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ABSTRACT  

The objectives of this study were threefold: 1) estimation of  additive and dominance genetic 
variances for fertility traits for Austrian Simmental and Brown Swiss dairy cattle; 2) use of 
method  and the preconditioned conjugate gradient compared to solving for method  by  
second-order Jacobi iteration; and 3) study of the impact of inclusion of parental subclass effects 
on solutions for other random effects. Dominance variances were modeled for the inseminated 
cow and ranged from 0.32 to 1.36% of total variance. These values were similar to values for 
additive effects, which were approximately 1% of total variance. Convergence was clearly 
improved with preconditioned conjugate gradient and number of extrapolations reduced. 
Variance for permanent environment under a model without dominance could be split into a new 
estimate of permanent environmental variance and parental subclass variance. Solutions for 
parental subclass dominance effects were approximately proportional to permanent environment 
effects, but highly dependent on the number of animals contributing dominance relationships, 
especially full-sibs and three-quarter-sibs. For animals with a lot of dominance information (full-
sibs, three-quarter-sibs, cousins), permanent environment and parental subclass dominance 
effects were nearly independent. Changes in additive effects were negligible, probably because 
both variances for parental subclass dominance effects and additive genetic effects were very 



small compared with residual variance.  

(Key words: variance component estimation, dominance, fertility)  

Abbreviation key: PCG = preconditioned conjugate gradient.  

  
INTRODUCTION 

Dairy cattle breeding programs generally stress milk production, but profitability also depends 
on nonproduction traits, such as physical, fertility, and health traits. Under quota systems as in 
the European Union, the relative economic importance of these traits is even greater than where 
quota systems are not used.  

Fertility is considered to be one of the most important economic traits in both dairy and beef 
cattle populations (Jansen, 1986; Philipsson, 1981). Fertility, to a large degree, determines the 
number of progeny an individual contributes to the next generation and provides the basis for 
cow selection (Thaller, 1998). Better reproduction efficiency has several economic 
consequences, such as: 1) a reduction in the number of inseminations per conception and of 
veterinary costs, 2) more control over calving interval, 3) increased milk production per day of 
herd life, 4) increased meat production, as a consequence of more progeny, 5) decreased culling 
rate, and 6) increased intensity of selection (Jansen, 1986; Thaller, 1998). As mentioned by 
Groen et al. (1998), fertility and the other functional traits also have an impact on animal welfare 
and on consumer acceptance of animal products.  

Fertility traits can be recorded in several ways (Thaller, 1998); in Austria, nonreturn rate at 90 d 
after first inseminations is used. This trait is influenced by both service bull and the inseminated 
cow (Jansen, 1986) so that two genetic components have an impact on the success of an 
insemination. Based on information published by Sreenan and Diskin (1986) and Zavy (1994), 
Van der Lende (1998) concluded that return to estrus after insemination was more often due to 
embryonic mortality than fertilization failure. Therefore, the genotype of the embryo could be 
added as a third component in the analysis of fertility (Hoeschele, 1991).  

The main problem in selection for fertility is the relatively small number of observations 
available for a given animal compared with the large number required to predict breeding values. 
This difficulty stems from the low heritability of the trait and properties of the bivariate 
distribution. Genetic variance computed by usual models is quite low, but only additive 
components have been taken into account. However, genetic variation can be partitioned into 
additive and nonadditive components. Nonadditive components may be further divided into 
dominance variance caused by interaction of the alleles at the same locus and epistatic variance 
due to interactions among alleles in different loci (Falconer, 1989). Several authors (Beckett et 
al., 1979;  Fuerst and Solkner, 1994; Hoeschele, 1991; Philipsson, 1981) suggested that 
nonadditive genetic variance could be relatively important in fertility traits as these traits show 
low additive genetic variance. Little use has been made of nonadditive genetic effects in cattle 
breeding to date, due to difficulties in modeling these effects. Interest in nonadditive effects has 
increased with recent development of algorithms for large datasets using models with 
nonadditive genetic components (Henderson, 1984), rapid inversion of dominance relationship 



matrices (Hoeschele and Van Raden, 1991), and method  computation of variance 
components (Misztal, 1997). This interest is also due to datasets that include types of relatives 
necessary for estimating nonadditive genetic effects, becoming more common.  

