques for visualizing US sets and more formal models used by
agile practitioners for requirements analysis within agile methods. This section
is structured as follows. Section 4.3.1 provides the overview on User Role
Modeling. Section 4.3.2 presents the conventional representation of US in agile
methods—i.e., the storyboard, product backlog, etc. Section 4.3.3 overviews the
User Story Mapping technique. Finally, Section 4.3.4 exposes some modeling
techniques for complementing US.

4.3.1 User Role Modeling

User Role Modeling is a simple practice suggested by Cohn [36]; it is aimed to
be conducted prior to the US writing workshop. It is important to identify
different user roles before writing US. According to Cohn, writing US from the
perspective of a single user type can be harmful—i.e., the US of a specific user
role are missing. Modeling different roles and writing US from the different
perspectives of these roles can prevent the latter. Cohn defines user role as
“a collection of defining attributes that characterize a population of users and
their intended interactions with the system”. Modeling user role follows these
following steps: (1) brainstorm an initial set of user roles; (2) organize the initial
set; (3) consolidate roles; (4) refine the roles (for details see [36]). Additional
techniques such as Persona and Extreme Characters can be also used in addition
to the user role. Following Cohn [36], by using these techniques new US can be
discovered.

4.3.2 The Product Backlog

The common and conventional practice for visualizing US with agile methods is
to write US physical index cards as sticker notes and attach them on a wall or
a whiteboard and make them visible to everyone in the team. Figure 4.8 shows
the Scrum board (sometimes called storyboard) for visualizing US in Scrum.
This board can also be served as a monitoring tool to see the progress of the
US. The column on the very left of the board is used for storing the US to be
implemented; it is known as the Product Backlog column. The column on the
very right of the board is used for storing finished US; it is known as the Done
column. In between the two columns, there are the To Do and In Progress
columns; these constitute the basic elements and it is possible to have more
columns depending on how detailed the team wants to monitor the progress.
The US are moved from the left to the right on the board to indicate their
progress. The order of implementing US depends on the priorities set by the
customer. When there are new US, new sticker notes are added to the backlog;
the team follows the same process until the backlog is empty. This could also
be done by using list tools such as Excel [48].

63

Requirements Engineering in Agile Methods

Fig. 4.8 User Stories on Scrum Board.

This approach works well when the number of US is small; the customer
always has the ability to provide priorities correctly to the US set. When the
number of US is important, it becomes difficult for the customer to visualize the
US set and often the customer (but also the developer) loses its vision on the
backlog [111]. The prioritization of US set has turned to be hard and resulted
in incorrect prioritization and it rapidly turns to chaos. Cohn [39] suggests to
keep the number of US lower than 150 in the backlog to ensure they are kept
manageable. To achieve this, Cohn proposes to keep some US in large size—i.e.,
Epic US, and sometimes we need to group some small US into Themes [39].
Only the US for next iteration have to be decomposed into an implementable
size—i.e., in one iteration. The organization of the US is as follows. The small
and high priority US are located at the top of the backlog and the large and
low priority US are located at the bottom of the backlog; Cohn calls this the
product backlog iceberg. This is also known as a Prioritized Product Backlog.
Figure 4.9 exposes the structure of the prioritized backlog.

 Grooming 105

At the appropriate time, all PBIs need to be estimated to help determine their

order in the backlog and to help decide whether additional refinement work is war-

ranted. Also, as important information becomes available, new items are created and

inserted into the backlog in the correct order. Of course, if priorities shift, we’ll want

to reorder items in the backlog. And as we get closer to working on a larger item, we’ll

want to refine it into a collection of smaller items. We also might decide that a par-

ticular backlog item is just not needed, in which case we’ll delete it.

Who Does the Grooming?

Grooming the product backlog is an ongoing collaborative effort led by the product

owner and including significant participation from internal and external stakehold-

ers as well as the ScrumMaster and development team (see Figure 6.7).

Ultimately there is one grooming decision maker: the product owner. However,

good product owners understand that collaborative grooming fosters an important

dialogue among all participants and leverages the collective intelligence and per-

spectives of a diverse group of individuals, thereby revealing important information

that might otherwise be missed. Good product owners also know that by involving

the diverse team members in the grooming, they ensure that everyone will have a

clearer, shared understanding of the product backlog, so less time will be wasted

Item Size

Reprioritize items

Estimate

Delete item

Original large item Refine items

Insert item

3

 FIGURE 6.6 Grooming reshapes the product backlog.Fig. 4.9 Prioritized product backlog (from [122]).

64

4.3 Visualizing and Modeling Requirements with User Stories

In order to keep the backlog prioritised and structured, it requires additional
efforts and practices for agile teams. Cohn [39] has proposed the product backlog
grooming practice for maintaining the backlog. This practice is also known as
product backlog refinement. The goals of product backlog grooming are (i) to
ensure that the backlog remains populated with items that are relevant, detailed
and estimated to a degree appropriate with their priority, and (ii) maintain the
current understanding of the project or product and its objectives. Product
backlog grooming is normally conducted before each iteration; it is also part
of the planning game. Following AgileAlliance [ref10], the product backlog
grooming consists of:

• removing US that no longer appear relevant;

• creating new US in response to newly discovered needs;

• re-assessing the relative priority of US;

• assigning estimates to US which have yet to received one;

• correcting estimates in light of newly discovered information;

• splitting US which are high priority but too coarse grained to fit in an
upcoming iteration.

4.3.3 User Story Mapping

User Story Mapping (USM) is a user-centric approach for visualizing and
modeling US. It has been proposed by Jeff Patton [112]. USM consists of
organizing US along two axes. The horizontal axis is used for arranging US with
respect to the order of involvement of the user with the system. In other words,
it refers to the process of the user’s involvement with the system. The vertical
axis is used for arranging US with respect to their priorities and abstractions.
The US located at higher position have higher priority than the ones at the
lower position. In addition, the vertical axis is divided into three layers; each
layer refers to a level of the granularity of US. A US at the higher layer covers
the scope of those under its hierarchical structure at the lower layer. The three
layers are: the Backbone, it refers to the User Activities; the Walking Skeleton,
it refers to the User Task; and finally, the lowest granularity is the US. Figure
4.10 exposes the template of the USM.

Following Patton [112] and Rogalsky [ref11], using USM for representing
product backlog provides several advantages over the normal and prioritized
product backlog. The advantages are as follows:

• It provides the ‘BIG PICTURE’ of the product backlog; therefore, a better
understanding of the system to be developed;

• It provides a better tool for making decisions about refining and prioritizing
the product backlog;

10https://www.agilealliance.org/glossary/backlog-grooming/
11http://winnipegagilist.blogspot.be/2012/03/how-to-create-user-story-map.html

65

Requirements Engineering in Agile Methods

Fig. 4.10 User Story Mapping template.

• It promotes silent brainstorming and a collaborative approach to generat-
ing US;

• It provides a visual alternative to traditional project plans;

• It provides a useful model for discussing and managing scope;

• It provides a visual dimensional planning and real options for the project.

4.3.4 Models and User Stories

The shift from well documented requirements to the simple use of US has
resulted in neglecting requirements modeling activities within agile methods
[131]. This can be seen by examining the values and principles of the agile
manifesto—i.e., there is no principle nor value of the agile manifesto focusing
on modeling requirements. Conversely, from the perspective of RE, modeling is
important; it allows developers to better and easier understand the problems
[7, 13], and help the customer in prioritizing requirements [7, 131]—for example,
we can identify the interrelated requirements that need to be implemented in
the same iteration. Following Ambler [7], modeling activities provide positive
impacts in discovering flows in the system; but it is a time consuming activity
which is harmful to agile principles. In addition, modeling can slow down the
development process.

To the best of our knowledge, Ambler is the first one who has tried to
include modeling activities in agile methods. He has proposed an agile method
called Agile Modeling [7] in 2002 which is compatible with other agile methods.
It provides practices and guidelines for other agile methods to elaborate the
modeling activities without violating the agile principle. He proposes to model
just enough to explore the system but not too much. The recent research
conducted by Wang et al. [146] revealed that modeling is the second used method

66

4.3 Visualizing and Modeling Requirements with User Stories

for requirements elicitation after US within agile methods. “Requirements
Analysis preferred to use model as models can show their ideas easily and
quickly” [146].

Following Wang et al. [146], Pichler [ref12] and Ambler [7], most of models
used for requirements activities in agile methods are rather serving as a comple-
mentary view to US with the customer (in order to improve the US writing)
than modeling US themselves. In other words, models are used for validating
requirements or stimulate the latter to write missing US. This means that US
are normally generated from the model but not inversely. In this thesis, we
attempt to produce models from a US set and the models themselves can also
serve for validating requirements or discovering missing US. This model can
also be served as an input for the planning game.

Following Wang et al. [146], the possible modeling techniques used in
requirements analysis within agile method are the business process model, the
goal model, the Use-Case model, the Role Card, and the organization model. We
also did an informal research. We used Google as a tool for searching. We used
these two keywords ‘modeling and agile methods’ and ‘modeling user stories’
for doing the search; we only take into account the first one hundred pages
for each keyword. Moreover, we only consider blogs and personal websites
rather than forums. Our results informally confirm the research of Wang et
al. Figure 4.11 provides some models used for/with US. For example, Pichler
suggests to use a context diagram for depicting user roles and Epic US, large and
coarse-grained US. He argues that the diagram can provide an overview of the
product’s functionalities. In addition, he also suggests to use activity diagrams
to capture sequences and workflows by connecting individual US. Furthermore,
a modeling tool such as Visual Paradigm [105] also provides the possibility to
describe US within a Use-Case and a business process diagram.

12http://www.romanpichler.com/blog/user-story-modelling/

67

Requirements Engineering in Agile Methods

Mindmap for exploring US.
source : https://www.infoq.com/articles/kenji-modeling-agile

Context diagram for modeling user role and epic US and activity diagram
for capturing sequence US. source : http://www.romanpichler.com/blog/user-

story-modelling/

Business Process and User Story. source : https://www.visual-

aradigm.com/tutorials/business-process-to-user-stories-mapping.jsp

Fig. 4.11 Possible modeling techniques used as a complementing view to user
stories.

4.4 User Story Based Planning in Agile Methods

This section aims at presenting the basic US planning techniques found in agile
methods. Section 4.4.1 exposes the two strategies for doing iterative planning.

68

4.4 User Story Based Planning in Agile Methods

Section 4.4.2 provides some practices for selecting US to be implemented in an
iteration.

4.4.1 Iterative Planning with User Stories

Basically, there two types of planning withing the agile approach: release
planning and iteration planning. Iteration planning consists of doing a plan for
a selected US set to be developed during an iteration. Whereas, the release
planning consists of determining how many US can be accomplished by what
date [37]. This can be done by two strategies. In the first case, we set a date
and we determine how many US can be accomplished by that date. In the
second case, we can set the number of US and determine when these US can be
accomplished. Most agile methods adopt the first when doing release planning.

Figure 4.12 provides a general planning process within agile methods. The
process involves the following steps [37]:

• Determine the conditions of satisfaction: It consists of determining the
criteria of success or failure (business value, the amount of money saved,
...) of each iteration;

• Estimate the US : It consists of estimating the size of the US in terms of
efforts, duration of implementation, user story point, price, ...;

• Select an iteration length: It consists of selecting the length of the iteration.
For example, the iteration length in Scrum is 2 to 4 weeks;

• Estimate velocity: The velocity refers to the amount of user story points
(see in [37]) that a team is able to implement within an iteration. Thus,
estimate velocity consists in determining the amount of user story points
to implement based on the performance of last iteration;

• Prioritize US : It consists of prioritizing each US. Normally, the priorities
are given by the customer;

• Select US and release date: It consists of selecting a set of US to be
implemented for the next iteration and defining the release date.

Following Cohn [37], a release plan is important for a number of reasons.
First, it helps the product owner and the whole team to decide how many US to
be developed and how long will take to deliver a workable software. The sooner
the software can be released the better; the organization can start earning a
return on its investments. Second, a release plan coveys expectations about
what is likely to be developed and in what timeframe. Many organizations need
this information because it feeds other strategic planning activities. Third, a
release plan serves as a monitoring tool to see the progress of the team.

4.4.2 Selecting User Stories for an Iteration

Selecting a US set to be implemented for the next iteration is somehow
changeling; it can significantly impact when and with what functional and

69

Requirements Engineering in Agile Methods

Determine the Conditions of Satisfaction | 135

user stories of the release plan into their constituent tasks. But they won’t do

this until the beginning of the iteration containing those stories.

Naturally, should your project, organization, and work environment warrant

it, you can include additional information in a release plan. For example, you

may wish to communicate some key assumptions underlying the plan. Most no-

tably, you may want to state assumptions about who is on the team, how long the

iterations will be, the date the first iteration will start, and the date the last iter-

ation will finish. Chapter 21, “Communicating about Plans,” will describe some

additional useful information you may want to include when communicating

about a release plan.

The general steps in planning a release are shown in Figure 13.1. Each of

these steps will be described in the sections that follow.

Figure 13.1 The steps in planning a release.

Determine the Conditions of Satisfaction

Before starting to plan a release, it is important to know the criteria by which the

project will be evaluated as a success or a failure. For most projects, the ultimate

scorecard is the amount of money saved or generated. As leading indicators of

whether a project is likely to achieve these financial goals, most projects use the

triumvirate of schedule, scope, and resources. For most projects, this means that

the product owner’s conditions of satisfaction are defined by a combination of

schedule, scope, and resource goals.

The product owner will bring desired targets for each of these factors into al-

most every release planning meeting. A product owner may want four themes

Iterate until the conditions

of satisfaction for the

release can best be met

Determine

conditions of

satisfaction

Estimate the

user stories

Select

stories and a

release date

Select an

iteration

length

Estimate

velocity

Prioritize

user stories

Do in any

sequence

Fig. 4.12 General process for iterative planning in agile methods (from [37]).

nonfunctional quality levels software is delivered. The common strategy used for
selecting US for an iteration is to select the set of US located at the top of the
product backlog. The main idea is to implement the US with highest priority
early in the project so that the customers can realize the most business value
[117]. The highest priority means that those US are important for delivering
business value.

The above strategy works well when all US in the product backlog are
independent from each other—i.e., every US can be implemented on its own and
can deliver business value. In some cases, the functionality of some implemented
US cannot provide its value to the customer because they depend on other
functionalities of other low priority US to make it fully valuable for the customer
[27]. This leads to reprioritizing of US so that relevant US can be selected for the
next iteration. This can delay the value delivery to the customer. To optimize
such a situation, it is better to select a coherent set of US to be implemented
in the same iteration. This means that it is better to select some high priority
US and some low priority US that are functionally depending on each other to
be implemented in the same iteration. Following Rubin [122], there are always
dependency between US. Cardinal [27] suggests to use the visual aid like USM
for selecting coherent US set. Nonetheless, from the requirements engineering
perspective, modeling US can discover dependencies between US [155].

4.5 Conclusion

This chapter has presented the state of the art of RE activities in agile methods.
It more specifically focuses on US—the most used requirements artifacts in agile
methods.

RE and agile methods are often seen as being incompatible because the
former induces producing a formal documentation through a model of the system-
to-be and the latter specifically points to producing as few documentation as
possible. The RE process of agile methods is continuous over the project life
cycle so that it may lead to many changes and putting into question the already
modeled requirements. At the inception of the project some RE activities are

70

4.5 Conclusion

conducted in order to get an understanding of the boundaries of the system
as well as an evaluation of its critical features. Then, in later iterations, more
details about the requirements are collected to build a finer representation of
the system-to-be. Last but not least, since simplicity is one of the core agile
principles, very operational and easy to understand requirements artifacts such
as US have been adopted in agile methods.

US are indeed used as primary requirements artifacts in agile methods,
especially in XP and Scrum. Within this chapter, the role of US in agile methods
has been discussed. They are more than only small pieces of functionality
represented on story cards and form the fundamental basis of communication
between the development team and the customers. In addition, US differ from
other requirements artifacts such as IEEE-830 documents, Use-Cases, Scenario,
Personas, and User Task Models. The US gathered at the beginning of the
project, at the beginning of a release or at the beginning of an iteration are used
as guidance within several conversations and discussions between developers
and customers/users. A US driven approach starts with gathering the different
US and writing them on so-called story cards. Some US of the project backlog
are then the scope elements of the coming iteration, and, at the end of each
iteration agile practitioners proceed to a re-prioritization of requirements as
well as a re-evaluation of the criteria used in the prioritization.

The way of writing US is diverse—i.e., agile practitioners create their own
US templates following their sensibility and do not associate precise semantics
to their practices. This leads to difficulty in interpreting US templates. The
nature of the elements present in the US can be interpreted differently since
readers of each US template can be misled when using the US template. This
motivates the research of the next chapter which defines a unified model for US
templates. That contribution is then further used as a supporting pillar for the
other contributions of the thesis.

71

Part III

Towards More Formality in Agile
Methods’ Requirements Engineering

73

Chapter 5

Unifying and Extending User Story
Models

Within Agile methods, User Stories (US) are mostly used as primary require-
ments artifacts and units of functionality of the project. The idea is to express
requirements on a low abstraction basis using natural language. Most of them
are exclusively centered on the final user as only stakeholder. Over the years,
some templates (in the form of concepts relating the WHO, WHAT and WHY
dimensions into a phrase) have been proposed by agile methods practitioners
or academics to guide requirements gathering. Using these templates can be
problematic. Indeed, none of them define any semantic related to a particular
syntax precisely or formally leading to various possible interpretations of the
concepts. Consequently, these templates are used in an ad–hoc manner, each
modeler having idiosyncratic preferences. This can nevertheless lead to an
underuse of representation mechanisms, misunderstanding of a concept use
and poor communication between stakeholders. This chapter studies templates
found in literature in order to reach unification in the concepts’ syntax, an
agreement in their semantics as well as methodological elements increasing
inherent scalability of US-based projects.

The research exposed in this chapter has been realized in collaboration
with Y. Wautelet, M. Kolp, and I. Mirbel. Results have been published in
the proceeding of the 26th International Conference on Advanced Information
Systems Engineering (CAiSE 2014, [148]).

This chapter is organized as follows. Section 5.1 provides the research
context. Section 5.2 provides some related works. Section 5.3 explains the
research methodology in detail. Section 5.4 exposes how each syntax and
semantic are selected. Section 5.5 presents the meta-model of the US template.
Section 5.6 provides the evaluation of the model based on two case studies.
Section 5.7 discusses the validity of our model. Finally, Section 5.8 provides the
conclusion of the chapter.

5.1 Research Context

US constitute the main key artifact serving for requirements engineering in
agile methods; this is particularly the case in eXtreme Programming (XP)

75

Unifying and Extending User Story Models

[15]. US are very operational documents describing user functionalities on a
low-level basis. Basically, a US is made to be written in natural language even
if initially a few templates have been proposed. With the years, practitioners
developed more templates which they used at their best convenience (e.g.,
[76, 83] for formal sources and [8, 38, 77, 101] for informal ones). The US
template is structured in the following way: As [the WHO], I want/want
to/need/can/would like [the WHAT], so that [the WHY]. In other words,
US allow inherently to address the three following fundamental elements (called
the dimensions in this research) of requirements engineering: WHO wants the
functionality, WHAT functionality end-users or stakeholders want the system
to provide and the reason WHY the end-users or stakeholders need the system
for. These dimensions are materialized by a syntax in a US template, like
the elements between angle brackets in: As a <role>, I want <goal> so that
<benefit>.

With practically no definition (called semantics in the rest of the chapter)
associated with the elements constituting the US templates, the interpretation
is often hazardous. This leads to a need of accuracy, precision and unification.
We consequently propose to build a unified model defining a set of US templates.
We therefore started from frameworks issued of Goal-Oriented Requirements
Engineering (GORE). The use of GORE frameworks, inherently high-level, is
our deliberate choice. Indeed, to the best of our knowledge, they include the
richest sets of modeling constructs for system analysis. Alternative choices
could have been made and the priority among GORE frameworks within the
research could have been different leading to build a different model. The aim
is, however, not to evaluate each possible unified model but to build one that
could allow to associate a single (one option only) syntax/semantic to every
(no lack) dimension of a US template. For this purpose, the unified model is
evaluated empirically onto sets of US issued of real life projects.

Finally, we argue that a unified syntax coupled with precise semantics would
allow to enhance the potential of these requirements artifacts. Indeed, the use
of a well-defined set of non-redundant terms would:

• Reduce communication issues between the agile project stakeholders;

• Reduce scalability issues of US-based agile methods (see [110]). Indeed,
by furnishing constructs that can be better structured, hierarchized and
grouped on the basis of their nature, the (iterative) planning of the software
development could be based on elements with a higher abstraction level
(i.e., broader scope). It will allow to divide the software problem into
pieces better manageable for huge software developments;

• Ease the querying and reasoning onto US.

5.2 Related Work

Patton [110] highlights the difficulties of agile practitioners to deal with a project
involving a huge number of US for implementing the information system of a
hospital. Indeed, when dealing with about 800 US, the hierarchy was rather

76

5.3 Research Method

difficult to determine and the big picture of the system while performing the
planning game. Scalability is thus definitely an issue in agile projects with US
as poor requirements engineering artifacts. He decided to introduce the US
template “As <User>, I want<Task>, so that <Goal>” in order to define
a hierarchy in the form of Goal, Task and US but with no semantic associated.

Series of papers have proposed enhancements to handle the requirements
engineering process into agile software development, most of them focus on scal-
ability issues and granularity of elements; however, to the best of our knowlege
none has proposed a unified model with associated semantics. Leffingwell [83],
Vlaanderen et al. [144], and Vähäniitty and Rautiainen [137] identified issues
in the usage of backlog items alone. Backlog items are US or non US-based
but still a text based requirements sets. It does indeed not allow to represent
the business strategy (or the long-term business goals). They highlight the
project should thus include not only the backlog items, but also Epics, Themes,
Visions. The backlog items are the lowest requirement items and respectively
Epic, Theme and Vision are elements representing the software problem through
higher level entities. They however did not provide any explanation on how to
map the blacklog items to the upper levels.

5.3 Research Method

Figure 5.1 illustrates the research process. First, the dataset has been built; on
that basis we have defined a candidate model which has finally been validated
on two real life case studies. These steps are depicted into this section.
UserStoryModelProcess

Find User Story Templates

Evaluate Candidate Model
on Case Studies

Collect User Story
Examples

Evaluate User Story Examples with Semantic
of Descriptive_Concept Candidates

Select and Associate Semantic with Syntax of
Descriptive_Concept Candidates

Compare Semantics of
Descriptive_Concept Instances among
each other one of the same Dimension

BPMN

Candidate Unified
Meta-Model for US Concepts

RE GlossaryKAOS

3. Validation2. Building the Candidate Model1. Building the Dataset

Descriptive_Concept
Candidates with Syntax and Semantic

i* framework

Descriptive_Concept
Candidates with Syntax (Only)

User Story
Examples

Informal SourcesFormal Sources

Fig. 5.1 Followed research process.

5.3.1 Building the Dataset

Initially, the way of writing US was rather fuzzy; it mostly consisted of a small
text of maximum 2 lines to describe some functional expectation or scenario
involving the final user. Even if Cohn [36] proposed an initial way of writing

77

Unifying and Extending User Story Models

US, many users of agile methods have been suffering from the lack of guidance
in how to write an effective US [110]. Some of them thus proposed their own
solutions and plenty of templates used in an ad-hoc manner appeared. In line
with this, the research sources that have been taken into account are of two
types:

• Academic: which consisted in overviewing the US templates found in
‘formal’ or semi-formal sources (published scientific articles or books);

• Practice: which consisted in overviewing the US templates found in
‘informal’ sources (mostly websites and blogs).

The aim was to list and basically classify the US templates that are used in
practice. No higher importance was given to formal sources, even if Table 5.1
explicitly shows the number of syntaxes issued of both types of sources.

Basic references for agile development as well as sources found using scientific
publications search engines where primarily taken into account. Then, a web
search on Google1 allowed us to fill the set of US templates with others issued
of the daily use of agile methods practitioners. The search included informal
sources like websites, blogs, etc. (i.e., html pages); only sources considered
relevant (i.e., referring to a practical use) were taken into account. The search
included: (1) ‘User Story Template’; (2) ‘User Story’ ∧ ‘XP’; (3) ‘User Story’
∧ ‘eXtreme programming’; (4) ‘User Story’ ∧ ‘Agile’; (5) ‘Agile Requirement’
∧ ‘User Story’. The first ten pages (i.e., 100 links since 10 pages multiplied
must be multiplied by 10 sources by page) provided were taken into account.
All pages were carefully scrutinized; relevant US templates were included2. We
finally included 20 US templates issued of formal sources and 65 of informal
ones3 (see Appendix B); this constitutes our first research material.

Unfortunately, no semantic description associated with any of the syntax
(except for the Business Value syntax for which we found a vague definition,
see Section 5.4.3) was ever found in literature, this made any direct semantic
evaluation impossible. Nevertheless, in nearly all the cases, examples associated
to the proposed US templates were provided. We collected 237 examples; this
constitutes our second research material (see Section 5.3.3).

1The data was collected by a junior researcher (PhD candidate) onto the Belgian French
Google version. Another local version or its consultation at another moment of time can lead
to the collection of other templates. However, since we have collected a significant number of
them, it would have impacted redundancy or brought genuine occurrences in a non-significant
amount with no impact on the model.

2We only considered the US templates structured around a WHO, WHAT and (possibly)
WHY dimension; other forms of US templates were not taken into account for this study. In
addition, we only used basic search option of the search engine for doing search.

3The addition of the figures in Table 5.1 within one dimension surpasses the number of
collected templates. Indeed, into one template we can find several syntaxes for a dimension;
e.g., the US template As a <type of user>, I want <capability or feature> so that <business
value or benefit> generates 2 occurrences for the WHAT and the WHY. The input material
for our research was based on a Google search at the mid of 2013. Later generation of a
Google search based on the same keywords is likely to produce a different research input with
a possible consequence on the research output.

78

5.3 Research Method

5.3.2 Descriptive_Concepts in User Stories

In order to be able to study the relevant concepts within US templates, we first
decompose these to keep the syntaxes and their related dimensions only. Such
an element is, for the sake of uniformity, characterized as a Descriptive_Concept
(D_C) in the present study. Figure 5.2 shows the D_C in the form of a class.
When building the dataset, each element that we find in a US template and
that relates to one of the 3 dimensions will be an instance of that class. As
an example, for the template As a <role>, I want <goal> so that <benefit>,
we will have 3 instances of the D_C class, one for role, one for goal and one
for benefit. The attribute dimension thus compulsorily takes one of the values
WHO (e.g., for role), WHAT (e.g., for goal) or WHY (e.g., for benefit) and
the attribute syntax takes the syntax found within the dimension. Finally,
the attribute semantic will eventually be instantiated later through the use of
GORE frameworks.

Descriptive_Concept

dimension : ENUM{WHO,WHAT,WHY}

syntax : String

semantic : String

Fig. 5.2 The Descriptive_Concept class.

5.3.3 Building the Candidate Model

Three sets of D_C instances can be distinguished: one for the WHO, one for the
WHAT and one for the WHY dimension. For each dimension, a table was built
including each of the D_C instances found and their number of occurrences.

Then, the syntax of each instance of the D_C class was associated to a
semantic issued of GORE, business modeling or general requirements engineering
literature. More precisely, we used the following sources:

• The i* modeling framework [159], an agent and goal-oriented framework
which has been applied in many fields including requirement engineering,
software process development, business redesign, business organization,
security, etc. [158]. The framework was taken at large since it includes
the contributions of the whole Tropos [29] methodology4. [159] was used
as a main source since it encompasses significant work done around the
framework;

• The KAOS framework [139], a requirements engineering framework based
on goal modeling. [139] was used as a main source since it encompasses
significant work done around the framework;

• The Business Process Model Notation (BPMN) framework [103], a well-
known and industry adopted framework for representing business pro-
cesses;

4Tropos is the software development methodology using i* in the requirements stages.

79

Unifying and Extending User Story Models

• A glossary of requirements engineering terminology [56], which collects,
defines and translates most of the concepts used in software engineering.

In order to build the model, each instance of the D_C class leads to consult
these sources in a sequential order. Indeed, the syntax of each instance was
compared to the different syntaxes proposed in the frameworks. When a match
was found between the syntax issued of a US template and one issued of the
consulted framework, we proceeded to a preliminary adoption5. This means
that the semantic issued of the framework was associated to the D_C so that
we dispose of a couple syntax/semantic that can be further evaluated later. We
can take the example of the D_C associated with the syntax <role>: the i*
framework was firstly taken into account. Within this framework, the syntax
role was present. A match was thus directly found and the semantic associated
to the role in the i* framework was adopted for the D_C attribute semantic.
If it was not the case, we would have done the same process for the second
framework (KAOS), and so on. If finally no match could be established in any
of the evoked frameworks, it was left out of the study. This stage is referred to
as Syntax Included and Semantic Association in Section 5.4. A list of definitions
of each syntax are exposed in Appendix D.

After the process depicted in the previous paragraph was performed for
each D_C instance of a particular dimension, each semantic was firstly com-
pared to the other ones of the same dimension in order to evaluate possible
redundancy/overlap/mismatch. When issues were identified, some of these
instances were left out for the semantic evaluation onto US examples. This
stage is referred to as Comparison of Associated Semantic in Section 5.4.

Each remaining D_C was then compared to each of the set of US examples
(known as second research material). The goal was to find how many examples
could be related to the semantics of each D_C to evaluate its relative importance.
This stage is referred to as Semantic Evaluation on Examples in Section 5.4.

The model was built by a senior researcher (PhD graduate). After, it was
evaluated by a junior and two other senior researchers. Elements that lead to
discussions were carefully evaluated and discussed until a consensus was found.

5.3.4 Validation

Once the final model has been built, it has been evaluated onto two sets of US
issued of two real-life projects. This has been done by a junior researcher then
cross checked by a senior one. We started from the US sets and evaluated to
what class of the unified model it belongs in order to determine coverage and
completeness. Results are discussed in Section 5.6.

5.4 Selected Semantic Associated to the D_C Class
Instances

Table 5.1 summarizes the different syntaxes that we have found for the WHO,
WHAT and WHY dimensions. The reader can find between brackets next

5We always respected the defined framework hierarchy to ensure higher internal consistency
of the produced model.

80

5.4 Selected Semantic Associated to the D_C Class Instances

to each syntax, the respective number of occurrences found in US templates
(number of occurrences found in formal sources + number of occurrences found
in informal sources). The syntaxes in bold are the ones that were associated
with a semantic; the other ones were left out of the process of building the
candidate model before a semantic was associated. Full rationale for each of
these dimensions is given in the rest of this section.

Table 5.1 Instances for Descriptive_Concept and related syntax.

WHO WHAT WHY
Role (13+31) Goal (4+18) Business Value (7+18)
Type of User (8+15) Something (3 + 10) Benefit (7+18)
User (0+10) Action (4 + 7) Reason (4+14)
Actor (0+6) Feature (4+7) Goal (3+6)
System Role (0+1) Function (1 + 7) Achievement (0+4)
Persona (0+1) Desire (0+6) Rationale (0+2)
‘x’ (0+1) Functionality(1+4) Desire (0+2)

Capability (3+1) Outcome (0+1)
Task (1+2) Result (0+1)
Activity (1+2) ‘z’ (0+1)
Outcome (0+2)
Behaviour (0+1)
Description (0+1)
What (0+1)
‘y’ (0+1)

5.4.1 The WHO Dimension

5.4.1.1 Syntax Included and Semantic Association

As shown in Table 5.1, we found six different syntaxes into the WHO dimension.
We decided to group User and Type of User into a single instance of the D_C
class since a User inherently refers to a Type of User through its instantiation.
In the same way, we have preliminarily left out the syntaxes System Roles,
Persona and ‘x’ because the number of their instances found was not significant
and only supported by informal sources.

