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1 INTRODUCTION 
Measurements of the random-incidence scattering coefficients of a sine-shaped surface (3 meter 
diameter) have been performed in real-size reverberant rooms, according to the procedure 
described in the ISO document ISO/DIS 17497-11. A round-robin test has been organized, using 
two sets of measuring instruments, two similar sine-shaped samples and two reverberation rooms 
belonging to the acoustics laboratories of the universities of Liege and Leuven. 
 
The motivation was to investigate the feasibility of such a real-scale experiment and the practical 
problems which could arise during its application. These measurements and their results have 
already been presented at Forum Acusticum in Sevilla2,3. 
 
It was also intended to obtain theoretical values to which the measured scattering coefficients could 
be compared and which would help us to analyze the degree of accuracy of our measurements. 
 
Unfortunately, there’s no simple (analytical) solution for the theoretical problem of the scattering of a 
plane sound wave (or random-incidence sound field) by a perfectly hard sine-shaped surface. 
Therefore, two numerical methods have been applied : BEM (boundary element method) and the 
Helmholtz integral method. 
 
This paper reports on the Helmholtz integral method, while another paper describes the results 
obtained by BEM4. 
 
 
2 THE HELMHOLTZ INTEGRAL 
In a 3D scattering problem, the pressure ps(R) scattered by a finite rough surface at point R (see fig. 
1) is given by the Helmholtz integral formula5,eq.(19.7) : 
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in which ps(dS) is the scattered sound pressure at the surface element dS, G is the 3D Green 
function and (δ/δn) represents the derivative along the outward normal to the rough surface at dS. 
Also, D is the distance between point R and the surface element dS. 
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Figure 1 : Scattering geometry for a plane wave incident along vector 1k . The receiver R lies along 

the scattering direction 2k . 
 
To solve integral (1), the main difficulty is of course to derive the pressure and its gradient on the 
surface. For example, it can be assumed that these are given by their so-called “tangent-plane” 
approximation6. This assumption holds for “smoothly undulating” surfaces and leads to the Kirchhoff 
Approximation (KA) method (in fact, eq.(1) already includes another Kirchhoff assumption, i.e. that 
the pressure field is unperturbed in the plane z=0 outside S0, an assumption which is not necessary 
for infinite surfaces). 
 
When the “tangent-plane” approximation is applied in (1), then the scattered pressure is expressed 
by6 : 
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In this equation, the sound pressure is evaluated in the Fraunhofer zone, i.e. at great distance from 
all points of the finite rough surface. The coefficient K is a constant depending on the complex 
amplitude of the incident plane wave and on the distance R0 between the center of the surface and 

the receiver6. The vector v  is the difference between the incidence vector 1k  and the scattering 

vector 2k  (both vectors have a magnitude of k=2π/λ). The z-coordinate of the position vector r  is 

given by the profile of the rough surface z=ξ(x,y). Finally, γ  is a vector perpendicular to the rough 
surface at dS, with coordinates (-dξ/dx,-dξ/dy,1). It is important to notice that (2) has been 
expressed here for perfectly hard finite rough surfaces. 
 
Further developments of this paper will be mainly dedicated to the solutions of the KA method (2). 
But, as will be seen later, the conditions of validity of this approximation are not fully satisfied by the 
roughness profile of our test sample, and it is therefore interesting to consider other methods. 
 
One of them which seems particularly attractive has been developed by Holford7, based on works 
by Urusovskii published in the late sixties. This method is also a solution of the Helmholtz integral, 
but taking into account the periodicity of the sine-shaped profile. The pressure field on the surface is 
here expressed as an infinite sum of exponential terms, whose complex amplitudes are determined 
by a (theoretically infinite) system of algebraic equations. Numerical techniques can be used to 
approach the exact solution.  
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Most developments in the original Holford’s paper have been dedicated to pressure-release 
surfaces. To obtain results for a perfectly hard surface, we have applied the method suggested in 
Holford’s appendix A, which holds for any impedance boundary condition. However, Holford’s 
method is only valid for infinite surfaces, while our test sample has a finite diameter of 3 meter. A 
careful interpretation of the results will therefore be necessary during the comparison with the 
measured values of the scattering coefficient. 
 
 
3 RESULTS OF THE K.A. METHOD 

3.1 The “characteristic function” model 

The numerical solution of (2) gives the scattered pressure for any direction of incidence ( 1k ) and 

scattering ( 2k ). Inputting this pressure distribution in the Mommertz formula6 gives the scattering 

coefficient δ, as a function of incidence ( 1k ) and, of course, frequency. Finally, the random-

incidence scattering coefficient is obtained by numerical integration over all vectors 1k , using the  
Paris formula, as for the random-incidence absorption coefficient. 
 