The objectives of this study were to: 1) estimate additive and dominance genetic variances for 
fertility traits for Austrian Simmental and Brown Swiss dairy cattle; 2) compare method  and 
the preconditioned conjugate gradient to solving for method  by second-order Jacobi iteration 
and; 3) determine the impact of inclusion of parental subclass effects on solutions for other 
random effects.  
    

MATERIALS AND METHODS  

Data  

Data were provided by the Federation of Austrian Cattle Breeders in Vienna from two of the 
largest Austrian cattle populations, the Simmental of Lower Austria, and the Austrian Brown 
Swiss population. Data consisted of 393,947 (Simmental) and 360,073 (Brown Swiss) 90-d 
nonreturn rates, recorded from January 1,1990 through January 31, 1997. A successful first 
insemination was coded as 0 (i.e., no return); and failure to conceive from the first inseminations 
was coded as 1.  

The following edits were applied to the data; the days from calving to first insemination had to 
be between 20 and 200 d, and heifer first insemination had to occur between 420 and 960 d of 
age. Original pedigrees files consisted of 995,694 and 268,630 Simmentals and Brown Swiss, 
respectively. The huge size of Simmental pedigree file in comparison with performances file was 
because the complete Simmental pedigree file for all Austria was obtained and the records were 
those from a limited part of Austria, Lower Austria.  

Models  

The data were analyzed using the following linear animal models. No threshold models were 
used for two reasons. First, it would have been difficult to accomplish with available computing 
resources, and second, an objective was to duplicate the official Austrian genetic evaluation 
model as nearly as possible. Therefore, the estimation of variance components and solutions for 
additive and dominance effects was first calculated using the current Austrian genetic evaluation 
model: 

where y = vector of insemination results; Xh, Xm, and Xl = known matrices relating 
insemination results to fixed effects; h = vector of herd by year of insemination fixed effects; m 
= vector of month of insemination fixed effects; l = vector of fixed effects defined for virgin 
heifers as age at first insemination (16 groups), and for cows as lactation group number (seven 
groups; lactations 1 to 6 separately, and seventh and later lactations grouped together) by days 
open (11 groups), giving a total of 93 levels; Zp= known matrix relating insemination results to 
permanent environment of the inseminated cow random effects; p = vector of permanent 

Model 1: y = Xhh + Xmm + Xll + Zpp + Zcc + Zss + e, [1]



environment of the inseminated cow random effects; Zc= known matrix relating insemination 
results to additive genetic female effects (inseminated cow); c = vector of genetic female effects 
(inseminated cow); Zs = known matrix relating insemination results to additive genetic service 
bull effects; s = vector of additive genetic service bull effects and e = vector of residuals.  

Thaller (1998) concluded that there was no or a small negative (co)variance between additive 
genetic effects as assumed in the official Austrian model. This was also the case in our models. 
This gave the following (co)variance structures in model 1:  

  

where is the permanent environment variance, is the additive genetic variance associated 

with the inseminated cow effect, is the additive genetic variance associated with the service 

sire effect, I is an identity matrix and A is the additive relationship matrix.  

Dominance effects in the inseminated cow were modeled as parental subclass dominance effects 
(Hoeschele and VanRaden. 1991; Misztal, 1997), which represent the dominance interaction 
effects between sire and dam of the cow: 

where Zd = known matrix relating insemination results to dominance effects of the female 
component of fertility; f = vector of dominance effect of the female component of fertility; b = 
coefficient for the linear regression on inbreeding of the cow; ∆= vector of inbreeding 
coefficients of the cows.  

The following (co)variance structures were assumed across random effects in Model 2:  

  

where F is the parental subclass dominance relationship matrix and is the parental subclass 

dominance variance, which is one quarter of the total dominance variance (Hoeschele and 
VanRaden, 1991; Misztal, 1997).  