Using the method depicted in Section 5.3.3, the semantics associated to the
remaining syntaxes were:

• Role: “A role is an abstract characterization of the behavior of a social
actor within some specialized context or domain of endeavor” [159];

• User: “A user is a person who uses the functionality provided by a system”
[56];

• Actor: “An actor is an active entity that carries out actions to achieve
goals by exercising its know-how” [159].

81

Unifying and Extending User Story Models

5.4.1.2 Comparison of Associated Semantic

As explained in the research method, the semantics we have associated to the
syntax of Role, User and Actor have been compared to each other. We first
emphasize that the semantics associated to Role and Actor are issued of the i*
framework and, as such, can thus be evaluated complementarily. Concretely,
i* includes both concepts because the framework distinguishes Actors at a
high-level of abstraction and, as mentioned in their definition, Roles are used
into a specific context. Concretely, this high-level of abstraction is not present
in the WHO entities into the US examples that we have studied and each of
them always refer to a specific context. Consequently, none instances would be
qualified as an Actor but rather as a Role with respect to the semantic issued
of i*. The D_C with syntax Actor is thus judged non-relevant and eliminated
from the candidates to be integrated in the unified model.

5.4.1.3 Semantic Evaluation on Examples

The semantics associated to Role and User were further compared to the list of
examples built-up as a research dataset. In every of the studied US examples,
we found either the word User used as example (so not instance of D_C) within
the WHO dimension, or a specific role played by a user of the system. At this
stage, User can thus be the syntax of an instance of the D_C class or the
syntax of a US example. This is misleading so that we suggest to only keep the
instance of the D_C class associated to the syntax Role; the syntax User can
be used in a US but only as an instance of Role. Figure 5.3 thus only owns one
class related to the WHO dimension; the Role.

5.4.2 The WHAT Dimension

5.4.2.1 Syntax Included and Semantic Association

Something was directly left out of the study. Indeed, even if the number
of occurrences is high (3 + 10), no semantic could be found in the source
frameworks and it is inherently too vague/imprecise/broad to be taken into
account. No semantic could be associated to Action and Function. The only
semantic we found for Action (“... an auxiliary operation associated with a state
transition” [139]) is in the context of UML [104] state chart diagrams, which are
design diagrams documenting the states of the object so non relevant for the
present purpose. Similarly, we also only found a semantic related to Function
in the context of object-oriented design which was stated as non relevant for
the present context. They were thus left out before evaluation. No direct
semantic for Desire was found into the envisaged frameworks, we nevertheless
can point to the Belief-Desire-Intention (BDI) model [45] for a semantic related
to Desire. The BDI paradigm nevertheless refers to the design stage of an
agent paradigm and, when integrated with i* elements, the desire explicitly
refers to an actor goal. So the concept is redundant with the goal concept
and located specifically into a design context; we have thus decided to leave
it out of the evaluation. Finally, we have preliminarily left out the syntaxes
Outcome, Behavior, What and “y” because the number of their occurrences was

82

5.4 Selected Semantic Associated to the D_C Class Instances

not significant (1 or 2 informal sources only). Using the method depicted in
Section 5.3.3, the semantics associated to the remaining syntaxes were:

• Goal: we decided to include semantics of hard- and soft-goals to evaluate
the opportunity of including both notions into our unified model for US.
More particularly we associated the following semantics:

– Hard-goal: “A hard-goal is a condition or state of affairs in the world
that the stakeholders would like to achieve” [159];

– Soft-goal: “A soft-goal is a condition or state of affairs in the world
that the actor would like to achieve. But unlike a hard-goal, there are
no clear-cut criteria for whether the condition is achieved, and it is
up to the developer to judge whether a particular state of affairs in
fact achieves sufficiently the stated soft-goal” [159].

• Feature: “A feature is a delimitable characteristic of a system that provides
value for stakeholders” [56];

• Functionality: “Functionalities are the capabilities of a system as stated
by its functional requirements” [56];

• Capability: “A capability represents the ability of an actor to define,
choose, and execute a plan for the fulfilment of a goal, given certain world
conditions and in the presence of a specific event” [159];

• Task: “A task specifies a particular way of attaining a goal” [159];

• Activity: “An activity represents work that a company or organization
performs using business processes. An activity can be atomic or non-
atomic (compound). The types of activities that are a part of a Process
Model are: Process, Sub-Process, and Task” [127].

5.4.2.2 Comparison of Associated Semantic

The Feature and Functionality could be compared since they both refer to
properties (characteristic or capability of a system). This similarity could be
problematic. We first of all decided to look for enhancements in the semantics
of Feature to gain confidence with interpretation/identification onto the set of
examples. We notably consulted literature about Feature-Oriented Development.
Apel and Kästner [11] define a feature as “a unit of functionality of a software
system that satisfies a requirement, represents a design decision, and provides
a potential configuration option”. The Feature thus is unique when compared
to the other semantics because it refers to part of the system that satisfies a
functional or non-functional requirement [21] and thus inherently shapes part of
the structure of the system-to-be. Due to the perceived similarity in semantic
between the concepts of Feature and Functionality, we decided to only keep one.
We have thus chosen to integrate the Feature as a candidate D_C because of
the higher presence of the term in the US templates and in the context of agile
development in general and the most precise semantics we have.

83

Unifying and Extending User Story Models

Then we can legitimately be willing to compare the Capability and Task
since both semantics are issued from the i*/Tropos framework and both point,
in the chosen semantic, to the achievement of a goal. When comparing them,
one can notice that they differ in the way they relate to a subject. While the
Task is a particular way of attaining the Goal not related to any subject, the
Capability explicitly refers to an ability (define, choose and execute a plan) of a
particular actor to fulfill a Goal. Inherently, [159] defines the Capability on a
design level rather than on an analysis one. We will nevertheless keep it into
the evaluation in order to consider its relevance in the use of US where elements
are often expressed at the frontier between analysis and design.

Finally, the Task and Activity must be semantically compared too because
the application of these semantics can be conflicting. Within the definition of an
Activity, we find an explicit reference to the Task syntax. In BPMN, the Task
refers to some atomic behavior which is not compulsorily the case with i*. Both
the Task and the Activity refer to behavior in order to achieve a higher level
element known as business process for BPMN and Goal for the i* framework.
We believe that these elements can thus be seen as overlapping but do not
use the same terminology since they belong to different modeling paradigms.
Since we give higher priority to i*, we decide to eliminate the Activity from the
candidate D_C instances and only keep the Task as candidate.

5.4.2.3 Semantic Evaluation on Examples

Empirically, we were able to find occurrences of each of the D_C instances
selected within the studied examples.

Following the used semantics, there is nevertheless an over representation of
the Capability (88% of the cases). Indeed, in a lot of cases, the US is expressed
in its WHAT dimension as a Capability of a role instance.

We distinguish the Task from the Capability through the way they are
expressed; the Task is expressed like a general intention constraining the system
while the Capability is expressed as a direct system offering. The Task should
thus be kept in order to be able to specify a way of acting to achieve a Goal; it
can, in a sense, be seen as a way of constraining the system-to-be for achieving
a goal during the requirements stage. For example, the US As ..., I am required
to log into the system so that ... represents a Task for the WHAT dimension
because it is expressed in the form of a constraint on the system, while As a ...,
I can start a new game represents a Capability for the same dimension because
it is expressed in a more direct manner.

Instances of the Hard-goal are also present, for example As a borrower, I
want to pay off my loan. It nevertheless always concerns an Epic US—i.e., US
that need to be refined. Similarly, occurrences of the Soft-goal in the WHAT
dimension are also present but are even more rare; we for example find As
a player, I want nice looking background art that integrates with the game
boards. This shows that elements issued of GORE frameworks are envisaged
in the context of US and we can make further use of it in the context of agile
development.

84

5.4 Selected Semantic Associated to the D_C Class Instances

We finally discuss the Feature element. Examples such as Search for ...,
Undo/redo move, ... are sometimes considered as instances of Feature in the
studied US but we do not believe this is in line with the semantic that we
have associated to the Feature. It is rather aligned with the one that we have
associated to Capability. A Feature is indeed, according to our semantics, a
broader aspect of the system requiring to fulfill the 3 conditions set up in [11].
The US As a salesman I want car to be equipped with GPS so that I can easily
set my direction could be considered as clearly integrating a Feature into the
WHAT dimension. We nevertheless point to the interpretation as a Goal and
leave the Feature concept not as a D_C instance but rather an element that
can be used at higher level to group US around a central theme. This way of
doing is in line with the use of the Feature element in the Scrum method.

5.4.3 The WHY Dimension

5.4.3.1 Syntax Included and Semantic Association

Some information was found into informal literature about agile development
related to the syntax Business Value. [5] indeed points out that “business value
is a concept that describes the relative worth of any development effort to the
business. Business value is often unquantifiable, but often relates to money
... The relative business value of stories can generally be determined by asking
questions to get to the root value proposition of each”. We do not really consider
this as semantic for evaluation since it is more about the characteristics of
Business Value than the description of how Business Value could be expressed
in itself. It inherently refers to an umbrella term of a goal or objective to be
attained. No Business Value syntax relating to semantics was found in the
input frameworks. As we will see in the rest of this section, we do have a set
of semantics directly referring to objectives to be attained that are defined in
a much more precise manner. Even if the representation of the syntax is very
high into the studied templates, we believe that leaving it out of the model to
favor precise semantics is the best option.

No semantic associated to the syntax Benefit and Reason was found in the
envisaged frameworks. For the same reason Business Value was left out, we
decided not to consider them. We have also preliminarily left out the syntaxes
Achievement, Rational, Desire, Outcome, Result and ‘z’ because the number of
their instances found was not significant.

Using the method depicted in Section 5.3.3, the semantics associated to the
remaining syntax, the goal which includes both the Hard-goal and the Soft-goal,
are the same as in the WHAT dimension.

5.4.3.2 Comparison of Associated Semantic

The analysis of the WHY dimension will thus firstly be limited to the evaluation
of examples with respect to i* hard-goal and soft-goal definitions.

85

Unifying and Extending User Story Models

5.4.3.3 Semantic Evaluation on Examples

On the evaluation, most of the examples could not be considered as goals
because, even if they are expressed as objectives, they are onto a too low level
to be considered as (abstract) i* goals. We indeed could only find alignment
with the Hard-goal and Soft-goal semantics on 53% of the cases, leaving the
rest without association.

We thus need the inclusion of other D_C instances to cover the WHY
dimension. Nevertheless, as evoked earlier in this section, no satisfying instance
was found among the collected syntaxes; we thus suggest relaxing the dimension
characteristic of the Task element so that it can be used into the WHY dimension.
Indeed, we intuitively believe that the semantics associated to the Task element
would fit most of the examples found into the WHY dimension because they
are expressed as a requisite on a lower level basis. If we take the following
example ... so that I know my recent deposit went through. We assume
that it cannot be considered as a Hard-goal because it is expressed on a too
low-level basis, a corresponding Hard-goal could be for example Make deposits
while knowing that the recent deposit went through is only a way of attaining
the higher-level Hard-goal (could be to attain a soft-goal too). By including
the Task element into the WHY dimension we were able to cover all of the
examples.

5.5 A Unified Model for User Story Templates

Figure 5.3 represents the instances of the D_C class that have been selected on
the basis of the previous study to be part of the unified model.

Soft_Goal

dimension : Enum{WHAT,WHY}

name : String

Hard_Goal

dimension : Enum{WHAT,WHY}

name : String
0..n0..n 0..n0..n

so that

Capability

name : String

dimension : String = WHAT

Role

name : String

dimension : String = WHO

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

Task

name : String

dimension : Enum{WHAT,WHY}
0..n1..n 0..n1..n

wants/wants to/needs/can/would like

0..n

0..n

0..n

0..n

so that

0..n
0..n

0..n so that
0..n

Goal

0..n

0..n

0..n

0..n

so that

0..n

1..n

0..n

1..n

wants/wants to/needs/can/would like

0..n0..n 0..n0..n

so that

Fig. 5.3 Unified model for user story Descriptive_Concepts.

Each instance has become a class itself meant to be instantiated within
the requirements gathering stage. The links between the classes represent the
possible links between the elements into a US template issued of the model.

The link between the classes conceptually represents the link from one
dimension to the other. Concretely, the unidirectional association from the
Role to one of the class Capability, Task or Goal implies that the target class
instantiates an element of the WHAT dimension (always tagged as wants/wants

86

5.6 Validation

to/needs/can/would like in the model). Then, the unidirectional association
from one of these classes instantiating the WHAT dimension to one of the classes
instantiating the WHY dimension (always tagged as so that into the model)
implies that the target class eventually (0 as minimal cardinality) instantiates
an element of the WHY dimension. An US template we can derive from the
model is: As a <Role>, I want/want to/need/can/would like <Task> so that
to <Goal>.

Let us finally note that the Goal class is represented as an interface because
it cannot be instantiated as such; it is either a Hard_Goal, either a Soft_Goal.
As shown within the research, the instance of Hard_Goal and Soft_Goal can be
related to the WHAT or WHY dimensions. Also, if a Hard_Goal is related to
the WHAT dimension, it can be linked to a Soft_Goal in the WHY dimension,
not if the WHAT dimension is a Soft_Goal. This because it has never been
found in any of the examples so we believe it is impossible to have a Soft_Goal
as desired state to fulfill a Hard_Goal.

5.6 Validation

The unified US model has been applied to two different case studies in order to
evaluate the coverage—i.e., Is each of the elements required?—and completeness—
i.e., Are more elements required?—of the model.

The first case study is the development of an application to ease carpooling.
Carpooling is the sharing of car journeys so that more than one person travels
into the car; it takes increasing importance to save gas, reduce traffic, save
driving time and control pollution. ClubCar is a multi-channel application
available as an Android application, SMS service and IVR system. Users of
ClubCar are riders and/or drivers, they can register by SMS, voice or through
the Android Apps. Roughly speaking the software allows drivers to propose
rides and submit their details with dates, times, sources and destinations while
riders can search for available rides [128]. The project included a total of 28 US.

The second case study is called CalCentral has been developed by the
University of Berkeley. CalCentral “... is an online system that delivers a
unified and personalized experience to students, faculty and staff, facilitating
the navigation of campus resources, delivering personal notifications from key
campus systems, and supporting learning and the academic experience” [26].
US are used as requirement artefacts in the project; the list of 95 US that is
available at [25].

Figure 5.4 summarizes results of the application of the conceptual model
on the two case studies. It notably shows that each of the concepts included
into the model has been required to characterize each of the US of the cases
(even if the Task concept has not been required in the WHY dimension of the
carpooling case). If we consider the two case studies, we thus have full coverage.
In other words, each of the elements included in the unified model are necessary
for concrete representation of the US found in these two real life projects. This
means that, as far as these two projects are concerned, no element is superfluous.
Similarly, all of the US of the case studies taken into account could be covered
by using the set of elements considered in our model. We thus also have full

87

Unifying and Extending User Story Models

completeness. This concretely means that we are able to interpret each US of
these projects with the set of US templates that we can derive from our unified
model. As such, the US is thus associated with a well defined structure.

Finally, the reader should note that the WHY dimension was not present in
each of the US; it was thus only evaluated when it was present in the US.

Role Capability Hard_Goal Task Soft_Goal

CalCentral

WHO

WHAT

WHY

ClubCar

WHO

WHAT

WHY

66% 6% 6% 22%

100%

100%

17% 47% 37%

50% 11% 32% 7%

29% 71%

Fig. 5.4 Elements coverage in the Carpooling and CalCentral case studies.

5.7 Threats to Validity

One may argue that the choice made in the semantics was arbitrary. The choice
has been made to start from GORE frameworks because these are the ones
proposing the most advanced concepts for requirements representation and have
a significant supporting community. Similarly, one may argue that each couple
syntax/semantic of each of the frameworks used as source do form a whole
and that we can hardly take a concept from one method and another from
another. That is the reason why we proceeded sequentially and gave priority
to the best ranked source. We nevertheless admit that the choices of the used
framework and their respective priority could have been different leading to
some differences in the proposed model and associated semantic.

The number of collected examples for each US template was unequal which
could have biased the relative importance of each of the concepts found. We
have always been aware of this reality but we do not consider it as an issue since
we were studying the whole coverage of the model. Moreover, the validation is
aimed to partially solve this issue by showing such a relative importance of the
D_C instances onto real life case studies.

One may question about the level of abstraction of the US expressed in
agile projects and question whether i* hard- and soft-goals semantics could be
suitable to characterize elements in US by nature operationally oriented. The
results that have been presented show that high-level elements are in a few
occasions present notably in the form of Epic US.

5.8 Conclusion

Various syntaxes with no associated semantics have made the use of US ad-
hoc and mostly operational only. This has lead to several problems in the
use of agile methods notably in large development projects. This chapter has

88

5.8 Conclusion

provided a set of concepts with syntax and associated semantic for a more
precise use of US. The objective is to be able to address larger projects with
the same requirements artifacts and to include the overall benefits of GORE
into agile methods use. The use of the framework could indeed help—through
hierarchization and stepwise refinement—to enhance scalability possibilities of
agile methods. Refinement of Goals using Tasks and Capabilities and grouping
around Themes, the project can be divided easier into loosely coupled parts
that can be developed rather independently within balanced iterations.

The research exposed in this chapter lead to building a unified (meta-)model
for US templates but its real use and added value has not (yet) been established.
Next chapter makes further use of the meta-model and builds up a graphical
notation on its basis.

89

Part IV

Graphically Representing User Story
Elements: Identifying Granularity,

Interdependencies and Scope of
Requirements

91

Chapter 6

Building a Rationale Tree for Evaluating
User Story Sets

Requirements representation in agile methods is often done on the basis of User
Stories (US) which are short sentences relating a WHO, WHAT and (possibly)
WHY dimension. They are by nature very operational and simple to understand
thus very efficient. The research exposed in the Chapter 5 allowed to build
a unified model for US templates associating semantics to a set of keywords
based on templates collected over the web and scientific literature. Since the
semantic associated to these keywords is mostly taken from the i* framework,
we overview, in this chapter, how to build a custom Rationale Tree (RT) on the
basis of a US set tagged using that unified template. The RT is strictly speaking
not an i* Strategic Rationale (SR) diagram but uses parts of its constructs and
visual notation to build various trees of relating US elements in a single project.
Indeed, the benefits of editing such a RT is to identify depending US, identifying
Epic ones and group them around common Themes. This chapter shows the
feasibility of building the RT, then points to the use of these consistent sets of
US for iteration content planning. To ensure the US set and the RT constitute
a consistent and not concurrent whole, an integrated Computer-Aided Software
Engineering (CASE) tool supports the approach.

The research exposed in this chapter has been realized in collaboration with
Y. Wautelet, M. Kolp, I. Mirbel and S. Poelmans. Results have been published
in the proceeding of the 10th International Conference on Research Challenges
in Information Science (RCIS 2016, [149]).

The chapter is structured as follows. Section 6.1 provides the research
context of the chapter. Related work is discussed in Section 6.2 while Section
6.3 exposes the research design. Specifically, a meta-model of elements aiming at
grouping US (macro-level) as well as decomposing US (micro-level). Section 6.4
explicitly maps the elements of the US template meta-model with the elements
of the SR model to use its reasoning techniques with a project’s US. Section
6.5 abstracts the different cases we can face within the edition of US using the
reasoning approach of the SR model, how Epic US can be identified in these
cases and how US can be grouped around Themes. Section 6.6 discusses its
inclusion in the agile software process while Section 6.7 discusses the automation
of the approach and its support through a CASE-Tool. Section 6.8 discusses

93

Building a Rationale Tree for Evaluating User Story Sets

the validity, the threats to validity, the scalability of the approach and future
works. Finally, Section 6.9 concludes the chapter.

6.1 Research Context

With respect to the model built in Chapter 5, one may indeed question about
the utility of such a model for agile practitioners. In the end, why should US be
‘tagged’ to a certain template or keyword and not simply expressed following
the WHO/WHAT and WHY structure without more refinement. The main
advantage of tagging is that, if done respecting the semantics associated to the
concepts, it gives information about the nature of the US element (and thus also
its granularity if the element is functional). Such information could possibly be
used later on for analysis or structuring of the problem as for example pointed
out by [87]. Structuring of US is often done with the User Story Mapping
(USM) technique (see [112]); the latter uses Story Maps (SM), which are hard
to maintain and read, so that other techniques for visual representation could
be welcome.

In this perspective, we suggest to explore the visual representation of US
starting from a set of US tagged following the model exposed in Chapter 5.
Since the latter unified model is largely inspired by i* semantics, this chapter
overviews how one can build a diagram in the form of a tree using the constructs
of the i* SR diagram with the elements contained in sets of US. The goal
is thus not to use the SR as such, but to build a graphical notation largely
inspired by the SR convenient for the representation of the US elements and
studying their refinements, compositions and decompositions in order to group
them consistently. In the requirements engineering process built out of our
contribution, we point to keep up with agile principles and to build the set of
US first then to generate a RT1 on their basis. We indeed do not believe that
starting from i* modeling in agile development could, as such, be adopted as
an alternative to USM because the approach is very abstract and often starts
with as-is requirements representation so is not really in line with what agile
modelers are expecting for requirements representation. Nevertheless, an i*-like
diagram furnishing a consistent visual representation of an existing US set thus
providing a graphical representation of the system-to-be only provides added
value and is in line with agile expectations.

Our proposal is illustrated through a running example about carpooling (see
Section 5.6).

6.2 Related Work

Our work aims to organize US on the basis of a proper granularity analysis.
Among other sources, the need for granularity levels in US-based modeling
has been identified in [87]. The problem of poor scalability of agile methods

1In this chapter, we refer to the RT as the diagram that we build in order to visually
represent US elements issued of a US set and their links. It is strictly speaking not a SR
diagram but uses close notation and constructs (this is built-up and motivated in this chapter).
For a complex case this RT is made of several decomposition trees.

94

6.2 Related Work

because of poor granularity identification in requirements representation has
been identified in [82, 100].

The process of transformation from a set of US to RT can be compared
to a more formal approach to USM (see [112]). USM is the industry adopted
technique that relates the most to our approach. Within a project, USM is
intended to produce a SM which is a map of a project’s US according to (i)
the level of abstraction, (ii) the sequence (horizontal dimension), and (iii) the
priority (vertical dimension).

Basically, USM defines three layers: the backbone which represents an entire
user activity (or process), the walking skeleton which represents a user task
and the slice US which represents a small, implementable and concrete US
[112]. We informally evaluate a possible alignment with elements present in our
approach (see Chapter 5 for their definition). The USM user activity—which is
an abstract objective—could then be compared to a US containing a Goal in its
WHAT dimension while the USM user task—which makes the former objective
more concrete—could be compared to a US containing a Task in its WHAT
dimension and, finally, the USM implementable US—which is the most concrete
and atomic one—could be compared to a US containing a Capability in its
WHAT dimension. We could thus say that, by nature, granularity of elements is
not what distinguishes our approach from USM. This is rather interesting since
the model of Chapter 5 that we base our approach upon has been built from
existing sets of US templates and examples and, empirically, also distinguished
3 required granularity levels. Nevertheless, our approach diverges from USM
in the use of a graphical notation inducing the use of formal links between US
elements while USM uses story cards with a color-coding technique. This allows
only limited expressiveness and flexibility in US manipulation. Indeed, one
finer-grained US can then only relate to one coarser-grained US where we could
define multiple links.

When compared to USM, a bit more effort is required with the technique
we propose in this chapter since we split a US in 2 or 3 dimensions and we use
the graphical representation of i*. Nevertheless, this leads to:

• A graphical representation of requirements. SM remain limited to post-its
on a board or even on the ground;

• A structuring of requirements where we can:

– Systematically eliminate redundant US elements. A SM is aimed to
achieve a comparable process but with a refinement on the basis of the
WHAT and WHY dimensions; our process offers finer possibilities;

– Study the dependencies of US to other US (thus multiple possible
dimensions) notably useful for the identification of Theme US. SM
hierarchy is limited since a US can only be under the column (scope)
of one Epic US.

We thus argue that with comparable modeling effort we make use of a more
precise model to build the system-to-be.

Chapter 8 envisages a transformation approach from sets of US tagged with
the same model (see Section 5.5) to a Use-Case diagram. Roughly speaking

95

Building a Rationale Tree for Evaluating User Story Sets

we point to the transformation of goal elements as well as some task elements
to Use-Cases in a Use-Case diagram. The approach delivers a coarse-grained
representation of the system-to-be but fails to bring a decomposition approach
necessary to study US inter-dependencies as we build-up in this chapter.

6.3 Research Method

This section exposes the ‘building blocks’ used within this research. Our main
goal is to be able to group US on the basis of their interdependencies. A few
concepts have been proposed in agile literature2 from which we have built up a
meta-model. At the macro-level, detailed in Section 6.3.1, relationships with
US concepts are highlighted. US of various granularity levels require to be
composed/decomposed into other US or be grouped with other US around
common Themes. Features are also required for the proper fulfillment of
US. We also propose to decompose US through their dimensions in so called
Descriptive_Concepts (see Section 5.5) to allow their analysis. Section 6.3.2
depicts this micro-level.

6.3.1 Macro-level: Ways to Organize User Stories

We first distinguish a US macro-level dealing with the grouping of US into
depending (i.e., relating) sets. We thus envisage here the US as potential
building blocks serving for project composition/decomposition. US are indeed
subject to a process of sorting and dropping early on into the development
project [88]; an initial identification of the US hierarchy using precise semantics
could help (i) addressing priorities among coherent and non-redundant sets of
US and (ii) manage changing requirements by understanding the impact of
changes.

Figure 6.1 presents our meta-model of the US concepts in its project environ-
ment. At this macro-level, the aim is to identify what elements could be used
(i) to group US, (ii) to abstract them or (iii) to see what technical elements
should be provided by the system and that they are concerned with.

The User_Story class represents the US characteristics as a whole. Chrono-
logically, US are written by the customer or product owner at the earliest stages
of the project and put in the product backlog with an (implementation) priority
and an amountOfPoints which refers to the number of User Story Points (USP)3

[36, 83]. These elements have thus been added as attributes to the User_Story
class. Other attributes required for process management are included within
the User_Story class. Indeed, US are written onto User Story Cards (USC).
To support their implementation, we enrich the User_Story class with a status
attribute which contains the status of the US on the USC. The value of the
status in the USC can be threefold: Open User Story (O_US), In Progress
User Story (IP_US) and Completed User Story (C_US) [110]. In addition, the
conversation attribute contains the detailed discussion about the US.

2We have focused on the available sources describing the eXtreme Programming (XP) and
SCRUM methods.

3The amount of USP represents the estimated effort required to implement the US.

96

6.3 Research Method

AcceptanceTest FeatureTheme

Epic

User_Story

priority : Integer

amountOfPoints : Integer

status : ENUM{0_US,IP_US,C_US}

conversation : Text

1

1..n

1

1..n

Fulfills

1..n1..n

Requires

n

groups

1..n

0..1

1..n

0..1

is refined in

0..n0..n

Fig. 6.1 US as Macro-Level structures: Meta-Model.

The AcceptanceTest [36] class encapsulates the set of predefined tests for a
US. This is used to validate whether the US satisfies stakeholders’ requirement(s).
This can be a normal/abnormal scenario and is defined by the tester.

Some US need to be refined into other ones since they are too abstract
(coarse-grained) to be estimated, implemented and tested at once. These are
called Epic US [36]. The latter are indeed US with a high-level of abstraction
meaning that they must be refined/decomposed into smaller US to describe
the requirement more precisely. These US are represented by the class Epic
inheriting from the class User_Story.

A Theme is a collection of related US [36]. We model it using the Theme
class as a grouping of a set of lower level US.

Finally, Features inherently relate to technical elements not expressed into
US but that must be provided by the system. Indeed, a feature “is a delimitable
characteristic of a system that provides value for stakeholders” [56]. This
definition can be refined by “... a unit of functionality of a software system that
satisfies a requirement, represents a design decision, and provides a potential
configuration option” [11]. As highlighted in [21], the feature is unique when
compared to the other semantics because it refers to part of the system that
satisfies a functional or non-functional requirement and thus shapes part of the
structure of the system-to-be. The Feature class represents the concept.

6.3.2 Micro-level: Decomposing a User Story in
Descriptive_Concepts

Within Figure 6.2, the meta-model of the previous section is enriched with the
constituting elements of the US; we refer here to this US view as the micro-level.

Rather than using the US as a whole within the requirements analysis
process, we suggest, in our research design, to decompose the US on the basis
of their WHO, WHAT and, when available, WHY dimensions. For the sake
of uniformity, these elements are all characterized as Descriptive_Concepts
(D_C). When decomposed into a set of D_C, the dependency between D_C is

97

Building a Rationale Tree for Evaluating User Story Sets

Link

type : String

sibling : Descriptive_Concept

AcceptanceTest FeatureTheme

Epic

Descriptive_Concept

dimension : ENUM{WHO,WHAT,WHY}

syntax : String

semantic : String

0..n

1

0..n

1

User_Story

priority : Integer

amountOfPoints : Integer

status : ENUM{0_US,IP_US,C_US}

conversation : Text

1

1..n

1

1..n

Fulfills

1..n1..n

Requires

n

groups

1..n

0..1

1..n

0..1

is refined in

2..31..n 2..31..n

includes

0..n0..n

Fig. 6.2 US as Macro- and Micro-Level structures: Meta-Model.

intended to be further studied (see Section 6.4). Each element of a US template
relating to one of the 3 dimensions is then an instance of the D_C class. For
the template As a <role>, I need a <task> so that <goal>, we have 3 instances
of the D_C class: one for role, one for task and one for goal. The dimension
attribute thus compulsorily takes one of the values WHO (for role), WHAT
(for task) or WHY (for goal) and the syntax attribute takes the syntax of the
concept name (e.g., role, task, goal, ...). The semantic attribute relates to the
definition of the D_C. The list of all the possible D_C is given in the form of a
meta-model allowing to define US templates in Section 5.5.

Finally, since different D_C can be linked together, we introduce the Link
class that represents the possible different types of links between two D_C. The
possible instances of the Link class will be studied in Section 6.4.3.

6.4 A Graphical Notation for User Stories Dependency
Analysis: Micro-Level Approach

The purpose of this section is to explicitly map the concepts of the unified
model of US templates with the concepts taken from the SR model; this would
allow to derive a relevant graphical notation to be used for reasoning around a
project US.

6.4.1 The WHO Dimension: Graphical Notation

Within the WHO dimension, we only find, in the unified model, the Role
concept.

The Role concept has semantics issued from the i* framework and is thus
‘natively’ supported by the SR model with a defined icon (see Figure 6.3).
Similarly, the boundary of the actor is defined as a circle associated to the role
as within the SR model. This graphical notation is thus also adopted here
within the graphical representation of WHO dimension US elements.

98

6.4 Graphical Notation for US Dependency Analysis: Micro-Level

6.4.2 The WHAT and WHY Dimensions: Graphical Notation

Within the WHAT and WHY dimensions we find, in the unified model, the
Task, Capability and Goal concepts. The latter must be a Hard-goal or Soft-goal
so that we in total have 4 concepts that need to be represented in these two
dimensions.

All of these concepts, except the Capability, have semantics taken from the
i* SR model and are thus supported by a defined icon (see Figure 6.3). These
graphical notations are thus also adopted here for these 3 concepts within the
graphical representation of WHAT and WHY US elements.

