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ABSTRACT: Method ℜ is a simple and computation-
ally inexpensive method for estimating (co)variances.
The objective of the study was to investigate properties
of Method ℜ for estimation of (co)variance components
with emphasis on covariance estimation. Theoretical
Method ℜ formulas were developed for simplified sin-
gle-variate and bivariate models. In single-trait models,
the curve of the regression of Method ℜ was continuous
and monotonic and its slope depended on the amount
of information on each animal and on the variance ratio.
The curve became steeper as the number of records
per animal decreased. For covariance, the curve of the
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Introduction

Method ℜ (Reverter et al., 1994) is a method for esti-
mating (co)variances. It is simple and computationally
inexpensive. Therefore, it may still be applicable when
methods based on REML or MCMC are not computa-
tionally feasible. Low cost has made Method ℜ the
method of choice for estimation of dominance variance
in large models (e.g., Misztal, 1997; Misztal et al., 1997;
Culbertson et al., 1998).

Theoretical properties of Method ℜ are unknown. Re-
verter et al. (1994) claimed that the estimates were
equivalent to estimates of REML based on similar qua-
dratics. Reverter (1994) also developed some empirical
evidence of the optimality of Method ℜ estimates. How-
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regression was monotonic but not continuous. However,
a regression coefficient of 1 still corresponded to the
correct covariance. Similar curves were observed in
analyses of simulated data sets. Because of the observed
discontinuity, algorithms implementing Method ℜ that
require a continuous regression curve would not work
in models with covariances. An alternative algorithm
was based on a transformation matrix obtained by mul-
tiplying a matrix of numerators with the inverse of a
matrix of denominators of the regression factors. Such
an algorithm converged reliably for all models tested.
Method ℜ can be modified to estimate covariances in
models too large for other methods.

ever, Schenkel (1999) found empirically that with ge-
netic selection based on BLUP breeding values, herita-
bility estimates given by Method ℜ would be biased
upward.

Extension of Method ℜ to two additive genetic effects
is straightforward if these effects are uncorrelated.
Gengler et al. (1998) used Method ℜ to estimate the
dominance variance for postweaning gain in the U.S.
Limousin population. Because maternal effects were
assumed unimportant, their approach did not require
correlated additive genetic effects. Ability to estimate
covariances among correlated effects is necessary to
implement models with direct and maternal effects as
for multiple-trait models. Reverter (1994) developed
formulas for covariances, but properties of these formu-
las have not been verified. The application of these for-
mulas using the numerical approach by Misztal (1997)
was not able to update covariances successfully. The
objective of this study was to investigate the properties
of Method ℜ with particular emphasis on formulas for
covariances in order to apply the method for (co)vari-
ance estimation in beef cattle.

Materials and Methods

Method ℜ Theory and Existing Algorithms
to Obtain (Co)Variances

Reverter et al. (1994) presented Method ℜ for a two-
trait model, and similar methods can be used with corre-



Druet et al.606

lated effects. Let ui ∼ N(0, Aσ2
i ) and uj ∼ N(0, Aσ2

j ) be
vectors of the additive genetic random effect for traits
(or effects) i and j, and A is the numerator relationship
matrix. If ûi and ûj represent vectors of estimated solu-
tions with a complete data set and ûip and ûjp, vectors of
estimated solutions with a partial data set, regression
factors (ri) can be defined for variance of trait i as
follows:

ri = Cov(ûip,ûi)
Var(ûip)

= û′
ipA−1ûi

û′
ipA−1ûip

[1]

For the covariance between both traits two regression
factors can be defined:

rij = Cov(ûip,ûj)
Cov(ûip,ûjp)

= û′
ipA−1ûj

û′
ipA−1ûjp

; rji = û′
jpA−1ûi

û′
jpA−1ûip

[2]

Reverter (1994) used the mean of the two regression
factors presented in Eq. [2] as the regression factor for
covariances. When (co)variances are underestimated
and overestimated, regressions factors are expected to
be greater than and less than 1, respectively. Method
ℜ estimates are obtained when all regression factors
equal 1 (Reverter et al., 1994).