For all models, the data were prepared with a set of programs developed by Misztal (1997). 
These programs built the inverse of the parental dominance relationship matrix F using the 
method proposed by Hoeschele and VanRaden (1991), based on animals with records, and only 
one round of their recurrence equation. All information from full-sib and three-quarter sib 
families and from cousins linked by the classes was used. Inbreeding was considered in the 

Model 2: y = Xhh + Xmm + Xll + Zpp + Zcc + Zss + Zff + b ∆+ e, [2]



construction of the additive relationship matrix A as shown by Wiggans et al. (Wiggans et al., 
1995).  

Variance Components Estimation  

Estimation of variance components was based on method  (Reverter et al., 1994), which 
required simultaneous estimation of BLUP solutions. In fact, after each round of solving 
algorithm (e.g., second-order Jacobi) on partial and complete data sets, regression factors were 
computed based on two sets of solutions (Misztal, 1997). When all regression factors stabilized 
(changes in regression factors from successive rounds had to be smaller than 1*10-6 during three 
successive rounds), the variance ratio of one random effect was changed. With the new variance 
ratios, new solutions were computed iteratively until regression factors stabilized again. After 
each convergence of regression factors, only one variance ratio was updated until all variance 
ratios had changed once. Then the extrapolation method presented by Misztal (1997) was used to 
estimate new variance ratios and the process was started again until all regression factors 
converged towards 1 ± 0.0002.  

Method   needs efficient algorithms to obtain solutions to large mixed model equations with 
high precision and in an acceptable time frame. The algorithm based on second-order Jacobi 
iterations effect by effect used by Misztal  (1997)  was compared with a method based on 
preconditioned conjugate gradient (PCG). This method is still relatively unknown and is rarely 
used in animal breeding because of its greater memory requirements  (Van Vleck and Dwyer, 
1984). A modern use of PCG for animal breeding purposes was only recently described by 
Strandén and Lidauer (1999). The theory of the preconditioned conjugate gradient can be found 
in Shewchuk (1994). In our implementation, the diagonal of the left hand side of the mixed 
model equations was used as preconditioner matrix.  

For variance component estimation for each of the two models, six random samples of half of the 
data were used. The variance components for every model and population were obtained from 
averages over all samples. The standard deviation of the six samples was computed and reported 
as approximate standard error.  

Comparison of Solving Algorithms  

To test the efficiency of solving algorithms (second-order Jacobi and PCG), both methods were 
used to estimate variance components of two test samples using the official model and 
Simmental data. Due to the difficulty of accurately measuring CPU required for solutions, the 
numbers of rounds of solving algorithms, time necessary to realize one round of solving 
algorithm and the numbers of extrapolations required were used to compare algorithms.  

In comparison of algorithms, the official model was used with three random effects (model 1). 
Therefore, regression factors had to converge 4 times before reestimation of new variance ratios 
(once for initial variance and three for changes in each variance of each random effect). The 
number of rounds of solving algorithms (second-order Jacobi or PCG) completed to get 
convergence of regression factors for a given set of variance ratios was highly dependent on 
convergence of BLUP solutions of the partial and complete data sets. 



Total number of rounds necessary to get estimates of variance ratios was dependent on two 
distinct processes: 1) number of extrapolations (updates of variance ratios) necessary to get 
variance ratios corresponding to regression factors close enough to 1 and; 2) number of rounds of 
solving algorithms necessary for convergence of regression factors corresponding to specific 
variance ratio (during one round of method , each of the two sets of solutions required one 
round of second-order Jacobi or PCG). The cumulative number of rounds of solving algorithm 
was used to compare PCG and second-order Jacobi. The cumulative number of rounds was the 
sum of rounds of solving algorithm required for convergence of regression factors for each set of 
variance ratios tested (for which regression factors were computed). If a solving algorithm led to 
more sets of variance ratios being tested, then the cumulative number of rounds was heavily 
affected. Finally time to execute a round of iteration with both solving algorithms were 
compared.  