The Capability concept with its associated semantics is not a requirements
modeling concept but rather an agent-oriented design one not ‘natively’ sup-
ported by the SR model. The relevancy of its inclusion in the unified model has
been discussed in Chapter 5 and, as evoked earlier, we keep it for the modeling
of atomic Tasks (of course performed by a determined Role). As shown in Figure
6.3, we introduce a genuine icon for this concept. We also add a constraint on
this element: it cannot be used as an entire mean in a means-end decomposition
(see next section) because it is atomic (i.e., low level and concrete).

b)

²

Role_1

Task_1

Hard_Goal_1

Capability_1

Task_2

Soft_Goal_1

Capability_2

Task_3

Hard_Goal_2

Capability_3

US2: As Role_1, I want Capability_1,

so that Task_2

US3: As Role_1, I want Soft_Goal_1,

US1: As Role_1, I want Task_1, so

that Hard_Goal_1

US4: As Role_2, I want Capability_2,

so that Task_3

US5: As Role_2, I want Capability_3,

so that Hard_Goal_2

User Stories (US) Strategic Rational Diagram (SRD)
(SRD)

Role_2

are part of

Elements

Links

Task Hard-goal Capability

Role Boundary

Role

WHO WHAT WHY

User Story

Soft-goal

Decomposition link

Means-end link

Contribution link(+,-)

Fig. 6.3 Icons used within the representation of the user story elements using
the Strategic Rationale reasoning.

6.4.3 Linking Descriptive_Concepts of the Unified User Story
Model

Now that we have set-up the icons for the different elements, we need to study
the possible types of links between elements of the WHAT and/or of the WHY
dimension. Three types of links between elements are specifically defined for
the SR model; these are:

• Means-end links which “indicate a relationship between an end, and a
means for attaining it. The “means” is expressed in the form of a task,
since the notion of task embodies how to do something, with the “end” is
expressed as a goal. In the graphical notation, the arrowhead points from
the means to the end” [159];

99

Building a Rationale Tree for Evaluating User Story Sets

• Decomposition links are more specifically associated to tasks, indeed
“a task element is linked to its component nodes by decomposition links”
[159]. Moreover, “a task can be decomposed into four types of elements: a
subgoal, a subtask, a resource, and/or a softgoal – corresponding to the
four types of elements. The task can be decomposed into one to many of
these elements. These elements can also be part of dependency links in
Strategic Dependency model(s) when the reasoning goes beyond an actor’s
boundary” [159];

• Contribution links for contributions to Soft-goals, indeed “any of these
Contribution Links can be used to link any of the elements to a Soft-goal
to model the way any of these Elements contributes to the satisfaction or
fulfillment of the Soft-goal” [159].

When a WHY dimension is present into a US, we can deduce that there is
a link between the elements of the WHAT and the WHY dimensions even if
this link is not necessarily a direct one. Intuitively we could think that there
is compulsorily a means-end link (the WHAT element is a mean to attain the
WHY element) but this cannot be stated as a rule (thus nor automated). Indeed,
empirically a lot of cases can be found where the element in the WHY dimension
is very coarse-grained and the element in the WHAT dimension atomic. Then,
the WHAT element is just a step in the realization scenario rather than an
entire mean to achieve the element in the WHY dimension. This means that if
the WHAT element is a Capability or a Task located on a low level basis, that is,
a step or partial set of steps in the realization of an element expressed in a very
coarse-grained manner in the WHY dimension (like a Hard-goal but could also
be a Task or a Soft-goal), then there can be, in the diagram representing the
set of US, elements between the elements of the WHAT and WHY dimensions
of this single US.

The modeler has to create the links between the D_C in function of the
requirements/domain analysis. The study and linking of elements lead to a tree
hierarchy in a SR diagram fashion. That way an analysis of the alternatives
(means-end) and of the possible redundancy (in the decompositions) could also
be performed.

Note that a decomposition within our model can cross the boundaries of a
single role. This is represented in the form of a dependency within a classical
i* SR model. We here focus on decomposition only, so that we do not include
dependency associations that would increase the complexity of the diagram (see
examples in Table 6.2 and Figure 6.5).

6.5 Towards a Rationale Analysis for User Stories
Hierarchy and Grouping: From Micro to Macro Level

This section is aimed to study how the i* SR models’ constructs can be used
to build a custom RT (so it is not strictly speaking an i* SR diagram but it is
however largely inspired by it), aligned with a set of US in order to highlight
Epic US and group US belonging to the scope of an Epic one (so sharing a
same Theme). Indeed, after the graphical mapping of elements made within

100

6.5 Towards a Rationale Analysis for User Stories Hierarchy and Grouping

the previous section, the remaining relevant question is to determine how to
characterize an Epic US and determine US relating to the same Theme on the
basis of a rationale analysis?

Intuitively, we envisage the Epic US as the ones containing elements at
the highest level of the hierarchy of a decomposition model. Capabilities can
thus not be considered for possible inclusion in the top-level elements category
because they should be expressed as role decisions on a very low (atomic) level.
Similarly, Soft-goals are by nature non-functional so that they are also not
included in the category. Relevant top-level elements can thus be Hard-goals
or Tasks. Hard-goals are abstract and need to be operationalized so that we
choose to focus on elements with a concrete realization scenario and they will
not be considered for being Epic US. Only the Task concept is then remaining
and we define a top-level Task as a Task element that is not issued
of the refinement of another Task element but that itself needs to
be refined in more elements. Decomposition complexity and possible finer
grained hierarchization of elements will be further discussed in Section 6.6.

Different possible cases for Epic US and Theme US identification are dis-
cussed in the rest of this section.

6.5.1 A Top Level Hard-goal (End), One Mean

6.5.1.1 Description

If, for a top-level Hard-goal, there is only one means-end decomposition (which
represents a possible way of satisfying the Hard-goal through a Task), then
the US containing the Task4 at the source of the means-end decomposition as
D_C is an Epic US. The rest of the (lower level) elements in the scope of this
means-end decomposition belong to US of the same Theme.

6.5.1.2 Example

Table 6.1 presents a set of US issued of the ClubCar application development.
The scenario described in this section is represented in Figure 6.4 both in
canonical form and instantiated to the US of Table 6.1. The US including the
Task “Propose a ride from A to B with the price, location and time of departure,
and number of seats available” is thus an Epic US because it is the top-level
Task issued of the means-end decomposition of the Hard-goal “Propose a ride
to go from A to B”. Moreover, the US containing all the elements refining the
top-level Task are part of the same Theme5. Also note that the Capability
“Select appropriate service” was not initially present into the US set but has been
added to ensure the consistency of the rationale analysis. Also note that the
presence of the Soft-goal “Rider satisfied of my driver service” has no impact on

4Note that the Task could potentially be present in different US in the WHY dimension.
We refer here to the US in the WHAT one. It may be that we need to create the Epic US
(thus with the Task in the WHAT dimension) because it can be that it is not expressed as
such in the set of US of the project.

5In our approach, a US containing a Capability element (necessarily in the WHAT dimen-
sion, see Section 5.5) can belong to different Theme groupings because these steps are relevant
for the execution scenarios of different Epic US.

101

Building a Rationale Tree for Evaluating User Story Sets

Table 6.1 US set 1 sample issued of the ClubCar application development.

Dimension Element D_C Type
WHO As a DRIVER Role
WHAT I want to register to the service Task
WHY so that I can propose ride to go from A to B. Hard-goal
WHO As a DRIVER Role
WHAT I want to propose a ride from A to B with the

price location and time of departure, and number
of seats available.

Task

WHO As a DRIVER Role
WHAT I want to log in to the platform Capability
WHY so that I can register to the service. Task
WHO As a DRIVER Role
WHAT I want to select the ride characteristics. Capability
WHO As a DRIVER Role
WHAT I want to confirm the proposal. Capability
WHO As a DRIVER Role
WHAT I want the RIDER to be satisfied of my service. Soft-goal

the rest of the Epic and Theme identification process but its identification and
representation can constitute a guidance for designers later on in the software
engineering process (the use of Soft-goals in the software architecture and design
is however outside the scope of this chapter).

102

6.5 Towards a Rationale Analysis for User Stories Hierarchy and Grouping

����

����	
���

����

���� ����

����������� �����������

������

������������������
������������������

��������������
���
������������

������������������
������������
 �!�������������"������������#�
�#��������������������$��"��#��

#$�����������������������

��
�������������
�������

%������������������
�������

&�
��#��������
��������

%�����������
���������������

��#�����
��������

Element of EPIC US

(a) Canonical Model

����

����	
���

����

���� ����

����������� �����������

������

������������������
������������������

��������������
���
������������

������������������
������������
 �!�������������"������������#�
�#��������������������$��"��#��

#$�����������������������

��
�������������
�������

%������������������
�������

&�
��#��������
��������

%�����������
���������������

��#�����
��������

Element of EPIC US

(b) ClubCar Example

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

1

Fig. 6.4 Top-Level Hard-goal, One Means-End decomposition.

6.5.2 A Top Level Hard-goal (End), Several Means

6.5.2.1 Description

If, for a top-level Hard-goal, there are two or more means-end decompositions
(which represent possible ways of satisfying the Hard-goal through Tasks), then
the US containing the Tasks involved in the means-end decomposition as D_C
are considered as Epic US. The rest of the (lower level) elements in the scope of
each particular means-end decomposition belong to US of the same Themes.

103

Building a Rationale Tree for Evaluating User Story Sets

Table 6.2 US set 2 sample issued of the ClubCar application development.

Dimension Element D_C Type
WHO As a RIDER Role
WHAT I want to pay for the car pooling service in function

of the country I’m traveling in.
Hard-goal

WHO As a RIDER Role
WHAT I want to pay by credit card. Task
WHO As a RIDER Role
WHAT I want to pay by SMS in my domestic country. Task
WHO As a RIDER Role
WHAT I want to be able to select the payment desiderata Capability
WHY so that I can pay by credit card. Task
WHO As a RIDER Role
WHAT I want to log in to the platform. Capability
WHO As a RIDER Role
WHAT I need to defined the amount and the driver Capability
WHY so that I can pay by SMS. Task
WHO As the ClubCar Application Role
WHAT I want to send a confirmation SMS Capability
WHY so that when the payment by SMS has been per-

formed.
Task

6.5.2.2 Example

Table 6.2 presents a set of US issued of the ClubCar application development.
The scenario described in this section is represented in Figure 6.5 both in
canonical form and instantiated to the US of Table 6.2. The US including the
Task “Pay by SMS in domestic country” as well as the US including the Task
“Pay by credit card” are thus Epic US because these are top-level Tasks issued
of means-end decompositions of the Hard-goal “Pay for the car pooling service
in function of the country he is traveling in”. Moreover, the US containing all
the elements refining these two top-level Tasks are part of the same Themes (so
we have two Themes represented in Figure 6.5).

104

6.5 Towards a Rationale Analysis for User Stories Hierarchy and Grouping

����

����	
���

����

����

����������� �����������

����

�����������
����

����������� �����������

�����������

�����

����������������������

������������ ��������������
�� �����!"#���������
���

�������$%$����
��#�������� ����

������������������

����������#����
����������

&�
�����������
�������#

'�������#� ���
����'�����!'

�� ����
�����������

$����
������#������$%$

Elements of EPIC US

(a) Canonical Model

����

����	
���

����

����

����������� �����������

����

�����������
����

����������� �����������

�����������

�����

����������������������

������������ ��������������
�� �����!"#���������
���

�������$%$����
��#�������� ����

������������������

����������#����
����������

&�
�����������
�������#

'�������#� ���
����'�����!'

�� ����
�����������

$����
������#������$%$

Elements of EPIC US

(b) ClubCar Example

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

2

Fig. 6.5 Top-Level Hard-goal, several Means-End decompositions.

6.5.3 A Top Level Task, a Direct Decomposition

6.5.3.1 Description

For a top-level Task not linked with a Hard-goal through a means-end decom-
position, the US containing this Task is considered as an Epic US. The rest of
the (lower level) elements in the scope of this Task decomposition belong to US
of the same Theme.

105

Building a Rationale Tree for Evaluating User Story Sets

6.5.3.2 Example

This scenario is similar to scenario in Section 6.5.1 but without an upper Hard-
goal of which the Task represents the means-end analysis. Because of this
similarity, it is not illustrated here.

6.6 Impact on the Agile Software Process

This section studies the possible impact of integrating US analysis with the RT
into a US-based agile method.

6.6.1 Impact of Changing Requirements

The transformation approach from a set of US to the RT using the constructs
of an SR diagram as presented in this chapter is applied to a static set of US.
Discovery and ability to deal with changing requirements is nevertheless one
of the core willingness of agile methods. When requirements change US are
adapted so that the RT is impacted. The impact of a change in a US on other
requirements (i.e., US) can be studied on other US. In other words, the impact
of a change of a US or several US can be studied on the RT by overviewing the
links of changing US elements with other US elements. This cannot (or hardly)
be achieved on the basis of the list of US only or with USM and could thus
provide added value at this level. Consistency between the set of US and the
RT is ensured by the use of a CASE-Tool (see Section 6.7).

6.6.2 Impact Iterative Planning

One of the main potential use of the RT built out the set of US is as input to
the planning game6. Indeed, as evoked, building trees within the RT allows
to distinguish Epic US and group US under a common Theme. Iterative and
incremental development precisely requires such information for consistent
iteration content planning.

Not all top-level Tasks found in a RT should necessarily be the exclusive
focus of one iteration. Indeed, an Epic US grouping a set of common Theme
US could require to be treated in multiple iterations (or the opposite). This
depends on the couple time/effort that can be/or is willing to be deployed on a
single iteration:

• The type of iterative method to be used may vary. An agile method
like eXtreme Programming (XP) [15] or Scrum [122] tends to iterate
more times than a method like the Rational Unified Process (RUP7)
[55, 67, 78] which includes 8 or 9 iterations at maximum in the whole

6The planning game is the process (in agile methods like XP) of selecting the requirements
on which the development team will focus during an iteration and aligning these requirements
with the available development capacity (see for example [12, 15]).

7Note that the RUP is not US driven but Use-Case driven. It is also strictly speaking not
considered as an agile method. Its life cycle template could nevertheless be driven by US and
used in an agile fashion.

106

6.6 Impact on the Agile Software Process

project. Consequently, the time spent on an iteration may vary in function
of the used methodology or life-cycle template;

• The amount of available resources to work on a single iteration may vary;

• The preferences of the software development team may vary leading to be
willing to do more or less iterations in various amounts of time.

Calibration in the planning of Epic US in the fashion developed in this
chapter is thus required in function of the evoked parameters.

6.6.3 Generic Iterative Planning Template

With respect to the elements seen so far and the discussion that preceded in
this section, we illustrate a possible decomposition of the i*-like RT for iterative
planning. Figure 6.6 shows such a generic diagram in its canonical form. We
refer to scope elements as elements that can be used as a basis for iterative
planning. As shown in the picture, the scope element can be the entire Epic
US meaning that the entire Theme should be prototyped/developed for the
iteration or just a decomposed US meaning that we consider just part of the
Theme US elements for prototyping/development into that iteration and that
the entire Theme elements could be validated over multiple iterations. An
approach to determine the right scope element could also be to evaluate the
number of US points required for the development of the US containing the
potential scope element.

Figure 6.6 presents a generic template that represents a possible approach for
iterative content planning of the i*-like RT developed with the transformation
method overviewed in this chapter. Prioritization of Epic US for iterative
planning can be done on discussion with stakeholders or with a structured
approach like in [152], this however remains outside the scope of this chapter.

Coarse-grained
WHAT Descriptive_Concepts

EPIC User
Stories

EPIC1

EPIC2

EPIC3

EPIC4

<<includes>>
EPICn

.

.

.

.

.

.

g1

g2

gn

t1

t2

tn

Iterations

1

2

3

4

.

.

.

n

Fig. 6.6 Portfolio optimization problem.

107

Building a Rationale Tree for Evaluating User Story Sets

6.7 A CASE-Tool for Automating the Approach and
Round-Tripping Between Views

In order to support the edition of US sets on US cards as well as the RT, we
have build an add-on to the cloud version of the Descartes Architect CASE-Tool
[46] that, for the present purpose, allows three views:

• The User Story View (USV) to edit US through virtual US cards. Each
US element in a dimension must be tagged with a concept of the unified
model;

• The Rationale View (RV) to edit RT following the specification made in
this chapter. The graphical elements can be automatically generated from
the US defined in the USV; the modeler is then in charge of further editing
of the links between elements. When changes are made to graphical
elements in the RV, the elements are automatically updated in the USV
and vice-versa. These do indeed form the same logical element represented
in different views;

• The Structural View (SV) to edit a structural agent diagram. This agent
architecture is outside the scope of this chapter;

• Next to this, we can also edit classical UML diagrams.

Once again, as a prerequisite, the set of US needs to be tagged to start
the transformation and round-trip between the views. The editing process
is continuous and intensive over the requirements analysis stage8 (and to a
certain extend over the entire project life cycle). This process is of course fully
supported by the tool and leads to automatic updates of complementary views;
consistency is ensured by separating the conceptual element in the CASE-Tool
memory from its representation in a view.

8In practice, during requirements analysis some US elements are ‘retagged’ in an ad-hoc
manner in later modeling stages. Indeed, the composition of the RT mostly leads to reconsider
the nature of some elements (of which the granularity and structure was hard to determine
when only seen in an isolated manner in the first stages) like in any modeling method.

108

6.8 Validity, Threats to Validity, Scalability of the Approach and Future Work

(a) User Story View

(b) Rationale View

3

Fig. 6.7 The supporting CASE-Tool.

6.8 Validity, Threats to Validity, Scalability of the
Approach and Future Work

As already evoked, the prerequisite to the use of our approach is to tag the US
when setting them up. Nevertheless, in terms of time, the investment is very
limited; at maximum a few minutes per US, encoding them in the CASE-Tool
included. More time would then be necessary to create and edit the links
between US elements in the RV. This is, however, similar to classical modeling.

A few threats to validity could also be evoked and should be clarified in
later validation of the work:

• Accuracy in US tagging could impact the relevancy of the RV. A study
on the perception of US elements’ granularity using the unified model
is explained into the next chapter. The study distinguished different
groups of users from students to researchers. The results were better with

109

Building a Rationale Tree for Evaluating User Story Sets

experienced modelers, but identifying granularity did not lead to major
issues in any group with the condition that the set of US was taken as
a consistent whole. This indeed allows to evaluate the relative links and
hierarchy of US elements leading to adequate granularity identification
and thus US elements tagging. As ‘stand alone’ elements, granularity
identification makes no sense and is nearly random;

• The accuracy of the RT with respect to the system-to-be. In order to
asses the validity of the RT in the RV, we will proceed to the following
experience. At first, subjects (issued of 3 groups: students, researchers,
and business analysts) will be informed about a case and asked to carefully
read and tag a set of US. At second, these same subjects will be asked to
rank their perceived relevancy of 3 RTs:

– RT 1 generated and built from their own tagging of US set (so from
the first part of the experiment);

– RT 2 generated and built by the tagging of the US set by researchers
participated in this research;

– RT 3 purely randomly generated and built out of the US set.

The perceived relevancy/validity of the RT will then be evaluated by the
subjects. Other metrics for the evaluation of RT will also be envisaged.

Future work also includes the application of the full validation of the tech-
nique on more real-life cases. We will notably proceed to a statistical analysis
of the stakeholders perception of the relevancy and contribution of the RT for a
project they have worked on. Also, they will be interviewed about the value
of the use of the RT complimentary to the US sets in the agile requirements
process.

The technique of transforming a set of US into a RT is virtually applicable
to all sizes of projects. The complexity of the reasoning trees making part of the
RT may then vary from project to project and the larger the number of US, the
larger the modeling effort required. The tricky question of scalability can thus
legitimately be posed. As evoked previously, our technique could be compared
to USM; the latter is applied to projects of any size. Splitting US through their 3
dimensions will induce more modeling effort but using the CASE-Tool will save
effort by adding flexibility in model management comparing to build a USM on
a board or on the ground as it is the case for larger projects. The tradeoff of
using our transformation technique with respect to USM must thus be balanced
between a stronger US elements links’ identification plus management using a
CASE-Tool against a less formal approach where US are written on post-its
and presented on a board or on the ground but are organized faster.

Above this, the question of agility may also be raised—i.e., Are we not
hampering agility? The willingness is not to revolutionize an entire practice
but to add a more formal representation of requirements to be able to better
manage requirements across the whole development life cycle so with a positive
impact on scalability. We argue that the larger the set of US, the most benefit
should be the rationale analysis because it proposes a structuring and consistent

110

6.9 Conclusion

grouping of requirements possibly used as input for iteration content planning.
That said, we do not believe that the building of the RV as an impact on the
agility of the current process. Indeed, we suggest our approach as a side one
(but constantly kept consistent with the US set if our CASE-Tool is used). We
thus want to provide structure and complementary information that can be used
in the fashion that the software development team wishes (not constraining).

In the illustrative example, the sets of US allowed to build a nearly perfect
decomposition which is seldom the case in real-life case studies so that the
domain analysis not only requires to build the links between the elements
but also to possibly add some elements so to introduce new US leading (as
already evoked) to a round-trip between the set of US and the RT rather than
an unidirectional transformation process. We consider this as an advantage
because it adds consistency to the entire requirements set.

Finally, further studies could be achieved in order to evaluate the value
of representing roles’ interaction in an advanced manner. We can for now
only visualize that different roles are possibly involved in the fulfillment of a
coarse-grained element and what their specific fine-grained contribution is. We
could study the added value of the use of dependencies in the sense defined by
the i* strategic dependency diagram.

6.9 Conclusion

US are often expressed in a very operational manner leading, in huge projects,
to an explosion of US’ number, consistency issues and consequently an inherent
difficulty to define their hierarchy and consistently plan iterations’ content.
Building a visual representation where US elements could be sorted, the links
between them could be studied and consistent sets of US elements could be
build could thus represent a useful guidance for the agile modeler and project
manager.

Enhancing on a unified-model for US templates proposed in Chapter 5, we
have suggested in this chapter to build a RT largely inspired by the i* SR
diagram to dispose of such a graphical notation. Epic US contain top-level
Task elements and interrelated elements are grouped around sets of Theme
US. As an alternative to USM, this construction allows a more accurate US
decomposition analysis leading to an elimination of redundant elements as well
as a more accurate study of changing requirements’ impact. We also point to
the use of consistent sets of US elements for iterative content planning.

To fully support the edition of models, an integrated CASE-Tool has been
built. Thanks to its use a change in one view immediately updates the other
views in order to keep the requirements analysis consistent.

This chapter showed how a graphical notation associated to the unified meta-
model of US templates allows to further study the granularity, interdependencies
and scope of the elements contained in US. The next chapter studies how this
graphical notation is interpreted by software modelers facing a particular US
set.

111

Chapter 7

On the Interpretation of Granularity and
Interdependencies of User Story
Elements with the Rationale Tree

In agile methods, requirements are often written through User Stories (US).
US are generally presented in a flatten list which are difficult to read and to see
dependencies among US. Rationale Tree (RT) that we exposed in the previous
chapter allows us to graphically represent US elements with links in the form
of a tree which allows us to see interdependencies among US elements. This
also provides a global view of the system to be developed. A RT is basically
constructed from a tagged US set which is based on the US unified model
proposed in Chapter 5. Tagging US elements, especially, in WHAT and WHY
dimension as Capability, Task, Hard-goal or Soft-goal is not a univocal despite
provided definitions. It is, in fact, depend on the background and knowledge of
user. This chapter presents the result of our feasibility study we have conducted
with real users to see whether users can use our unified model to tag US elements,
the accuracy of tagging US elements and the impact on RT. The results have
shown that participants interpreted US elements differently; however, it does
not have a big impact on RT at the end.

The research results exposed in this chapter has been realized in collaboration
with M. Velghe, Y.Wautelet, I. Mirbel, and Poelmans, [141].

This chapter is structured as follows. Section 7.1 provides the research
context. Section 7.2 exposes the research method we followed. Section 7.3
exposes the design of the feasibility study. Section 7.4 explains how data are
collected. Section 7.5 provides the analysis of feasibility study. Section 7.6
identifies the limitation of this feasibility study. Finally, Section 7.7 concludes
the chapter.

7.1 Research Context

Evaluating the nature and granularity of US elements as well as structuring
elements from a software problem a modeler is not familiar with may seem to
be a very hard task. In this chapter we will build up and relate the results of
an experiment aimed to evaluate the capacity of software modelers to apply the

113

On the Interpretation of Granularity and Interdependencies of US’ Elements

theoretical contributions defined in the two previous chapters. The experiment
starts with making the subject familiar with the defined semantic domain of
our unified model for US templates and the graphical notation of the RT. We
will then ask the same modelers to apply this knowledge on a two defined cases
to evaluate their interpretation of the US elements and the structuration they
would propose.

7.2 Research Method

Figure 7.1 illustrates the research process we followed for the feasibility study.
First, we designed the feasibility study. Then, we collected data from different
sampling. Finally, we analysed results. These steps are depicted into the next
sections of the chapter.

Fig. 7.1 Research method for feasibility study.

7.3 Feasibility Study Design

This section provides the information on the process of building the feasibility
study, the parameters to be measured for the feasibility study and finally the
case studies for using within the feasibility study. This section is structured as
follows. Section 7.3.1 exposes the process of how the feasibility study has been
constructed. Section 7.3.2 discusses on the parameters of the feasibility study
to be measured. Finally, Section 7.3.3 provides the descriptions of both case
studies used within the feasibility study.

7.3.1 Process for Building the Feasibility Study

Firstly, the different exercises (i.e., US sets to model) in the feasibility study
have been designed. Then, we built the first version of the feasibility study.
More specifically, the theoretical part in the feasibility study, the instructions
for execution of the exercises and the questions to measure some additional

114

7.3 Feasibility Study Design

variables have been made up. This feasibility study has been validated by senior
researchers who have participated in this research.

One aspect of the feasibility study is to measure the quality of US models
produced by participants (i.e., the RT). Therefore, we have created a type
solution so that we can make comparison with. To make sure that our type
solution is the best one, we have validated our solution with senior researchers
who have participated in this studies.

Secondly, we would like to make sure that our feasibility study will be
executed smoothly by diverse participants; we therefore made a primarily
experimentation with a group research (PhD students and senior researchers)
at the Université catholique de Louvain/Louvain School of Management to
get some feedback on how the experiment should be executed and also the
contents of the feasibility study. Based on their feedback, some aspects in
the layout of the feasibility study have been changed. It is important to note
that no content-related aspects have been changed whereby the integrity of the
evaluation basis between the first and second version of the feasibility study
has not been affected. Therefore, we also considered the data collected from
this experimentation to be treated for analysing.

The second and final version of the feasibility study has consequently estab-
lished and been used with other participants.

7.3.2 Assignment and Measured Variables

Within the context of this feasibility study, test subjects were asked to produce
two separate US models based on two cases. These cases respectively consisted
of a set of 4 and 7 US to model. One can thus state that the first US set was
less complex compared to the second one in that the RT to build up was less
complex due to the difference between the amount of US to model. Both cases
are depicted in more detail in Section 7.3.3.

Since US and the production of a US-based model was new to the large
majority of test subjects, the assignment has been split up in 5 steps to be
executed in order to make it less complex and more executable. These five steps
were:

1. Identification of all elements within the WHO dimension of the different
US;

2. Identification of all elements within the WHAT and WHY dimension of
the different US;

3. Identification of the appropriate concept or tag (i.e., Capability, Task,
Hard-goal or Soft-goal) for each element within the WHAT and WHY
dimension of the different US;

4. Graphical representation of the different elements of the US set and
modeling all links between the WHAT and WHY dimension of every US
(if both dimensions were present);

5. Identification and graphical representation of all other possible links
between the elements of different US.

115

On the Interpretation of Granularity and Interdependencies of US’ Elements

With respect to the second and third step in executing the exercises, the
solution for the first US has been given to the test subjects as an example. Prior
to the actual assignment of producing two US models, the test subjects have
been provided with a small theory part containing a brief outline of what US are
and how these requirements artifacts are commonly structured. Subsequently,
the information required to model both US sets has been provided. More
specifically, the different modeling concepts (i.e., Role, Capability, Task, Hard-
goal and Soft-goal) and possible links between these concepts (i.e., means-end,
decomposition and contribution) have been defined. The ‘theory part’ of the
feasibility study has been concluded with an example containing a set of 4 US
that has been elaborated in the exact same way (i.e., following the 5 steps) as
the assignment had to be executed by the test subjects. A blank form of both,
the theory and exercises part in the feasibility study, has been included within
Appendix D.

Throughout the feasibility study, additional questions have been asked in
order to gather additional variables concerning the educational background, the
tacit knowledge and the perception on difficulty of the different test subjects.
Before the start of the feasibility study, test persons have been asked for:

• Their educational background (i.e., obtained diplomas);

• Their primary occupation (i.e., student, researcher, assistant, etc.);

• Their modeling knowledge (i.e., the modeling languages they already
worked with);

• Whether or not they were familiar with Goal-Oriented Requirements
Engineering (GORE);

• Based on rating-scales, their knowledge on the i* framework and their
knowledge concerning US as requirements artefacts within agile methods
have been measured.

In between the different assignment steps (i.e., step 1 to 5 as described
above), the test subjects were asked to indicate their experience and perception
concerning the understandability of the theory and concerning the difficulty of
the steps to be executed. Latter elements have been measured using a rating-
scale. At the end of the feasibility study, some additional questions were asked in
order to find out the global experience of the test subjects concerning modeling
the two cases. More specifically, they were asked to indicate which case was
seen as most difficult and based on rating-scales, the global understandability
of the proposed approach was measured.

7.3.3 Case Studies

As mentioned earlier, our experimentation is based on two case studies: the
carpooling service and the book factory. The description of the carpooling service
has been slightly changed to adapt to the context where the experimentation
were conducted. In fact, it consists of the same carpooling system and the same
US set described in previous chapters.

116

7.3 Feasibility Study Design

7.3.3.1 Case 1: Carpooling Service

The Flemish ministry of mobility wants to introduce an application for stimulat-
ing the use of carpooling. After registration, drivers should have the possibility
to propose a ride to go from location A to B and to specify a departure location,
time of departure and price. Users can book a ride from location A to location
B after they have been logged in into the application. The related US set is
provided in Table 7.1; it consists of 4 US. The type solution is also provided in
Figure 7.2.

Table 7.1 US set in Case 1 of the feasibility study.

US ID Dimension User Story D_C Type
US 1 WHO As a DRIVER Role

WHAT I want to register to the service Task
WHY so that I can propose ride to go from

A to B.
Hard-goal

US 2 WHO As a DRIVER Role
WHAT I want to propose a ride from A to

B with the price, location and time
of departure, and number of seats
available.

Task

US 3 WHO As a RIDER Role
WHAT I want to book a ride Task
WHY so that I can get a ride from A to

B.
Hard-goal

US 4 WHO As a RIDER Role
WHAT I have to login Capability
WHY so that I can book a ride from A to

B.
Hard-goal

117

On the Interpretation of Granularity and Interdependencies of US’ Elements

������

�����	�
�
����

���
�
��
�

�����	�
�
����
���
�
��
�

����
���
������
���
���������

���
�����
�
����������
���

������
�
	���	
����������

����	���
��
���

	������

�����

���
�
����
���

�
��
�

����
�
����

���
��

 ���

�����
�����

������

!�����	�

��	�����

���������		

"�����

"�������

�����
������

��#
�����
$���
����
����

�������	

%#	���
���������

 ����
�	
����

�����		

��#����
��

 ����&�������

��#
�������

������

"��������
�����

������

��#����

	������

1
 o

f 1

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

������

�����	�
�
����

���
�
��
�

�����	�
�
����
���
�
��
�

����
���
������
���
���������

���
�����
�
����������
���

������
�
	���	
����������

����	���
��
���

	������

�����

���
�
����
���

�
��
�

����
�
����

���
��

 ���

�����
�����

������

!�����	�

��	�����

���������		

"�����

"�������

�����
������

��#
�����
$���
����
����

�������	

%#	���
���������

 ����
�	
����

�����		

��#����
��

 ����&�������

��#
�������

������

"��������
�����

������

��#����

	������

1
 o

f 1

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

1

Fig. 7.2 Type solution of Case 1 in the feasibility study.