Several computational algorithms were developed to
find such estimates. First, Reverter et al. (1994) pro-
posed a binary iteration strategy and a linear extrapola-
tion strategy. Reverter (1994) also presented a multipli-
cative iterative algorithm to update (co)variances for
traits i and j:

Gn+1 = Gn *




rn
i rn

ij

rn
ji rn

j





[3]

where Gn is the estimate of the genetic covariance ma-
trix (2 × 2) in round n, rn

i is the regression factor for
trait i obtained with Gn as prior genetic covariance
matrix, and * is the element-by-element multiplication
(Hadamard product). Many rounds of iterations were
necessary for convergence. Misztal (1997) used the se-
cant method, which is a linear extrapolation strategy
in which derivatives were approximated by numerical
differentiation. This method could achieve convergence
in fewer rounds of iterations, but heuristics were re-
quired to avoid estimates outside of the parameter
space. A multivariate form of formula [3], by splitting
the components of the regression factors, results in the
following formula:

Gn+1 =




û′
ip A−1ûi ûjp A−1ûi

û′
ip A−1ûj û′

jp A−1ûj









û′
ip A−1ûip û′

jp A−1ûip

û′
ip A−1ûjp û′

jp A−1ûjp





−1

Gn

[4]

where ûi and ûj represent vectors of estimated solutions
with a complete data set and ûip and ûjp represent vec-

tors of estimated solutions with a partial data. Solu-
tions were estimated with Gn as prior genetic covari-
ance matrix. Use of this formula would result in the G
matrix being asymmetric during iteration. However, at
convergence, the G matrix should be symmetric, and
during iteration the G matrix can be forced to be sym-
metric by using average of the off-diagonal elements.

Theoretical Developments of Method ℜ

Properties of Method ℜ were studied theoretically
and by simulation. In the theoretical approach, esti-
mates of Method ℜ were derived analytically for simpli-
fied models. Method ℜ is based on regression of predic-
tions derived from full data and partial data. In partial
data, estimated solutions are more influenced by prior
(co)variances because less information is available. In
mixed models, additional information could come from
different sources: additional records, additional pedi-
gree information and correlated traits, or effects infor-
mation. Therefore, three case studies were analyzed
for the theoretical approach based on the following: 1)
changes in the number of records for the same animals,
2) changes in the pedigree information, and 3) two
traits.

Change in Number of Records. Assume a single-trait
random model for observations from na unrelated ani-
mals (Model 1):

yij = ui + eij [5]

where yij was record j of animal i, ui is the animal
additive genetic effect for animal i, and eij is the residual
effect. In matrix notation,

y = Zu + e. [6]

Expectations and variances are

E(y) = 0 [7]

E(u) = 0 [8]

E(e) = 0 [9]

var(u) = I σ2
a [10]

var(e) = I σ2
e [11]

var(y) = (ZZ′ σ2
a + I σ2

e) [12]

and the mixed model equations are

[Z′Z + I λ̂] û = Z′y [13]

or
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nr + λ̂ 0 0
0 ... 0
0 0 nr + λ̂











û1

�
ûna






=









nru1 + ∑
nr

j=1

e1 j

�

nruna
+ ∑

nr

j=1

enaj









[14]

where na is the number of animals, λ̂ = σ̂2
e

σ̂2
a

(i.e., the estimated residual to additive genetic variance ratio), ûi is

the estimate of the effect of animal i, ui is true value of the effect of animal i, and eij is the residual effect associated
with the record j of animal i (eij = yij − ui). The solution for animal i in Eq. [14] is

ûi =
nrui + ∑

nr

j=1

eij

nr + λ̂ [15]

When the number of records per animal is reduced from nr to αnr (where α is the proportion of records selected),
then the estimate of animal j in Eq. [14] becomes (the subscript p indicating partial data)

ûip =
α nrui + ∑

α nr

j=1

eij

α nr + λ̂ [16]

When na →∞, and after detailed calculations provided in Appendix A, the expected regression factor becomes

E(r) = E




û′
pA−1û

û′
pA−1ûp





= (αnr + λ̂)(nrσ
2
a + σ2

e)
(nr + λ̂)(αnrσ

2
a + σ2

e)
= 1 + (1 − α)nr(λ̂ − λ)

(nr + λ̂)(αnr + λ) [17]

where σ2
a is the true additive variance, σ2

e is the true variance for residual effects, λ is the true variance ratio,
and λ̂ is the variance ratio based on prior variances.