Instead of numerically solving eq. (2), a more efficient and intuitive method has been used here. 
The “characteristic function” model has been developed by Embrechts et al6, for finite surfaces 
whose dimensions are “much greater” than the wavelength. According to this model, the scattering 
coefficient is directly given by : 
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The roughness profile of our test sample is one-dimensional and expressed by ξ(x)=Hcos(2πx/Λ), 
with H=0.0255m and Λ=0.177m. 
 
The validity of (3) has been investigated by computing the scattering coefficient for some directions 
of incidence, using the complete Kirchhoff procedure as described above. An excellent 
correspondence was observed between both techniques, in the frequency interval [315 Hz-8000 
Hz]. 
 
The “characteristic function” model states that the scattering coefficient depends on the angle of 
incidence θ1 (see fig.1), but not on the azimuthal orientation of the incident wave. This conclusion 
could be hard to believe and is, in fact, not particular to this model, but well to the more general KA 
method. It is only an approximation that remains valid as long as KA conditions of validity are 
satisfied. 
 
This in turn greatly simplifies the random-incidence computations through Paris formula. The results 
obtained for our sine-shaped surface are shown in figure 2, for several angles of incidence (from 5 
to 85 degrees). In this figure are also shown the random-incidence scattering coefficients obtained 
by integrating over θ1. 
 
These results will be compared with similar values obtained by measurements and other numerical 
techniques. Table 1 summarizes the conditions in which the scattering coefficients have been 
derived. Indeed, each method has its own assumptions and these must be clearly understood 
before comparing the results. For example, unlike the “characteristic function”  model, BEM needs 
to compute the 3D scattering distribution (on a given receiver mesh) before integrating over all 
directions of scattering to obtain the scattering coefficient. 
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Sine-shaped surface scattering coefficients - Kirchhoff Approximation

0

10

20

30

40

50

60

70

80

90

100

12
5

15
7

19
8

25
0

31
5

39
7

50
0

63
0

79
4

10
00

12
60

15
87

20
00

25
20

31
75

40
00

50
40

63
50

80
00

10
07

9

12
69

9

16
00

0

freq (Hz)

pe
rc

en
ts

5 deg
15
25
35
45
55
65
75
85
random incidence

 
 
Figure 2 : Scattering coefficients (in percents) of the sine-shaped sample predicted by the Kirchhoff 
Approximation (“characteristic function” model), for several conditions of sound wave incidence. 
 
 
 
 
Table 1 : Conditions in which the scattering coefficients have been obtained by each method 
 

Method Surface size Incident field Receiver mesh 
KA (“characteristic 
function”) 

Finite Plane-wave and  
3D random (*) 

Not necessary : 
see eq. (3) 

BEM Finite Plane-wave and 
3D random (**) 

Every 2 degrees in 
elevation and azimuth 

Holford Infinite Plane-wave and 
3D random (***) 

Not necessary : 
see section 4 

Measurements in the 
reverberation room 

Finite 3D random Only one receiver 
position1

 
(*) The random-incidence scattering coefficient is here obtained by analytical integration 

over elevation and azimuth incidence angles. 
(**) The random incident field is here modeled by a source mesh (a source every 10 

degrees in elevation and azimuth angles), followed by numerical integration. 
(***) Not available yet, but Holford’s method allows 3D incidence integration. 
 

 
 
Figure 3 compares the KA results with the random-incidence scattering coefficients measured in the 
real-scale reverberation rooms (average values obtained by the K.U. Leuven measurement 
technique). At first glance, the correspondence between both set of coefficients is fairly good, 
except in the interval [1260Hz-4000Hz], where the KA method predicts slightly lower values than 
the measurements. 
 
However, further comparisons with BEM results4 (obtained in the “transition” region 500-2000 Hz) 
indicated that indeed, KA gives underestimated random-incidence scattering coefficients in this 
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transition region, but also that the individual plane wave incidence curves (fig. 2) presented quite 
large deviations with BEM predictions. These results lead us to investigate further and analyze the 
validity of KA application for our sine-shaped surface. 
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Figure 3 : Comparison of the random-incidence scattering coefficients computed by the Kirchhoff 
Approximation and those measured in the real-scale reverberation rooms by the K.U. Leuven 
measurement technique. 
 
 
3.2 The validity of the Kirchhoff approximation 

The conditions of validity of (2) are not well established, even today. For gaussian surfaces, 
Thorsos8 concluded that KA gives accurate results if : 
- the r.m.s. slope of the surface does not exceed 0.35; 
- the correlation length (which, for gaussian surfaces, is 2  times the ratio of r.m.s. height to 

r.m.s. slope) is greater than the wavelength; 
- the angles of incidence and scattering are less than 60 degrees. 
 