7.3.3.2 Case 2: The Book Factory

The Book Factory is a small Belgian retailer that is specialized in selling books,
CD’s and DVD’s. The management has decided to invest in an online shopping
environment for their customers in order to increase the customer-friendliness
of their services. Within this online shopping environment, a user should have
the possibility to place their orders online. Before an order is complete, a client
should fill his online cart with products. Secondly, the client should has to
pay the invoice using an online payment. In order to be able to execute the
payment, the system should calculate the invoice amount. Furthermore, the
online payments are processed via the Ogone payment platform in order to
increase the safety and security of the payment. The related US set is provided
within Table 7.2; it consists of 7 US. The type solution is also provided in Figure
7.3.

Table 7.2 US set in Case 2 of the feasibility study.

US ID Dimension User Story D_C Type
US 1 WHO As an owner Role

WHAT I want my clients to be able to place
orders online

Hard-goal

WHY so that the customer-friendliness of
our services increases.

Soft-goal

US 2 WHO As a client Role
WHAT I have to complete an order Task
WHY so that I can place it online. Hard-goal

US 3 WHO As a client Role

118

7.4 Data Collection

WHAT I need to fill my ‘online cart’ with
products.

Task

US 4 WHO As a client Role
WHAT I need to pay my invoice Task
WHY so that I can complete an online or-

der.
Hard-goal

US 5 WHO As system component Role
WHAT I need to calculate the total amount

of the order
Capability

WHY so that the invoice can be paid. Hard-goal
US 6 WHO As system component Role

WHAT I want to pay my order online Task
WHY so that my invoice is paid. Hard-goal

US 7 WHO As a system component Role
WHAT I need to process payments on the

Ogone-payment platform
Task

WHY so that the payment is secured. Soft-goal

������

�����	�
�
����

���
�
��
�

�����	�
�
����
���
�
��
�

����
���
������
���
���������

���
�����
�
����������
���

������
�
	���	
����������

����	���
��
���

	������

�����

���
�
����
���

�
��
�

����
�
����

���
��

 ���

�����
�����

������

!�����	�

��	�����

���������		

"�����

"�������

�����
������

��#
�����
$���
����
����

�������	

%#	���
���������

 ����
�	
����

�����		

��#����
��

 ����&�������

��#
�������

������

"��������
�����

������

��#����

	������

1
 o

f 1

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

������

�����	�
�
����

���
�
��
�

�����	�
�
����
���
�
��
�

����
���
������
���
���������

���
�����
�
����������
���

������
�
	���	
����������

����	���
��
���

	������

�����

���
�
����
���

�
��
�

����
�
����

���
��

 ���

�����
�����

������

!�����	�

��	�����

���������		

"�����

"�������

�����
������

��#
�����
$���
����
����

�������	

%#	���
���������

 ����
�	
����

�����		

��#����
��

 ����&�������

��#
�������

������

"��������
�����

������

��#����

	������

1
 o

f 1

TaskHard-goal

Capability Soft-goal

Role

Role Boundary

Role
Contribution link(+,-)

Decomposition link

Legend:

Means-end link

1

Fig. 7.3 Possible solution of Case 2 in the feasibility study.

7.4 Data Collection

The experiment have been later conducted with two groups of expertise. The first
group consists of students in economics with an orientation within information
management; the latter is known as Business students in this thesis. The

119

On the Interpretation of Granularity and Interdependencies of US’ Elements

second group consists of students in information technology; the latter known
as IT Students in this thesis. We argued previously that data collected from
researchers need to be included into the analysis; therefore, we have a third
group of expertise. The latter is known as Researchers in this thesis. The
use of three different groups of population notably allows us to analyze the
difference in execution of the assignment and to study whether or not there have
significantly differences between the different groups in the ability to produce a
graphical model in the form of a RT from a US set.

Since a concrete sample framework is lacking within the context of this
feasibility study, a non-stochastic sample method is used to compose the different
samples [124]. More precisely, the strategy of convenience samples has been
used. Ultimately, three different samples have been composed. For the group of
Business Students, the feasibility study has been executed by 21 students within
the master Handelswetenschappen/Business Administration at the KULeuven
(campus Brussels). For the group of IT Students, the feasibility study has been
conducted with 35 students within the second bachelor Applied Informatics at
Odisee (campus Brussels). Finally, for the group of Researchers, the experiments
have been conducted with 13 members of the academic staff of the Université
catholique de Louvain/Louvain School of Management.

7.5 Analyzing the Results

The results of the feasibility study are performed within this section. We perform
three analysis to understand different interpretation of the usage of the unified
US model from concept elements to the building of graphical representation
of US set. This section is structured as follows. Section 7.5.1 provides the
information on the background of participants. Section 7.5.2 exposes the
interpretation of the different elements constituting a US (i.e., the elements of
the WHAT and WHY dimension). Section 7.5.3 presents the analysis of the
ability of the test subjects to model a US set; it is concerned with analyzing
whether or not the different test subjects were able to produce a US model in
the form of RT. Finally, whithin Section 7.5.4, the individual models themselves
are analyzed in some greater detail with respect to the number of elements
modeled and the number of links identified, and ultimately, a score on the two
US models in both cases has been given.

7.5.1 The Knowledge of Participants in Modeling

Participants response when questioned about their background in Business
Analysis shows that nearly the entirety of them have some preliminary knowledge
in modeling. Indeed, only 2 out of 69 participants do not have such specific
experience (i.e., 1 IT Student and 1 Business Student). They are able to model,
at least one model, with the Unified Modeling Language (UML), Business
Process Modeling Notation (BPMN) or others modeling languages; but not
GORE (only 2 Researchers know GORE framework).

120

7.5 Analyzing the Results

Concerning the question about knowledge of the i* framework by participants,
results showed that none of them is an expert with the framework1 . Furthermore,
over 50% of them have never heard about it. Figure 7.3 exposes the answers of
the participants concerning their expertise with i*. The left part of the figure
shows the distribution of levels of expertise for the whole data set. The right
one shows the former per data set.

Table 7.3 Expertise of participants with i* framework.
Never heard of it

I’ve ever seen it during a

particular course, but I don’t

remember any details

I have some knowledge on

what this is about

I know what this is about but I

don’t know all specific details

63.8%
26.1%

2
.9

%

Researchers

IT Students

Business Students

Never heard of it

I’ve ever seen it during a particular course, but I don’t remember any details

I have some knowledge on what this is about

I know what this is about but I don’t know all specific details

I can consider myself an expert in this topic

15.4%

80% 20%

47.5% 42.9%

46.1% 30.8% 7.7%

4.8%4.8%

N = 21

N = 35

N = 13

N = 69

Similarly, the expertise of participants regarding US are exposed in Figure
7.4. In contrast to i*, two thirds of the participants know what US are and
some of them are experts in using them. The left part of the figure shows the
distribution of levels of expertise of participants in using US for the whole data
set. The right one shows the former per data set.

Table 7.4 Expertise of participants with user story.
Never heard of it

I’ve ever seen it during a

particular course, but I don’t

remember any details

I have some knowledge on

what this is about

I know what this is about but I

don’t know all specific details

Researchers

IT Students

Business Students

Never heard of it

I’ve ever seen it during a particular course, but I don’t remember any details

I have some knowledge on what this is about

I know what this is about but I don’t know all specific details

I can consider myself an expert in this topic

N = 21

N = 35

N = 13

N = 69

30.8% 23.1% 7.7% 23.0% 15.4%

23.8% 38.1% 23.8% 14.3%

5.7% 42.9% 25.7% 5.7%20.0%

1It is important to note that participants are not aware that the i* framework is part of
GORE. Hence, some participants answered ‘No’ to the question on GORE but they witnessed
a non-null level of expertise with the i* framework.

121

On the Interpretation of Granularity and Interdependencies of US’ Elements

7.5.2 The Tagging of User Story Elements

According to the US meta-model presented in Chapter 5, the US elements
of WHO dimension can only be tagged as Role; while US elements presented
in WHAT and WHY dimensions could be tagged as Task, Capability, Hard-
goal or Soft-goal. The results of the feasibility study confirmed that there is
no ambiguity in tagging US elements in WHO dimension. However, tagging
US elements in WHAT and WHY dimensions is often fuzzy and matter for
discussion. Therefore, we only consider the results of tagging US elements in
WHAT and WHY dimensions for the analysis.

The results of tagging the US elements in WHAT and WHY dimensions of
Case 1 and Case 2 are respectively represented within Tables 7.5 and 7.6. The
results of tagging of each US element of both cases are presented per sample.
This allows us to have an overview of the tagging of the different elements within
the boundaries of one specific sample as well as mutually between different
samples. Since the first US in both cases has been given to the test subjects as
an example, this US is left out of both tables.

Table 7.5 Tagging of the US elements in Case 1.

Business Students IT Students Researchers

Tas
k

Cap
ab

ilit
y

Har
d-

go
al

Sof
t-g

oa
l

Not
 p

re
se

nt

Tas
k

Cap
ab

ilit
y

Har
d-

go
al

Sof
t-g

oa
l

Not
 p

re
se

nt

Tas
k

Cap
ab

ilit
y

Har
d-

go
al

Sof
t-g

oa
l

Not
 p

re
se

nt

Case1
US2

WHAT 42,9% 33,3% 23,8% 31,4% 51,5% 11,4% 5,7% 53,8% 30,8% 15,4%

WHY 9,5% 90,5% 2,9% 97,1% 30,8% 7,7% 51,5%

US3

WHAT 85,7% 14,3% 94,3% 5,7% 84,5% 15,4%

WHY 9,5% 4,8% 75,2% 9,5% 2,8% 8,5% 71,4% 14,3% 2,9% 76,9% 23,1%

US4

WHAT 23,8% 76,2% 34,3% 62,8% 2,9% 30,8% 69,2%

WHY 38,1% 4,8% 47,6% 9,5% 48,6% 2,9% 37,1% 11,4% 46,2% 15,3% 15,4% 23,1%

Highest occurrence within the sample in question

Elements in the WHAT- and WHY-demension of the US in Case1:

US2 WHAT Propose a ride from A to B with the price, location and time of departure, and number of seats available

WHY -

US3 WHAT Book a ride US4 WHAT Login

WHY Get ride from A to B WHY Book a ride from A to B

legend:

Based on the information provided in Tables 7.5 and 7.6, we can draw the
conclusion that the tagging of the different US elements of both cases differs
within, as well as between the different samples. In other words, tagging of
a US element as being Capability, Task, Hard-goal or Soft-goal can not be
characterized as being univocal (the same problems have been reported in
[1, 42] for adopting i* in practice). Also between the different samples, there
are a lot of tagging discords. Furthermore, two main observations can be done.

The first observation concerns the fact that the tagging discord within the
sample of Business Students is mainly concentrated between the tagging of a
US element as being a Task or Capability. Contrary to the sample of Business
Students and especially within the Case 2, a higher variability in tagging of US
elements can be observed within the samples of IT Students and Researchers.

122

7.5 Analyzing the Results

Table 7.6 Tagging of the US elements in Case 2.

Business Students IT Students Researchers

Tas
k

Cap
ab

ilit
y

Har
d-

go
al

Sof
t-g

oa
l

Not
 p

re
se

nt

Tas
k

Cap
ab

ilit
y

Har
d-

go
al

Sof
t-g

oa
l

Not
 p

re
se

nt

Tas
k

Cap
ab

ilit
y

Har
d-

go
al

Sof
t-g

oa
l

Not
 p

re
se

nt

Case2
US2

WHAT 85,7% 14,3% 66,7% 27,2% 6,1% 75,0% 8,3% 16,7%

WHY 4,8% 4,7% 81,0% 9,5% 9,0% 3,0% 66,7% 6,1% 15,2% 9,1% 90,9%

US3

WHAT 52,4% 42,8% 4,8% 42,4% 36,4% 9,1% 12,1% 58,3% 25,0% 16,7%

WHY 4,7% 4,8% 90,5% 100% 8,4% 8,3% 83,3%

US4

WHAT 66,7% 28,5% 4,6% 75,0% 18,8% 6,2% 91,7% 8,3%

WHY 52,4% 4,7% 42,9% 25,0% 18,8% 50,0% 6,2% 50,0% 16,7% 33,3%

US5

WHAT 52,4% 47,6% 71,9% 25,0% 3,1% 41,7% 50,0% 6,3%

WHY 23,8% 76,2% 19,4% 29,0% 41,9% 6,5% 3,2% 27,3% 9,1% 36,4% 27,3%

US6

WHAT 47,6% 42,9% 9,5% 57,6% 36,3% 6,1% 63,6% 27,3% 9,1%

WHY 14,2% 9,5% 66,7% 4,8% 4,8% 15,6% 12,5% 65,6% 6,3% 18,2% 9,1% 36,4% 36,4%

US7

WHAT 47,6% 42,9% 9,5% 50,0% 37,5% 9,4% 3,1% 45,5% 54,5%

WHY 100% 100% 100%

Highest occurrence within the sample in question

Elements in the WHAT- and WHY-demension of the US in Case2:

US2 WHAT Complete an order US5 WHAT Calculate the total amount of the order

WHY Place an order online WHY The invoice can be paid

US3 WHAT Fill my 'online' cart with products US6 WHAT Pay my order online

WHY - WHY The invoice is paid

US4 WHAT Pay my invoice US7 WHAT Process payments on the Ogone-payment platform

WHY Complete an online order WHY The payment is secured

legend:

The second observation concerns the global level of tagging US elements—i.e.,
tagging a US element as being Capability, Task, Hard-goal or Soft-goal does not
completely go univocal. In other words, there exists some discords within the
different samples in that some US elements are, to a large extent, not univocal
categorized as Capability, Task or Hard-goal. Despite the discords in the tagging
of the different US elements, all test subjects nonetheless unanimously agreed
upon the fact that the provided concepts or tags (i.e., Capability, Task, Hard-
goal and Soft-goal) were sufficient to model the different US sets and that no
additional concepts should have been be added to the US unified model (see
Chapter 5).

Subsequently, the question arises whether this difference in tagging is due
to the fact that the different US elements can be tagged in multiple ways or
if the theoretical difference between the tags (i.e., Capability, Task, Hard-goal
and Soft-goal) was not clear. Obviously, the first reason of multiple possible
interpretations for the different elements will have contributed to these tagging
differences.

As part of the feasibility study, test subjects have been asked to indicate on
a rating-scale whether or not the difference between the modeling concepts—i.e.,
respectively Task versus Capability, Task versus Goal (Hard-goal and Soft-goal)
and Goal versus Capability—were clear. Within this rating-scale, the value 1
reflects the fact that the difference between the two modeling concepts was
not clear at all. Conversely, the value 10 reflects a complete awareness of the
differences between both modeling concepts. The descriptive statistics of these

123

On the Interpretation of Granularity and Interdependencies of US’ Elements

elements have been provided quantitatively in Table 7.7 and graphically within
Figure 7.4. Based on this data, we can draw the conclusion that, especially, the
difference between Task and Capability was not completely clear and rather
fuzzy to the different test subjects within the different samples. Furthermore, the
data indicates that Task and Capability were perceived as easier to differentiate
from Goal.

Table 7.7 Understandability of the difference between the elements.

 Task vs. Capability Task vs. Goal Goal vs. Capability

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Average 5,52 6,12 5,54 7,14 7,21 6,23 7,29 6,91 6,46

Median 6 6 4 7 7 7 7 7 7

Minimum 2 1 1 1 2 2 2 2 1

Maximum 8 10 9 10 10 10 10 10 9

Legend rating-scale:

1 The difference between both elements is not clear at all

5 I'm not sure

10 The difference between both elements is completely clear

Legend rating-scale:

1 The difference between both elements is not clear at all

5 I'm not sure

10 The difference between both elements is completely clear

5.52

7.14 7.29

6.12

7.21
6.91

5.54

6.23 6.46

1

2

3

4

5

6

7

8

9

10

Task vs. Capability Task vs. Goal Goal vs. Capability

A
v

e
ra

g
e

 s
c
o

re

Business Students IT Students Researchers

Fig. 7.4 Average understandability score of the different elements.

Latter observation of the unclear difference between Task and Capability
is confirmed by an analysis of the main modeling errors that have been made

124

7.5 Analyzing the Results

by the different test subjects. These modeling errors notably revealed that
the atomic characteristic of Capability (i.e., the key feature that distinguishes
Capability from Task) was not clear at all since a tremendous amount of test
subjects graphically decomposed Capability into multiple sub-elements. More
precisely, many test subjects linked particular elements to Capability by means
of a decomposition-link, indicating that these elements are sub-elements of that
Capability.

Next to the qualitative analysis of the differences in understandability be-
tween the different elements within the unified model (i.e., Capability, Task
and Goal), a statistical test has been performed in order to test whether or
not there exist significant differences between the ‘understandability scores’
allocated by the different test subjects within the samples. More specifically,
the non-parametric Kruskal-Wallis test has been executed since the normality
test (i.e., Kolmogorov-Smirnov test) indicated that none of the variables in-
volved were normally distributed. Latter non-parametric test verifies if multiple
population variables have the same distribution. Based on the results of this
test (represented in Table 7.8) the conclusion can be drawn that there exist
no significant differences between the ‘understandability scores’ by Business
Students, IT Students and Researchers2.

Table 7.8 Kruskal-Wallis test on the understandability scores of the different
elements.

Task vs.
 Capability

Task vs.
Goal

Goal vs.
Capability

Chi-Square 5.751 2.922 2.064
Degree of Freedom (df) 2 2 2
p-value 0.056 0.232 0.356

7.5.3 Analyzing the User Story Model with Rationale Tree

On a second level, the produced US models in the form of RT can be explored
and studied. This analysis has been divided into a qualitative and a quantitative
part. Firstly, the produced models have been studied qualitatively with respect
to the ability to produce a US model by means of building up a RT. Furthermore,
this first part consists of a brief analysis of the most common modeling and
linkage errors that have been made by the test subjects. The quantitative
section of the analysis of the US models consists of studying the number of
elements and the number of links that have been identified and modeled by the
different test subjects within both cases of the feasibility study. Ultimately, a
kind of ‘performance score’ has been given to the US models of the different
test subjects.

7.5.3.1 Global Evaluation of the User Story Model

Business Students. The sample of students with an economical background
succeeded rather well in producing a RT. However, the results showed that a

2In the context of the statistical tests conducted within the boundaries of this thesis, a
reliability of 95% has been used.

125

On the Interpretation of Granularity and Interdependencies of US’ Elements

few test subjects within this first sample tended at modeling each US separately
instead of producing a global model for the complete US set in the cases.
They failed in identifying corresponding elements within different US and they
consequently modeled the same elements multiple times (i.e., one time per
occurrence in a US). Latter observation nevertheless has to be put in some
perspective in that it could possibly be correlated with one of the limitations
of the feasibility study. More precisely, since test subjects only received the
minimal required amount of information for executing the assignment within
the feasibility study, one could argue that more information concerning the
ultimate purpose of the graphical representation should have been depicted
in more detail within the theory part of the feasibility study. This probably
could have resulted in a higher understanding of the primary rationale behind
modeling US and could consequently have resulted in a higher ability to produce
a model of a US set.

Another tendency that could be identified within this sample of Business
Students is that test subjects with a (basic) knowledge of US were able to make
up a higher-quality RT within their US model. Furthermore, analysis of the
different models produced by the test subjects in all three samples revealed
that, together with IT Students, Business Students tend to put a stronger
emphasis on the process-related aspect of the US set in their model. Latter
phenomenon could clearly be observed within the Case 2. For example, US3 and
US4 respectively consist of the elements Fill online cart and Pay invoice.
Both elements can be seen as sub-elements of the WHAT dimension in US2:
Complete an order. Many students tried to model latter two elements (i.e.,
fill cart and payment) in such a way that the process-related sequence of
these elements was represented in their model. More specifically, they tried
to model the elements in such a way that the result reflects the constraint
that the online cart should be filled with products before the invoice can be
paid. Adjoining it, many test subjects within this first sample made the remark
afterwards that some modeling elements were missing in order to represent
sequential conditions between elements in the model.
IT Students. More than Business Students, IT Students failed in overviewing
the ‘global model’ and tended to model each US separately. This resulted in the
fact that their models consisted multiple ‘isolated’ elements without any link to
another element. As a consequence, it is impossible to trace the dependency
and hierarchy relationships between the different elements within the RT. One
can thus state that IT Students were less able to produce a high-quality RT
of US set. A second observation that could be done is that the ‘technical’
background of the IT Students reveals itself within their different models. A few
students namely modeled elements that were not part of the US set that has
been included in the cases. These elements could commonly be categorized as
more ‘technical’ elements that are part of the actual development of the systems.
For example, some students represented an element show ride within their
model of the Case 1. Others included the element verify payment within the
boundaries of their model of the Case 2.
Researchers. Only taking into account the ability to produce a RT of
a US set, one can state that Researchers produced higher-quality models

126

7.5 Analyzing the Results

compared to students. In other words, Researchers were able to produce a
better global model where the complete US set was represented in the RT.
Within the models produced by the different test subjects in this sample, a
tendency of modeling more elements than present in the US could be ob-
served. In order to improve their model, Researchers tended at modeling
some elements that were not present in the US set. Furthermore, a lot of
Researchers decomposed existing elements into (smaller) sub-elements. As an
example, the WHAT dimension within US2 of the Case 1 consists of the ele-
ment propose a ride from A to B with the price, location and time
of departure, and number of seats available. Instead of modeling this
element as being one Task, many Researchers used 4 different elements to model
this (i.e., one for price, one for location, one for time of departure and
one for the number of seats available). Secondly, the different test subjects
within this sample tended at identifying and modeling links that were outside
the scope and boundaries of the definition that has been provided within the
context of the linkage study in the graphical notation for US. More specifically,
they used the broader definition of the links as present within the i* framework.
Modeling Errors. Within the US models of the different test subjects, various
modeling errors have been made. As stated in previously, a frequently occurring
modeling error concerned the decomposition of Capabilities into subcomponents.
Despite the atomic characteristic of a Capability, a tremendous amount of test
subjects graphically linked elements to a Capability by means of a decomposition
link, indicating that these elements are subcomponents of the Capability. A
second common error made by test subjects in all three samples concerned
the fact that the different roles (i.e., role boundary in the US model) were not
represented in the US model.

Next to latter two frequently occurring modeling errors, nearly all US models
of all test subjects contained one or multiple linkage errors (i.e., the use of
a faulty link between two elements). As an example, many test subjects in
all samples used a means-end link between two Tasks while latter link has
theoretically been defined as a link that is used between a Task and a Hard-goal
if this Task represents a concrete realization scenario for that Hard-goal. Latter
observation concerning the tremendous amount of linkage errors in the US
models, allows to draw the conclusion that some theoretical aspects concerning
the different links have not been understood completely. This conclusion can
directly be associated with one of the main limitations in this feasibility study
(i.e., the limited amount of information that has been given to the different test
subjects).

127

On the Interpretation of Granularity and Interdependencies of US’ Elements

Table 7.9 Descriptive statistics of the number of elements and links modeled.

 Case1

 Elements modeled

 Case1

 Links identified

 Case2

 Elements modeled

 Case2

 Links identified

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Bus
ine

ss
 S

tu
de

nt
s

IT
 S

tu
de

nt
s

Res
ea

rc
he

rs

Average 6,1 6,1 7,7 4,9 4,6 5,7 10,1 10,5 9,2 7,9 7,9 8,2

Median 6 6 6,5 5 4 4,5 10 9,5 9,5 8 8 9

Minimum 4 5 5 3 3 3 7 4 4 3 4 4

Maximum 11 9 17 10 8 13 13 13 13 11 13 10

Quantitative Evaluation of the US Models. Besides the qualitative eval-
uation of the different US models, a more quantitative analysis with respect
to the number of modeled elements and links can be done. Table 7.9 contains
latter data, which allows to make a comparison between the US models made
by the test subjects in the three different samples. Based on the results of the
Kruskal-Wallis test that are represented in Table 7.10, one can conclude that
there are no significant differences between the number of elements and links
modeled by the different test subjects in the three different samples. Latter
non-parametric test has been executed since the Kolmogorov-Smirnov test has
indicated that none of the variables involved are normally distributed.

Table 7.10 Kruskal-Wallis test on the modeled elements and links.

Elements
modeled

Links
modeled

Elements
modeled

Links
modeled

Chi-Square 3.255 0.35 3.403 0.387
Degree of Freedom (df) 2 2 2 2
p-value 0.196 0.839 0.182 0.820

Case 1 Case 2

7.5.3.2 Quoting the Performance in Modeling User Stories

In order to be able to evaluate the individual performance of the test subjects
in modeling the US sets in both cases, a score has been allocated to each
US model. This score is notably based on three different evaluation criteria:
completeness, conformity and accuracy. On a first level, the different models
have been evaluated with respect to completeness. Latter evaluation criterion
has been used to verify whether or not all elements present in the different
dimensions of the US set have been represented within the US model. For each
element in the WHAT and WHY dimensions of a US that has been represented
in the US model, 1 point was given.

In combination with completeness, the models have been checked with
respect to conformity. During the exercises of the feasibility study, the test

128

7.5 Analyzing the Results

subjects were asked to identify all elements in the WHAT and WHY dimension
of the different US and classify each element as a Task, Capability, Hard-goal or
Soft-goal (i.e., respectively step 2 and 3 in the feasibility study). In order to
verify if the appropriate modeling concepts have been used in accordance with
the classification of the elements, the evaluation criterion of conformity has
been used. More precisely, if there was conformity between the classification of
an element as being a Task, Capability, Hard-goal or Soft-goal and the modeling
concept that has been used to represent that element, 0,5 points (per element)
were given.

Based on the type solution of both cases (see Figure 7.2 and 7.3), the
fundamental links that should be present in the US models have been identified.
More precisely, 4 fundamental links have been identified in the Case 1 and 8
links in the Case 2. If one of the fundamental links was present in the US
model of the test subjects, 4 points were given. If the link between the elements
had been identified but the wrong type of link was used, only 1 point was given.
This quotation of the ability of test subjects to identify the links between the
elements concerns the third evaluation criterion, the one of accuracy.

Next to the scores on each evaluation criterion, a score on the global quality
of the US models has been given. More specifically, an additional score on 10
was given for the Case 1 and a score on 20 for the Case 2. Latter score on the
global quality has been based on a general comparison of the US models with
the type solution. Furthermore, additional factors have influenced the individual
score of the global quality. Inter alia the fact if all Role (i.e., Role Boundary3),
the number of modeling errors and the quality of the RT were factors that
have been taken into consideration in allocating the score on global quality. An
overview of the different evaluation criteria and the allocated scores are provided
in Table 7.11. Ultimately, a total mark on each case has been calculated based
on the scores of the individual evaluation criteria. More precisely, a total score
on 38 was given for the Case 1 and a score on 73 was given on the second one.
Both scores have eventually been reduced to a score on 10.

Table 7.11 Evaluation criteria in quoting the US models.

Case 1
(4 US)

Case 2
(7 US)

Completeness 1 point per modeled element 8 points 14 points
Consistency 0.5 points per consistently modeled element 4 points 7 points

Accuracy
4 points per correct link (only 1 point if the
wrong type of link is used

16 points 32 points

Global quality - 10 points 20 points

Maximum scoreEvaluation
criterion

Allocated scores

In order to get an overview of the ‘general performance’ of the test subjects
in modeling the different US, a global score on 10 has been calculated. This
score was based on the individual scores for Case 1 and Case 2. Within the
calculation of latter global score a weight of 30 % has been allocated to the

3During the feasibility we used swimlanes instead of Role Boundary of the i* framework.
We argue that there is no impact on the results of the feasibility study if we were using Role
Boundary instead of swimlanes. The perceptions of user are the same.

129

On the Interpretation of Granularity and Interdependencies of US’ Elements

Case 1 and a weight of 70 % to the Case 2. The allocation of a different weight
to both cases has been done since one could argue that a kind of ‘learning-effect’
could have occurred after the execution of the Case 1. The Case 2 furthermore
consisted of a higher number of US, what implies that a bigger RT.

Table 7.12 Descriptive statistics of the global score.

Average 6.20 5.50 6.60
Median 6.60 5.30 6.50
Minimum 2.90 3.60 4.40
Maximum 8.30 7.40 8.60

Business
Students

IT Students Researchers

Table 7.13 ANOVA test on the global performance scores.

13.535 2.000 6.766 4.657 0.013
87.168 60.000 1.453
100.700 62.000

Sum of
squares

df
Mean
square

F p-value

Table 7.14 Results of the post-hoc test of Bonferroni.

Business Students
IT Students
Researchers

0.758
-0.360

0.346
0.440

0.097
1

IT Students
Business Students
Researchers -1.876

0.346
0.410

0.097
0.025

Researchers
Business Students
IT Students

0.360
1.118

0.440
0.410

1
0.025

Sample (I) Sample (J)
Mean
difference (J)

Standard
Error

p-value

Table 7.12 consists of the descriptive statistics of the global score (on 10) that
measures the performance of the test subjects in modeling a set of related US.
The normal distribution of this global performance score4 allows to perform the
ANOVA-test in order to verify if there exists some significant differences between
the scores of the different samples (i.e., Business Students, IT Students and
Researchers). Based on the results of this test (see Table 7.13), the conclusion
can be drawn that there indeed exist significant differences between the scores
of the different test subjects in the three samples. More precisely, the results of
the post-hoc test of Bonferroni (see Table 7.14) learn that, with a reliability of
95 %, a significant difference can be found between the scores of the IT Students
and those of the Researchers. There is no significant difference between the
scores of Business Students and IT Students and between those of Business
Students and Researchers.

4Both the Kolmogorov-Smirnov test as well as the Shapiro-Wilk test indicated that the
variable of the global score was normally distributed.

130

7.5 Analyzing the Results

One may question why the maximum score obtained by participants (of which
some are Researchers) is not 10 out of 10 but 8.6. A preliminary answer is that
none of the participants, including Researchers is an expert with i* framework
and that such a score could be only obtained with in depth previous knowledge
about this framework. As can be seen in Figure 7.3, the best knowledge level
of Researchers are ‘I have some knowledge on what this is about’ and ‘I know
what this is about but I don’t know all specific details’. This knowledge can be
comparable to someone who has been attending a course on i* like in [1, 42]. In
addition, we can also argue that constructs in the i* framework itself are subject
to interpretation so that interpretation of the participants may differ from the
standard solutions used for correction. In i* it is also admitted that it requires
the knowledge of an experienced modeler to produce a proper model. This has
been studied by Dalpiaz [42] and Abad et al. [1]. Dalpiaz has customized i*
framework for teaching students, it results that the success rate for identifying
elements as Task, Hard-goal, Soft-goal and Resource is only 53% (5 test subjects
and N=123) [42]. Similarly, Abad et al. have reported error rate of 26.73%
of types when trying to model the dependencies between actors as Hard-goal,
Soft-goal, Task and Resource on 2095 test subjects [1]. In addition, Dalpiaz
also reports that the success rates of identifying links between two elements as
AND/OR decomposition and contribution are respectively 80% (2 test subjects
and N=123) and 47% (2 test subjects and N=123) [42].

Next to the differences in the global score between the three samples, one
could question whether there exists a significant difference in the individual
performance of modeling both cases. The graph in Figure 7.5 represents the
average score on both cases per sample. In order to test for significant differences
in the score of Case 1 compared to the score Case 2, the paired samples t-test
is performed on the different scores of each particular sample. The results of
these test (represented within Table 7.15) show that no significant differences
can be identified in the performance of Business Student and IT Students in
modeling the US sets in both cases. This contrary to the sample of Researchers,
where can be concluded (with a reliability of 95 %), that the scores on Case 1
significantly differ from those of Case 2.