Change in Information from Relatives. To study properties of Method ℜ in models with information on relatives,
repeated parent-progeny pairs were used with the model similar to the previous one except that relationships
were introduced: u ∼ N(0, Aσ2

a). In the full data set, each animal and its sire had one record each. In the reduced
data set, records for parents were eliminated. The mixed-model equations were (Model 2) as follows:









1 + 4/3λ̂ −2/3λ̂ … 0 0
−2/3λ̂ 1 + 4/3λ̂ … 0 0

… … … … …
0 0 … 1 + 4/3λ̂ −2/3λ̂
0 0 … −2/3λ̂ 1 + 4/3λ̂

















ûs1

ûp1

…
ûs np

ûp np









=









us1 + es1

up1 + ep1

…
us np

+ es np

up np
+ ep np









[18]

where np is the number of pairs of animals (2np is the number of animals), subscripts s denotes sires, and p
denotes progenies. When only the progenies had records, the mixed models equations were as follows:









4/3λ̂ −2/3λ̂ … 0 0
−2/3λ̂ 1 + 4/3λ̂ … 0 0

… … … … …
0 0 … 4/3 λ̂ −2/3λ̂
0 0 … −2/3λ̂ 1 + 4/3λ̂

















ûs1

ûp1

…
ûs np

ûp np









=









0
up1 + ep1

…
0

up np
+ ep np









[19]
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With np →∞, the expected regression coefficient is as follows:

E(r) = (1 + λ)((3.75 + 7λ)σ2
a + (3 + 5λ)σ2

e)
(4λ2 + 8λ + 3)1.25(σ2

a + σ2
e)

= 1 + (λ̂ − λ)(8λ̂ + 3)
5(2λ̂ + 1)(2λ̂ + 3) [20]

Two-Trait Model Based on Number of Records. Because regression formulas for a maternal model were compli-
cated, a bivariate model was used to investigate properties of regressions in models with covariances. The model
was similar to Model 1 except that it was extended to two traits (k and l with σ2

k and σ2
l , the genetic variance of

trait k and l, respectively, and σkl, the genetic covariance), the number of records changed from nr for both traits
to α nr, and u ∼ N(0, G ⊗ A), where

G =




σ2
k σkl

σkl σ
2
1




; G −1 =





g11 g12

g12 g22





[21]

For simplification of the model, residual variances were assumed equal to σ2
e for both traits, and residual

covariance was set to 0. After factoring the residual variances out and defining λ̂k = ĝ11σ2
e, λ̂l = ĝ22σ2

e, λ̂kl = ĝ12σ2
e

(where ĝ11, ĝ22 and ĝ12 were defined as in Eq. [21] but with the inverse of the prior G matrix), the mixed-model
equations were (Model 3) as follows:









nr + λ̂k λ̂kl … 0 0
λ̂kl nr + λ̂l … 0 0
… … … … …
0 0 … nr + λ̂k λ̂kl

0 0 … λ̂kl nr + λ̂l

















ûkl

ûll

…
ûkna

ûlna









=
















nrukl + ∑
nr

j=1

ek lj

nrull + ∑
nr

i=j

ellj

…

nrukna
+ ∑

nr

i=j

eknaj

nrulna
+ ∑

nr

i=j

elnaj
















[22]

where uki is the effect of animal i for trait k, ûki is the estimate uki, and ekij is the residual effect associated with
record j of animal i for trait k. To create partial data, the same mixed-model equations were applied but with α
nr records for each animal. Four regression factors had to be computed, one for each variance and two for covariance.
The expected regression factors for variances are as follows:

