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Literature review

• Vast literature on the topic of review helpfulness prediction

• but highly fragmented and heterogeneous

• Contradictory and conflicting findings

↪→ literature review to synthesize and critically analyze the extant research.
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NS S Positive Negative Moderated
Product

Rating [30, 43,
42]

[40] [20, 1, 11,
5, 18, 27, 6,
17, 22, 31,
45, 28, 21]

[19, 46] [17] by product type

[31, 28] by product type, I
for E.∗

[45] by length & readability
Rating squared [19, 17] [27, 46, 4,

22]
[5, 45] [45] by length & readability

[28] by product type (negative
for E.?, positive for Se.∗)

Neutral [28] [20, 25, 46,
13]

[28] by product type, I for
E.∗

Extremity [30, 21] [23, 25] [8] [39, 5, 43, 4] [43, 4] by product type, I for
E.∗

[23] by product type, I for
Se.∗

[4] by price, I for low-priced
products

Product type [11, 25,
17]

[39] [43, 6, 4, 31,
28]

[4] S for E.∗

Nb reviews [19, 25] [20, 13] [4, 31]
Price [1, 19,

25, 13]
[43, 4]
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NS S Positive Negative Moderated
Review

Length [30, 40,
19, 43,
25, 42,
13]

[25, 45] [39, 20, 11,
36, 18, 27,
6, 25, 46, 4,
17, 22, 28,
21]

[35, 8] [11] by product type & rating,
S for E.∗ & 1− 2?

[4] by product type & price, I
for Se.∗ & higher-priced prod-
ucts
[6, 31] by product type, I for
Se.∗

[35] by review type (positive ef-
fect for comparatives reviews, negative
effect for suggestive reviews)

[18, 4] threshold nb words
Readability [39, 30,

19, 23]
[40, 45] [1, 11, 27,

22, 13]
[1, 46, 22] [1] by reviewer experience, I

for less experienced rev.
[11] by product type & rating,
S for Se.∗ & 1− 2?

Age [30, 25,
42, 31]

[39, 23,
29]

[36, 19, 31] [8] [23] by product type, I for
Se.∗

[29] by reviews source, I on
Amazon.com than on Yelp.

com
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NS S Positive Negative Moderated
Review

Sentiment [30, 11,
19, 36,
5, 23,
43, 42,
21]

[40, 46] [39, 1, 43, 4,
13]

[39, 1, 11,
36, 13]

[39] by product type, I for
Se.∗

[43] by product type, I for
E.∗

[11] by product type & rating,
S for Se.∗, 1 − 3? & for E.∗,
1− 2?

[1] by reviewer experience, I
for less experiences rev.
[36] by polarity, I for neutral
reviews
[4] by price, S for higher-
priced products

Total people voting [35, 5,
17, 28]

[39] [6, 4] [11, 22] [11] by product type & rating,
S for E.∗ & 1− 3?
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NS S Positive Negative Moderated
Reviewer

Experience [19, 18,
27, 42,
13]

[29] [1, 11] [11] by product type, S for
Se.∗

[29] by reviews source, I on
Yelp.com than on Amazon.

com

Disclosure [20, 1,
27, 4,
13]

[20, 27, 6,
13]

[39] [13] by product type, S for
Se.∗

[20] by length, I for longer
reviews

Cumulative helpfulness [25] [29] [18, 13] [13] [13] by product
[29] by reviews source, I for
Yelp.com than for Amazon.

com
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Contradictory & conflicting findings

Factors contributing to contradiction & confusion:

ã different data sources (Amazon.com, Yelp.com, TripAdvisor, etc)

ã various pre-processing applied to collected reviews

ã huge variety of features (190 listed features) and several proxies for
measuring same variables

ã different operationalizations for review helpfulness

ã different methodologies
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Predicting and assessing review helpfulness with review, product and
reviewer-related features

↪→ still an open problem

Our proposal:

• predict review helpfulness based on product, review & reviewer-related
features

• propose a new method based on lasso & tobit regression

• assess its performance against baselines (such as random forest, SVM,
tobit/linear regression)
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Features

• 190 different features in the current literature

• Select features

ä most often used

ä and/or identified as important in review helpfulness prediction
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Features

Features classified into three categories according to our taxonomy

Features

Product

Rating Type Price Nb reviews · · ·

Review

Length Readability Age Sentiment Nb people
voting

· · ·

Reviewer

Experience Authority Disclosure · · ·
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Features

• Product

ä rating(2)
ä average rating
ä extremity ((absolute) difference between individual rating and average

rating)
ä product type

Search goods Experience goods

ä nb reviews per product
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Features

• Product

ä rating(2)
ä average rating
ä extremity ((absolute) difference between individual rating and average

rating)
ä product type (experience or search goods)
ä nb reviews per product

H median rating
H extremity computed based on median ((absolute) difference between

individual rating and median rating)
H neutral (star rating of 3 or not)
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Features

• Review

ä length (words count, characters count, sentences count)
ä review age (elapsed days since the posting date)
ä readability (ARI, CLI, FOG, FK, SMOG, AGL)
ä polarity
ä sentiment (with 3 different lexicons)
ä total people voting

H emotion (anger, sadness, joy, disgust, fear, surprise, anticipation, trust)
Paul Ekman