131

On the Interpretation of Granularity and Interdependencies of US’ Elements

Legend:

1 Not at all

5 I am not sure

10 yes, completely

6.3

5.6

7.2

6.2

5.4

6.3

1

2

3

4

5

6

7

8

9

10

Business Students IT Students Researchers

A
v

e
ra

g
e

 s
c
o

re

Case1 Case2

Fig. 7.5 Average scores on Case 1 and Case 2.

Table 7.15 The paired-sample t-test on the score of both cases.

Low Upper

Business Students 0.140 1.598 0.357 -0.608 0.888 0.392 19 0.350

IT Students 0.908 1.493 0.431 -0.041 1.856 0.684 30 0.249

Researchers 0.229 1.865 0.335 -0.456 0.913 2.106 11 0.029

t df p-valueSample 95% confidence
interval

Paired differences

Mean
Standard
Deviation

Standard
Error

7.5.4 Analyzing the Experience of Test Subjects

Within the analysis of the results of the feasibility study, the last part concerns
a study of the experience of the different test subjects and measuring the
perceived difficulty to model the different cases. This part of the analysis has
been divided into three aspects. A first aspect concerns the analysis of the
understandability of the theory and the perception of the test subjects on the
amount of information that has been provided. Secondly, the perceived difficulty
of the different steps in both cases are studied. On a third level, the perceived
difficulty of Case 1 is compared with the perceived difficulty of Case 2. These
three aspects within this experience analysis are respectively depicted within
subsections 7.5.4.1 and 7.5.4.2

132

7.5 Analyzing the Results

7.5.4.1 Evaluating the understandability of the theory

In order to measure the understandability of the theory as a whole, four different
questions have been asked to the test subjects. These questions were to be
answered using a rating-scale going from 1 for ‘not at all’ to 10 for ‘completely’.
A first question concerned the understandability of the introductory theory
part of the feasibility study. Secondly, the test subjects were asked if they
received enough information to produce the two models. They were also asked
if the given instructions to model the US sets were clear. The fourth question
concerned the understandability of the proposed approach of producing a US
model by means of a RT. The average score of these questions are represented
per sample within Figure 7.6.

Legend:

1 Not at all

5 I am not sure

10 yes, completely

7.77

6.18

7.12
7.35

7.76
7.5 7.55 7.39

8

5.75

6.5
7

1

2

3

4

5

6

7

8

9

10

Theory

undertandable?

Enough info received? Were the given

instructions clear?

Understandability

proposed approach

A
v

e
ra

g
e

 s
c
o

re

Business Students IT Students Researchers

Fig. 7.6 Understandability of the theory.

Analysis of the results of these additional questions reveals that, despite the
rather fuzzy differentiation between a Task and a Capability, the theory was
rather understandable for most of the test subjects. However, an evaluation of
the most common modeling error shows that not all aspects within the theory
have been understood completely by all test subjects. In all three samples,
a considerable amount of test subjects made particular modeling errors from
which latter conclusion can be derived. As stated within subsection 7.5.3.1, a
tremendous amount of modeling errors concerned the fact that Capabilities have
been graphically decomposed into multiple sub-elements. This shows that the
atomic characteristic of a Capability (i.e., the key feature that distinguishes a
Capability from a Task) has not been understood completely. Another common
modeling error, where several elements were linked to a Hard-goal by means of
a means-end link, allows to draw the conclusion that the theoretical definition
this type of link has not been understood properly. This because of the fact

133

On the Interpretation of Granularity and Interdependencies of US’ Elements

that a means-end link is used to link an element to a Hard-goal if that element
includes a concrete realization scenario for that Hard-goal.

Latter modeling errors are a direct implication of one of the limitations
of the feasibility study, the limitation on the minimal required amount of
information that has been provided to the test subjects. This observation is
partially confirmed by analyzing the scores on the question whether enough
information was given to model the two cases. This data notably shows that
some additional information should have been given to the test subjects. The
different test subjects nonetheless indicated that the instructions to model the
different cases were reasonably understandable. Furthermore, the data on the
perception of the different test subjects shows that the proposed approach to
model US by means of producing a RT was considerably clear to the different
test subjects.

7.5.4.2 Evaluation of the perceived difficulty

A last component within the analysis of the results the feasibility study concerns
an evaluation of the perceived difficulty by the different test subjects in the three
samples. Within the feasibility study, several variables have been included in
order to be able to measure the perception of the test subjects on the difficulty.
The perceived difficulty has in fact been measured on three different levels. On
a first level, the test subjects were asked to indicate on a rating-scale their
perceived degree of difficulty in modeling the two cases. Secondly, the test
subjects have been asked for their experience in executing the different steps
(i.e., step 1 to 5 as described in Section 7.3.2). On a third level, they were asked
to indicate if Case 1 was easier, of an equal difficulty level or more difficult to
model compared to Case 2.
Perceived Difficulty to Model both Case. The first variable that has been
used to measure the perceived difficulty concerned the perception on the global
difficulty to model the US sets in Case 1 and Case 2. More precisely, the test
subjects were asked to answer the question ‘was it difficult to model both cases?’
on a rating-scale. On this scale, the value 1 represented the answer ‘not at all’
and the value 10 represented the answer ‘yes, completely’. The average score
that has been given by the different test subjects on this question is represented
in Figure 7.7. In order to be able to provide an answer to the question if there
exist some significant differences between the perceived difficulty by Researchers,
IT Students and Business Students, the non-parametric Kruskal-Wallis test has
been performed Figure 7.7. The results of this test (see Table 7.16) indicate
that there exists no significant difference between the global perceived difficulty
to model the US in both cases.

134

7.5 Analyzing the Results

Legend:

1 Not at all

5 I am not sure

10 yes, completely

4.76

5.52
5.75

1

2

3

4

5

6

7

8

9

10

Business Students IT Students Researchers

A
v

e
ra

g
e

 s
c
o

re

Fig. 7.7 Average general perceived difficulty to model both cases.

Table 7.16 Kruskal-Wallis test on the global perceived difficulty.

2.503 2 0.286

Chi-square df p-value

Perceived Difficulty Between the Different Steps in both Cases. On
a more detailed level, the perceived difficulty in executing the different steps in
the exercises can be evaluated (see Section 7.3.2).

After the execution of step 1 to 3, step 4 and step 5, the test subjects were
asked to indicate their perceived difficulty regarding the step(s) in question on
a rating-scale. On this scale, the value 1 represented the answer ‘very difficult’,
while the value 10 represented the answer ‘very easy’. The average scores on the
rating-scales that have been given by the test subjects of the different samples
are represented within Figure 7.8.

135

On the Interpretation of Granularity and Interdependencies of US’ Elements

Legend:

1 Very difficult

5 I am not sure

10 Very easy

Step 1 to 3 Step 4 Step 5 Step 1 to 3 Step 4 Step 5

Business Students 6.24 5.18 5.12 5.47 5.18 4.71

IT Students 6.45 5.73 6.14 6.45 6 5.77

Researchers 5.75 5.13 5.88 5.75 5.13 5

1

2

3

4

5

6

7

8

9

10

D
if

fi
cu

lt
y

 s
co

re

Case 1 Case 2

Fig. 7.8 Perceived difficulty by the test subjects.

As with the global difficulty score, the Kruskal-Wallis test (see Table 7.17)
shows that there exists no significant differences between the perceived difficulty
by the different test subjects in the 3 samples. On a more global level, the
conclusion can be drawn that the identification of the different links between
the different elements has been perceived as being more difficult compared to
the step of identifying and classifying the different elements in the different
dimensions of the US.

Table 7.17 Kruskal-Wallis on the perceived difficulty of step 1 to 5.

Chi-
square

df p-value

Step 1 to 3 3.531 2 0.171
Step 4 2.486 2 0.289
Step 5 3.000 2 0.223
Step 1 to 3 2.246 2 0.325
Step 4 5.636 2 0.060
Step 5 3.974 2 0.137

Case 2

Case 1

Perceived Difficulty: Case1 Versus Case 2. Another aspect in analyzing
the perceived difficulty by test subjects in executing the feasibility study is
verifying whether or not there exists a difference within the perception of
difficulty between both cases in the study. In theory, both cases are of an
equal difficulty level in that they both consist of a US set to model. In practice
however, one of both cases can be perceived more difficult due to the increased
number of US to model.

Within the feasibility study, the different test subjects have been asked
to indicate whether Case 1 was easier, of an equal level or more difficult to

136

7.6 Limitations of the Feasibility Study

model compared to Case 2. Based on the results that are represented within
Figure 7.9, the conclusion can be drawn that the great majority of the Business
Students perceived the Case 1 as being easier to model compared to the Case
2. Within the sample of IT Students, the biggest proportion (58,1 %) had the
same perception that the Case 1 was easier to model. The biggest proportion
of Researchers (50 %) were of the opinion that both cases had an equal difficulty
level.

Case 1 was easier Equal difficulty levelCase 1 was more difficult

Business Students 64.80% 17.60% 17.60%

IT Students 58.10% 35.40% 6.50%

Researchers 40.00% 50.00% 10.00%

17.60%

35.40%

50.00%

64.80%

58.10%

40.00%

17.60%

6.50%

10.00%

0% 20% 40% 60% 80% 100% 120%

Business Students

IT Students

Researchers

Case 1 was easier Equal difficulty level Case 1 was more difficult

Fig. 7.9 Graph difficulty Case 1 versus Case 2.

7.6 Limitations of the Feasibility Study

The first limitation within this study concerns the fact that the different test
subjects only received a limited amount of information concerning the proposed
approach of modeling US. In order to keep the time required to complete
the feasibility study within acceptable boundaries, only the minimal required
information on modeling constructs (i.e., Task, Capability, Hard-goal and Soft-
goal) and the different links between these elements has been included within the
theory section of the feasibility study. In an ideal situation, more information
on US in agile methods and on the ultimate purpose of the graphical notation
should have been given in more detail.

The second limitation concerns the size of the different samples. There
has been a large difference between the number of test subjects within each
individual sample. Furthermore, the size of the samples (especially the sample
of Researchers) is rather small what limits the ability to reflect the results from
the study towards the scope of the complete population with an acceptable
reliability level. The lack of professionals (i.e., agile practitioners) as a test
subject within this feasibility study concerns a third limitation that can be
identified.

7.7 Conclusion

An evaluation of the interpretation of the different elements in the WHAT
and WHY dimension of a US set has shown that there existed some discord
in the classification of the elements. Two possible reasons for latter discord

137

On the Interpretation of Granularity and Interdependencies of US’ Elements

can be identified. Firstly, particular elements allow by nature to be interpreted
in several ways. As a consequence, such an element could be interpreted in
multiple ways. On a second level, the interpretation discords are a direct
consequence of the lack in understanding the theoretical differences between the
various elements. This is primarily the case for a Task and a Capability. These
conclusions are confirmed by analyzing the most common modeling errors, where
a tremendous amount of test subjects graphically decomposed a Capability into
multiple sub-elements. Despite the interpretation differences in the feasibility
study, the large majority of test subjects agreed upon the fact that no additional
concepts (next to the ones of a Task, a Capability, a Hard-goal and a Soft-goal)
are required to represent the US elements.

Concerning the ability to build up a RT, the conclusion can be drawn that
most of the test subjects were able to produce an acceptable US model. The
different students however tended at modeling each US separately. This notably
resulted in a model with multiple ‘isolated’ elements that have not been linked
to other ones. Students furthermore have put a stronger emphasis on the
process related sequence of the elements. Some of them argued that the model
should contain specific modeling elements to represent process-related sequence
of the different elements. Researchers by contrast tended at modeling additional
elements that were not represented within the set US.

More globally, one has to conclude that no significant differences could be
found in the modeling performance of both Business Students and Researchers
and Business Students and IT Students. A significant difference could nonethe-
less be identified in the performance scores of IT Students and Researchers.
This difference in the modeling performances are possibly a partial consequence
of one of the limitations of the feasibility study: the fact that the minimum
required amount of information has been given to the test subjects. More
information on the usage of US in agile software development methodologies
and more information on the ultimate purpose of the graphical notation could
possibly have resulted in higher-quality models. Latter conclusion of a partial
lack of information that has been given to the test subjects is confirmed by
both the feedback of the different subjects and by an analysis the most common
modeling errors. In teaching the graphical notation, a stronger emphasis has
to be put on the distinguishing features of the different elements and links.
Furthermore, the link with i* framework and the distinguishing characteristics
of the graphical notation and our US-based modeling framework should be
depicted in a greater detail.

The assignment of modeling two US sets has been perceived as quite difficult
by the different test subjects. Especially, the identification of the different links
has been perceived by the test subjects in all three samples as being the most
difficult. Furthermore, the biggest proportion of both Business Students and
IT Students were of the opinion that the first case was easier. This, conversely
to the Researchers group, where 50 % of the Researchers perceived both cases
as being equally difficult to model.

138

Part V

An Alternative Graphical
Representation for User Story

Elements: Suitability of the
Industry-Adopted Use-Case Model

139

Chapter 8

Bridging User Story Sets with the
Use-Case Model

User Stories (US) are mostly used as basis for representing requirements in
agile development. Written in a direct manner, US fail in producing a visual
representation of the main system-to-be functions. A Use-Case Diagram (UCD),
on the other hand, intends to provide such a view. Approaches that map US sets
to a UCD have been proposed; they however consider every US as a Use-Case
(UC). Nevertheless, a valid UC should not be an atomic task or a sub-process
but enclose an entire scenario of the system use instead. A unified model of US
templates to tag US sets was build in Chapter 5. Within functional elements, it
notably distinguishes granularity levels. In this chapter, we propose to transform
specific elements of a US set into a UCD using the granularity information
obtained through tagging. In practice, such a transformation involves continuous
round-tripping between the US and UC views; a CASE-Tool supports this.

The research exposed in this chapter has been realized in collaboration with
Y.Wautelet, M. Kolp, D. Hintea and S. Poelmans. Results have been published
in the proceeding of the 3rd International Workshop on Conceptual Modeling
in Requirements and Business Analysis (MReBA 2016, [147]).

This chapter is structured as follows. Section 8.1 provides the research
context of the chapter. Section 8.2 exposes related work. Section 8.3 presents
a US set of the running example. Section 8.4 discusses the mapping between
US elements and UC elements. Section 8.5 exposes tool and mapping rule
allowing the systematic automation. Section 8.6 discusses the impact of using
UC approach for modeling US in agile methods. Finally, Section 8.7 concludes
the chapter.

8.1 Research Context

As evoked earlier in this thesis, the main advantage of tagging US elements is
that, if the tagging respects the semantics associated to the concepts, it provides
information about both the nature and the granularity of the US element. Such
information could possibly be used at a further stage for software analysis:
structuring the problem and its solution, identifying missing requirements,
etc. [87]. Visual GORE models were envisaged for graphical representation in

141

Bridging User Story Sets with the Use-Case Model

Chapter 6; it showed that GORE models are very well adapted for the purpose
of US sets representation. Nevertheless, since GORE models are not an industry
adopted practice, we explore in this chapter an independent representation with
the far more used Unified Modeling Language (UML [104]), Use-Case Model
(UCM). An instance of the latter produces a UCD. A UC is a list of actions or
event steps, typically defining the interactions between a role and a system in
order to achieve a goal.

Facing the definition of US and UC, we can notice that there is a possible
mismatch between the two concepts—i.e., the US can indeed include (very)
fine-grained elements and the UC should be a coarse-grained element describing
the software problem encompassing a set of fine-grained actions. When sorting
is applied within US elements, a transformation process can generate a UCD.
This is why, in this chapter, we envisage the representation of problem
domain coarse-grained US elements as UC. To this end, we map the
elements defined in the UCM—i.e., the Actor, the UC and the relationships
between Use-Cases—with the elements defined in the unified US template model
in Chapter 5.

In practice it is sometimes discouraged to use US and UCD concurrently
because if not kept mutually up to date they can be inconsistent (see e.g., [60]).
We therefore propose keeping US sets and the UCD consistent by auto-updating
each change performed to one in the other through the use of a CASE-Tool.
They are considered here as two complementary views. We identify three
primary benefits of our transformation approach: (1) a graphical high-level
(coarse-grained) representation of requirements through the UCD; (2) multi-
dimensional structuring of requirements and US dependencies at UCD level
(not possible with US Maps); (3) identification of missing requirements (not
expressed in the current US set) and the elimination of redundant US.

8.2 Related Work

The CASE-Tool Visual Paradigm (VP) [105] already proposes to transform
US into a UCD. In their approach, the actor expressed in the WHO dimension
becomes an actor of the UCD and the element in the WHAT dimension becomes
a UC without any selection based on granularity. The rule is simple—i.e., a US
with a WHAT element becomes a UC in the UC diagram. Nevertheless, UML
points to the use of UC as elements representing an entire process rather than
fine-grained (or atomic) elements as US can be. This does not mean that a US
cannot include elements adequately describing UC, but that a sorting process is
required in order to only include relevant elements as UC. The approach of VP
can thus be said to be ‘naive’ because including elements not relevant as UC.

Structuring US is often performed using the User Story Mapping (USM)
technique (see [112]); the latter uses Story Maps which are difficult to maintain
and read. Building a UCD from a set of US could be compared to USM. In
our approach, we split a US in 2 or 3 dimensions and we use the graphical
representation of the UCD for relevant elements. Our aim is to obtain:

142

8.3 Running Example

• An easy to read graphical representation of requirements. Story Maps
remain limited to post-its on a board or even on the ground;

• An advanced structuring of requirements where we can overview the
dependencies of coarse-grained elements to one another with the use of
<<include>> and <<extend>> relationships. Fine-grained elements are
not part of the UCD but can be represented under the scope of particular
UC for example in workflows (UML activity diagrams or BPMN diagrams,
etc.). The latter is outside the present scope;

• An identification of gaps in requirements and elimination of redundant
US elements from the graphical representation. By limiting the graphical
UCD representation to solely coarse-grained elements we can obtain a
high-level representation of the system-to-be. This allows to overview if,
at an operational level, all aspects required to solve the software problem
have been taken into account; if not they can be added to the US set.
Similarly, elements appearing to be redundant because appearing in several
US of the US set can lead to remove US from the set.

AgileModeling [7] emphasizes the usage of models for better understanding
of the system-to-be and argues that it is useful to produce at least some models
including a UML UCD and class diagram for the very first iteration called
iteration zero. No transformation process is nevertheless provided.

8.3 Running Example

Our proposal will be illustrated using a running example about carpooling—i.e.,
the ClubCar (see Section 5.6).

As shown in Table 8.1, we have taken a sample of the US of the ClubCar
application to illustrate the research developed in this chapter. Some of these
US contain elements to be transformed in UC and elements that are not
relevant as UC (see Section 8.4). The first column depicts the Dimension of US
Descriptive_Concept (D_C), the second column describes the element itself
and the last column provides the type of the D_C 1.

8.4 User Stories Integration through a Use-Case Diagram

This section exposes the mapping between US elements and Use-Case diagram
elements. The Role is discussed in Section 8.4.1. Section 8.4.2 discusses the
Hard-goal, Task, and Capability. Finally, Section 8.4.3 discusses the Soft-goal.

8.4.1 The Role

A Role within a US can be forwarded to an Actor in the UCD. The UCD
Actor is indeed the only structure defined to represent the WHO dimension
(see Figure 8.1).

1Note that, when there were several possibilities, a choice ensuring the consistency of the
entire set has been made.

143

Bridging User Story Sets with the Use-Case Model

Table 8.1 US sample of the ClubCar application development.

Dimension Element D_C Type
WHO As a DRIVER Role
WHAT I want to register to the service Task
WHY so that I can propose a ride to go from A to B. Hard-goal
WHO As a DRIVER Role
WHAT I want to propose a ride from A to B with the

price location and time of departure, and number
of seats available.

Task

WHO As a DRIVER Role
WHAT I want to log in to the platform Capability
WHY so that I can register to the service. Task
WHO As a RIDER Role
WHAT I want to be transported from A to B. Hard-goal
WHO As a DRIVER Role
WHAT I want to confirm the proposal. Capability
WHO As a DRIVER Role
WHAT I want the RIDER to be satisfied of my service. Soft-goal

8.4.2 Hard-goal, Task and Capability

Three functional elements—i.e., the Hard-goal, the Task and the Capability—
can be found in the unified model. The Capability is located on a fine level of
granularity and thus non relevant for inclusion in the UCD. The Hard-goal and
the Task elements are aimed to contain coarse-grained elements thus relevant
for inclusion as UC.

Hard-goal and Task elements can be distinguished by their nature (i.e., their
formulation) rather than by their grain level. Both are indeed intended to
represent coarse-grained elements. The Hard-goal is the most abstract element
and the Task is its counterpart expressed in an operational manner. This means
that the Task represents a way of fulfilling the Hard-goal (entirely or parts of
it); the Task is thus the counterpart of the Hard-goal in the solution domain
while the Hard-goal belongs to the problem domain.

In line with UML, the Use-Case does not necessarily explicit how the problem
should be solved (this can be documented within on a workflow containing fine-
grained elements) but rather what should be achieved. US elements tagged
as Hard-goals should thus necessarily be represented as Use-Cases
since they depict WHAT problem should be solved. The tricky question is then
to determine if Task elements must also be represented as UC. Since Tasks
are part of the solution domain, if they are represented as UC they should be
linked to the Hard-goals they furnish part of a solution to; this means that we
can make their relationship explicit. This is something useful when different
US elements represented as Hard-goals make use of the same US elements
represented as Tasks. It indeed allows to show that some behavior can be
reused in several situations. This is what <<include>> and <<extend>>
dependency relationships are intended to model in a UCD. We can then link

144

8.4 User Stories Integration through a Use-Case Diagram

the UC corresponding to a Hard-goal element with the one corresponding to a
Task element using an <<include>> and <<extend>> dependency in function
of the particular situation. If no behavior is recycled, we do not point to the
representation of the US element tagged as Task in the UCD because this
would lead to several UC that do not need to be externalized (leading to lots of
<<include>> and <<extend>> dependencies) and are only sub-processes of
the UC. Moreover, we want to make clear that we do not point to use these
dependencies to depict means-end relationships between Hard-goals and Tasks.
We point to keep the UCD as simple as possible and leave the description of
solutions to the Hard-goal in other views (e.g., workflows). In a phrase, only
decompositions of Hard-goals in Tasks where the Tasks are used in multiple
Hard-goals are represented as UC in the UCD.

There is thus no universal answer to the representation of US elements
tagged as Tasks in the UCD; as evoked it may be interesting to highlight the
reuse of more special behavior but some Tasks are just subprocesses of the
Hard-goal elements and should then not be represented as UC. These need to
be documented for example in workflows depicting the realization scenario(s) of
the Hard-goal (thus UC).

Let’s finally note that UC transformed from Hard-goal elements can also
be linked with other UC transformed from Hard-goal elements through an
<<include>> relationship. In our context this shows that some Hard-goals
are possibly needed for the realization of other Hard-goals. We do not consider
<<extend>> relationships among Hard-goals because such elements do have a
possible stand-alone realization.

Concretely, in Figure 8.1, the Task is linked with the UC representing the
Hard-goal with an <<include>> dependency relationship from the Hard-goal
to the Task. This is illustrated in the left side of Figure 8.1 in a canonical form
and instantiated on the Carpooling example in the right side of the same figure.

Representing both elements in the UCD is thus in some cases a way of
explicitly linking the problem and solution domains where system behavior can
be recycled in multiple Use-Cases (thus Hard-goals).

8.4.3 The Soft-goal

A Soft-goal is “a condition or state of affairs in the world that the actor
would like to achieve” [159]. For a Soft-goal there are no clear-cut criteria for
whether the condition is achieved; it cannot be represented as such into an
element of a standard UCD. In a standard UML UCD there is no element for
the representation of Soft-goals but a refinement of the UCD is included in
the Rational Unified Process (RUP, see [78]) and known as the RUP/UML
Business UCM (see [129]). A representation in the UCD would allow us to
trace which functional requirement (in the form of a Hard-goal or a Task)
supports the realization of a Soft-goal. Wautelet and Kolp [150] suggests to map
the Soft-goal with the RUP/UML Goal because a semantic analysis of both
definitions concludes that those represent the same type (or at least closely
related) elements. This solution is relevant for us since it allows a graphical
representation of Soft-goals in the UCD as well as a potential support analysis

145

Bridging User Story Sets with the Use-Case Model

(by highlighting which UC contributes to the satisfaction of the represented
Soft-goal). Consequently and even though it is not standard UML, we map
the Soft-goal elements from the US set to the graphical representation of the
business Goal element. As shown in Figure 8.1, we can have:

• The Soft-goal in the WHAT dimension. Then, in the UCD, we immediately
relate the Actor (Role in the US WHO dimension) to a Business Goal
(Soft-goal in the US WHAT dimension) and a simple link is used;

• The Soft-goal in the WHY dimension. Then, in the UCD, if the element
in the WHAT dimension leads to a UC (Hard-goal or a Task in the
US), it can be linked to the Business Goal (Soft-goal in the US WHAT
dimension) using a <<support>> dependency relationship. This link
visually expresses that the functional element contributes to the realization
of the Soft-goal within the software implementation.

Propose a
ride to go
from A to B

Driver

Register
to the
service Rider

Role1

Hard-goal1

Hard-goal2

Task1

Hard-goal3

Role2

Soft-goal

Role3

being satisfied
of the service

Be
transported
from A to B

Taks2

≪
in

clu
d
e
≫

≪
su

p
p
ort≫

≪
in

c
lu

d
e
≫

≪
ex

te
nd
≫

≪extend≫

≪
e
x
te

n
d
≫

≪extend≫

about:blank

1 of 1
27/06/2016 10:34

(a) Use-Case model forwarded on the basis of stereotyped user stories.

Propose a
ride to go
from A to B

Driver

Register
to the
service Rider

Role1

Hard-goal1 Hard-goal2

Task1 Hard-goal3

Role2

The Hard-goal1 and Hard-goal2
elements belong to Epic US

(containing them in their WHAT
dimension). They are further realized

by one or more Tasks/Hard-goals.
Soft-goal

Role3

being satisfied
of the service

Be
transported
from A to B

≪
in

cl
u
d
e≫

≪
s
u
p
p
o
rt≫

≪include≫

≪
ex

te
nd≫

≪extend≫

about:blank

1 of 1
24/06/2016 16:09

(b) Partial Use-Case Diagram for the Carpooling Example.

Fig. 8.1 Use-Case diagram: Canonical form and carpooling example.

146

8.5 Automating the Approach and Round-Tripping Between Views

8.5 Automating the Approach and Round-Tripping
Between Views

In order to support the approach, we have built an add-on to the cloud version
of the Descartes Architect CASE-Tool [46] that, for the present purpose, allows
multiple views:

• The User Story View (USV) to edit US through virtual US cards. Each
US element in a dimension must be tagged with a concept of the unified
model;

• The Use-Case View (UCV) to edit a UCD. The UCD is automatically
transformed from the US set defined in the USV. When changes are made
to UC or Actors in the UCV, the corresponding elements are automatically
updated in the USV and vice-versa. These indeed are the same logical
element represented in multiple views;

• The Class, Sequence and Activity Diagram Views (outside the scope of
this chapter).

The CASE-Tool immediately build elements in the UCV, when elements are
built in the USV following the rules given in this chapter and summarized in
Table 8.2.

Table 8.2 Mapping a user story set with the Use-Case diagram.

US Set Element UCD Element
Role Actor
Hard-goal Use-Case; several Use-Cases transformed from Hard-goals

can be linked through <<include>> dependencies
Task (Possible) Use-Case; the Use-Case transformed form

a Task should be linked through <<include>> or
<<extend>> dependencies with Use-Cases transformed
from Hard-goals

Capability No possible transformation
Soft-goal RUP/UML Business Goal

The editing process is continuous over the requirements analysis stage and
over the entire project life cycle. In practice, US elements are re-tagged several
times when they analyzed and structured. Consistency among views is ensured
by separating the conceptual element in the CASE-Tool memory from its
representation in a view.

147

Bridging User Story Sets with the Use-Case Model

(a) User Story View

(b) Use-Case View

(c) Class Diagram View

Fig. 8.2 The supporting CASE-Tool.

8.6 Impact on Produced Software: Future Work

Two types of impacts will be evaluated in future work:

• What is the impact on the software design of using our approach versus
using another one? Since we aim to transform coarse-grained US elements
in UC, the produced UC are likely to become the scope elements for which

148

8.7 Conclusion

realization scenarios will be build. Also, sets of US are expressed in a
fined-grained way only or parts of the requirements are not expressed. In
order to fill the gap, one or more UC can then be added; US are then
automatically generated accordingly. Fine-grained elements can also be
omitted from the US set and be identified through the approach. Finally,
identifying and representing Soft-goals in the UCD may lead to better take
them into account in the design. These aspects need further investigation;

• What will be the variability in the UCD produced from the same US set
by different modelers? Various modelers applying the transformation will
not produce exactly the same model. They are indeed likely to interpret
elements differently and consequently tag them differently. Analysis
activities occurring after the initial transformation often lead to reconsider
some of the associated tags (granularity of US elements is thus not set
once and for all but refined through the requirements elicitation). This
variability needs to be studied and evaluated.

8.7 Conclusion

Agile methods use very simple requirements descriptions in the form of US.
These are easy to read but difficult to structure leading to the need of visual re-
quirements representations to sort them, understand the system-to-be, dialogue
with stakeholders, etc. We have consequently suggested to structure coarse-
grained elements found in US sets in a UML UCD. The UCD view is aimed
to remain consistent with the set of US, encompassing changing requirements
to furnish the possibility of UC driven development in methods where US sets
are the firstly expressed requirement artifact. This work is complementary to
previous work focusing on the representation of US sets with GORE models
(see Chapter 6).

149

Part VI

Conclusion

151

Chapter 9

Conclusions

9.1 General conclusions

User Stories (US), a well-known engineering practice in agile software develop-
ment, are mostly developed in a semi-structured way through a WHO, WHAT
and WHY dimension. Nothing nevertheless allows to distinguish the nature and
granularity of the elements depicted in the WHAT (and WHY) dimension(s).
Such information is the one required to further structure requirements models,
link relevant US functional elements with one another so to build a graphical
representation of the to-be-software system.

This dissertation has shown that, with a bit more domain analysis and
modeling effort, one could start from a US set and build such a graphical
representation of requirements. The graphical representation, that we have
called the Rationale Tree (RT), can then be (if consistently built) used as a
basis for model-driven software development in agile methods. Elements of
Epic US constitute the core functionalities of the system, their decomposition
possibilities are explicitly shown and documented in our RT. In the perspective
of model-driven Project Management (PM), elements of the RT can be—at
various levels of decomposition—used as scope elements to drive the iterations’
planning depending on the size of the iterations that the team wants to deal
with.

Next to this, we also showed that, using a consistent set of US—i.e., the
nature and granularity of its constituting elements—could, in most cases, be
adequately interpreted by its practitioners. This increases the potential for
adoption of our contributions. Also, a representation through Use-Case diagrams
can be made possible to dispose of a graphical representation in a form already
adopted by industry. Third party contributions to model-driven development
with the Use-Case model can then also be adopted starting from a US set and
our transformation approach.

9.2 Summary of the main Contributions

The first contribution of this thesis is the unified meta-model for US templates.
This (meta-)model has been built on the basis of 85 US templates found in
different (formal and inform sources) sources. US are generally written as follows:

153

Conclusions

As a [WHO], I want [WHAT], so that [WHY]. From the 85 US template dataset,
we collected the keywords related to each dimension and a selection process
has been made based on the syntax and a semantic that we associated to
each of these keywords. These semantics were selected out of the i*framework,
KAOS, BPMN and the IREB glossary. At the end of the research process, the
constituting elements of the meta-model are the Role the for WHO dimension,
the Hard-goal, Soft-goal, Task, and Capability for the WHAT dimension; and
finally, the Hard-goal, Soft-goal, and Task for the WHY dimension. An example
of a US Template that can be built out of our meta-model is: As <Role>, I
want <Task>, so that <Hard-goal>.