Changes of Solutions for Random Effects  

Inclusion of dominance in genetic evaluation programs could provide more precise estimates of 
additive genetic effects because of the more precise model. Therefore, in this study solutions for 
random effects  for models 1 and 2 were compared using the variance components estimated. To 
facilitate comparisons, model 1 was slightly modified to include the same regression on 
inbreeding (b ∆) as in model 2.  

Extending the results from Varona et al. (1998), we can show that if no dominance information 
comes from the pedigree, permanent environment solutions of model 1 can be split into a 
parental subclass dominance effect and a new permanent environment effect in model 2. Detailed 
derivations are in the Appendix. The permanent environment effect of model 2 can be written as: 

where pi is a solution for permanent environment in model i and is the variance for the 
permanent environment effect in model i. If no related parental subclass dominance effects exist 
and the animal has no full-sibs, a similar relationship should exist between parental subclass 
dominance effects from model 2 and permanent environment effects from model 1(Appendix): 

where f represents a solution for the parental subclass dominance effect of the inseminated cow 
and  is the  associated variance.  

RESULTS AND DISCUSSION  

Descriptive Statistics  

A total of 267,447 (67.9%) inseminations were successful in Simmental breed and 250,239 

, [6]

, [7]



(69.5%) in Brown Swiss. For both breeds, there were cows inseminated until lactation 16. 
Average time between calving and first insemination was 72.6 d (SD 28.2 d) for Simmental and 
83.3 d (SD 31.9 d) for Brown Swiss. Mean age at first insemination on heifers was 613 d (SD 
83.2 d) in Simmental breed and 690 d (SD 92.5 d) in Brown Swiss.  

Random effect classes for both breed and different models are given in Table 1. After editing and 
deleting redundant information, the pedigree files included 623,816 (Simmental) and 242,070 
(Brown Swiss) animals, respectively. The larger number of animals for Simmental can be 
explained by the fact that original Simmental files contained pedigrees for all Austria (records 
were limited to Lower Austria only) and that our algorithm to select animals has kept some 
noncontributive animals. This was no major problem for method  as noncontributive animals 
do not affect regressions. The programs used to built the inverse of the parental dominance 
relationship matrix F using the method proposed by Hoeschele and VanRaden (Hoeschele and 
VanRaden, 1991), however, eliminated these animals and therefore the numbers for parental 
sublasses were very similar (405,156 for Simmental and 462,430 for Brown Swiss).  

Table 1. Number of levels for random effects in Simmental and Brown Swiss.

Random effect Brown Swiss Simmental

Permanent environment of the cow 132,709 143,138
Male/female additive genetic 242,070 623,817
Parental subclass of the cow 462,430 405,156



Comparison of Solving Algorithms  

Times to execute one round of second-order Jacobi or of PCG were comparable: one round of 
PCG lasted approximately 1.09 times longer than one round of second-order Jacobi. Figure 1 
shows the cumulative number of rounds necessary to get convergence of regression factors for 
two samples of Simmental data using the two different solving algorithms for the BLUP 
solutions: second-order Jacobi and PCG. Table 2 shows the evolution of estimated variances 
during the first three extrapolations. For all test runs, initial variance ratios were 47 for all 
random effects corresponding to 2 % of total variance. Method  values (regression factors) 
converged at least twice as fast with the PCG method. The number of total rounds to get 
convergence of values close to one was much smaller for PCG (2780 and 2871 rounds) than 
for second-order Jacobi (8350 and 27,146 rounds). Note that results shown in  Figure 1 are 
truncated. This difference was also due to higher number of extrapolations necessary to get final 
variance ratios (3 and 3 vs. 4 and 13), especially for the second sample, for which the second-
order Jacobi had convergence problems. Table 2 shows that after three extrapolations, variance 
ratios for PCG were virtually equal to the final estimates (accurate to two decimal places). Even 
so, among all the samples used for variance components estimation, with PCG too, some 
extrapolations led repeatedly to variance ratios that were very close to final estimates but failed 

Figure 1. Cumulative number of rounds in regard with the number of the corresponding update o
ratios with secant method (Jacobi limited to first 16 updates). Sample 1: Jacobi x, Preconditioned
gradient +; Sample 2: Jacobi *, Preconditioned conjugate gradient o.



to converge, therefore increasing the number of rounds necessary. The results from this study 
indicated that the use of PCG with the method   procedure instead of second-order Jacobi 
method is recommended because of substantial savings in computing time.  

