
Candidate gene markers associated with somatotropic axis
and milk selection<

I. Parmentiera, D. Portetellea, N. Genglerb,1, A. Prandic, C. Bertozzia,
L. Vleuricka, R. Gilsond, R. Renavillea,*

aBiology and Biochemistry Applied Department, Gembloux Agricultural University, 5030 Gembloux, Belgium
bAnimal Science Unit, Gembloux Agricultural University, 5030 Gembloux, Belgium

cUniversity of Udine, 33100 Udine, Italy
dSemex Belgium, 4920 Sougnez-Remouchamps, Belgium

Received 5 February 1999; accepted 5 February 1999

Abstract

One of the obstacles to progress in dairy cattle selection is that milk production traits are only
expressed after the first calving. However, the use of the quantitative trait loci (QTL) technology
will improve the efficiency of dairy industry with a positive image for the consumers. QTL are
part of the genome showing a preponderant action and explaining the major part of variation of
the trait production. At the present time, the two major strategies developed to detect such QTL
are the candidate gene approach and the positional genetics approach. The somatotropic axis
contains the most promising candidates in this respect, as it strongly regulates milk production.
Then, the identification of favorable QTL associated with the somatotropic axis that are
significantly correlated with genetic merits for milk production could lead to more effective
selection programs. © 1999 Elsevier Science Inc. All rights reserved.
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1. Introduction

Most economically important traits of dairy cattle are determined by the additional effects
of nutritional, environmental, and genetic factors.

By selecting the best performing animals on phenotypic variations (milk, fat, or protein
yield) as reproducers, breeders have increased the frequency of favorable alleles influencing
the interesting traits. Moreover, in dairy cattle, genetic progress is essentially based on the
use of genetically superior sires whose identification requires time (5–6 years) and money
(1,000,000 US$). Furthermore, the exact molecular nature of the target genes remains essentially
unknown, particularly for production traits that are often controlled by a pool of genes.

With the advances in molecular biology, the identification of the genes underlying
livestock production traits—called quantitative trait loci (QTL)—is now possible and is
likely to lead to more efficient breeding programs. For selection programs, the benefits of
identification of QTL are threefold: first, they can increase the accuracy of selection by
providing more information on an animal’s breeding value (1); second, they can be identified
at earlier stages of life (embryo or neonate) and then be used to decrease the generation
interval (2); and finally, they can be used to increase the selection differential by allowing
preselection among larger numbers of candidates for later selection (3).

Although a number of strategies can be envisaged to identify candidate gene markers,
essentially two approaches are presently developed to estimate the favorable QTL implicated
in a specific production trait. The first method, the positional cloning, consists of the
localization of the genes of interest using marker–QTL associations covering the whole
genome. This approach can be divided in the following steps: 1) identification of chromo-
somal regions containing QTL of interest (10–20 cM), 2) specification of QTL location
within these regions (5 cM), 3) identification of markers in tight linkage to the QTL (1–2
cM), and 4) identification of potential candidate genes in this region. The positional genetics
approach is based on mapping QTL to progressively narrower chromosomal regions, using
a battery of microsatellite markers, until suitable candidate genes are identified. Based on the
maximum likelihood multilocus linkage analysis that accounts for variance heterogeneity of
the phenotypes, different authors reported the presence of QTL affecting milk yield and
composition on numerous chromosome regions including chromosomes 1, 2, 5, 6, 9, 10, 14,
16, 18, 20, and 23 (P, 0.05 to P, 0.00001) [4–6]. On the other hand, markers with effects
on somatic cell score were located on chromosomes 5, 22, and 23 (P, 0.005) [6]. In this
strategy, the next step of research is the chromosomal microdissection of target-specific areas
of the involved chromosome and then identification of the actual underlying genes. However,
the informativeness of the family material may likely become a limiting factor for finemap-
ping efforts [2].

The second strategy uses the candidate gene approach. This approach consists of the study
of different genes potentially involved in the physiological process (e.g., milk proteins
synthesis) and to determine for each gene, the allele that results in the interesting phenotype
(e.g., rennet coagulation properties). Based on the knowledge of the genetic control of the
studied physiological process (e.g., role of the somatotropic axis in regulation of lactation),
the identification of polymorphic sites and the evaluation of the allelic differences of the
candidate genes, among animals of different phenotypic merits, offer potential for easy
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identification of gene markers associated with phenotypic merit. Polymorphisms may affect
directly gene expression by changing splicing of RNA, stability of RNA, rate and regulation
of gene transcription, or amino acid sequence of the gene product.

Various studies have shown that a number of single genes associated with mammary
growth, development, and function are excellent candidates for linkage relationships with
quantitative traits of economic importance. Among the putative candidate genes, the milk
protein loci have been studied most extensively, and a number of excellent reviews described
the general subject of milk protein genetic polymorphism and its association with milk, fat
and protein yields, milk composition, heat coagulation of milk, or rennet coagulation
properties [7–9].

