
On the Stylized Fact of the Firm Size Distribution∗

Lionel Artige†‡

HEC - University of Liège

Alexandre Reginster

HEC - University of Liège

July 13, 2018

Abstract

Due to truncated datasets and flawed statistical methods, the firm

size distribution (FSD) does not yet have its undisputed stylized fact.

Using comprehensive data on Belgian private firms, this paper proposes to

estimate and test a new parametric distribution, called Generalized Pareto

with cutoff (GPwC), and compare it to the commonly used Pareto and

lognormal distributions. Our statistical test and graphical representations

show that the GPwC is the best approximation of the entire Belgian FSD.

This suggests that such a distribution is generated by a stochastic model

that varies with firm size.
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1 Introduction

The firm size distribution (FSD) is the result of three dynamic processes of

firms in a market economy: growth (or decline), entry and exit. The charac-

terization of the empirical distribution, which is necessary to validate candidate

models of firm dynamics, seems to be an endless debate. The literature has

nonetheless established one stylized fact: the skewness of the FSD. Studying

French enterprises in 1921, Gibrat (1931) shows that the distribution of the

number of employees in French establishments is skewed to the right, i.e., there

are many small and a few large establishments. This skewness has been con-

firmed ever since.1 Regarding the precise shape of the FSD, the findings of the

literature have oscillated between two competing distributions: the lognormal

and the Pareto distributions.2 This inconclusiveness can be explained by the

use of truncated datasets and flawed statistical methods. Axtell (2001) is the

first study using an entire population of firms’ employees and concludes that

the US size distribution of firms is well approximated by a Zipf distribution, i.e.

a Pareto distribution with a scale parameter equal to one. Since Axtell (2001),

the Pareto FSD distribution has been assumed extensively in theoretical models

of firm dynamics3. To the best of our knowledge, the result of Axtell (2001)

has not been confirmed by any other study using population datasets, which is

lacking to establish the Zipf distribution as the stylized fact of the FSD.

1The large number of small firms is typical of a market economy. In the centrally-planned

economies of the Soviet Bloc, there were very few entries and exits, average firm size was

large, and growth mainly occurred through mergers (Kornai, 1992, Chap. 17).
2Gibrat (1931), Kalecki (1945), Hart and Prais (1956), Hart (1962) and Hart and Oulton

(1997) find a lognormal approximation of FSD while Zipf (1949), Simon and Bonini (1958),

Steindl (1965) and Okuyama et al. (1999) conclude in favor of the Pareto distribution.
3See, for instance, Antras and Helpman (2004); Helpman et al. (2004); Luttmer (2007);

Rossi-Hansberg and Wright (2007); Chaney (2008); Gabaix and Landier (2008); Eaton et al.

(2011)
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This paper proposes to test the robustness of Axtell (2001)’s result by using

the population of firms in Belgium.4 Our database includes the exact number of

employees5 of all registered private firms6 in Belgium for each year from 2006 to

2012. In 2012, for instance, there were 212,889 firms in Belgium hiring more than

2.77 million employees. The average size was 13.1 employees while the median

size was 3 employees, emphasizing the right-skewness of the distribution.

Our results on Belgian firms do not confirm Axtell’s findings. Moreover, we

consider his method to be flawed and therefore question his conclusion for the

US FSD. His method proceeds in two steps. First, he plots the US distribution

of firm sizes by bins on a log-log scale and, by visual inspection, observes a

straight line as required by a Pareto distribution. Although he notices concave

deviations at both ends of the distribution, he does not consider them as a cause

for concern. Second, by using ordinary least squares (OLS), he computes the

slope and the R-squared of the regression line and concludes in favor of the Zipf

distribution. Both methodological approaches are questionable. The log-log

plot is actually misleading for firm sizes because the linearity may only concern

a small share of firms. As for the OLS statistical method, it is not appropriate

and should not be used to assess the fit to a Pareto distribution (Clauset et al.,

2009).