   

Variance Components  

Results for variance components are given in Table 3.  Additive variance was extremely small, 
only approximately 1% of total phenotypic variance, stressing on the importance of better control 
of the environment of inseminated cows to get higher nonreturn rate. Fixed effects had the major 
impact on insemination results. However, variation among breeding values, especially for sires, 
seemed to indicate that selection is possible. Effects of interactions of alleles were estimated 
using the F matrix (parental subclass dominance relationships) so that parental subclass 
dominance variance estimates were obtained. To obtain dominance variance estimates, parental 
subclass dominance variance had to be multiplied by four (Hoeschele and VanRaden, 1991). 
Analysis of variance components between different models confirmed some earlier results 
(Fuerst and Sölkner, 1994; Hoeschele, 1991). In Brown Swiss, dominance variance of the cow 
was estimated as 1.36% of total variation, which is slightly higher than the additive variances. In 
Simmental, estimated dominance of the cow was around 0.32% of total phenotypic variance. 
Fürst and Sölkner (1994) and Hoeschele (1991) found similar results to those in Brown Swiss, 
where dominance effects were one to two times additive genetic variation. These values were 
high in comparison with additive effects, but expressed as percentage of total phenotypic 

TABLE 2. Comparison of variances (in % of total variance) using computations with 
preconditioned conjugate gradient (PCG) or second-order Jacobi for permanent environment, 
male and female genetic effects for two samples of Simmental of Lower Austria.

Extrapolation Sample 1 Sample 2

Second order 
Jacobi

PCG Second order 
Jacobi

PCG

PE1 M2 F3 PE M F PE M F PE M F 

Starting values 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 
  1 2.16 1.00 1.38 1.91 1.01 1.45 4.85 1.01 0.98 3.92 0.99 1.08 
  2 2.24 0.76 1.24 2.29 0.74 1.25 3.28 0.88 0.82 2.98 0.89 0.82 
  3 2.20 0.75 1.21 2.18 0.74 1.23 2.82 0.89 0.83 2.81 0.89 0.82 
Final variances 2.19 0.74 1.22 2.18 0.74 1.23 2.80 0.90 0.84 2.81 0.89 0.82 

1 Permanent environment variance expressed in % relative to total variance. 
2 Male additive genetic variance expressed in % relative to total variance. 
3 Female additive genetic variance expressed in % relative to total variance.



variance, they were extremely low. Except for clones, only a quarter of dominance effects could 
be used in breeding schemes (Hoeschele and VanRaden, 1991) because only parental subclass 
dominance effects could be predicted. However, the possibility of using a random effect showing 
a quarter or more of the additive variance could still be an important gain for mating programs 
(e.g., in  the population, for three-quarter sibs families:sire/maternal-gransire) or for correcting 
the breeding values (e.g., in a nucleus program, in fullsibs families).  

The original variance of the permanent environment of the cow (model 1) was approximately 
equal to the new variance of the permanent environment of the cow plus the parental subclass 
dominance variance (1/4 of the dominance of the cow) so that residual variance was not changed. 
This was consistent across samples. Misztal et al. 1997) found similar results for stature traits 
with a permanent environment effect. When dominance effects were not included in the model, 
dominance variance was included in the permanent environment variance estimates. In this way, 
no additional variation was explained by the model and the additive values should not have been 
significantly affected. This point was quite logical because the dominance effect of a cow is 
permanent during her life. Failing to specify that this part of the variation was due to dominance 
effects, then the model associates these differences with permanent environment effects.  