The second contribution of this thesis is the improvement of requirements
engineering practices of agile methods through a graphical representation of a
US set. We have proposed two types of graphical representations.

The first graphical representation builds a custom decomposition tree called
the RT, it is largely inspired by the Strategic Rationale diagram of i*. Indeed,
the semantic domain of the meta-model for US templates is very close to the
one of i*. The RT allows to highlight dependencies between US elements and
constitutes an advanced tool for domain analysis. It thus partly addresses the
lacks of natural language US. Furthermore, it also allows to clearly identify the
grain of the modelled elements; coarse-grained elements provide a big picture of
the system-to-be.

The second graphical representation is the use of Use-Case model for rep-
resenting the coarse-grained US elements. This gives a formal bridge to the
further use of UML models in agile methods.

The third and last contribution of this thesis concerns the PM aspects of
agile methods. The graphical representation of US elements in the form of either
RT or a Use-Case model can be used for project planning (in the planning game)
of iterative life cycle methods. These models provide a basis for the selection
of US to be implemented in the next iteration(s). Since decompositions and
functional alternatives are highlighted in the RT, the latter model eases the
selection of a coherent US set to be implemented. Usually such a selection is
made in terms of coarse-grained elements. These can be identified in both the
RT and Use-Case diagram.

9.3 Future Work

This section introduces the future work that can improve the actual results of
the thesis (Section 9.3.1) and also provides new research directions on the basis
of this work (Section 9.3.2).

9.3.1 Improvement on User Story Model

Concerning the improvements of the actual results of the thesis, we identify:

• Each of the individual contributions of the thesis need to gain experience
through their use. Large scale implementations of the transformation from
US sets to RT is, for example, being performed these days on a real life
case. The results will be analysed and depicted in future work;

154

9.3 Future Work

• The CASE-Tool. As seen, a CASE-Tool has been implemented as a proof
of concept and supports limited size US sets. Nevertheless, we did not test
it on very large US set so that the scalability of the tool yet remains to
be evaluated. Moreover, the CASE-Tool in its actual form only provides
support for engineering activities (US set and RT editing, Use-Case model,
...) but no project management abilities are provided. Gantt charts could
for example be easily implemented and be immediately integrated with
the PM scope elements defined in the graphical models;

• Improvement in the systematic tagging of US elements and the building of
the RT. Machine learning techniques can be used for the systematic tagging
US set. Base on the work of Robber et al. [118], we can systematically
extract/decompose the three dimensions of a US. The idea is then to
automatically assign a type (thus tag) from the unified model for US
templates to a US element. To achieve this we, at the first stage, need
to build a training dataset based on human assigned tags. Once the
dataset validated, it can be used to build an algorithm for automatically
tagging new US sets of the same project through a linguistic approach.
Then, these tagged US elements can, of course, be further used in the
transformation processes to RT evoked in the thesis. Next to the last
research track, it would also be interesting to calculate the semantic
similarity or relationship between elements of the first generated RT—i.e.,
the US elements are randomly organized in the RT and no links are
presented. The supporting tool can, at first, group the similar elements
in to a cluster and later proposes links between two elements if there is
some semantic similarity between them. This allows to have a pre-built
RT that modelers can use to model the US set. This, in our opinion, can
save time for software modelers;

• Systematic planning approach. We can easily propagate the priority and
user story points attributed to US in the analysis stage to the corresponding
elements in the RT. From this we can use a clustering method to cluster
depending US elements so that we can suggest a default iterative planning
with highest priority to be implemented US for the next iteration(s). For
each cluster, the total of the user story points gives an estimation of the
total iteration effort allowing to balance iterations;

• A comparison of a linguistic approach and graphical model approach for
US sorting. While the previous points suggested to mix our approach with
linguistic based ones, we could also compare the RT-based approach with
the one proposed by Lucassen et al. [90] in order to evaluate which of
the two methods performs better for sorting US sets. We would proceed
through an experiment with student groups;

• Use of the RT to justify US implementation choices with respect to the
company strategy/tactics. For now we consider implementation choices
on an ad-hoc and operational bases only. Since we dispose of a RT for
reasoning about implementation possibilities we could also model the

155

Conclusions

strategic and tactical layers of the company to highlight the positive and
negative impacts of implementation choices on it;

• Inclusion of acceptance tests in the US modeling. For now US validation
has not been taken into account. In agile projects, acceptance tests
are systematically associated to US; these could also be included in the
building of the RT for validation purpose.

9.3.2 Using Rationale Tree in Software Development Process

As future research direction we point to the full and smooth integration of
the RT within agile methods. Currently, we have proposed a process fragment
for the integration of agent-based software development in agile development;
this fragment requires the building of RT from the US set before deriving the
Multi-Agent Systems (MAS) architecture. The RT allows indeed to show the
reasoning options and the MAS architecture follows the Belief Desire Intention
(BDI) paradigm [151]. However, this topic is still under investigation and we
provide a brief description of the process hereafter.

The process fragment is composed of three main stages: Requirements
Analysis, Architectural Design and Implementation. Several types of stakeholders
are involved in these different stages.

In order to show the process fragment’s stakeholders as well as the interac-
tions among them, we have built an i* Strategic Rationale diagram representing
our software process fragment (see Figure 9.1).

Software

Modeler

Analyse software

requirements

D
D

Agile

Product

Owner

Remove

redundant

requirements

Actor
Actor

Boundary Goal Task Resource

Legend:

Integrate agent-

orientation in agile

software

development

D

Softgoal

Software

Architect

Like user story

Elements

User

D

Initial user

story set

Refined user

story set

DD

Test software

prototypes

Tag user

story

elements

Map software

behavior with

requirements

D

Build intelligent

software

D

Rational Tree

D

D

Identify missing

requirements

Deliver business

value

D

D

Software

Developer

D

D

Define multi-agent

system structure

through Agents, Plans,

Beliefs and Events

Transform multi-agent

architectural design to an

agent-oriented

implementation

D

Ensure consistency

in US set

Build Rationale Tree

Align software

architecture with

Rationale Tree

Specify temporal

exchange of Events

with Communication

Diagrams

Multi-Agent System

Architecture Design

Implement software in an

agent-oriented programming

language D

D

D

Write

user stories

D

Rationale Tree

Consistency

D

D

Software

Prototype

D

D

D

Provide feedback on

prototypes

D

D

D

Dependency Link
AND

decomposition

Means-End

decomposition

Fig. 9.1 Process fragment for integrating Agent-Oriented development in agile
methods.

156

9.3 Future Work

We distinguish 5 types of stakeholders:

• The Agile Product Owner (APO) is a key stakeholder of the project. Its
activities are outside the scope of our process fragment and are guided
by the adopted agile methods; we represent the APO here because he
constitutes an entry point to our process fragment. Usually, the APO
is a senior manager that is mainly in charge of developing a vision of
what software system needs to be built and propagate that vision over the
development team. That way Users expect him to lead the development of
software that will Deliver business value (represented on the diagram as a
Soft-goal dependency). The APO uses the product backlog (see [30, 106]
to store the Initial US Set collected over multiple future users;

• The Software Modeler is in charge of understanding the software problem
and suggest a consistent software solution for it. Basically our process
fragment starts with the activities of this role; this happens during the
Requirements Analysis stage of our process fragment. The Software
Modeler uses the initial US set to Analyze the software requirements; the
latter is thus represented as a goal dependency. When the analysis is
performed, the main goal of the Software Modeler is to Ensure consistency
in the US set Goal; this is achieved through Building the Rationale
Tree Task. The latter requires the US set’s elements to be tagged using
the unified template model, the US elements to be linked, the redundant
requirements to be removed and the missing requirements to be identified
Tasks. As an output, the Software Modeler sets at disposal of the APO a
Refined US Set and at disposal of the Software Architect a Rationale Tree
that this latter role expects to be Consistent;

• The Software Architect is in charge of building a MAS Architectural Design
aligned with the RT. This happens at the Architectural Design stage of our
process fragment. The MAS Architectural Design is more a set of models
that one stand-alone model; we notably have:

– The Structural Diagram that documents all the agents involved in the
software implementation as well as their Plans, Beliefs and Events
(see [151]);

– The Dynamic Diagram that captures the synchronization mechanisms
between Events and Plans.

– The Communication Diagram that specifies the temporal exchange
of events between agents.

• The Software Developer is in charge of implementing the MAS Architec-
tural Design furnished by the Software Architect within an agent-oriented
development language. The latter can, for example, be the Jadex frame-
work1. This happens at the Implementation stage of our process fragment.

1www.activecomponents.org

157

Conclusions

• The (final) User that will use the software application and is thus in charge
of testing the software prototypes to provide feedback to the Software
Modeler. These activities are outside the scope of our process fragment
and are guided by the adopted agile methods. We represent the User here
because he constitutes an exit point to our process fragment.

158

References

[1] Abad, K., Pérez, W., Carvallo, J. P., and Franch, X. (2017). i* in practice:
Identifying Frequent Problems in its Application. In will be appeared in
Proceedings of the 32nd Annual ACM Symposium on Applied Computing.
ACM.

[2] Abbas, N., Gravell, A. M., and Wills, G. B. (2008). Historical roots of Agile
methods: where did “Agile thinking” come from? In International Conference
on Agile Processes and Extreme Programming in Software Engineering, pages
94–103. Springer.

[3] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile Soft-
ware Development Methods: Review and Analysis. [online] www.pss-europe.
com/P478.pdf.

[4] Abrahamsson, P., Warsta, J., Siponen, M. T., and Ronkainen, J. (2003).
New directions on agile methods: a comparative analysis. In Proceedings 25th
International Conference on Software Engineering, pages 244–254.

[5] AgilesKillsProject (2012). Agile Skills Project Wiki, Agile skills
inventory, business value. [online] http://www.agileskillsproject.org/
agile-skills-inventory/business-value.

[6] Alexander, I. F. and Maiden, N. (2004). Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle. Wiley Publishing, 1st edition.

[7] Ambler, S. (2002). Agile Modeling: Effective Practices for eXtreme Pro-
gramming and the Unified Process. John Wiley & Sons, Inc., New York, NY,
USA.

[8] Ambler, S. (2014). User Stories: An Agile Introduction. [online] http:
//www.agilemodeling.com/artifacts/userStory.htm.

[9] Annett, J. (2004). Hierarchical task analysis. The handbook of task analysis
for human-computer interaction, 6:17–35.

[10] Anton, A. I. (1997). Goal Identification and Refinement in the Specification
of Software-based Information Systems. PhD thesis, Georgia Institute of
Technology, Atlanta, GA, USA. UMI Order No. GAX97-35409.

[11] Apel, S. and Kästner, C. (2009). An Overview of Feature-Oriented Software
Development. Journal of Object Technology, 8(5):49–84.

[12] Auer, K. and Miller, R. (2002). Extreme Programming Applied: Playing to
Win. Addison-Wesley Boston.

159

www.pss-europe.com/P478.pdf
www.pss-europe.com/P478.pdf
http://www.agileskillsproject.org/agile-skills-inventory/business-value
http://www.agileskillsproject.org/agile-skills-inventory/business-value
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.agilemodeling.com/artifacts/userStory.htm

References

[13] Batool, A., Motla, Y. H., Hamid, B., Asghar, S., Riaz, M., Mukhtar, M., and
Ahmed, M. (2013). Comparative study of traditional requirement engineering
and agile requirement engineering. In 15th International Conference on
Advanced Communication Technology (ICACT), pages 1006–1014.

[14] Beck, K. (2000). Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional.

[15] Beck, K. and Andres, C. (2004). Extreme Programming Explained: Embrace
Change. Addison-Wesley Professional, 2nd edition.

[16] Beck, K. and Fowler, M. (2001). Planning Extreme Programming. Addison-
Wesley Professional.

[17] Bijan, Y., Yu, J., Stracener, J., and Woods, T. (2013). Systems requirements
engineering—State of the methodology. Systems Engineering, 16(3):267–276.

[18] Boehm, B. W. (1988). A Spiral Model of Software Development and
Enhancement. IEEE Computer, 21(5):61–72.

[19] Boehm, B. W. (2000). Requirements that Handle IKIWISI, COTS, and
Rapid Change. IEEE Computer, 33(7):99–102.

[20] Booch, G. (2004). Object-Oriented Analysis and Design with Applications.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 3rd
edition.

[21] Bosch, J. (2000). Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach. ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA.

[22] Bourque, P. and Fairley, R. E. (2014). Guide to the Software Engineering
Body of Knowledge (SWEBOK(R)): Version 3.0. IEEE Computer Society
Press, Los Alamitos, CA, USA, 3rd edition.

[23] Bruegge, B. and Dutoit, A. A. (1999). Object-Oriented Software Engineer-
ing; Conquering Complex and Changing Systems. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

[24] C3 Team (1998). Case study: Chrysler goes to “extremes”. Distributed
Computing.

[25] CalCentral (2013a). CalCentral Team, CalCentral User Stories.
[online] https://confluence.media.berkeley.edu/confluence/display/MYB/
CalCentral+User+Stories.

[26] CalCentral (2013b). CalCentral Team, CalCentral’s Mission State-
ment. [online] https://confluence.media.berkeley.edu/confluence/display/
MYB/Mission+Statement.

[27] Cardinal, M. (2013). Executable Specifications with Scrum: A Practical
Guide to Agile Requirements Discovery. Addison-Wesley Professional, 1st
edition.

[28] Carroll, J. M. (1994). Making Use: A Design Representation. Commun.
ACM, 37(12):28–35.

160

https://confluence.media.berkeley.edu/confluence/display/MYB/CalCentral+User+Stories
https://confluence.media.berkeley.edu/confluence/display/MYB/CalCentral+User+Stories
https://confluence.media.berkeley.edu/confluence/display/MYB/Mission+Statement
https://confluence.media.berkeley.edu/confluence/display/MYB/Mission+Statement

References

[29] Castro, J., Kolp, M., and Mylopoulos, J. (2002). Towards requirements-
driven information systems engineering: the Tropos project. Inf. Syst.,
27(6):365–389.

[30] Cervone, H. F. (2011). Understanding agile project management methods
using Scrum. OCLC Systems & Services, 27(1):18–22.

[31] Chemuturi, M. (2012). Requirements Engineering and Management for
Software Development Projects. Springer Publishing Company, Incorporated.

[32] Cheng, B. H. C. and Atlee, J. M. (2007). Research Directions in Require-
ments Engineering. In 2007 Future of Software Engineering, FOSE ’07, pages
285–303, Washington, DC, USA. IEEE Computer Society.

[33] Cleland-Huang, J., Czauderna, A., and Mirakhorli, M. (2014). Chapter 4 -
driving architectural design and preservation from a persona perspective in
agile projects. In Babar, M. A., , Brown, A. W., , and Mistrik, I., editors,
Agile Software Architecture, pages 83 – 111. Morgan Kaufmann, Boston.

[34] Cockburn, A. (2004). Crystal Clear a Human-powered Methodology for
Small Teams. Addison-Wesley Professional, 1st edition.

[35] Cohen, D., Lindvall, M., and Costa, P. (2004). An introduction to agile
methods. Advances in Computers, 62:1–66.

[36] Cohn, M. (2004). User Stories Applied: For Agile Software Development.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA.

[37] Cohn, M. (2005). Agile Estimating and Planning. Prentice Hall PTR,
Upper Saddle River, NJ, USA.

[38] Cohn, M. (2008). Advantages of the “As a user, I want” user
story template. [online] http://www.mountaingoatsoftware.com/blog/
advantages-of-the-as-a-user-i-want-user-story-template.

[39] Cohn, M. (2009). Succeeding with Agile: Software Development Using
Scrum. Addison-Wesley Professional, 1st edition.

[40] Constantine, L. L. and Lockwood, L. A. D. (1999). Software for Use: A
Practical Guide to the Models and Methods of Usage-centered Design. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA.

[41] Cooper, A. (2004). The Inmates Are Running the Asylum: Why High
Tech Products Drive Us Crazy and How to Restore the Sanity (2Nd Edition).
Pearson Higher Education.

[42] Dalpiaz, F. (2015). Teaching goal modeling in undergraduate education.
In Horkoff, J., Lockerbie, J., Franch, X., Yu, E. S. K., and Mylopoulos,
J., editors, Proceedings of the 1st International iStar Teaching Workshop
co-located with the 27th International Conference on Advanced Information
Systems Engineering (CAiSE 2015), Stockholm, Sweden, June 9, 2015.,
volume 1370 of CEUR Workshop Proceedings, pages 1–6. CEUR-WS.org.

[43] Denger, C., Berry, D. M., and Kamsties, E. (2003). Higher Quality Re-
quirements Specifications through Natural Language patterns. In 2003 IEEE
International Conference on Software - Science, Technology and Engineering
(SwSTE 2003), 4-5 November 2003, Herzelia, Israel, page 80. IEEE Computer
Society.

161

http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
http://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template

References

[44] Dennis, A., Wixom, B. H., and Tegarden, D. (2015). Systems Analysis
and Design: An Object-Oriented Approach with UML. Wiley Publishing, 5th
edition.

[45] Dennis, L. A., Farwer, B., Bordini, R. H., Fisher, M., and Wooldridge,
M. (2007). A Common Semantic Basis for BDI Languages. In Dastani, M.,
Fallah-Seghrouchni, A. E., Ricci, A., and Winikoff, M., editors, Programming
Multi-Agent Systems, 5th International Workshop, ProMAS 2007, Honolulu,
HI, USA, May 15, 2007, Revised and Invited Papers, volume 4908 of Lecture
Notes in Computer Science, pages 124–139. Springer.

[46] Descartes (2016). The Descartes Architect CASE-Tool. [online] http:
//www.isys.ucl.ac.be/descartes/.

[47] Diaper, D. and Stanton, N. (2004). The handbook of task analysis for
human-computer interaction. CRC Press.

[48] Dimitrijević, S., Jovanović, J., and Devedžić, V. (2015). A comparative
study of software tools for user story management. Information & Software
Technology, 57:352–368.

[49] Dingsøyr, T., Dybå, T., and Moe, N. B. (2010). Agile Software Development:
An Introduction and Overview. In Agile Software Development, pages 1–13.
Springer.

[50] Duursma, C., Olsson, O., and Ulf, S. (1993). Task Model definition and
Task Analysis process. ESPRIT Project P5248 KADS-II CK-VUB-04, Vrije
Universiteit Brussel.

[51] Eberlein, A. and Leite, J. (2002). Agile requirements definition: A view
from requirements engineering. In Proceedings of the International Workshop
on Time-Constrained Requirements Engineering (TCRE’02), pages 4–8.

[52] Elshandidy, H. and Mazen, H. (2013). Agile and Traditional Requirements
Engineering: A Survey. International Journal of Scientific and Engineering
Research, 4(9).

[53] Firesmith, D. (2005). Are Your Requirements Complete? Journal of Object
Technology, 4(1):27–44.

[54] Forsberg, K. and Mooz, H. (1991). The Relationship of System Engineering
to the Project Cycle. In INCOSE International Symposium, pages 57–65.
Wiley Online Library.

[55] Gibbs, R. D. (2006). Project Management with the IBM®Rational Unified
Process®: Lessons From The Trenches. IBM Press.

[56] Glinz, M. (2012). A Glossary of Requirements Engineering Terminology,
Version 1.4. [online] https://www.ireb.org/en/downloads.

[57] Golick, J. (2010). The Problem with User Stories. [online] http:
//jamesgolick.com/2010/1/4/the-problem-with-user-stories.html.

[58] Gomaa, H. (2004). Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architectures.

162

http://www.isys.ucl.ac.be/descartes/
http://www.isys.ucl.ac.be/descartes/
https://www.ireb.org/en/downloads
http://jamesgolick.com/2010/1/4/the-problem-with-user-stories.html
http://jamesgolick.com/2010/1/4/the-problem-with-user-stories.html

References

[59] Gunal, V. (2012). Agile Software Development Approaches and Their
History. Enterprise Software Engineering. [online] http://sewiki.iai.uni-bonn.
de/_media/teaching/labs/xp/2012b/seminar/1-agile.pdf.

[60] Hastie, S. and Wick, A. (2014). User Stories and Use Case
- Don’t Use Both! [online] http://www.batimes.com/articles/
user-stories-and-use-cases-dont-use-both.html.

[61] Hastie, S. and Wojewoda, S. (2015). Standish Group 2015 Chaos
Report-Q&A with Jennifer Lynch. [online] https://www.infoq.com/articles/
standish-chaos-2015.

[62] Hazzan, O. and Dubinsky, Y. (2009). Agile Software Engineering. Springer
Science & Business Media.

[63] Hsia, P., Davis, A. M., and Kung, D. C. (1993). Status Report: Require-
ments Engineering. IEEE Software, 10(6):75–79.

[64] Hudson, W. (2013). User stories don’t help users: introducing persona
stories. interactions, 20(6):50–53.

[65] Hull, M. E. C., Jackson, K., and Dick, J., editors (2011). Requirements
Engineering. Springer, 3rd edition.

[66] Hunt, J. (2006). Agile Software Construction. Springer.

[67] IBM (2007). The Rational Unified Process, Version 7.0.1.

[68] IEEE Computer Society (1998). IEEE Recommended Practice for Software
Requirements Specifications. Institute of Electrical and Electronics Engineers.

[69] IEEE Std (1990). IEEE Standard Glossary of Software Engineering Termi-
nology. IEEE Std 610.12-1990, pages 1–84.

[70] ISO9000:2005 (2005). Quality Management Systems–Fundamentals and
Vocabulary. International Organization for Standardization.

[71] ISO/IEC/IEEE 24765:2010(E) (2010). Systems and software engineering –
vocabulary. ISO/IEC/IEEE 24765:2010(E), pages 1–418.

[72] ISO/IEC/IEEE 29148:2011(E) (2011). ISO/IEC/IEEE International Stan-
dard - Systems and software engineering – Life cycle processes – Requirements
engineering. ISO/IEC/IEEE 29148:2011(E), pages 1–94.

[73] Jacobson, I. (1992). Object-Oriented Software Engineering: A Use Case
Ddriven Approach. ACM Press; Addison-Wesley Pub, revised edition.

[74] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software
Development Process. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[75] Kalermo, J. and Rissanen, J. (2002). Agile software development in theory
and practice. Master’s thesis, University of Jyväskylä. [online] http://www.
cs.jyu.fi/sb/Publications/KalermoRissanen_MastersThesis_060802.pdf.

[76] Keith, C. (2010). Agile Game Development with Scrum. Addison-Wesley
Professional, 1st edition.

163

http://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2012b/seminar/1-agile.pdf
http://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2012b/seminar/1-agile.pdf
http://www.batimes.com/articles/user-stories-and-use-cases-dont-use-both.html
http://www.batimes.com/articles/user-stories-and-use-cases-dont-use-both.html
https://www.infoq.com/articles/standish-chaos-2015
https://www.infoq.com/articles/standish-chaos-2015
http://www.cs.jyu.fi/sb/Publications/KalermoRissanen_MastersThesis_060802.pdf
http://www.cs.jyu.fi/sb/Publications/KalermoRissanen_MastersThesis_060802.pdf

References

[77] Klugh, D. (2011). User Story Authorship: Defining the User Role. [online]
http://agilerepublic.com/?p=29.

[78] Kruchten, P. (2003). The Rational Unified Process: An Introduction.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 3 edition.

[79] Laplante, P. A. (2013). Requirements Engineering for Software and Systems.
CRC Press, 2nd edition.

[80] Lapouchnian, A. (2005). Goal-oriented Requirements Engineering: An
Overview of the Current Research. University of Toronto, page 32. [online]
http://www.cs.utoronto.ca/~alexei/pub/Lapouchnian-Depth.pdf.

[81] Larman, C. and Basili, V. R. (2003). Iterative and Incremental Develop-
ment: A Brief History. IEEE Computer, 36(6):47–56.

[82] Larman, C. and Vodde, B. (2010). Practices for Scaling Lean & Agile
Development: Large, Multisite, and Offshore Product Development with
Large-Scale Scrum. Addison-Wesley Professional, 1st edition.

[83] Leffingwell, D. (2011). Agile Software Requirements: Lean Requirements
Practices for Teams, Programs, and the Enterprise. Addison-Wesley Profes-
sional, 1st edition.

[84] Lieberman, H., Paternò, F., Klann, M., and Wulf, V. (2006). End-user
development: An emerging paradigm. In Lieberman, H., Paternò, F., and
Wulf, V., editors, End User Development, Human-Computer Interaction
Series, pages 1–8. Springer.

[85] Limbourg, Q. and Vanderdonckt, J. (2004). Comparing task models for
user interface design. The handbook of task analysis for human-computer
interaction, 6:135–154.

[86] Lindstrom, L. and Jeffries, R. (2004). Extreme Programming and Agile
Software Development Methodologies. IS Management, 21(3):41–52.

[87] Liskin, O., Pham, R., Kiesling, S., and Schneider, K. (2014). Why We
Need a Granularity Concept for User Stories. In Agile Processes in Software
Engineering and Extreme Programming - 15th International Conference, XP
2014, Rome, Italy, May 26-30, 2014. Proceedings, pages 110–125.

[88] Logue, K. and McDaid, K. (2008). Handling Uncertainty in Agile Re-
quirement Prioritization and Scheduling Using Statistical Simulation. In
Melnik, G., Kruchten, P., and Poppendieck, M., editors, Agile Development
Conference, AGILE 2008, Toronto, Canda, 4-8 August 2008, pages 73–82.
IEEE Computer Society.

[89] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and Brinkkemper,
S. (2015). Forging high-quality User Stories: Towards a discipline for Agile
Requirements. In Zowghi, D., Gervasi, V., and Amyot, D., editors, 23rd
IEEE International Requirements Engineering Conference, RE 2015, Ottawa,
ON, Canada, August 24-28, 2015, pages 126–135. IEEE Computer Society.

[90] Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., and Brinkkemper, S.
(2016). Visualizing user story requirements at multiple granularity levels via
semantic relatedness. In Comyn-Wattiau, I., Tanaka, K., Song, I., Yamamoto,

164

http://agilerepublic.com/?p=29
http://www.cs.utoronto.ca/~alexei/pub/Lapouchnian-Depth.pdf

References

S., and Saeki, M., editors, Conceptual Modeling - 35th International Con-
ference, ER 2016, Gifu, Japan, November 14-17, 2016, Proceedings, volume
9974 of Lecture Notes in Computer Science, pages 463–478.

[91] Lucia, A. D. and Qusef, A. (2010). Requirements Engineering in Agile
Software Development. Journal of Emerging Technologies in Web Intelligence,
2(3):212–220.

[92] Machado, R. J., Ramos, I., and Fernandes, J. M. (2005). Specification of
Requirements Models. In Engineering and managing software requirements,
pages 47–68. Springer.

[93] Madhavji, N. H. (1991). The process cycle [software engineering]. Software
Engineering Journal, 6(5):234–242.

[94] ManifestoAgile (2001). Manifesto for Agile Software Development. [online]
http://www.agilemanifesto.org.

[95] Martin, J. (1991). Rapid Application Development. Macmillan Publishing
Co., Inc., Indianapolis, IN, USA.

[96] Mellor, S. J. and Balcer, M. (2002). Executable UML: A Foundation for
Model-Driven Architectures. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[97] Meyer, B. (1985). On formalism in specifications. IEEE Softw., 2(1):6–26.

[98] Mori, G., Paternò, F., and Santoro, C. (2002). CTTE: Support for De-
veloping and Analyzing Task Models for Interactive System Design. IEEE
Trans. Software Eng., 28(8):797–813.

[99] Murata, T. (1989). Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580.

[100] Nawrocki, J. R., Ochodek, M., Jurkiewicz, J., Kopczynska, S., and Alchi-
mowicz, B. (2014). Agile Requirements Engineering: A Research Perspective.
In Geffert, V., Preneel, B., Rovan, B., Stuller, J., and Tjoa, A. M., editors,
SOFSEM 2014: Theory and Practice of Computer Science - 40th Interna-
tional Conference on Current Trends in Theory and Practice of Computer
Science, Nový Smokovec, Slovakia, January 26-29, 2014, Proceedings, volume
8327 of Lecture Notes in Computer Science, pages 40–51. Springer.

[101] North, D. (2012). WHAT’S IN A STORY? [online] http://dannorth.net/
whats-in-a-story/.

[102] Nuseibeh, B. and Easterbrook, S. (2000). Requirements Engineering:
A Roadmap. In Proceedings of the Conference on The Future of Software
Engineering, ICSE ’00, pages 35–46, New York, NY, USA. ACM.

[103] OMG (2013). Business Process Model and Notation (BPMN). Version
2.0.1. Technical report, Object Management Group.

[104] OMG (2015). OMG Unified Modeling LanguageTM (OMG UML). Version
2.5. Technical report, Object Management Group.

[105] Oscar, S. (2013). Visual Paradigm for UML. Int’l Book Market Service
Limited.

165

http://www. agilemanifesto. org
http://dannorth.net/whats-in-a-story/
http://dannorth.net/whats-in-a-story/

References

[106] Paetsch, F., Eberlein, A., and Maurer, F. (2003). Requirements En-
gineering and Agile Software Development. In Proceedings of the Twelfth
International Workshop on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, WETICE ’03, pages 308–, Washington, DC, USA. IEEE
Computer Society.

[107] Palmer, S. R. and Felsing, M. (2001). A Practical Guide to Feature-Driven
Development. Pearson Education, 1st edition.

[108] Patel, C. and Ramachandran, M. (2009). Story Card Based Agile Soft-
ware Development. International Journal of Hybrid Information Technology,
2(2):125–140.

[109] Patel, C. and Ramachandran, M. (2010). Best Practices Guidelines
for Agile Requirements Engineering Practices. In Handbook of Research
on Software Engineering and Productivity Technologies: Implications of
Globalization., pages 1–14. IGI Global.

[110] Patton, J. (2005a). Finding the forest in the trees. In Johnson, R. E. and
Gabriel, R. P., editors, OOPSLA Companion, pages 266–274. ACM.

[111] Patton, J. (2005b). It’s All in How You Slice. [on-
line] http://jpattonassociates.com/wp-content/uploads/2015/01/how_you_
slice_it.pdf.

[112] Patton, J. and Economy, P. (2014). User Story Mapping: Discover the
Whole Story, Build the Right Product. O’Reilly Media, Inc., 1st edition.

[113] Pohl, K. (2010). Requirements Engineering: Fundamentals, Principles,
and Techniques. Springer Publishing Company, Incorporated, 1st edition.

[114] Pohl, K. and Rupp, C. (2011). Requirements Engineering Fundamentals:
A Study Guide for the Certified Professional for Requirements Engineering
Exam - Foundation Level - IREB Compliant. Rocky Nook, 1st edition.

[115] Pressman, R. S. (2010). Software Engineering: A Practitioner’s Approach.
Palgrave Macmillan, 7th edition.

[116] Pressman, R. S. and Bruce, R. M. (2013). Software Engineering: A
Practitioner’s Approach. Palgrave Macmillan, 8th edition.

[117] Ramesh, B., Cao, L., and Baskerville, R. (2010). Agile requirements
engineering practices and challenges: an empirical study. Inf. Syst. J.,
20(5):449–480.

[118] Robber, M., Lucassen, G., va der Werf, J. M. E., Dalpiaz, F., and
Brinkkemper, S. (2016). Automated Extraction of Conceptual Model from
User Stories via NLP. RE2016.

[119] Rodríguez, P., Yagüe, A., Alarcón, P. P., and Garbajosa, J. (2009). Some
findings concerning requirements in Agile methodologies. In International
Conference on Product-Focused Software Process Improvement, pages 171–184.
Springer.

[120] Roman, G.-C. (1985). A taxonomy of current issues in requirements
engineering. Computer, 18(4):14–23.