As reviewed in this special issue by Bauman [10] and Baldi [11], administration of
recombinant growth hormone (GH) to dairy animals dramatically increases milk production
and demonstrates the critical role of the somatotropic axis in regulation of lactation. Also,
this mini-review focuses on the possible relationships between candidate genes, associated
with the somatotropic axis, and quantitative and qualitative milk synthesis.

2. GH plasma levels and milk selection

Essentially under the control of the hypothalamic GH-releasing factor (GHRH) and
somatostatin (SRIH) GH has a tissue-specific action that can be direct through GH receptor
(GHR) or indirect via insulin-like growth factor-I (IGF-I) [12]. Effects of this action are
modulated by several other hormones [13]. Some parameters of GH secretion (for example,
frequency of GH peaks, total daily GH secretion, or GH response to GHRH stimulation)
were associated with higher genetic values in studies comparing GH secretion of more highly
selected and control lines of cattle [14–16], sheep, [17] or pig [18]. On the contrary, Weber
et al. [19] recently reported that selection for milk yield in multiparous Holstein cows
increased mean GH and GH peak height but did not affect GH peak frequency or IGF-I
plasma levels. Furthermore, Klindt [20] found significant negative correlations between GH
peak frequency and predicted difference estimates of milk, milk fat, and milk protein yields
(20.65,20.42 and20.44, respectively) in a small sample of dairy bulls. In summary, even
though numerous researchers concluded that GH secretion or release could be used as
indicator traits in dairy industry, conflicting reported data, probably due to its random
nycthemeral synthesis and its moderate repeatibility, make it difficult to propose at the
present time GH measurements in the selection scheme.

3. Somatocrinin (GHRH) and GHRH receptor polymorphisms

In the cascade of events that control the pituitary GH secretion, the hypothalamic factor
GHRH and its receptor directly control GH synthesis by the somatotrope cells. In 1995,
Moody et al. [21] described a restriction fragment length polymorphism (RFLP) in the
GHRH gene using theHaeIII restriction enzyme. In a preliminary study on 89 artificial
insemination (AI) Holstein–Friesian bulls, we have noted that the rare genotype obtained
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after polymerase chain reaction (PCR)–RFLPHaeIII restriction enzyme (AA, 7.7%) is
significantly favorable for fat percentage and fat yield (P, 0.01). However, this observation
must be confirmed on a higher number of animals. Recently, Connor et al. [22] reported a
polymorphism at the GHRH receptor gene (located on chromosome 4) using theEco57I
enzyme that could modify GHRH stimulation of the somatotrope cells (E.E. Connor,
personal communication, 1998).

4. Pituitary-specific transcription factor (PIT-1) polymorphism

Biochemical and ontogenetic studies have shown that Pit-1 is the critical cell-specific
transcription factor for activating expression of the prolactin (PRL) and GH genes in the
anterior pituitary gland [23]). Pit-1 has subsequently been shown to activate other pituitary
genes, including the Pit-1 gene itself [24,25], the GHRH receptor gene [26], the gene coding
for theb subunit of thyroid-stimulating hormone (TSH) [27,28], and the pituitaryb2-thyroid
hormone receptor [29].

The regulatory regions recognized by Pit-1 within the PRL, GH, and Pit-1 gene promoters
have been demonstrated to be required for appropriate pituitary-specific expression of these
genes both in cultured cell lines and transgenic animals [30–32]. In humans, different
mutations of the Pit-1 gene have also been reported in patients with hypopituitarism [33] or
with sporadic combined pituitary hormone deficiency [34].

Pit-1 is a 291-amino acid protein with a DNA-binding POU domain. This POU domain
is characteristic of a family of genes, including Pit-1, Oct-1, Oct-2, and unc-86 [35]. The
POU domain is divided into two well conserved regions. The C-terminal half, called the
POU-homeodomain, encodes a low affinity DNA-binding domain, whereas the N-terminal
half, called the POU-specific domain, confers high affinity of the POU domain and partic-
ipates in protein–protein interactions [23].