Approximate standard errors obtained from observed standard deviation of the results from the 
six samples were lower for additive and permanent environment variances than for dominance 
variances. Clearly, less information is available to estimate the dominance variance.  

Changes of Solutions for Random Effects  

Permanent environment, female genetic additive, and dominance solutions were analyzed for 

TABLE 3.  Variances expressed in % of total variance (± empirical SE computed as the SD of 
the 6 samples) of random effects for the two models in Simmental and Brown Swiss 
populations.



cows with records. For these animals, differences between additive solutions from model 1 (with 
the same inbreeding coefficients as for model 2) and 2 were rather small (Table 4). Although 
average differences were small, some changes were still important with up to 1/8 of a standard-
deviation of additive solutions.  

As expected (equation [6]) there was a strong relation between permanent environment solutions 
from model 1 and model 2. ( Table 5) For both breeds the theoretical equation was confirmed 
using a regression of model 2 solutions on those of model 1:  for Brown Swiss p2= 0.83 p1 
(theoretical value 0.830) and for Simmental p2= 0.97 p1 (theoretical value 0.965), and both 

coefficients of determination (r2) were 0.99.  

A similar relationship was suspected between parental subclass effects and original (model 1) 
permanent environment effects. Again regressions were used to confirm the relationships in the 

TABLE 4.  Differences between solutions for additive genetic female effects of model without 
and with parental subclass dominance effects of the inseminated cow for cows with records in 
Brown Swiss and Simmental cattle.

Breed Model Mean (x 
100)

SD (x 
100)

Minimum (x 100) Maximum (x 100)

Brown Swiss Model 1 0.59 1.93 -5.53 9.97
Model 2 0.59 1.92 -5.59 10.02
Differences 0.00 0.03 -0.12 0.25

Simmental Model 1 0.04 1.99 -6.29 8.19
Model 2 0.03 1.99 -6.24 8.20
Differences 0.00 0.03 -0.16 0.09

TABLE 5.  Differences between solutions for permanent environment effects of model without 
and with parental subclass dominance effects of inseminated cow in Brown Swiss and 
Simmental cattle.

Breed Model Mean (x 
100)

SD. (x 
100)

Minimum (x 100) Maximum (x 100)

Brown Swiss Model 1 0.00 1.52 -8.06 8.16
Model 2 0.00 1.26 -6.67 6.75
Differences 0.00 0.26 -1.39 1.41

Simmental Model 1 0.00 1.78 -7.68 9.73
Model 2 0.00 1.72 -7.40 9.42
Differences 0.00 0.06 -0.31 0.33



data. For Brown Swiss it was f = 0.17 p1 (theoretical value 0.170 assuming , 
0.148 using observed parental subclass variance), and for Simmental it was f = 0.03 p1 

(theoretical value 0.035, respectively 0.031). However, this relation did not fit for all animals: r2 
was 0.64 and 0.32 in Brown Swiss and Simmental, respectively. The Appendix provides the 
theoretical basis for the strict relationship between f and p1 and explains why it is broken when 
parental subclass relationships exist and more than one animal is in a parental subclass.  

Jacquard (1974) discussed the importance of relationships for the estimation of dominance 
variance. For this study, contribution to dominance relationship matrix and, therefore, the 
parental subclass matrix were represented approximately through the sum of the number of full-
sibs plus a quarter of the number of three-quarter-sibs for a given animal. Indeed, these animals 
were those that contribute most. With these contributions, relations between parental subclass 
effects and permanent environment effects were analyzed for different contribution classes 
(Table 6 ). The more full-sibs and three-quarter-sibs an animal had, the more the parental 
subclass effects were independent of the permanent environment effects. In fact, for animals 
without any dominance relationships, it was not possible to make a clear distinction between 
permanent environment effect and parental subclass effect as they were always associated. 
Therefore, dominance solutions were proportional to permanent environment solutions (from 
first and second model as they were also proportional to each others), according to their 
respective variance.  

TABLE 6. Coefficients of determination from regression of the parental subclass dominance 
effects in model 2 on the permanent environment effect of model 1 by a function of  the 
approximate contribution to the dominance relationship matrix (D) among animals.