E(rk) =

(αnr + λ̂l)(nr + λ̂l)(αn2
rσ

2
k + αnrσ

2
e) − ((1 + α)nr + 2λ̂l)(λ̂klαn2

r)σkl + λ̂kl
2(αn2

rσ
2
l + αnrσ

2
e)

(nr + λ̂k)(nr + λ̂l) − λ̂kl
2

(αnr + λ̂l)2(α2n2
rσ

2
k + αnrσ

2
e) − (2αnr + 2λ̂l)(λ̂klα

2n2
r)σkl + λ̂kl

2(α2n2
rσ

2
l + αnrσ

2
e)

(αnr + λ̂k)(αnr + λ̂l) − λ̂kl
2

[23]

and the expected regression factor for covariance is (derived from first equation for covariance [see Eq. (2)]; with
the second equation for covariance similar patterns were observed) as follows:

E(rkl) = (αnr + λ̂k)(αnr + λ̂l) − λ̂kl
2

(nr + λ̂k)(nr + λ̂l) − λ̂kl
2 * [24]

(nr + λ̂k)(αnr + λ̂l)nrσkl − (nr + λ̂k)λ̂kl(nrσ
2
l + σ2

e) − (αnr + λ̂l)λ̂kl(nrσ
2
k + σ2

e) + λ̂kl
2nrσkl

(αnr + λ̂k)(αnr + λ̂l)αnrσkl − (αnr + λ̂l)λ̂kl(αnrσ
2
l + σ2

e) − (αnr + λ̂l)λ̂kl(αnrσ
2
k + σ2

e) + λ̂kl
2αnrσkl

where σkl is additive genetic covariance between trait k and l.
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Validation Study by Simulation Approach

Simulated Data Sets. First, in order to confirm the
theoretical curves, three data sets were simulated using
the animal model and six generations without selection.
The first data set (data set SIM-1) was simulated with
the model

yijk = � + cgi + sexj + ak + eijk [25]

where yijk is performance of animal k of sex j in contem-
porary group i, � is the mean effect, cg is the contempo-
rary group fixed effect, a is the additive genetic effect,
and e is the residual. The number of contemporary
groups was 60, the number of animals was 11,254, and
the number of records was 10,704. Variances used in
the simulation were σ2

cg = 10, σ2
a = 40, and σ2

e = 60. The
second data set (data set SIM-2) was similar to the first
one except that it included the maternal effect m:

yijk = � + cgi + sexj + ak + ml + eijk [26]

with all variances as in the first model except σ2
m = 20,

σam = −10, and σ2
e = 50. The last data set (data set SIM-

3) was identical to the previous one but the covariance
was positive: σam = 10 and σ2

e = 30.
Three supplementary data sets were simulated for

comparing the solving algorithms. They were created
with the same model as data sets SIM-2 and SIM-3 but
with different random seeds and with the following
(co)variances structure: data set SIM-4, σ2

a = 20, σ2
m =

15, σam = −5 and σ2
e = 70; data set SIM-5, σ2

a = 25, σ2
m =

25, σam = 0, and σ2
e = 50; data set SIM-6, σ2

a = 40, σ2
m =

20, σam = −15, and σ2
e = 55.

Analysis of Simulated Data with Method ℜ . The com-
puter program for this study was derived from program
BLUP90IOD, which was a rewrite of BLUPF90 (Mis-
ztal, 1999) to iteration-on-data with preconditioned-
conjugate-gradient (Stranden and Lidauer, 1999) by S.
Tsuruta. Initially, Method ℜ was implemented as de-
scribed by Misztal (1997); solutions were computed for
the complete and partial data sets, and the partial data
set was a random 50% selection of the complete data
set. After each round of preconditioned gradient method
for both data sets, regression factors were computed
with Eq. [1] for variance and Eq. [2] for covariance
(the mean of both regression factors). This process was
repeated until the regression factors changed less than
10−6 for three consecutive rounds.