In cattle, Woolard et al. [36] have reported aHinfI RFLP in exon 6 of the Pit-1 gene that
has been assigned to chromosome 1 [37]. Digestion of the PCR products with the enzyme
revealed two alleles: A (HinfI2) and B (HinfI1). The frequencies of the three genotypes
generated by the two alleles in a sample of 89 Italian AI Holstein–Friesian sires were 2.2,
31.5, and 66.3% for AA, AB, and BB, respectively [38]. In this study, fixed and mixed linear
models fitted on daughter yield deviations for milk and on deregressed proofs for confor-
mation traits showed a superior effect of allele A for milk (173.66 44.6 kg; P, 0.1) and
protein yields (2.936 1.45 kg; P, 0.05), inferior for fat percentage (20.0386 0.018%;
P, 0.1), and superior for body depth (0.3016 0.161; P, 0.1), angularity (0.2356 0.0.120;
P, 0.1), and rear leg set (20.3936 0.227; P, 0.1). Recently, an additional study has been
realized in our laboratory on 59 AI Holstein bulls commercialized by Semex Alliance
(Canada) (unpublished data). In this sample, the frequency of the AA genotype was higher
than in the Italian bulls (13.5%vs2.2%; P, 0.05). The frequencies of the two other patterns
were, respectively, 37.3% for AB and 49.2% for BB patterns. The statistical analysis
revealed similar associations as for our first study with a significative superiority of the A
allele on the B allele for milk yield (1222.46 18.5 kg; P, 0.001) and protein yield (9.176
0.65 kg; P, 0.001) but an inferiority for fat yield (22.296 0.51 kg; P, 0.001). Finally,
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using multiple marker mapping of QTL for milk production traits on chromosome 1 in
Canadian Holstein bulls, Nadesalingam et al. [39] found a QTL affecting the milk and
protein yield and suspected a possible linkage with the described Pit-1 polymorphism (J.
Nadesalingam, personal communication, 1998).

These preliminary investigations indicate that Pit-1 is a promising new possibility to select
for increased protein and milk yield through selection for the A allele. However, this
hypothesis must be validated on a large number of animals and for other breeds before
definitive conclusions can be made.

5. Growth hormone polymorphism

Considering its essential role in lactation processes, the GH gene (associated to chromo-
some region 19q26-qter in bovine [40]) is a potential target for studies of molecular variation
in association with genetic merit of dairy breeds. Using different restriction enzymes,
numerous polymorphisms have been reported in bovine species.

Because of an insertion of a T at position1837 and a C-G transition at position1838,
a MspI RFLP is present in the third intron of the bovine GH gene [41]. Høj et al. [42]
observed a difference in allele frequencies at the GH loci between two Danish and Norwe-
gian lines, theMspI (2) haplotype being more frequent in the line selected for milk fat. For
Furu et al. [43], theMspI site is located in the intron III and near a transcription factor
binding site, and theMspI ( 6 ) pattern is associated with a 0.9-kb insertion/deletion in the
39 flanking region potentially carrying transcription regulator sites. For these authors, this
polymorphism does not result in differences of indicators for genetic merit in 100 Holstein
sires.

With the PCR–RFLP technique using theAluI restriction enzyme, Lucy et al. [44]
revealed two alleles responsible for alternative forms of bovine GH with a Leu or Val residue
at position 127. Injection of recombinant bovine GH with a valine residue corresponding at
the Leu/Val polymorphic locus to lactating cows has been shown to improve fat-corrected
milk production more than GH-Leu [127] administration [45]. This observation suggests that
the Val allele genotype is better for milk production. On the other hand, Lucy et al. [44]
reported a significant higher predicted transmitting ability for milk yield for Val/Val geno-
type Jersey cows, but no significant effect was found in their samples of Holstein, Guernsey,
Ayrshire, or Jersey bulls. However, Furu et al. [43], Schlee et al. [46], and van der Werf et
al. [47] observed no significant effect of the Leu/Val polymorphism on milk trait breeding
values of Simmental, Holstein, or Jersey sires.

A third RFLP in the GH using theTaqI restriction enzyme was described in the bovine GH
gene by Rocha et al. [48]. In milk production, Falaki et al. [49–50] reported an association
between this GH-TaqI polymorphism and milk traits for Simmental cows but not for
Holstein–Friesian bulls. The GH-TaqI polymorphism is due to an insertion/deletion of
'1000 bp in the 39 end of the gene, between theEcoRI and theTaqI restriction site [42,51].
Finally, a positive association of somatotropin gene polymorphism at the exon 5 with
selection for milk yield was reported in Holstein cows [52].

In the bovine GH gene, there are also other variations sites that could be interesting for
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association studies with milk production traits. Hecht and Geldermann [53] have shown
seven mutations in the GH gene. Six of them have been identified in the 59-flanking region
and one in the intron I. Some of these variable sites are also potential binding site for
trans-acting factors (CAAT/enhancer binding protein, polyoma virus enhancer A binding
protein 3, thyroid hormone response element) and therefore possibly are involved in the
expression of the growth hormone gene. Recently, Rodrigues et al. [54] identified a poly-
morphic site in the promoter region of the GH gene. This polymorphism consists of the
absence of an AAG trinucleotide localized 9 nt upstream from the TATAAA sequence.
Unfortunately, in these two last studies, the association between production traits and the
polymorphism was not examined.