Approximate contribution to 
D1

Brown Swiss Simmental 

Number of 
records

Coefficient of 
determination

Number of 
records

Coefficient of 
determination

1 97,028 0.85 72,673 0.84 
1.01 to 1.99 19,379 0.54 20,738 0.49 
2.00 to 2.99 10,911 0.36 14,003 0.32 
3.00 to 3.99 2386 0.26 7883 0.22 
4.00 to 4.99 1062 0.17 4354 0.16 
5.00 to 7.49 1292 0.17 8783 0.14 
7.51 to 9.99 323 0.15 4957 0.10 
10.00 to 14.99 328 0.36 5345 0.06 
15.00 to 24.99 /  /  2934 0.04 
25.00 and more /  /  1468 0.03 

1Approximate contribution to dominance matrix = number of full-sibs + 0.25 * number of 
three-quarter-sibs.



The relationship between parental subclass effects and permanent environment effects could 
explain low changes in additive values. Indeed, most of animals came from parental families 
with no ties to other records (Table 6 ); therefore, their corrected phenotypic deviation in models 
1 and 2 were nearly identical, with small resulting changes in additive values. For those animals 
coming from bigger parental families, changes were generally also small because parental 
subclass effects were rather limited due to the low parental dominance variance.  

CONCLUSIONS  

Use of PCG  in method show better and faster convergence than the second-order Jacobi 
algorithm. The PCG solver should, therefore, be preferentially used.  

Estimated dominance variances were low and therefore dominance effects at this time showed 
low potential for use in selection for fertility traits.  However, in Brown Swiss, dominance 
variance was larger than additive variances.  Dominance variance entered the permanent 
environment variance when dominance effects were not included in the model. The potential use 
of a threshold model might have increased relative genetic variances. Additional research is 
required to evaluate this possibility. Relaxing the assumption that male-female covariance was 
zero could also increase genetic variances.  

Changes in additive solutions from inclusion of dominance in a model were rather small. In fact, 
to get large differences between additive solutions by including a dominance effect, dominance 
variance would have to be higher and animals of interest would need to have numerous full-sibs 
and three-quarter-sibs. Indeed, permanent environment effects were totally confounded with 
parental subclass dominance effects as long as no dominance information (full-sibs, three-
quarter-sibs, cousins) was available to allow separation.  

In situations with substantial dominance variance and many animals with numerous full-sibs and 
three-quarter-sibs, dominance could be utilized in mating systems. Reliable prediction of 
parental subclass dominance effects methods would be essential.  
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APPENDIX  

The only difference between model 1 (modified to include the regression on inbreeding) and 
model 2 is the addition of the parental sublass dominance effect. First denote n as the number of 
records of an animal and  as the sum of its records adjusted for all fixed and additive 
genetic effects. Consider now the situation where the animal is alone in its parental subclass that 
is also independent from other parental subclasses. The following equations gives the estimates 
of the parental subclass dominance and permanent environment effects: 

where  is the parental subclass dominance effect variance,  is the permanent environment 

effect variance in model 2 and  is the residual variance. If the first equation is subtracted from 

the second, the following result is obtained : 

Equation [4] holds as long as we can write the linear system in [3]. Therefore, as soon as more 
than one animal is in a dominance subclass or the dominance subclass is related to other 
dominance subclasses through the parental dominance relationship matrix the formula is no 
longer exact.  

Under the conditions for  equation [3] and if we assume that the estimates of fixed and additive 
effects are approximately equal in models 1  (adjusted for inbreeding) and  2,  we can write: 
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Next, assume that the residual variance is constant and, then, by equating the second equation 

of [3] and equation [5] we find:  

.  

After substituting f as given in [4] and after considering we obtain: 

and after combining [4] and [6]: 

Equation [7] holds as long as there is no more than one animal is in a dominance subclass or the 
dominance subclass is not related to other dominance subclasses. Therefore the deviation

 is a function of the dominance information in f.  

   
   

[6]

. [7]