Applying similar conditions to our sine-shaped sample leads to : 

- the r.m.s. slope is 640.0
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- the quantity equivalent to the correlation length should be : m04.0
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0255.0

=  (fmin=8.5 kHz). 

 
This simple evaluation seems to indicate that the limits of K.A. have been reached in this case. 
Therefore, the theoretical values presented in figure 2 must be considered with precaution, even if 
they give a fairly good agreement (in average) with the measured values. 
 
Unfortunately, BEM techniques cannot easily be applied above 2 kHz. Then, they are not able to 
confirm KA results at high frequencies. Other methods should be applied for that purpose. 
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4 HOLFORD’S METHOD 
The method developed by Holford7 has been applied here, since our test sample has a periodic 
roughness profile. As indicated above however, this method only holds for infinite surfaces, 
whereas our circular sample has a well finite (3 meter) diameter. It is recalled here that the ISO 
measurement procedure has been defined to give measurement results which are representative 
for an infinitely large surface, and this already suggests that the measured scattering coefficients 
should approach the values derived by the Holford’s method in order to fulfill this requirement. 
 
At the time of writing this paper, the complete results are not yet available. But some interesting 
considerations can already be expressed. 
 
First, this method predicts that the scattered field consists of discrete plane waves : one in the 
specular direction, other propagating waves in directions given by the grating equation 
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and, finally, surfaces waves which do not radiate energy away from the surface. Therefore, the 
scattering coefficient is here simply 1 minus the ratio of the energy radiated by the specular plane 
wave to the total reflected energy. 
 
If λ/Λ>2 in (4), there’s no propagating wave other than the specular wave, and then the scattering 
coefficient must be zero. This occurs in our case for frequencies less than 960 Hz : for f<960 Hz, 
there should be no scattering by an infinite sine-shaped surface having the roughness profile 
described above (with H=0.0255m and Λ=0.177m). This is in contradiction with KA results in fig. 2, 
where it can be seen that the scattering coefficient is rather weak, but not zero. But, this is also in 
contradiction with the measurements (see fig. 3) and with BEM results (see fig.4). 
 
It therefore appears that the weak scattering observed before 960 Hz should be related in some 
way to the finite size of the surface, rather than to its roughness profile. Another explanation could 
be that the “uncorrelated reflected energy” computed or measured by the ISO method should not be 
fully attributed to the influence of the roughness profile : there comes again the question of how to 
extract the “diffuse” component from a global reflected pressure distribution ? If this seems to be 
obvious for an infinite periodic surface, on the other hand there’s no clear separation of the specular 
and diffuse pressures for a finite surface. 
 
Second observation : the first results obtained by Holford’s method application show quite 
significant deviations with those obtained by the KA method for the finite size surface (compare fig. 
4 and fig. 2). In particular, Holford’s method predicts very weak scattering (i.e. a strong specular 
reflection) in a narrow frequency band, around some discrete frequencies at which a new scattered 
plane wave is generated in the direction θn=-90 degrees (in fig. 4, n=-2). 
 
On the other hand, the BEM simulations seem to give results which are in fairly good agreement 
with those of Holford, at least in the conditions of the fig.4 experiment. The measured random-
incidence coefficients cannot be compared at this moment, since all the values needed for random-
incidence integration are not yet available. 
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Figure 4 : Scattering coefficients of the sine-shaped surface computed by Holford’s method (infinite 
surface) and 3D BEM (circular sample, 3m diameter). The plane wave is incident along the direction 
60 degrees from perpendicular and azimuth 0 degree, which means that the direction of incidence 
lies in a plane perpendicular to the sine-shaped corrugations. 
 
 
Third and last observation : Holford’s method gives, in principle, an exact solution. However, the 
practical application of this method needs some approximations. For example, the exact pressure 
distribution on the surface is expressed as an infinite sum of exponential terms, whose complex 
amplitudes are determined by an infinite system of algebraic equations. Obviously, the practical 
application should restrict the size of this system of equations, introducing a parameter which 
influences the computed  results. 
 
 
5 CONCLUSION 
It is shown in this paper that the theoretical solution of the simple problem of the sound scattering 
by a sine-shaped surface is not obvious. 
 
However, this solution would be very useful in order to interpret correctly and analyze the accuracy 
of the random-incidence scattering coefficients measured by the ISO method. 
 
It seems that no particular method is able to generate the exact solution to this theoretical problem, 
but rather that the conjunction of several results and their careful interpretation could finally lead us 
to an acceptable approximation at all frequencies. 
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