Therefore, it appears that selection for milk production traits based upon conflicting GH
genotype data is not a promising method. The major problem to concluding definitively
about the opportunity to select animals on GH genotype is often the limited number of
genotyped animals in the published studies.

6. GH receptor polymorphism

The cDNA of the bovine transmembrane GHR has been sequenced by Hauser et al. [55].
It consists of 9 coding exons and is associated to chromosome 20 [56]. As deduced from the
human nucleotide sequence, the GHR is a protein of 620 aa comprising an extracellular
hormone binding domain of 246 aa, a single 24-aa transmembrane region, and a long
cytoplasmic domain. The extracellular domain contains seven cysteine residues and five
potential N-linked glycosylation sites and two boxes important for the signal transduction
after binding of the hormone to its receptor [57,58].

Using the restriction enzymesTaqI, BglII, DraI, EcoRV, HindIII, PstI, and PvuII and
hybridization with a heterologous rabbit GHR cDNA probe, Høj et al. [42] did not observe
any RFLP for Red Danish calves and Norwegian Red heifers. In opposite to this study and
after hybridization with a homologous cDNA probe containing the coding sequence for the
intracellular C-terminal part of the receptor, we have identified six restriction enzymeTaqI
bands (7.1, 6.2, 5.7, 5.4, 4.2, and 3.3 kb) that give nine genotypes in Holstein–Friesian AI
bulls [49]. The effect of this polymorphism on values for milk protein percentage was highly
significant (P, 0.005) and favorable for the rare (6.6%) 5.7- and 5.4-kb patterns. An other
interesting point of view results in the segregation of a QTL on chromosome 20 reported by
Arranz et al. [59] that affects milk yield and composition in a Holstein–Friesian dairy cattle
population. The interval bracket by the microsatellites contains the GHR gene. This study
identifies at least two QTL alleles, one of which causes an increase in milk volume
accompanied by a dilution in fat and in protein concentrations. It would be interesting to
correlate the two approaches (candidate gene approach and positioning cloning) in a genetic
evaluation of the same herd to determine if the QTL on chromosome 20 is associated with
the polymorphism observed for the GHR.

Recently, Moisio et al. [60] detected three variants in the 39-flanking region of the bGHR:
GHR311, GHR320, and GHR325. The longer alleles GHR320 and GHR325 are more frequent
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in the selected Finnish dairy breeds, whereas the shortest allele GHR311 predominates in the
native breeds.

7. IGF-I and IGF-I receptor polymorphisms

Mapped on chromosome 5 [61], the IGF-I gene showed aSnaBI polymorphism in the 59
flanking region [62]. However, in 152 Holstein bulls from selected sires and AI organiza-
tions, predicted transmitting abilities for fat, protein, and net merit did not tend to be
significantly related to a IGF-I/SnaBI polymorphic form [63]. Moreover, in the same study,
it was reported that noSnaBI polymorphism at IGF-I gene and noAluI polymorphism at GH
codon 127 interaction effects were detected. Moreover, Ge et al. [62], using the single strand
conformational polymorphism method, noted a significant difference in allele frequencies in
76 genotyped Angus cattle from lines selected for high or low blood serum IGF-I concen-
tration that could influence the lactation process. Finally, using the restriction enzymesTaqI,
BglII, DraI, EcoRV, HindIII, PstI, PvuII, and hybridization with a heterologous rabbit IGF-I
cDNA probe, Høj et al. [42] did not observe any RFLP for Red Danish calves or Norwegian
Red heifers.

In 1996, Moody et al. [64] located the IGF-I receptor on bovine chromosome 21.
Digestion of IGF-I receptor PCR products withTaqI restriction enzyme revealed a poly-
morphism with two alleles (A and B). However, these authors concluded that usefulness of
this IGF-I receptor polymorphism in studies designed to identify economically important
quantitative trait loci in cattle may be limited because of the low B allele frequency and
because this allele is only present inBos indicuscattle. To our knowledge, no new
information has been published to validate or dispute this hypothesis.

8. Conclusions

One of the obstacles to progress in dairy cattle selection is that milk production traits are
expressed only after the first calving. As reported in this mini-review, gene variations at the
somatotropic axis could improve the efficiency of dairy industry by an early selection of an
interesting animal. Other genes, like genes encoding for milk proteins, PRL and its receptor,
the signal transducer and activator of transcription STAT5 that acts in the GH/PRL signal
transduction pathway and perhaps presently unknown genes, also could contribute to the
progress in genetic selection of farm animals. Before its direct application in dairy farm, this
genetic approach requires validation on a sufficient number of animals, but also the devel-
opment of performant statistical programs for an exact evaluation of the relationships
between milk yield and composition and gene variabilities. Moreover, the polygenic control
of a production like milk synthesis also limits the direct impact of one unique gene and
requires a multigene approach in selection schemes.
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