166

http://jpattonassociates.com/wp-content/uploads/2015/01/how_you_slice_it.pdf
http://jpattonassociates.com/wp-content/uploads/2015/01/how_you_slice_it.pdf

References

[121] Royce, W. W. (1970). Managing the development of large software systems.
In proceedings of IEEE WESCON, number 8, pages 328–388. Los Angeles.

[122] Rubin, K. S. (2012). Essential Scrum: A Practical Guide to the Most
Popular Agile Process. Addison-Wesley Professional, 1st edition.

[123] Rumbaugh, J., Jacobson, I., and Booch, G. (2004). Unified Modeling
Language Reference Manual. Pearson Higher Education, 2nd edition.

[124] Saunders, M., Lewis, P., and Thornhill, A. (2009). Research Methods for
Business Students. Pearson Education.

[125] Schreiber, G. T. and Akkermans, H. (2000). Knowledge Engineering and
Management: The CommonKADS Methodology. MIT Press, Cambridge, MA,
USA.

[126] Schwaber, K. and Beedle, M. (2001). Agile Software Development with
Scrum. Upper Saddle River, NJ, USA, 1st edition.

[127] Shapiro, R., White, S., and Bock, C. (2011). BPMN 2.0 Handbook Second
Edition: Methods, Concepts, Case Studies and Standards in Business Process
Management Notation. Future Strategies Incorporated.

[128] Shergill, M. P. K. and Scharff, C. (2012). Developing Multi-Channel
Mobile Solutions for a Global Audience: The Case of a Smarter Energy
Solution. SARNOFF’12, New Jersey.

[129] Shuja, A. and Krebs, J. (2007). IBM Rational Unified Process Reference
and Certification Guide: Solution Designer. IBM Press, 1st edition.

[130] Silva, T. R., Hak, J., and Winckler, M. (2016). Testing prototypes
and final user interfaces through an ontological perspective for behavior-
driven development. In Bogdan, C., Gulliksen, J., Sauer, S., Forbrig, P.,
Winckler, M., Johnson, C. W., Palanque, P. A., Bernhaupt, R., and Kis, F.,
editors, Human-Centered and Error-Resilient Systems Development - IFIP
WG 13.2/13.5 Joint Working Conference 6th International Conference on
Human-Centered Software Engineering, HCSE 2016, and 8th International
Conference on Human Error, Safety, and System Development, HESSD 2016
Stockholm, Sweden, August 29-31, 2016, Proceedings, volume 9856 of Lecture
Notes in Computer Science, pages 86–107. Springer.

[131] Sommerville, I. (2010). Software Engineering. Addison-Wesley, 9 edition.

[132] Spivey, J. M. (1988). Understanding Z: A Specification Language and Its
Formal Semantics. Cambridge University Press, New York, NY, USA.

[133] Stapleton, J. (1997). DSDM: Dynamic Systems Development Method: The
Method in Practice. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA.

[134] Sutherland, J. and Schwaber, K. (2011). The Scrum Papers:
Nut, Bolts, and Origins of an Agile Framework. [online] http://
34slpa7u66f159hfp1fhl9aur1-wpengine.netdna-ssl.com/scrumpapers.pdf.

[135] Takeuchi, H. and Nonaka, I. (1986). The new new product development
game. Harvard business review, 64(1):137–146.

167

http://34slpa7u66f159hfp1fhl9aur1-wpengine.netdna-ssl.com/scrumpapers.pdf
http://34slpa7u66f159hfp1fhl9aur1-wpengine.netdna-ssl.com/scrumpapers.pdf

References

[136] Tsui, F., Karam, O., and Bernal, B. (2013). Essentials Of Software
Engineering. Jones and Bartlett Publishers, Inc., USA, 3rd edition.

[137] Vähäniitty, J. and Rautiainen, K. T. (2008). Towards a Conceptual
Framework and Tool Support for Linking Long-term Product and Business
Planning with Agile Software Development. In Proceedings of the 1st Inter-
national Workshop on Software Development Governance, SDG ’08, pages
25–28, New York, NY, USA. ACM.

[138] Van Lamsweerde, A. (2001). Goal-oriented requirements engineering: A
guided tour. In Proceedings of the Fifth IEEE International Symposium on
Requirements Engineering, RE ’01, pages 249–, Washington, DC, USA. IEEE
Computer Society.

[139] Van Lamsweerde, A. (2009). Requirements Engineering: From System
Goals to UML Models to Software Specifications. Wiley Publishing, 1st edition.

[140] Van Lamsweerde, A. and Letier, E. (2004). From object orientation to
goal orientation: A paradigm shift for requirements engineering. In Radical
Innovations of Software and Systems Engineering in the Future, pages 325–340.
Springer.

[141] Velghe, M. (2015). Requirements Engineering in Agile Methods: Contri-
butions on User Story Models. Master’s thesis, KU Leuven, Belgium. [online]
http://www.isys.ucl.ac.be/descartes/ThesisMattijs.pdf.

[142] Verner, J., Cox, K., Bleistein, S., and Cerpa, N. (2005). Requirements
Engineering and Software Project Success: an industrial survey in Australia
and the U.S. Australasian Journal of Information Systems, 13(1).

[143] VersionOne (2016). The 10th Annual State of Agile Report. [online]
http://stateofagile.versionone.com/.

[144] Vlaanderen, K., Jansen, S., Brinkkemper, S., and Jaspers, E. (2011). The
agile requirements refinery: Applying SCRUM principles to software product
management. Information & Software Technology, 53(1):58–70.

[145] Wake, B. (2003). Invest in Good Stories, and SMART Tasks. [online]
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/.

[146] Wang, X., Zhao, L., Wang, Y., and Sun, J. (2014). The Role of Require-
ments Engineering Practices in Agile Development: An Empirical Study. In
Zowghi, D. and Jin, Z., editors, Requirements Engineering: First Asia Pacific
Requirements Engineering Symposium, APRES 2014, Auckland, New Zealand,
April 28-29, 2014. Proceedings, pages 195–209. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[147] Wautelet, Y., Heng, S., Hintea, D., Kolp, M., and Poelmans, S. (2016a).
Bridging User Story Sets with the Use Case Model. In 3rd International
Workshop on Conceptual Modeling inRequirements and Business Analysis,
MReBA2016, Gifu, Japan, November 14-17, 2016.

[148] Wautelet, Y., Heng, S., Kolp, M., and Mirbel, I. (2014). Unifying and
Extending User Story Models. In CAiSE 2014, Thessaloniki, Greece. Proc.,
volume 8484 of LNCS, pages 211–225. Springer.

168

http://www.isys.ucl.ac.be/descartes/ThesisMattijs.pdf
http://stateofagile.versionone.com/
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/

References

[149] Wautelet, Y., Heng, S., Kolp, M., Mirbel, I., and Poelmans, S. (2016b).
Building a Rationale Diagram for Evaluating User Story Sets. In Tenth IEEE
International Conference on Research Challenges in Information Science,
RCIS 2016, Grenoble, France, June 1-3, 2016, pages 1–12. IEEE.

[150] Wautelet, Y. and Kolp, M. (2013). Mapping i* within UML for Business
Modeling. In Doerr, J. and Opdahl, A. L., editors, Requirements Engineering:
Foundation for Software Quality - 19th International Working Conference,
REFSQ 2013, Essen, Germany, April 8-11, 2013. Proceedings, volume 7830
of Lecture Notes in Computer Science, pages 237–252. Springer.

[151] Wautelet, Y. and Kolp, M. (2016). Business and model-driven development
of BDI multi-agent systems. Neurocomputing, 182:304–321.

[152] Wautelet, Y., Kolp, M., and Poelmans, S. (2011). Requirements-Driven
Iterative Project Planning. In Escalona, M. J., Cordeiro, J., and Shishkov,
B., editors, Software and Data Technologies - 6th International Conference,
ICSOFT 2011, Seville, Spain, July 18-21, 2011. Revised Selected Papers,
volume 303 of Communications in Computer and Information Science, pages
121–135. Springer.

[153] Wautelet, Y., Schinckus, C., and Kolp, M. (2008). A Modern Epistemo-
logical Reading of Agent Orientation. IJIIT, 4(3):46–57.

[154] Wiegers, K. (2005). More about software requirements: thorny issues and
practical advice. Microsoft Press.

[155] Wiegers, K. and Beatty, J. (2013). Software Requirements. Microsoft, 3rd
edition.

[156] Williams, L. (2007). A Survey of Agile Development Methodologies.
[online] http://www.smaele.nl/documents/Williams-AgileMethods-2007.pdf.

[157] Yourdon, E. et al. (1989). Modern Structured Analysis, volume 191.
Yourdon Press Englewood Cliffs, NJ.

[158] Yu, E. S. K., Amyot, D., Mussbacher, G., Franch, X., and Castro, J.
(2013). Practical applications of i∗ in industry: The state of the art. In
21st IEEE International Requirements Engineering Conference, RE 2013,
Rio de Janeiro-RJ, Brazil, July 15-19, 2013, pages 366–367. IEEE Computer
Society.

[159] Yu, E. S. K., Giorgini, P., Maiden, N., and Mylopoulos, J. (2011). Social
Modeling for Requirements Engineering. The MIT Press.

[160] Yu, E. S. K. and Mylopoulos, J. (1994). Understanding “Why”; in
Software Process Modelling, Analysis, and Design. In Proceedings of the 16th
International Conference on Software Engineering, ICSE ’94, pages 159–168,
Los Alamitos, CA, USA. IEEE Computer Society Press.

[161] Zave, P. (1997). Classification of Research Efforts in Requirements engi-
neering. ACM Comput. Surv., 29(4):315–321.

169

http://www.smaele.nl/documents/Williams-AgileMethods-2007.pdf

Appendix A

List of Publications

International Journals

1. “Designing a MOOC as an Agent-Platform Aggregating Heterogeneous
Virtual Learning Environments.” Behaviour & Information Technology,
pp. 1-18. 2016. With Yves Wautelet, Manuel Kolp, Loris Penserini, and
Stephan Poelmans. (IF: 1.211)

Referred Conference Publications (Full Papers)

1. “Building a Rationale Diagram for Evaluating User Story Sets.” In IEEE
Tenth International Conference on Research Challenges in Information
Science (RCIS), pp 1-12. 2016. With Yves Wautelet, Manuel Kolp, Isabelle
Mirbel, and Poelmans Stephan. (AR: 28.86%)

2. “Unifying and extending user story models.” In Proceedings of the 26th
International Conference on Advanced Information Systems Engineering
(CAiSE), pp. 211-225. Springer International Publishing, 2014. With
Yves Wautelet, Manuel Kolp, and Isabelle Mirbel. (AR: 18.10%)

3. “A Usage-Based Unified Resource Model.” In 24th International Confer-
ence on Software Engineering and Knowledge Engineering (SEKE), pp.
299-304. 2012. With Yves Wautelet, and Manuel Kolp. (AR: 27.00%)

4. “Stress Level on Global Software Projects using Waterfall and Scrum:
A Preliminary Comparison.” In 1st Asian Conference on Information
Systems (ACIS). 2012. Distinguished Paper Award. With Christelle
Scharff, and Kulkarni Vidya. (AR: Not provided). Distinguished
paper award.

Referred Conference Publications (Short Papers)

1. “Towards an Agent-driven Software Architecture Aligned with User Sto-
ries.” In Proceedings of the 8th International Conference on Agents and
Artificial Intelligence (ICAART), vol. 2, pp. 337-345. 2016. With Yves
Wautelet, Manuel Kolp, and Christelle Scharff. (AR: 45.00%)

171

List of Publications

Referred Workshop Papers

1. “Bridging User Story Sets with the Use Case Model.” In 3rd International
Workshop on Conceptual Modeling in Requirements and Business Analysis
(MReBA). 2016. With Yves Wautelet, Diana Hintea, Manuel Kolp, and
Poelmans Stephan. (AR: 33.33%)

2. “On the difficulties for students to adhere to scrum on global software
development projects: preliminary results.” In Collaborative Teaching of
Globally Distributed Software Development Workshop (CTGDSD), 2012,
pp. 25-29. IEEE, 2012. With Christelle Scharff, and Kulkarni Vidya.
(AR: Not provided)

Posters

1. “Perspectives on User Story Based Visual Transformations.” Will be
appeared in 23th International working conference on Requirements En-
gineering: Foundation for Software Quality (REFSQ). 2017. With Yves
Wautelet, and Manuel Kolp. (AR: Not provided)

2. “An ontological basis for resource representation.” In 27th Annual ACM
Symposium on Applied Computing (SAC), pp. 765-766. ACM, 2012.
With Yves Wautelet, and Manuel Kolp. (AR: Not provided)

172

Appendix B

User Story Templates Dataset

B.1 Introduction

This document presents the results of searching for user story templates in
formal and informal sources. The formal source refers to books, journal papers,
conference papers and websites of key person involved in agile methods. We
used scientific search engines such as ScienceDirect, Springer, IEEE Xplore
and ACM Digital Library for doing search. We used the simple search option
for every searching engine. In addition, we also used the Google Scholar to
search for the formal sources. The informal source, on the other hand, refers to
websites and blogs of agile practitioners; however, we do not consider forums of
discussion.

For each source, we took 100 links or papers. We scrutinized each paper and
link for user story template. We only considered the US templates that contain
WHO, WHAT and WHY dimensions; other form of US templates were not
taken. Table B.1 presents the keywords used for searching user story template
for both sources. Our search were conducted by mid of 2013. Later search can
produce different results.

Table B.1 Keywords for searching user story templates.

KW1: ‘User Story Template’
KW2: ‘User Story’ and ‘XP’
KW3: ‘User Story’ and ‘Extreme programming’
KW4: ‘User Story’ and ‘Agile’
KW5: ‘Agile Requirement’ and ‘User Story’

B.2 User Story Templates Set

The Tables B.2 and B.3 provides the final result of the US template found
respectively in formal and informal source.

173

User Story Templates Dataset

Table B.2 User story templates found in formal source.

N User Story Templates
UST1 I as a <role> I want <function> so that <business value>

e.g. As a creator, I want to upload a video so that any users can
view it.
From Cohn [36].

UST2 As a <type of user> I want <capability> so that <business value>
e.g. As a book buyer, I want to search for a book by ISBN so that
I can find the right book quickly.
From Cohn [37]

UST3 As a <type of user>, I want <some goal> so that <some reason>
e.g. As a moderator, I want to create a new game by entering
a name and an optional description so that I can start inviting
estimators.
From Cohn [39]

UST4 As a <user role>, I want <goal> [so that <reason>].
e.g. As a player, I want a player mute button so that I stop being
distracted by some of the other players online.
From [76].

UST5 As a <role>, I can <activity> so that <business value>.
e.g. As a Consumer, I want to be able to see my daily energy
usage so that I can lower my energy costs and usage.
From Leffingwell [83].

UST6 As a <type of user>, I want <some particular feature> so that
<some benefit is received>.
e.g. As a bank customer, I want to view my current account
balance so that I know my recent deposit went through.
Patton, J. (2005) It’s all in how you slice, better software,
www.stickyminds.com.

UST7 As a <type of user> I want to <perform some task> so that I can
<achieve some goal>.
e.g. As a harried shopper I want to locate a CD in the store so
that I can purchase it quickly, leave, and continue with my day.
Patton, J. (2007). From User Story to User Interface, Tutorial
Handouts for Agile 2007. www.agileproductdesign.com.

UST8 As a <role> I need <feature> So that <value>
e.g. As an employee I need to read the company news so that I
am up to date on what is happening in my company.
Tom J. Bang. An agile approach to requirement specification. In
Giulio Concas, Ernesto Damiani, Marco Scotto, and Giancarlo
Succi, editors, Agile Processes in Software Engineering and Ex-
treme Programming, volume 4536 of Lecture Notes in Computer
Science, pages 193–197. Springer Berlin Heidelberg, 2007.

UST9 As <role> I would like to <action> so that <benefit>.

174

B.2 User Story Templates Set

e.g. As a Job seeker I would like to register so that I can make
my data available to headhunters and use the system capabilities
reserved for registered job seekers.
Miranda, E., Bourque, P., and Abran A. (2009). Sizing user stories
using paired comparisons. Inf. Softw. Technol., 51(9):1327–1337.

UST10 As a <role>, I want <behaviour> so that <benefit>.
e.g. No example.
Sharp, H., Robinson, H., and Petre, M. (2009). The role of physi-
cal artefacts in agile software development: Two complementary
perspectives. Interacting with Computers, 21(12):108 – 116.

UST11 As a <role>, I can <action>, so that <goal>.
e.g. No example
Cohn, M., Sim, S., and Lee P. C. (2009). What counts as software
process? negotiating the boundary of software work through arti-
facts and conversation. Computer Supported Cooperative Work
(CSCW), 18:401–443.

UST12 As a <role> I want to <action> so that <result>.
e.g. As an online customer I want to enter a product name so that
I can view details of that product.
OhEocha, C. and Conboy, K. (2010). The role of the user story
agile practice in innovation. In Pekka Abrahamsson and Nilay
Oza, editors, Lean Enterprise Software and Systems, volume 65
of Lecture Notes in Business Information Processing, pages 20–30.
Springer Berlin Heidelberg.

UST13 As a <user type>, I want to <feature or functionality>, so that
<value or expected benefit>.
e.g. As a library user, I want to search for books by author, with
speed and ease of use, so that I can find all books of the same
author.
COSMIC (2011). Guideline for the use of COSMIC FSM to
manage Agile projects. VERSION 1.0. www.cosmicon.com.

UST14 As a <type of user>, I want <some action> so that <business
benefit>.
e.g. As a Customer I want to be able to add products to my basket
So that I can continue shopping.
Blankenship, J., Bussa, M., and Millett, S. (2011). extreme pro-
gramming. In Pro Agile .NET Development with Scrum, pages
29–51.

UST15 As a <type of user> I want <capability or feature> so that <busi-
ness value or benefit>.
e.g. As a faculty, I want to select the names of the students from
the database so that I can make them as a batch of some particular
class which I am going to handle.
Kavitha C.R and Sunitha Mary Thomas (2011). Requirement
gathering for small projects using agile methods. IJCA Special Issue
on Computational Science - New Dimensions and Perspectives,
(3):122–128. Published by Foundation of Computer Science.

175

User Story Templates Dataset

UST16 As a <role> I want <something> so that <benefit>.
e.g. As a student I want to purchase a parking pass so that can
drive to school.
Vinicius Pereira and AntonioFrancisco Prado (2011). Introducing
a new agile development for web applications using a groupware
as example. In Jr. Hruschka, EstevamRafael, Junzo Watada, and
Maria Carmo Nicoletti, editors, Integrated Computing Technology,
volume 165 of Communications in Computer and Information
Science, pages 144–160. Springer Berlin Heidelberg.

UST17 As a <role> I want <something> so that <benefit>.
e.g. As a player, I would like to change my class at any time during
an online game.
Victor Schetinger, Cesar Souza, Lisandra Manzoni Fontoura, and
Cesar Tadeu Pozzer (2011). User stories as actives for game
development, proceedings of sbgames.

UST18 As a <role>, I want <some goal> so that <some reason>.
e.g. As a string manipulation library user, I want to have a fancy
case method in order to gain fancy cased strings.
Mathias Landhausser and Adrian Genaid, (2012). Connecting
user stories and code for test development. In Recommendation
Systems for Software Engineering (RSSE), Third International
Workshop on, pages 33 –37.

UST19 As a <role>, I want to <capability> so that <goal>.
e.g. As a bank customer, I want to be able to view all relevant
information about my account balance so that I can make impulse
purchases using my bank card.
Neil Maiden, (2012). Exactly how are requirements written? Soft-
ware, IEEE, 29(1):26 –27.

UST20 As a <user type>, I want to <goal> So That <reason>.
e.g. As a Purchase head I want packaging authority to process
packaging items extremely efficiently, accurately, cost effectively
and satisfactorily within a week as per the strict adherence to
prescribed suppliers list, purchase rules and quality assessment
rules and provide packaging report.
Vibha Gaur and Anuja Soni, (2012). A novel approach to explore
inter agent dependencies from user requirements. Procedia Tech-
nology, 1(0):412 – 419. First World Conference on Innovation and
Computer Sciences.

Table B.3 User story templates found in informal source.

N User Story Templates
UST21 As a <person in a role> I want to <perform some activity> so

that <some goal is achieved> .
e.g. No example.

176

B.2 User Story Templates Set

Yunyun Zhu. Requirements Engineering in an Agile Environment.
Master’s Thesis, Uppsala University, June 2009.

UST22 As a <role> the user wants to <function> so that <rationale>.
e.g. No example.
Yunyun Zhu. Requirements Engineering in an Agile Environ-
ment.Master’s Thesis, Uppsala University, June 2009.

UST23 As a <type of user> I want <capability> so that <business value>.
e.g. No example.
Anna Georgsson. Introducing Story Points and User Stories to
Performe Estimations in a Software Development Organisation. A
case study at Swedbank IT. Master’s Thesis,UME UNIVERSITY,
January 2011.

UST24 As a <type of user> I want to <do something> so that <I get
some benefit>.
e.g. No example.
Autho’s blog: http://jpattonassociates.com/downloads/quickrefs/
patton_story_essentials_quickref.pdf

UST25 As a <type of user> I want to <perform some action> so that I
can <reach some goal>.
e.g. No example.
Autho’s blog: http://jpattonassociates.com/downloads/quickrefs/
patton_agile_11x17.pdf

UST26 As a <role> I want <something> so that <benefit>.
e.g. As a student I want to purchase a parking pass so that I can
drive to school.
Autho’s blog: http://www.agilemodeling.com/artifacts/userStory.htm

UST27 As a X I want Y so that Z.
e.g. As a Payroll Administrator I want the system to compute
and track Social Security tax deductions So that we can reduce
the paperwork and tracking, and avoid accidentally deducting too
much.
http://c2.com/cgi/wiki?UserStoryTemplate

UST28 As a . . . I want . . . so that . . .
No example.
http://ronjeffries.com/xprog/blog/how-should-user-stories-be-
written/

UST29 As a <system role>, I can <do something> so that <rea-
son/value>.
No example.
https://intranet.5amsolutions.com/display/process/User+Story

UST30 As a(n) <actor> I would like to <description> so that <outcome>.
No example.
http://stlouis.iiba.org/index.php/resources/template

UST31 As a <role/persona> I want <outcome> so that <value>.
e.g. As a Regular User I want a Print Function So that I can keep
a hard copy of my data.

177

User Story Templates Dataset

http://www.sprint0.com/ft3-peak-performance-articles/30-1-
introduction-to-user-stories

UST32 As a <User> I want to <do something> to <achieve business
goal>.
e.g. As an Account Holder I want to withdraw cash from an ATM
So that I can get money when the bank is closed.
http://agile.dzone.com/news/bdd-holy-grail-user-story

UST33 As a <user type> want <an interaction+outcome> so that <I get
some form of value>.
No example.
http://www.betterprojects.net/2012/02/what-is-user-story.html

UST34 As a <user> I can <do something> to <achieve some benefit>.
No example.
http://www.bridging-the-gap.com/moving-from-an-epic-to-a-
user-story-in-an-agile-product-backlog/

UST35 As a <role>, I want to <do something> so that <reason/benefit>.
No example.
http://www.industriallogic.com/blog/as-a-developer-is-not-a-
user-story/

UST36 As a <role> I want <something> so that <benefit>.
e.g. As a student I want to purchase a parking pass so that I can
drive to school.
http://www.agilemodeling.com/artifacts/userStory.htm

UST37 As a <role>, I want to <do something> <with some frequency>
so that I can/will <achieve some goal>.
e.g. As a user I want to download music to my media player daily
so that I can listen to my favorite song when I chose.
https://www.ibm.com/developerworks/mydeveloperworks/blogs/
c914709e-8097-4537-92ef-8982fc416138/entry/agile_in_practices_
user_stories_explained2?lang=en

UST38 As a <Type of User> I want <Something> So that <I get some
value>.
No example.
http://submit2011.agilealliance.org/node/8967

UST39 As a <user> I can <do something> so that <user value received>.
No example.
://www.slideshare.net/JEMILOD/scaling-agile-requirements-
from-user-stories-to-agile-portfolio-management-10111787

UST40 As a <user type>, I want to <function> so that <benefit>
e.g. As a delivery team member, I want to know which tasks I
own so that I can decide what to work on now.
http://www.rallydev.com/help/writing-great-user-story

UST41 As a <user>, I want <function>, so that <value>.
e.g. As a Creator, I want to upload a video so that any users can
view it.

178

B.2 User Story Templates Set

http://www.subcide.com/articles/how-to-write-meaningful-user-
stories/

UST42 As a <user> I want <function> so that<value>.
No example.
http://www.agileforall.com/2009/05/14/new-to-agile-invest-in-
good-user-stories/

UST43 As a <customer role> I want <functionality> because <customer
value explanation>.
In order to <value to achieve> as a <customer role> I want
<some functionality>.
No example.
http://softwaredevelopmenttoday.blogspot.be/2008/06/for-
better-format-for-user-storiesuser.html

UST44 As a <user role>, I want to <function> so that <benefit>, unless
<exception>.
e.g. As a student, I want to register for a class. . . ”; as opposed to
“As an AHCI driver, I want to read a sequential stream of data. . .
http://agilerepublic.com/?p=29

UST45 As a <User or Role> I want <Business Functionality> so that
<Business Justification>
As a e.g. Account Holder I want Mobile Payments so that I can
pay by phone.
http://www.slideshare.net/zenpdm/introduction-to-user-stories-
for-agile-product-development

UST46 As a <user type>, I want to <function> so that I can <Business
value>.
No example.
http://www.slideshare.net/petersaddington/agile-and-user-story-
workshop-peter-saddington

UST47 As a <Type of User>, <Function to Perform> so that <Business
Value>.
e.g. As a sales person, I want to add a new contact so that I can
follow up later with prospects.
http://www.extremeplanner.com/resources/Agile-
Requirements.html

UST48 As a <role> I want <feature> so that <benefit>.
e.g. As an Account Holder I want to withdraw cash from an ATM
So that I can get money when the bank is closed.
http://dannorth.net/whats-in-a-story/

UST49 s a <role>, I can <feature> so that <reason>.
e.g. As a account owner, I can check my balance online so that I
can keep a daily balance 24 hours a day.
http://codesqueeze.com/the-easy-way-to-writing-good-user-
stories/

UST50 As a <role> I want <feature> so that <benefit>.
No example.

179

User Story Templates Dataset

http://mike2.openmethodology.org/wiki/User_Stories_Deliverable_
Template

UST51 As a <role> I want <feature> so that <business objective>.
e.g. As a bank customer I want to withdraw money from an
ATM So that I’m not constrained by opening hours or lines at the
teller’s.
http://guide.agilealliance.org/guide/stories.html

UST52 As a <role>, I want <feature> so that <reason>.
e.g. As a user, I want to upload photos so that I can share photos
with others.
http://searchsoftwarequality.techtarget.com/definition/user-
story

UST53 As a <Role Name> I want <a feature> so that <some value
delivered>
No example.
http://www.theagileleader.com/2012/01/the-3-cs-of-user-stories/

UST54 As a <type of user>, I want <some feature>, so that <some
goal>.
No example.
http://blogs.adobe.com/agile/2012/06/20/does-every-item-in-
the-product-backlog-require-a-user-story/

UST55 As a <role>, I want <goal/desire> so that <benefit>
In order to <receive benefit> as a <role>, I want <goal/desire>
e.g. As a user, I want to search for my customers by their first
and last names.
http://en.wikipedia.org/wiki/User_story

UST56 As a <type of user>, I want <some goal> so that <some reason>.
No example.
http://onproductmanagement.net/2012/08/17/user-stories-that-
developers-can-actually-work-with-2/

UST57 As a <end user role>, I want <the desire> so that <the rationale>
e.g. As a PC user, I want a calculator with basic functionality
on my PC so that I can conveniently perform basic mathematics
operations.
http://scrummethodology.com/scrum-user-stories/

UST58 As a <insert role here> I want <goal or desire> so that <benefit>
No example.
http://pages.managementconcepts.com/UserStoryTemplate/

UST59 As a <user role> I want to <goal> so I can <reason>
e.g. As a registered user I want to log in so I can access subscriber-
only content.
https://sites.google.com/site/alensit/project-
management/methodologies/scrum/user-stories/user-story-
template

UST60 As a <type of user>, I want <some goal> so that <some reason>
e.g. As a user, I can pick which order show up on my home page
so I can track their progress.

180

B.2 User Story Templates Set

http://blogs.msdn.com/b/aaronbjork/archive/2010/04/19/msf-
agile-5-0-tip-2-simple-user-story-titles.aspx?Redirected=true

UST61 As a <user role> I want <goal> so that <business value>
No example.
http://www.methodsandtools.com/archive/archive.php?id=113

UST62 As a <User Role> I can <goal> so That <Business Value>.
No example.
http://www.agile-ux.com/tag/user-stories/

UST63 As a <type of user>, I want <some goal> so that <some reason>.
No example.
http://www.agilehelpline.com/2011/03/user-stories-backlog-
management.html

UST64 As a <user>, I want <goal> so that <reason>
No example.
http://blogs.globallogic.com/simplifying-agile-the-art-of-writing-
user-stories

UST65 As a <user role> I want to <goal> so I can <reason>
e.g. As a provider search user, I need the ability to search for
providers by speciality so that I can more efficiently refer patients
to specialists.
http://www.scrumalliance.org/articles/169-new-to-user-stories

UST66 As a <user role> I want to <goal> so I can <reason>
As an ATM user I want to withdraw funds from my bank account
so I can increase my cash on hand.
http://newjersey.iiba.org/index.php/linksadownloads

UST67 As a <type of user> I want to <goal> so that <reason>.
e.g. As a cyclist I want to switch gears so that I can go faster.
http://www.slideshare.net/bartvermijlen/user-stories-develop-
better-products-faster-and-cheaper

UST68 As a <role>, I want <goal/desire> so that <benefit>
No example.
http://sprintometer.com/node/112

UST69 As a <user role>, I want to <goal>, so I can <reason>
e.g. As a job seeker, I want to search for a job, so I can advance
my career.
http://www.allaboutagile.com/user-stories/

UST70 As a <user role> I want to <goal> so that <benefit>
e.g. As an administrator I want to have centralised configuration
so I can remotely change settings across all units.
http://techportal.inviqa.com/2011/07/19/how-to-create-user-
stories/

UST71 As a <role>, I want <goal/desire>
e.g. As a user, I want to search for my customers by their first
and last names.
http://www.csce.uark.edu/ mqhuang/courses/3513/f2012/lectures/
SE_Lecture_4.pdf

UST72 As a <Role> I want to <goal> so I can <reason>

181

User Story Templates Dataset

e.g. As a registered user I want to log in so I can access subscriber-
only content.
http://www.slideshare.net/rsrivastava91/introducing-agile-user-
stories

UST73 As a <Role> I want to <goal> so I can <reason>
e.g. As a registered user I want to log in so I can access subscriber-
only content.
http://www.slideshare.net/rsrivastava91/introducing-agile-user-
stories

UST74 As a <role> I want to <action> so that <benefits>
No example.
http://scrumpad.wpengine.com/features/user-stories

UST75 An an <actor> I want <action> so that <achievement>.
e.g. As a Flickr member I want to be able to assign different
privacy levels to my photos so I can control who I share which
photos with.
http://www.boost.co.nz/blog/agile/user-stories/

UST76 As an <role> I want to <action> so that <achievement>.
e.g. As a customer I want to see the most popular blu-ray discs
sold so that I can order one or more of them.
http://breathingtech.com/2009/writing-user-stories-for-agile-
scrum-projects/

UST77 As a <user/actor/role> I want to <task/activity> so that <desired
outcome>.
No example.
http://sw-analyst.com/general/user-story-use-case-template/

UST78 As a <user type> I want to <do some action> so that <desired
result>
e.g. As a wiki user I want a tools menu on the edit screen so that
I can easily apply font formatting.
https://en.wikipedia.org/wiki/Scrum_(software_development)

UST79 As an <actor>, I want <action> so that <achievement/benefit>
No example.
http://www.csce.uark.edu/ mqhuang/courses/3513/f2012/lectures/
SE_Lecture_4.pdf

UST80 As a <type of user> I want to <perform some task> so that I can
<achieve some goal>
e.g. As a harried shopper I want to locate a CD in the store so
that I can purchase it quickly, leave, and continue with my day.
http://www.agileproductdesign.com/downloads/patton_user_story_
to_ui_handouts.pdf

UST81 As an <actor> I want <action> so that <achievement>
No example.
http://www.boostagile.com/blog/user-stories-part-2-acceptance-
criteria

UST82 As an <actor> I want <action> so that <achievement>

182

B.3 Summary of User Story Templates’ Elements

e.g. As a Flickr member, I want to set different privacy levels on
my photos, so I can control who sees which of my photos with.
http://www.boost.co.nz/blog/agile/use-cases-or-user-stories/

UST83 As a <User or role> I want <Business Functionality> so that
<Business Justification>
As a Account Holder, I want to be able to withdraw funds from
my checking account, So that I can buy some bling.
http://minerva-group.com/downloads/Scrum-UserStories.pdf

UST84 As a <user> I want <business functionality> so that <business
value>
No example.
http://scrumcoaching.wordpress.com/2010/10/09/breaking-
down-user-stories/

UST85 As a <product user> I want <what> so that <users benefit>
e.g. As a salesman I want car to be equipped with GPS so that I
can easily set my direction.
http://looksok.wordpress.com/2012/03/31/scrum-user-stories/

B.3 Summary of User Story Templates’ Elements

In general, we found that user story templates are structured as following form:
As a [WHO], I want [WHAT] so that [WHY].