As an alternative visual inspection, we propose to plot the slope of the

survival function of the empirical distribution on a log-log scale. The slope

4The database was obtained from the Belgian Ministry of Economy (Source: SPF

Economie - Direction générale Statistique - Statistics Belgium).
5In Belgium, each enterprise must provide its list of employees to the social security

administration every quarter. Our database contains the exact number of employees of the

last quarter. Information on the exact number of firm size gives total flexibility to construct

size bins for the distribution.
6The firm may be a combination of several legal units if they share a common economic

activity.
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must be constant across sizes for a Pareto distribution and a strictly concave

function of size for a lognormal distribution. Let Γ(x, x + 1) be the slope of a

log-log survival function between x and x+ 1, where x is firm size measured by

the number of employees:

Γ(x, x+ 1) = ln [Pr(X ≥ x+ 1])− ln [Pr(X ≥ x)]
ln [x+ 1]− ln [x]] (1)

The plot of Γ(x, x+ 1) for the Belgian firm sizes in 2012 is shown in Figure

1. The result is unambiguous: the slope of the survival function is neither

constant over the entire size range nor a strictly concave function of firm size.

The slope is strongly decreasing between size 1 and 50 (representing 97% of the

distribution), fairly constant between size 50 and 250 and again decreasing for

sizes over 250. As a result, neither the Pareto nor the lognormal distribution

can fit the entire Belgian firm size distribution. Moreover, we argue that the

analysis should not focus only on the upper tail of the distribution. This focus

makes sense for city sizes as there are very few new and vanishing cities and

most people live and move in very few large growing cities. The dynamics of

firms are very different. Many small firms enter the market and compete with

the incumbent firms, which results in many exits and/or diseconomies of scale

for large firms. Therefore, the dynamics of a market economy originates at the

lower tail of the distribution and impacts the upper tail. As a result, we want to

pay attention to the fit at both ends of the distribution. To do so, we propose

a new parametric distribution, that we call the Generalized Pareto with Cutoff

(GPwC) and use the classical minimum distance estimation method to evaluate

the goodness of fit of the three parametric approximations. The statistical test

confirms the graphical assessment: the GPwC is the best approximation of the

entire Belgian firm size distribution.

The rest of the paper is organized as follows. Section 2 introduces the Gener-
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Figure 1: Solid line: Smoothed Γ(x, x + 1) calculated from the data in 2012.
The smoothing procedure is a central moving average with span equal to 50.
Dashed line: Shows the theoretical value of Γ(x, x+ 1) for the Zipf case. Dotted
line: Empirical cumulative distribution function (CDF).

alized Pareto with cutoff (GPwC) distribution. Section 3 provides the statistical

framework to test and compare the goodness of fit of different parametric dis-

tributions. Section 4 gives an application of this framework on our Belgian

dataset. Section 5 concludes.

2 Generalized Pareto with Cutoff distribution

We propose a new parametric distribution that can fit the entire FSD. This

distribution, which we call Generalized Pareto with cutoff (GPwC), may be

expressed as the product of a Generalized Pareto probability density function

(pdf) and an exponential survival function. The former allows approximating

the concave deviation for small firms and the linear part of the empirical dis-

tribution while the latter allows adjusting the concave deviation for large firms.

The GPwC is defined by
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f(x; k, σ, λ) = C

σ

[
1 + kx

σ

]−(1+ 1
k )
e−λx for x > 0 (2)

where k > 0 and σ > 0 are respectively the scale and shape parameters of the

standard generalized Pareto distribution while λ ≥ 0 is the inverse scale param-

eter of the exponential survival distribution. C is the normalization constant

that ensures that (2) integrates to unity over its domain (0,+∞). Thus,

C−1 = En (z) ezk−1 (3)

where En (z) ≡
∫∞

1
e−zt

tn dt is the exponential integral function with n ≡ 1 + 1
k

and z ≡ λσ
k > 0.

The potential better fit of the GPwC to the empirical distribution comes at a

cost of an additional scale parameter, λ, compared to the Pareto and lognormal

distributions. However, this parameter is meaningful economically. The higher

λ, the lower the share of employees working in large firms. The scale parameter,

σ, mostly controls the lower end of the distribution (small firms). The higher

σ, the more concave the GPwC at the lower end. Finally, the shape parameter

k mostly controls the slope of the distribution. The higher k, the flatter (less

right-skewed) the GPwC.