Results and Discussion

Theoretical Developments

The discussion below focuses mainly on estimation
of animal variance with Method ℜ . However, the dis-
cussed properties can be extended to estimation of vari-

Figure 1. Values of regression factors for different num-
bers of records per animal (——, 4 records; — —, 10 re-
cords; �������, 100 records; — � — �, 1,000 records) in the
first theoretical model (Model 1).

ance for any random effect (e.g., a permanent environ-
ment effect or a random herd-year-season effect). For
some types of effects, consequences of the properties
could be more important than for an animal effect be-
cause, for instance, there is no relationship among dif-
ferent levels or the number of records per level could
be much larger.

Change in Number of Records. Equation [17] is in
agreement with the theory presented by Reverter et al.
(1994). When exact variance ratios were used, regres-
sions factors would be equal to 1. Whether the regres-
sion factor was lower or higher than 1 depended on the
differences between the used and true variance ratios.
According to Reverter et al. (1994), too high a variance
ratio (too low a heritability) resulted in a regression
factor higher than 1, whereas when animal variances
were underestimated, regression factors were lower
than 1. At convergence, when the regression factor is
equal to 1, the estimated variance ratio is equal to the
true variance ratio (λ̂ = λ).

Derivation of equation [17] (Appendix B) reveals that
regression curves are continuously decreasing (α − 1 is
always negative) and that their slope is steeper when
the number of records decreases or when λ decreases.
Shown in Figure 1 are regression factors from equation
[17] when the number of records was fixed to 4, 10, 100,
or 1,000 for each animal, α was 0.5 (selection of 50% of
the records), σ2

a = 40, and σ2
e = 60. With few records per

animal, the curves were continuously decreasing with
relatively steep slopes. Finding the intersection with 1
should not be a major challenge in most cases. With
many records per animal, the curves were almost hori-
zontal, which could lead to numerical problems. In ex-
treme cases, the regression factors could be numerically
computed as 1 for all variance ratios.
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Formulas [15] and [16] show clearly that if, through
sampling, all records for a specific animal are kept (α
= 1), then the solutions with partial and complete data
sets are identical (if the relationship matrix is not con-
sidered). As a consequence, this animal does not con-
tribute to the regression factor deviating from 1 even
if incorrect prior variance is used. This is also true when
α = 0 (e.g., when, through sampling, all records for a
specific animal are discarded). Without a relationship
matrix, only animals for which some but not all records
are eliminated are informative for Method ℜ estima-
tion. Therefore, the sampling procedure is important,
especially for the estimation of variance for random
effects with independent levels. For instance, a sam-
pling by herds could result in problems for estimating
a permanent environment variance with Method ℜ , be-
cause in selected herds the same number of records
would be used for the estimation of solutions, but in
discarded herds solutions for permanent environment
of animals would be 0. A random sampling or a sam-
pling by year of record would achieve better results.
Finally, the proportion of sampling should be such that
a maximum number of animals have their number of
records reduced without being equal to 0. For random
sampling, 50% sampling seems, therefore, a better sam-
pling proportion than 10% or 90%. With large data sets,
sampling should result in a sufficient number of infor-
mative animals. Poor sampling or too few informative
animals would be reflected in a large sampling distribu-
tion between multiple Method ℜ estimates. Multiple
sampling with Method ℜ offers, therefore, an addi-
tional security.

Pedigree Information. The value of r as a function of
used variances with Eq. [20] is shown in Figure 2. As
before, r = 1 when the correct variance ratio was used
and the equation is in agreement with Method ℜ theory.
Information from relatives improved Method ℜ estima-

Figure 2. Values of regression factors in the second
theoretical model (Model 2).

Figure 3. Values of regression factors for various values
of covariances used in the third theoretical model
(Model 3).

tion. For additive genetic effects, individuals are related
to each other through the relationship matrix. Animals
for which the number of records stays equal or drops
to 0 can still be informative for Method ℜ through the
records of their relatives. The relationship matrix
therefore improves the sampling of the records and dis-
tributes it over more animals.