Table B.4 summaries number of occurrence of terminologies found in each
dimension of user story template in the form of ‘Formal + Informal’.

Table B.4 Syntax used in user story template

WHO WHAT WHY
Role (13+31) Goal (4+18) Business Value (7+18)
Type of User (8+15) Something (3+10) Benefit (7+18)
User (0+10) Action (4+7) Reason (4+14)
Actor (0+6) Feature (4+7) Goal (3+6)
System Role (0+1) Function (1+7) Achievement (0+4)
Persona (0+1) Desire (0+6) Rationale (0+2)
“x” (0+1) Functionality(1+4) Desire (0+2)

Capability (3+1) Outcome (0+1)
Task (1+2) Result (0+1)
Activity (1+2) “z” (0+1)
Outcome (0+2)
Behaviour (0+1)
Description (0+1)
What (0+1)
“y” (0+1)

Note: Business Value (5 + 9) = Value (2 + 9) ‘Something’ is not counted –
it is too general.

183

Appendix C

Descriptive_Concept’s Definitions

This document provides different definitions of selected Descriptive_Concept
we found in i*, KAOS, BPMN, IREB Glossary, IEEE and UML. Table C.1
exposes the selected Descriptive_Concept after the syntax selection process. The
definition in bold is the selected definition ones for each Descriptive_Concept.

Table C.1 Selected syntaxes of Descriptive_Concept

WHO Dimension WHAT Dimension WHY Dimension
Role (13 + 31) Goal (4 + 18) Goal (3 + 6)
User (0 + 10) Feature (4 + 7)
Actor (0 + 6) Functionality (1 + 4)

Capability (3 + 1)
Task (1 + 2)
Activity (1 + 2)

Table C.2 Definitions of Role.

Source Definition
i∗ [159] “A role is an abstract characterization of the

behavior of a social actor within some special-
ized context or domain of endeavor.”

KAOS [139] “All stakeholder roles, including the customer and
user roles, can be reduced to one single role.”

IREB Glossary [56] N/A
UML [20] “The purpose or capacity wherein one class or object

participates in a relationship with another; the role of
an object denotes the selection of a set of behaviours
that are well-defined at a single point in time; a role
is the face an object presents to the world at a given
moment.”

BPMN N/A
CommonKADS N/A

185

Descriptive_Concept’s Definitions

Table C.3 Definitions of User.

Source Definition
i∗ [159] N/A
KAOS [139] N/A
IREB Glossary
[56]

“A person who uses the functionality pro-
vided by a system. Also called end user.”

UML [74] “The term user refers not only to human users but
to other systems. In this sense, the term user repre-
sents someone or something (such as another system
outside the proposed system) that interacts with the
system being developed.”

BPMN N/A
CommonKADS N/A

Table C.4 Definitions of Actor.

Source Definition
i∗ [159] “An actor is an active entity that carries out

actions to achieve goals by exercising its know-
how.”

KAOS [139] N/A
IREB Glossary [56] N/A
UML [74] N/A
BPMN N/A
CommonKADS N/A

Table C.5 Definitions of Goal.

Source Definition
i∗ [159] “A hard-goal is a condition or state of affairs

in the world that the stakeholders would like
to achieve. In general, how the goal is to be
achieved is not specified, allowing alternatives
to be considered.”
“A soft-goal is a condition or state of affairs in
the world that the actor would like to achieve.
But unlike a hard-goal, there are no clear-cut
criteria for whether the condition is achieved,
and it is up to the developer to judge whether
a particular state of affairs in fact achieves
sufficiently the stated soft-goal.”

186

KAOS [139] “A goal is a prescriptive statement of intent that the
system should satisfy through the cooperation of its
agents.”
“Behavioural goals describe intended system be-
haviours declaratively. A behavioural goal can be
established in a clear-cut sense.”
“Soft-goals prescribe preferences among alternative
system behaviours. A Soft-goal cannot be established
in a clear-cut sense.”

IREB Glossary [56] “A desired state of affairs (that a stakeholder wants
to achieve).”
“Goals describe intentions of stakeholders. They may
conflict with one another.”

UML [74] N/A
BPMN N/A
CommonKADS “Goal and Value describe the goal of the task and

the value that is execution adds to the process this
task is a part of.”

Table C.6 Definitions of Feature

Source Definition
i∗ [159] N/A
KAOS [139] “Units of functionality are sometime called feature in

some problem worlds [...]”
“The term feature is sometimes used to refer to a
change unit.”

IREB Glossary
[56]

“A delimitable characteristic of a system that
provides value for stakeholders.”
“Normally comprises several requirements and is used
for communicating with stakeholders on a higher level
of abstraction and for expressing variable or optional
characteristics.”

UML [123] “A property, such as operation or attribute, which is
encapsulated as part of a list within a classifier, such
as an interface, a class, or a datatype.”

BPMN
CommonKADS
IEEE Std 830-1998,
[68]

“A feature is an externally desired service by the sys-
tem that may require a sequence of inputs to effect
the desired result. For example, in a telephone sys-
tem, features include local call, call forwarding, and
conference call. Each feature is generally described
in a sequence of stimulus-response pairs.”

187

Descriptive_Concept’s Definitions

Table C.7 Definitions of Functionality.

Source Definition
i∗ [159] N/A
KAOS [139] N/A
IREB Glossary
[56]

“The capabilities of a system as stated by its
functional requirements.”

UML N/A
BPMN
CommonKADS
ISO 9126, [70] (take
it from [115] p.513)

“Functionality. The degree to which the software
satisfies stated needs as indicated by the following
subattributes: suitability, accuracy, interoperability,
compliance, and security.”

Table C.8 Definitions of Capability.

Source Definition
i∗ [159] “A capability represents the ability of an ac-

tor to define, choose, and execute a plan for
the fulfilment of a goal, given certain world
conditions and in the presence of a specific
event.”

KAOS [139] “The capabilities of an agent are defined statically
in terms of monitoring links and control links to
objects in the object model. Such links capture the
agent’s ability to monitor or control object attributes
or associations.”

IREB Glossary [56] N/A
UML N/A
BPMN
N/A
CommonKADS N/A

Table C.9 Definitions of Task.

Source Definition
i∗ [159] “Specifies a particular way of attaining a

goal.”
KAOS [139] “Environment operations are performed by human

agents, devices or existing software agents in the
environment of the software-to-be. They are some-
times called tasks when they are performed by human
agents.”

IREB Glossary [56] N/A

188

UML [74] N/A
BPMN [103] “An atomic activity that is included within a Process.

A Task is used when the work in the Process is not
broken down to a finer level of Process Model detail.
Generally, an end-user, an application, or both will
perform the Task. A Task object shares the same
shape as the Sub-Process, which is a rectangle that
has rounded corners.”

CommonKADS
[125]

“A task is a piece of work that need to be done by
an agent.”

CommonKADS [50] “A task statement refers to a set of coherent activi-
ties that are performed to achieve a goal in a given
domain. Here ‘activity’ refers to actual actions that
are performed in the world, whereas a task statement
adds a teleological dimension to these actions.”

CommonKADS [98] “A task is an activity that should be performed in
order to reach a goal.”

Table C.10 Definitions of Activity.

Source Definition
i∗ [159] N/A
KAOS [139] N/A
IREB Glossary [56] N/A
UML [78] “An activity is a unit of work that an indi-

vidual in that role may be asked to perform,
and that produces a meaningful result in the
context of the project.”

UML [123] “Ongoing nonatomic execution within a state ma-
chine. Constrast: action.”

UML [20] “An operation that takes some time to complete.”
UML [58] “An activity is a computation that executes for the

duration of state.”
UML [96] “A use case specifies an interaction between the sys-

tem and one or more actors together with the activi-
ties performed by the system.... We name an activity
so it does not include the name of the actor. Hence,
we prefer Order Books over Online Customer Orders
Books.”

BPMN N/A
CommonKADS N/A

189

Appendix D

Feasibility Study User Stories

Note: It is important to note that the final graphical representation for Role in
the rationale tree is different from the ones we used in the feasibility study. In
the experimentation version we used the Swimlane while the final version we
used the Role Boundary of the i* framework. To the best of our knowledge,
we argue that there is no impact on the US model.

191

Feasibility Study User Stories

Part 1: Theory – Page 1

Feasibility study user stories – Part 1: Theory and example

Introduction and assignment

User stories (US) are the primary used requirements artefacts in agile software development

methodologies. A US can be defined as “a short description of functionality that delivers some business

value to the users of a system to be developed”. Furthermore, US are always written in the daily

business language of the users (i.e. natural language).

A US mostly contains three dimensions:

1. The WHO-dimension: the user/actor/stakeholder that wants a piece of functionality.

2. The WHAT-dimension: the functionality that has to be developed.

3. The WHY-dimension: the reason why the functionality has to be developed.

A US is commonly structured as follows:

 As [WHO], I want [WHAT] so that [WHY].

 As [WHO], I want [WHAT]

" Example: As a student, I want to upload a file within Toledo (= an e-learning environment for

the students of the KU Leuven) so that I can hand in an assignment.

9 We here have following elements for the 3 dimensions:

WHO-dimension: student

WHAT-dimension: upload a file within the Toledo-environment

WHY-dimension: hand in an assignment

The different elements/dimensions of a set of user stories are interrelated and can be represented in

a visual model (cfr. use case diagram in UML, a BPMN-diagram). You are asked to visually represent

the different user stories and their relationships in Case 1 and Case 2. More specifically, you are asked

to produce two models based on the information and example that are provided on the next pages.

Before starting, please answer following questions:

1. What is your educational background (obtained diplomas; subject and degree)?

2. What is your primary occupation (student, assistant, teacher, researcher, business analyst…)?

3. Do you have any experience with modeling? What modeling languages have you already worked

with?

4. Are you familiar with Goal-Oriented Requirements Engineering (GORE) in general (KAOS, i*, …)?

Yes / No

For questions 5 and 6, please circle the applicable answer from following possibilities:

1= Never heard of it

2= I’ve ever seen it during a particular course, but I don’t remember any details

3= I have some knowledge on what this is about

4= I know what this is about but I don’t know all specific details

5= I can consider myself an expert in this topic

5. To what extent are you familiar with the i*-framework?

1 2 3 4 5

6. To what extent are you familiar with user stories as requirements artefacts in agile methods?

1 2 3 4 5

192

Part 1: Theory – Page 2

Modeling information

Modeling constructs

Following constructs can be used for modeling the different elements/dimensions of the different

US:

" A role: represents the behavior of a social actor within some specialized expertise and

authority.

9 Examples: student, IT department, supplier, administrative clerk.

" A task: an operation or a specific way of achieving a goal.

9 Examples: write paper, complete purchase request, complete assignment.

" A capability: represents the ability of a role to define, choose, and execute a plan for the

fulfillment of a goal.

9 Example: upload file (cfr. The example on the next page).

Task versus Capability: Tasks and Capabilities represent both operational elements. A

Capability could be modeled as a Task but it has more properties

than a Task since it is expressed as a direct intention of a role.

A Capability is only used for atomic Tasks, a task that cannot be

further decomposed into subtasks.

See also the example on the next page.

" A hard_goal: the most abstract element since it is a condition or state of affairs that must be

attained. There is no defined way to attain it (in other words: several ways to

satisfy the hard_goal are possible).

9 Examples: hand in assignment, graduate, get goods delivered.

" A soft_goal: a condition or state of affairs in the world that the stakeholders would like to

achieve. Contrary to a hard_goal, the criteria for achieving a soft_goal are not

defined in a clear-cut way.

9 Examples: secured data, a reliable system, a user-friendly system.

These modeling constructs are graphically represented as follows:

REMARK: There is no graphical modeling construct for a role. Roles are represented by means of

swimlanes (as in BPMN, cfr. Example on the next page)

193

Feasibility Study User Stories

Part 1: Theory – Page 3

Links/relationships

As stated on previous page, a set of User Stories (US) is interrelated. There are many possible links that

can be set-up between elements of different US. More precisely, the different elements of the WHAT-

and WHY-dimension of a set of US can be graphically linked to each other using 3 different links: a

means-end link, a decomposition link and a contribution link:

" A Means-End link: indicates a relationship between ‘an end’ and ‘a means’ that is required

for attaining that end. Graphically, the arrowhead points from the means

to the end.

More concretely, this link is used between a goal (at the destination of

the arrow) and a task (at the origin of the arrow) when the task offers a

concrete realization scenario of the goal.

Different tasks related to the same goal would represent alternative paths

to realize the same goal (it can thus be seen as an OR-decomposition).

" A Decomposition link: an element that can be decomposed into different subelements is

linked to its different components by means of a Decomposition link.

Typically, a task can be decomposed in other refining tasks or

capabilities.

" A Contribution link: if an element contributes positively or negatively to the achievement of

another element, those two elements are linked by means of a

Contribution link. For these types of links, a specific direction has to be

specified: positively (+) or negatively (-).

These types of link is used exclusively from a goal/task/capability to

soft_goals.

The different links/relationships are graphically represented as follows.

Means-End link

Decomposition link

Contribution link (+,-)

194

Part 1: Theory – Page 4

An example

In following subsections, an example of what is expected from you is given. This example is structured

in the same way as you should execute the assignment (cfr. the second document: Part 2: Assignment).

Case description:

In order to pass a specific course for which there is no physical exam, students have to complete a

specific assignment. In order to complete this assignment, a paper should be written. Furthermore,

the assignment has to be uploaded on the Toledo-environment. However, before a file can be

uploaded on Toledo, a student has to log in for security purposes.

User stories:

US 1 As a student, I have to complete an assignment, so that I can pass the course.

US 2 As a student, I have to write a paper, so that the assignment can be completed.

US 3 As a student, I have to upload my paper on the Toledo-environment.

US 4
As an IT department, I want students to log into the system so that all data is

secured.

Step 1: Identify all elements from the WHO-dimension (i.e. swimlanes in the model) from the

different US.

Following WHO-dimensions are present within the set of US:

 Student (US 1, US 2, US 3)

 IT department (US 4)

Remark: The model that will be created will thus have 2 swimlanes since two different roles

are present within the set of US.

Step 2: Identify the elements from the WHAT and WHY dimension of every US in the table below

(Remark: not every US contains both dimensions).

 Step 2

Element

US 1
WHAT Complete assignment

WHY Pass the course

US 2
WHAT Write paper

WHY Complete assignment

US 3
WHAT Upload paper

WHY –

US 4
WHAT Log in on Toledo

WHY Secured data

Step 3: For each element, identify the modeling construct that will be used for representing that

element graphically (Task, Capability, Hard_Goal or Soft_Goal).

 Step 2

Element

Step 3

Modeling construct

US 1
WHAT Complete assignment Task

WHY Pass the course Hard_Goal

US 2
WHAT Write paper Task

WHY Complete assignment Task

US 3
WHAT Upload paper Capability

WHY – –

US 4
WHAT Log in on Toledo Capability

WHY Secured data Soft_Goal

195

Feasibility Study User Stories

Part 1: Theory – Page 5

In this example ‘Write paper’ is a Task since this is a concrete step that is required to ‘Pass the course’.

‘Upload the report’ is a Capability since this is an atomic intention (i.e. cannot be further decomposed

into other tasks or capabilities) of a student (i.e. a role) that is implied in the satisfaction of the task

‘Complete assignment’.

Step 4: Graphically represent all elements identified within step 2 on the next page and represent

the link between the WHAT- and WHY-dimension of every US (if both dimensions are

present).

Previous steps delivered following information:

9 Step 1:

2 different roles (Student and IT department)

9 Step 2 and 3:

 Step 2

Element

Step 3

Modeling construct

US 1
WHAT Complete assignment Task

WHY Pass the course Hard_Goal

US 2
WHAT Write paper Task

WHY Complete assignment Task

US 3
WHAT Upload paper Capability

WHY – –

US 4
WHAT Log in on Toledo Capability

WHY Secured data Soft_Goal

This information allows us to represent all elements graphically and link the WHAT- and

WHY-dimension of every US (if both dimensions are present):

Step 5: Identify all other possible links between the different elements (based on the case

description) and represent them in dashed lines on your model above.

The model above is not yet complete. Based on analysis of the case description, two more

links can be added:

9 Before a student can fully complete the task ‘Complete assignment’, two things

should be done next to the task ‘Write paper’:

1. Log in on Toledo

2. Upload report

196

Part 1: Theory – Page 6

Subsequently, two additional links should be added to the model:

After reading the introductory part, do you understand what is expected from you?

197

Feasibility Study User Stories

Part 2: Exercises – Page 1

Feasibility study user stories - Part 2: Exercises

Case 1: Carpooling service
The Flemish ministry of mobility wants to introduce an application for stimulating the use of carpooling. After

registration, drivers should have the possibility to propose a ride to go from location A to B and to specify a

departure location, time of departure and price. Users can book a ride from location A to location B after

they have been logged into the application.

US 1
As a driver, I want to register to the service so that I can propose a ride to go
from A to B.

US 2
As a driver, I want to propose a ride from A to B with the price, location and
time of departure, and number of seats available.

US 3 As a user, I want to book a ride, so that I can get a ride from A to B.

US 4 A a user, I have to login, so that I can book a ride from A to B.

Step 1: Identify all elements from the WHO-dimension (i.e. swimlanes in the model) from the

different US.

Step 2: Identify the elements from the WHAT and WHY dimension of every US in the table below.

The first US is already filled in as an example.

(Remark: not every US contains both dimensions).

 Step 2
Element

Step 3
Modeling construct

US 1

WHAT Register to the service Task

WHY
Propose a ride to go from A

to B
Hard_goal

US 2

WHAT

WHY

US 3

WHAT

WHY

US 4

WHAT

WHY

198

Part 2: Exercise – Page 2

Step 3: For each element, identify the modeling construct that will be used for representing that

element graphically (Task, Capability, Hard_Goal or Soft_Goal).

Step 4: Graphically represent all elements identified within step 2 on the next page and represent

the link between the WHAT- and WHY-dimension of every US (if both dimensions are

present).

Means-End link

Decomposition link

Contribution link (+,-)

Please rate how hard it was for you to execute step 1 to 3:

199

Feasibility Study User Stories

Part 2: Exercise – Page 3

Step 5: Identify all other possible links between the different elements (based on the case

description) and represent them in dashed lines on your model above.

Please rate how hard it was for you to execute step 4:

Please rate how hard it was for you to execute step 5:

200

Part 2: Exercise – Page 4

Case 2: The Book Factory
‘The Book Factory’ is a small Belgian retailer that is specialized in selling books, CD’s and DVD’s. The

management has decided to invest in an online shopping environment for their customers in order to increase

the customer-friendliness of their services. Within this online shopping environment, a user should have the

possibility to place their orders online. Before an order is complete, a client should fill his online cart with

products. Secondly, the client should has to pay the invoice using an online payment. In order to be able to

execute the payment, the system should calculate the invoice amount. Furthermore, the online payments

are processed via the Ogone payment platform in order to increase the safety and security of the payment.

US 1
As an owner, I want my clients to be able to place orders online so that the
customer-friendliness of our services increases.

US 2 As a client, I have to complete an order so that I can place it online.

US 3 As a client, I need to fill my ‘online cart’ with products.

US 4 As a client, I need to pay my invoice, so that I can complete an online order.

US 5
As system component, I need to calculate the total amount of the order, so that
the invoice can be paid.

US 6 As a client, I want to pay my order online, so that my invoice is paid.

US 7
As a system component, I need to process payments on the Ogone-payment
platform so that the payment is secured.

Step 1: Identify all elements from the WHO-dimension (i.e. swimlanes in the model) from the

different US.

Step 2: Identify the elements from the WHAT and WHY dimension of every US in the table below

(Remark: not every US contains both dimensions).

 Step 2 (Element) Step 3 (Modeling construct)

US 1
WHAT Place orders online Hard_Goal

WHY Increased user friendliness Soft_Goal

US 2
WHAT

WHY

US 3
WHAT

WHY

US 4
WHAT

WHY

US 5
WHAT

WHY

US 6
WHAT

WHY

US 7
WHAT

WHY

201

Feasibility Study User Stories

Part 2: Exercise – Page 5

Step 3: For each element, identify the modeling construct that will be used for representing that

element graphically (Task, Capability, Hard_Goal or Soft_Goal).

Step 4: Graphically represent all elements identified within step 2 and represent the link between

the WHAT- and WHY-dimension of every US (if both dimensions are present).

Means-End link

Decomposition link

Contribution link (+,-)

Please rate how hard it was for you to execute step 1 to 3:

202

Part 2: Exercise – Page 6

Step 5: Identify all other possible links between the different elements (based on the case

description) and represent them in dashed lines on your model above.

Please rate how hard it was for you to execute step 4:

Please rate how hard it was for you to execute step 5:

Please indicate one option in following judgement:

Case 1 was easier – of an equal level – more difficult to model, when compared to Case 2.

According to your opinion, did you dispose of all modeling obstructs and links required to

model the different US correctly? If not, what modeling construct(s) and/or link(s) should have

been included in order to model the US correctly?

Some final questions. Circle the appropriate answer:

Was it easy for you to model both cases? 1 2 3 4 5 6 7 8 9 10

Did you receive enough information to
do the assignments?

1 2 3 4 5 6 7 8 9 10

Are the given instructions and
explanations clear and understandable?

1 2 3 4 5 6 7 8 9 10

Do you understand the proposed
approach?

1 2 3 4 5 6 7 8 9 10

Is the difference between a task and a
capability clear to you?

1 2 3 4 5 6 7 8 9 10

Is the difference between a task and a
goal clear to you?

1 2 3 4 5 6 7 8 9 10

Is the difference between a goal and a
capability clear to you?

1 2 3 4 5 6 7 8 9 10

203

	Table of contents
	List of figures
	List of tables
	I Introduction
	1 Introduction
	1.1 Research Context
	1.2 Reading Map and Contributions
	1.3 Limitations

	II Literature Review
	2 Agile Software Development
	2.1 The Emergence of Agile Methods
	2.2 Agile Methods
	2.2.1 The Manifesto for Agile Software Development
	2.2.2 Agile Methods in Practice

	2.3 Overview of the Main Agile Methods
	2.3.1 eXtreme Programming
	2.3.1.1 XP Roles
	2.3.1.2 XP Artifacts
	2.3.1.3 XP Practices
	2.3.1.4 XP Process

	2.3.2 Scrum
	2.3.2.1 Scrum Roles
	2.3.2.2 Scrum Artifacts
	2.3.2.3 Scrum Practices
	2.3.2.4 Scrum Process

	2.4 Conclusion

	3 Requirements Engineering: an Overview
	3.1 Requirements Engineering Basic Notions
	3.1.1 Requirement: Definition
	3.1.2 From Requirement to Requirements Engineering

	3.2 Abstraction Levels for Requirements Representation and Management
	3.2.1 Dimensions in Requirements Engineering
	3.2.2 Modeling Requirements
	3.2.2.1 Business Requirements
	3.2.2.2 User Requirements
	3.2.2.3 System Requirements

	3.3 Requirements Engineering: Dynamic Perspective
	3.3.1 Basic Stages and Areas in Requirements Engineering
	3.3.1.1 Requirements Elicitation
	3.3.1.2 Requirements Analysis
	3.3.1.3 Requirements Specification
	3.3.1.4 Requirements Validation
	3.3.1.5 Requirements Management

	3.3.2 Towards a Requirements Engineering Process

	3.4 Categories of Requirements
	3.4.1 Functional Requirements
	3.4.2 Non-functional Requirements
	3.4.3 Quality Requirements
	3.4.4 Features of High-Quality Requirements

	3.5 Using Natural Language for Requirements
	3.5.1 Natural Language: Pros and Cons
	3.5.2 Use of Structured Natural Language

	3.6 Using a Graphical Model for Representation Requirements
	3.6.1 Overview
	3.6.2 The UML Use-Case Model
	3.6.2.1 The UML Use-Case Model Elements
	3.6.2.2 The UML Use-Case Diagram
	3.6.2.3 Use-Case Specifications

	3.6.3 The i* Framework
	3.6.3.1 The i* Framework Elements
	3.6.3.2 Strategic Dependency Model
	3.6.3.3 Strategic Rationale Model

	3.7 Conclusion

	4 Requirements Engineering in Agile Methods
	4.1 Requirements Engineering Activities in Agile Methods
	4.2 User Stories: the Requirements Artifacts of Agile Methods
	4.2.1 User Story Overview
	4.2.2 Features of High-Quality User Stories
	4.2.2.1 INVEST Model
	4.2.2.2 INSERT Model
	4.2.2.3 Quality User Story Framework

	4.2.3 User Story Templates
	4.2.4 User Story, Epic, and Theme
	4.2.5 User Story versus others User Requirements Artifacts
	4.2.5.1 IEEE-830 documents
	4.2.5.2 Use-Cases
	4.2.5.3 Scenario
	4.2.5.4 Personas
	4.2.5.5 User-Task Models
	4.2.5.6 Comparison between User Story and other User Requirements Artifacts

	4.2.6 Pros and Cons of using User Stories
	4.2.6.1 Benefits of using User Stories
	4.2.6.2 Drawbacks of User Stories

	4.3 Visualizing and Modeling Requirements with User Stories
	4.3.1 User Role Modeling
	4.3.2 The Product Backlog
	4.3.3 User Story Mapping
	4.3.4 Models and User Stories

	4.4 User Story Based Planning in Agile Methods
	4.4.1 Iterative Planning with User Stories
	4.4.2 Selecting User Stories for an Iteration

	4.5 Conclusion

	III Towards More Formality in Agile Methods' Requirements Engineering
	5 Unifying and Extending User Story Models
	5.1 Research Context
	5.2 Related Work
	5.3 Research Method
	5.3.1 Building the Dataset
	5.3.2 Descriptive_Concepts in User Stories
	5.3.3 Building the Candidate Model
	5.3.4 Validation

	5.4 Selected Semantic Associated to the D_C Class Instances
	5.4.1 The WHO Dimension
	5.4.1.1 Syntax Included and Semantic Association
	5.4.1.2 Comparison of Associated Semantic
	5.4.1.3 Semantic Evaluation on Examples

	5.4.2 The WHAT Dimension
	5.4.2.1 Syntax Included and Semantic Association
	5.4.2.2 Comparison of Associated Semantic
	5.4.2.3 Semantic Evaluation on Examples

	5.4.3 The WHY Dimension
	5.4.3.1 Syntax Included and Semantic Association
	5.4.3.2 Comparison of Associated Semantic
	5.4.3.3 Semantic Evaluation on Examples

	5.5 A Unified Model for User Story Templates
	5.6 Validation
	5.7 Threats to Validity
	5.8 Conclusion

	IV Graphically Representing User Story Elements: Identifying Granularity, Interdependencies and Scope of Requirements
	6 Building a Rationale Tree for Evaluating User Story Sets
	6.1 Research Context
	6.2 Related Work
	6.3 Research Method
	6.3.1 Macro-level: Ways to Organize User Stories
	6.3.2 Micro-level: Decomposing a User Story in Descriptive_Concepts

	6.4 Graphical Notation for US Dependency Analysis: Micro-Level
	6.4.1 The WHO Dimension: Graphical Notation
	6.4.2 The WHAT and WHY Dimensions: Graphical Notation
	6.4.3 Linking Descriptive_Concepts of the Unified User Story Model

	6.5 Towards a Rationale Analysis for User Stories Hierarchy and Grouping: From Micro to Macro Level
	6.5.1 A Top Level Hard-goal (End), One Mean
	6.5.1.1 Description
	6.5.1.2 Example

	6.5.2 A Top Level Hard-goal (End), Several Means
	6.5.2.1 Description
	6.5.2.2 Example

	6.5.3 A Top Level Task, a Direct Decomposition
	6.5.3.1 Description
	6.5.3.2 Example

	6.6 Impact on the Agile Software Process
	6.6.1 Impact of Changing Requirements
	6.6.2 Impact Iterative Planning
	6.6.3 Generic Iterative Planning Template

	6.7 A CASE-Tool for Automating the Approach and Round-Tripping Between Views
	6.8 Validity, Threats to Validity, Scalability of the Approach and Future Work
	6.9 Conclusion

	7 On the Interpretation of Granularity and Interdependencies of User Story Elements with the Rationale Tree
	7.1 Research Context
	7.2 Research Method
	7.3 Feasibility Study Design
	7.3.1 Process for Building the Feasibility Study
	7.3.2 Assignment and Measured Variables
	7.3.3 Case Studies
	7.3.3.1 Case 1: Carpooling Service
	7.3.3.2 Case 2: The Book Factory

	7.4 Data Collection
	7.5 Analyzing the Results
	7.5.1 The Knowledge of Participants in Modeling
	7.5.2 The Tagging of User Story Elements
	7.5.3 Analyzing the User Story Model with Rationale Tree
	7.5.3.1 Global Evaluation of the User Story Model
	7.5.3.2 Quoting the Performance in Modeling User Stories

	7.5.4 Analyzing the Experience of Test Subjects
	7.5.4.1 Evaluating the understandability of the theory
	7.5.4.2 Evaluation of the perceived difficulty

	7.6 Limitations of the Feasibility Study
	7.7 Conclusion

	V An Alternative Graphical Representation for User Story Elements: Suitability of the Industry-Adopted Use-Case Model
	8 Bridging User Story Sets with the Use-Case Model
	8.1 Research Context
	8.2 Related Work
	8.3 Running Example
	8.4 User Stories Integration through a Use-Case Diagram
	8.4.1 The Role
	8.4.2 Hard-goal, Task and Capability
	8.4.3 The Soft-goal

	8.5 Automating the Approach and Round-Tripping Between Views
	8.6 Impact on Produced Software: Future Work
	8.7 Conclusion

	VI Conclusion
	9 Conclusions
	9.1 General conclusions
	9.2 Summary of the main Contributions
	9.3 Future Work
	9.3.1 Improvement on User Story Model
	9.3.2 Using Rationale Tree in Software Development Process

	References
	Appendix A List of Publications
	Appendix B User Story Templates Dataset
	B.1 Introduction
	B.2 User Story Templates Set
	B.3 Summary of User Story Templates' Elements

	Appendix C Descriptive_Concept's Definitions
	Appendix D Feasibility Study User Stories