3 Goodness of Fit

We use the classical minimum distance (CMD) method to estimate the param-

eters and test the goodness of fit of the parametric distributions. Let f(θ, x) be

the probability density function of any parametric size distribution with a P ×1

vector θ of unknown parameters. The size x must either be greater than 0 or

a truncation parameter u > 0 if such a parameter is included in θ. In order to

fit this distribution to a dataset of N discrete observations of firm sizes, f(θ, x)
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is discretized according to the same binning procedure used for the data. We

group firms into S bins with S > P . Each bin starts from a lower bound, ai,

and ends at an upper bound, ai+1, which corresponds to the lower bound of the

following bin. For the first bin, a1 = 0, or possibly a1 = u, and the Sth bin has

an upper bound aS+1 = +∞. Once the bins are determined, we define ni and

p̂i = ni/N respectively as the number and share of observations in bin i. Let

h(θ) be the discretized version of f(θ, x), such that for each bin, we have:

hi(θ) =
∫ ai+1

ai

f(θ, x)dx (4)

The vector of unknown parameters θ is estimated by minimizing the following

expression (Wooldridge, 2010):

θ̂ = arg min
θ∈Θ

[p̂− h(θ)]′ Σ̂−1 [p̂− h(θ)] (5)

where Σ̂ should, in principle, be the variance-covariance matrix of a multinomial

distribution. This matrix is not invertible due to perfect collinearity in the

probabilities. Therefore, Saporta (2006) suggests to reduce the vectors p and

h(θ) by removing their last row and to use the following weighting matrix of

size (S − 1)× (S − 1):

Σ−1 =



1
h1

+ 1
hS

1
hS

· · · 1
hS

1
hS

1
h2

+ 1
hS

· · · 1
hS

...
...

. . .
...

1
hS

· · · · · · 1
hS−1

+ 1
hS


(6)

where hi is the short-hand for hi(θ).

Following Wooldridge (2010), a test of adjustment of the distribution to the
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data directly follows from the minimization step:

N
[
p− h(θ̂)

]′
Σ̂−1

[
p− h(θ̂)

]
a∼ χ2

(S−1)−P (7)

and the variance-covariance matrix of the estimated parameters θ̂ is given by:

V (θ̂) =
(
H(θ̂)′Σ̂−1H(θ̂)

)−1
/N (8)

where H(θ̂) is the (S − 1)× P Jacobian matrix of h(θ̂).

4 Application to the Belgian Firm Size Distri-

bution

The empirical FSD in Belgium for 2012 is plotted on Figure 2 (solid line). As

already suggested by Figure 1, we can observe concave deviations at both ends

of the distribution. These are also observed by Axtell (2001) for the US FSD in

1997. Therefore, the Belgian and US FSDs seem to have similar shapes.

In order to approximate the Belgian FSD, we apply the CMD method to

three candidate parametric distributions: Pareto, lognormal and GPwC. First,

we define a binning procedure. Due to the skewness of the empirical distribu-

tion, a natural way is to start with unitary bins for small firm sizes (up to size

4), then have bin width equal to 2 (up to size 10). From size 10 on, twenty

bins with logarithmically increasing width follow, such that they appear con-

stant on a logarithmic scale. Bins are grouped together in case the number of

observations drops below 30. This procedure leads to 23 bins in 2012. Second,

we apply the CMD method to the Belgian data to estimate the parameters of

the lognormal, the Pareto and the GPwC distributions (Table 1). As already

mentioned earlier, the GPwC distribution has an additional parameter relative

7



100 101 102 103 104

Firm size (x)

10-5

10-4

10-3

10-2

10-1

100

P
r[

X
>

=
x]

FSD 2012
Pareto fit
LogN fit
GPwC fit

Figure 2: Solid line: Firm size distribution in 2012. Dashed red line: CMD fit of
the GPwC distribution. Dash-dot line: CMD fit of the lognormal distribution.
Dotted line: CMD fit of the Pareto distribution.

to the lognormal and Pareto distributions. This parameter, λ, aims at fitting

the concave deviation at the upper tail of the firm size distribution. This de-

viation has been noticed many times in the literature on FSD7 but has always

been explained by the randomness in the tail of the distribution resulting from

the small number of observations in that region. The results in Table 1 allow

to conclude that the parameter λ is significantly greater than 0 with p-value

< 1% for all seven years. This suggests that there are some specific dynamics

7Okuyama et al. (1999); Ramsden and Kiss-Haypál (2000); Axtell (2001); Ganugi et al.