Correlated Effects or Traits Information. If the used
covariance is equal to 0, then λ̂kl = 0 and Eq. [23] reduces
as expected to Eq. [17] because the bivariate model is
then reduced to two independent univariate models.
Both Eq. [23] and [24] show that in multivariate cases
regression factors for one prior (co)variance component
can be influenced by the other prior (co)variance compo-
nents. Therefore, all regression factors have to be equal
to 1 simultaneously and a multivariate converging algo-
rithm is better adapted. Figure 3 shows the regression
factor for the prior covariance when correct variances
were used using Eq. [24] and when the (co)variances
were set to σ2

k = 40, σ2
l = 20, σkl = −10, σ2

e = 60, and α =
0.5. This curve is different from that for variances be-
cause it is monotonic but has a discontinuity. Although
the factor was 1 with the correct covariance, the rule
of adjusting the covariance downward or upward when
the factor was too low or too high would no longer work.
Figure 4 shows the numerator and the denominator of
the factor. Both curves are almost linear, and they cross
at the value of the correct covariance. Figure 5 shows
the values of the numerator and the denominator of
the regression factor for the variance (with the single-
trait model) when different values of prior variances
are used. Although the curve for the variance is less
linear, the general trend is the same. The difference of
regression curves is due to the fact that in a single-
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Figure 4. Theoretical values (divided by number of
animals) of the numerator (——) and the denominator
(— —) of regression factors of covariance when covari-
ances used ranged from −14 to 14 in Model 3.

trait model the denominator is always positive (Eq.
[17]), whereas for covariance it can be negative or equal
to 0, generating the discontinuity (Eq. [24]). Therefore,
with covariance, Cov(ûip,ûj) > Cov(ûip,ûjp) is no longer
equivalent to rij > 1, as in Reverter (1994). Method ℜ
should rather be expressed as follows: if Cov(ûip,ûj) >
Cov(ûip,ûjp), prior (co)variance is understimated and if
Cov(ûip,ûj) < Cov(ûip,ûjp), prior (co)variance is overes-
timated.

Figure 5. Theoretical values (divided by number of
animals) of the numerator (——) and the denominator
(— —) of regression factors of variance used when vari-
ances ranged from 10 to 90 in Model 1.

Figure 6. Values of the regression factors with the first
simulated data set (SIM-1) for changes in the number of
records when the additive variance used varied from 10
to 90 and residual variance was fixed at 60.

Validation Study with Simulated Data

Single Trait with No Maternal Effect. The values of r
obtained with the single-trait data set (SIM-1) are
shown in Figure 6. The shape of r is very similar to
that in the theoretical analyses, and the value of the
additive variance is very close to the simulated one.
It may be concluded that simple models used in the
theoretical analyses were adequate for predicting prop-
erties of Method ℜ with more complicated models.

Single Trait with Maternal Effect. With the data set
SIM-2, regression factors of 1 were obtained for one
random sample at σ̂2

k = 40.1, σ̂2
l = 18.1, σ̂kl = −8.6. Figure

7 presents the regression factor as a function of the
covariance when variances were set at their converged
values. A subsequent graph in Figure 8 shows the nu-
merator and the denominator of the last factor. Again,
these figures are very similar to those obtained in theo-
retical studies.

With the data set SIM-3 (with the positive covari-
ance), regression factors of 1 were obtained for one ran-
dom sample at σ̂2

k = 40.6, σ̂2
l = 18.1, σ̂kl = 10.2. Figure 9

shows the regression factors for different prior covari-
ances obtained with data set SIM-3. Again, r = 1 occurs
close to the simulated value of 10; however, the shape
of the curve is a mirror image of that in Figure 7, in
which the covariance was negative. Both curves are
monotonic with the exception of discontinuity, but
whether they are increasing or decreasing depends on
each case. Also, the discontinuity can correspond to a
positive or negative prior correlation. Combination of
these situations can result in different consequences
on converging algorithms.



Druet et al.612

Figure 7. Values of regression factors with the second
simulated data set (SIM-2, covariance = −10) when the
covariance used varied from −14 to 14 (−0.52 to 0.52 ge-
netic correlation) and variances used were the estimated
ones for this sample.