(2004); Fujiwara et al. (2004); Gabaix and Landier (2008); Di Giovanni et al. (2011); Fujimoto

et al. (2011); Bottazzi et al. (2011)
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(diseconomies of scale, for instance) at the very end of the upper tail.

The three parametric distributions are plotted on Figure 2. By visual in-

spection, the GPwC offers a better fit to the Belgian FSD. The statistical test of

the CMD method allows to confirm the visual assessment and rank the goodness

of fit of the three parametric distributions. At this stage, a warning is in order.

Any parametric distribution is a simplifying model of a complex observed phe-

nomenon and a convenient way for the scientist to analyze it. Therefore, given

the large number of observations in our dataset, it should be no surprising to see

the statistical test reject any model. Table 1 shows that it is indeed the case. All

three parametric distributions are rejected. However, the statistical test allows

to assess how strongly the three distributions are rejected by comparing their p-

values. The GPwC is the least rejected while the Pareto distribution is the most

strongly rejected (see Table 1). The statistical test thus confirms the graphical

assessment by identifying the GPwC as providing the best fit to the Belgian

FSD. Moreover, it gives support to the fact that the lognormal distribution fits

better the Belgian data than the Pareto distribution.

In addition, we can estimate the linear part of the Belgian FSD observed in

Figure 1 by using the GPwC distribution. On a log-log scale, the pdf slope of

the GPwC is given by its first derivative function γ(x):

γ(x) = ∂ ln (f(x; k, σ, θ, λ))
∂ ln(x) = −

[
(k + 1)

σ + k(x− θ) + λ

]
x (9)

where γ(x) tends to a constant as x increases when λ = 0 (Pareto upper tail)

but is never constant when λ > 0. In the latter case, it is possible to estimate

the range of firm sizes for which γ(x) is close to a constant, i.e., for which the

Belgian FSD is almost linear on a log-log plot. Setting a tolerance bandwidth

of 0.01 below and above the slope γ(x) and by using the estimated parameters

for the GPwC distribution from Table 1, we can compute the two cutoffs of the
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Table 2: Distribution of firms and mean employment (Ē) in three size ranges
(Parts I, II and III). For compatibility with the discrete empirical data, mean
employments for parts I and II are not calculated directly from the continu-
ous distributions but are instead calculated from the discrete version of it (see
Section 3).

Parts Interval Data GPwC Lognormal Pareto
% Ē % Ē % Ē % Ē

I [0, 34[ .9461 4.7 .9467 4.6 .9407 4.9 .9142 4.1
II [34, 646[ .0520 98.4 .0514 102.6 .0587 88.0 .0710 137.2
III [646,+∞[ .0019 1, 8803 .0020 1, 644 .0006 1, 189 .0148 ∞

Total [0,+∞[ 1 13.1 1 12.9 1 10.5 1 ∞

range of firm sizes and the slope of the pdf within this range. Our results show

that the Belgian FSD is almost linear between firm sizes 34 and 645 employees

while the slope γ(x) in this range is equal to -2.021, i.e., close to the slope of a

Zipf distribution8. This range of firm sizes [34,645] represents only 5.2% of the

number of firms and 39% of total employment.

Finally, by using the two estimated firm size cutoffs, we can divide the

empirical distribution in three parts: a linear part and two concave deviations

at both ends. In each part, we can compute the number of firms and the average

firm size for the three parametric distributions and compare them with those

of the empirical distribution. Table 2 reports the results, which confirm once

again the better fit of the GPwC.

5 Conclusion

This paper provides a stylized fact for the Belgian FSD by using a comprehensive

dataset on Belgian private firms and appropriate statistical methods: the Gen-

eralized Pareto with cutoff fits well the empirical distribution while the power

8The slope of the survival function of a Zipf distribution equals −2.
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law is rejected for its upper tail. Even though they remain to be confirmed by

other country studies with population data, our results suggest that the model

of firm dynamics depends on firm size. An interesting avenue for research on

such a model is given by Saichev et al. (2010) although their concern focuses on

the upper tail and the Zipf distribution.
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