Consequences of Different Method ℜ Algorithms

For models used in this study, convergence was
reached at regression factors numerically equal to 1.
For covariance, discontinuity and whether the curve is
increasing or decreasing has an important effect on
computations. First, a binary iteration strategy would
not work. The multiplicative iterative algorithm pre-

Figure 8. Values of the numerator (——) and the de-
nominator (— —) of regression factors of covariance used
when covariance varied from −14 to 14 (−0.52 to 0.52
genetic correlation) and the variances used were the esti-
mated ones for this sample (data set SIM-2).

Figure 9. Values of regression factors with the third
simulated data set (SIM-3, covariance = 10) when the
covariances used varied from −14 to 14 (−0.52 to 0.52
genetic correlation) and the variances used were the esti-
mated ones for this sample.

sented by Reverter (1994) as in Eq. [3] will not work
reliably because the regression factor for covariances
can be so large that the new (co)variance matrix may
become nonpositive definite. Other problems can also
result from application of this method. For instance, if
the regression factor is always positive and smaller
than 1 for positive prior covariance (e.g., Figure 7),
application of the method would lead to a covariance
of 0. Problems would also be present with the secant
method (Misztal, 1997), in which the convergence would
depend on the choice of starting values and heuristics
built into that algorithm. One way the secant method
and the binary iteration strategy could work would be to
use differences between numerators and denominators
instead of regression factors, thus avoiding division by
0. An attempt was made in this direction, but it was
only partly successful because of the nonlinearity of
the differences.

Table 1 shows the total number of preconditioned
conjugate gradient rounds needed for convergence with
the three different algorithms and 10 sets of starting
values for SIM-4, -5, and -6. The multivariate multipli-
cative iterative algorithm consistently converged to the
appropriate parameter estimates, whereas both the se-
cant method (Misztal, 1997) and multiplicative itera-
tive algorithm failed to consistently find a set of param-
eter estimates where all regression factors were equal
to 1. This failure to converge appropriately was caused
by the relationship of the initial value of the covariance
component with the point of discontinuity in the curve
of regression factors and the true value of the covari-
ance. In SIM-5, for example, the multiplicative iterative
algorithm moved the solution for the covariance compo-
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Table 1. The number of total rounds of preconditioned conjugate gradient algorithm to reach convergence with
Method ℜ with three different variance components updating algorithms for three samples (data sets SIM-4,

-5 and -6) with 10 different starting values for prior (co)variances

Initial prior (co)variances Data set SIM-4 Data set SIM-5 Data set SIM-6

σ2
e σ2

k σkl σ2
l MIAa MMIAb Secantc MIA MMIA Secant MIA MMIA Secant

55.00 40.00 −15.00 20.00 4,718 4,786 3,008 DIVd 3,972 DIV 8,124 4,604 DIV
60.00 20.00 5.00 15.00 DIV 2,186 DIV DIV 5,314 DIV 4,558 5,048 2,112
50.00 30.00 −10.00 30.00 4,558 4,656 3,680 DIV 3,750 DIV 6,854 4,332 DIV
30.00 15.00 15.00 40.00 DIV 3,966 DIV DIV 2,840 DIV 6,990 4,116 DIV
85.00 10.00 −5.00 10.00 DIV 4,136 DIV DIV 6,440 DIV 7,040 5,992 DIV
45.01 40.00 −0.01 15.00 DIV 4,842 DIV DIV 4,400 DIV 8,516 4,078 DIV
65.00 20.00 5.00 10.00 DIV 3,432 DIV DIV 5,924 DIV 3,252 5,448 DIV
20.00 70.00 0.01 10.00 DIV 7,306 DIV DIV 7,276 DIV 8,772 3,604 DIV
30.00 40.00 −0.01 30.00 DIV 5,820 DIV DIV 5,756 DIV DIV 2,944 DIV
70.00 20.00 −10.00 40.00 3,510 3,598 4,182 DIV 4,822 DIV 7,310 4,830 DIV

aMIA = multiplicative iterative algorithm as described in Eq. [3].
bMMIA = multivariate multiplicative iterative algorithm as described in Eq. [4].
cSecant = secant method (Misztal, 1997).
dDIV = divergence, the method was not able to find (co)variances for which regression factors were all equal to 1.

nent toward the point of discontinuity for all initial
values < −1.29 and toward 0 for all initial values > −1.29.
Therefore, the multiplicative iterative algorithm would
not converge.

One disadvantage of the multivariate multiplicative
iterative algorithm was its slower convergence com-
pared with the secant method (Misztal, 1997) for models
without covariances. Recently, Druet et al. (unpub-
lished data) showed that the multivariate iterative al-
gorithm can be accelerated by increasing updating steps
with slight transformation of Eq. [4]:

Gn+1 =










ûipA−1ûi ûjp A−1ûi

û′
ip A−1ûj û′

jp A−1ûj









û′
ip A−1ûip û′

jp A−1ûip

û′
ip A−1ûjp û′

jp A−1ûjp





−1




γ

Gn

[27]

where γ is a constant higher than 1 chosen in order to
accelerate convergence. This factor increases the differ-
ence between successive updates so that the conver-
gence is reached faster. The optimal value of γ is differ-
ent for each data set. Too high a value could make the
system diverge when changes become so big that the
difference between successive updates and the real (co)-
variance components are increasing.

Implications

Method ℜ has to be used cautiously because it could
result in poor estimates in several cases: low total num-
ber of records, suboptimal proportion of sampled re-
cords, poor distribution of sampling of records in effects,
or extremely high number of records per level of a ran-
dom effect. Despite the lack of known theoretical prop-
erties, Method ℜ was successful for estimation of vari-
ance components in studies in which large data sets
were essential and other methods were too expensive.
Fast implementation of Method ℜ was possible because

functions of regression factors for variances were con-
tinuous and monotonic. For covariances, functions of
regression factors have a discontinuity point, and im-
plementations based on regression factors do not work
reliably. One solution is to use a matrix approach in
which numerators and denominators are regrouped in
a different matrix. One such formula converged reliably
for all models tested.
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Appendix A

Derivations of regression factors for simplified models were reached using rules derived as follows. For a single
trait, the upper part of the regression factors was as follows:

ûp û = ∑
na

i=1

ûi p ûi [28]

After multiplication of solutions in Eq. [15] and [16],

ûp û = ∑
na

i=1

αnr
2uiui + αnr∑

nr

j=1

eijui + nr∑
αnr

j=1

eijui + ∑
nr

j=1
∑
αnr

n=1

eij ein

(nr + λ)(αnr + λ) [29]

Expected values of all the used quadratic forms are developed below:

E



∑
na

i=1

ui ui





= na σ
2
a [30]

Because the mean for the additive effect is 0,

E
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α nr
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= E
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= 0 [31]

and because the covariance between the residuals and the additive effects is 0,
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∑
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α nr
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ei jei n









= α nr na σ
2
e [32]

if j = n, then

E



∑
na

i=1

ei j ei n





= na σ
2
e [33]

but if j ≠ n, then the same expression is expected to be equal to 0 because different residuals are independent.
Similar developments and rules can be applied for the lower part of the regression factors. For the model

involving animal relationships, the same rules were applied, but new rules were added, with new expected values
of quadratic forms:

E



∑
np

i=1

es i ep i





= 0 [34]

because the residuals for each sire and its progeny were independent. In addition,

E



∑
np

i=1

us i up i





= np 0.5 σ2
a [35]

where 0.5 is the additive relationship between a sire and its progeny. Finally, in the multiple-trait model,

E



∑
na

i=1

ek i j el i j





= 0 [36]

because residual covariance between trait k and l was assumed 0, and



Covariances with Method ℜ 615

E



∑
na

i=1

uk i ul i





= na σ
2
kl [37]

by definition of the additive covariance, and because means of both traits are assumed equal to 0. Developing Eq.
[29] with the rules presented resulted in Eq. [17] or [38]:

E(r) = E
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rσ

2
a + αnrσ

2
e)

(nr + λ)(α2n2
rσ

2
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2
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[38]

Appendix B

Equation [17] can be derived with used variance as variable:

r(σ̂2
a) = (αnr + λ̂)(nrσ

2
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