H tf-idf of words & of their parts-of-speech (POS) tags

tf − idft,d = tft,d × idft = tft,d × log

(
N

dft

)
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Features

• Reviewer

ä experience (nb reviews written by a reviewer)
ä cumulative helpfulness (all helpful votes of a reviewer to total votes of a

reviewer)
ä real name disclosed
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Review helpfulness operationalization

• If numerical variable: helpfulness ratio (HR)

HR =
# helpful votes

#total votes

• If categorical variable:

=

{
1 if HR ≥ 0.6
0 if HR < 0.6
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Approach in current literature

• 17 different methods listed in current literature

• Predominant method: Tobit regression (only for feature analysis)

• Best performing method: Random forest
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Approach

1. Baselines with existing features:

• Random forest

• Support Vector Machine (SVM)

• Tobit regression

• Linear regression
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Approach

2. New approach with existing features:

• Lasso

min
β
‖y − Xβ‖2 + λ

d∑
j=1

|βj | L1 penalty

• Ridge

min
β
‖y − Xβ‖2 + λ

d∑
j=1

β2
j L2 penalty
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Approach

2. New approach with existing features:

• Lasso & tobit

• Deep neural networks
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Approach

1. Baseline with existing features:

• Random forest
• Support Vector Machine (SVM)
• Tobit regression
• Linear regression

2. New approach with existing features:

• Lasso
• Ridge
• Lasso & tobit
• Deep neural networks

3. Baseline with existing & new features

4. New approach with existing & new features
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10-fold cross-validation
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Case study

Dataset? 83.68 million reviews collected on Amazon.com

?
R. He, J. McAuley. Modeling the visual evolution of fashion trends with one-class collaborative filtering.

WWW, 2016

J. McAuley, C. Targett, J. Shi, A. van den Hengel. Image-based recommendations on styles and substitutes.

SIGIR, 2015
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Dataset

For one product:

37, 126 reviews

but only 13, 133 received a vote

↪→ Analysis performed on 35% of the initial dataset
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POS tags & tf-idf

Matrix 13, 133× 20

nns vbg vbp vbn vbz vbd jjr jjs nnp prp pos
1 0.08 0.22 0.27 0 0 0 0 0 0 0 0
2 0.12 0 0.2 0.2 0 0 0 0 0 0 0
3 0 0 0.27 0.27 0.35 0 0 0 0 0 0
4 0.12 0 0 0. 0.00 0.41 0 0 0 0 0
5 0.08 0.03 0.06 0.09 0.25 0.06 0.15 0.15 0 0 0

rbr wdt nnps wrb wp1 rbs prp1 pdt sym
1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0

↪→ sparsity
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Words & tf-idf

Matrix 13, 133× 4, 795

appeal big boring detective english expectations guy love
1 0.61 0.38 0.47 0.49 0.56 0.63 0.41 0.20
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0.05 0 0 0

↪→ high-dimensionality & sparsity
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Info on dataset

52.5% helpful reviews & 47.5% of non-helpful reviews

↪→ hopefully no problem of imbalanced dataset
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Conclusion

Predict review helpfulness with review, product and reviewer-related features.

• propose a novel regression method based on lasso (or ridge) and tobit

• assess its performance for review helpfulness prediction

• compare this new method with baselines

– Random forest
– SVM
– Tobit regression
– Regression

• assess existing & new features (POS tags, tf-idf, median rating...)
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Thank you!

If you have any question:

ashoffait@uliege.be
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[21] Kim, S-M., Pantel, P., Chklovski, T. and Pennacchiotti, M. (2006). Automatically
assessing review helpfulness. In Proceedings of the 2006 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2006), 423–430.

[22] Korfiatis, N., Garc̀ıa-Bariocanal, E. and Sánchez-Alonso, S. (2012). Evaluating content
quality and helpfulness of online product reviews: The interplay of review helpfulness vs.
review content. Electronic Commerce Research and Applications, 11: 205–217.

[23] Krishnamoorthy, S. (2015). Linguistic features for review helpfulness prediction. Expert
Systems with Applications, 42: 3751–3759.

[24] LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep Learning. Nature, 521(7553):
436–444.

[25] Lee, S. and Choeh, J.Y. (2014). Predicting the helpfulness of online reviews using
multilayer perceptron neural networks. Expert Systems with Applications, 41: 3041–3046.

[26] Lippi, M. and Torroni, P. (2016). Argumentation mining: State of the art and emerging
trends. ACM Transactions on Internet Technology, 16(2).

[27] Liu, Z. and Park, S. (2015). What makes a useful online review? Implication for travel
product websites. Tourism Management, 47: 140–151.

[28] Mudambi, S.M. and Schuff, D. (2010). What makes a helpful online review? A study of
customer reviews on Amazon.com. MIS Quarterly, 34(1): 185–200.

[29] Ngo-Ye, T.L. and Sinha, A.P. (2014). The influence of reviewer engagement
characteristics on online review helpfulness: A text regression model. Decision Support
Systems, 61: 47–58.

[30] Ngo-Ye, T.L., Sinha, A.P. and Sen, A. (2017). Predicting the helpfulness of online
reviews using a scripts-enriched text regression model. Expert Systems with Applications,
71: 98–110.

A-S. Hoffait HEC Liège 47
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	Part I: Literature review
	Problem statement
	Literature review

	Part II: Predicting & assessing review helpfulness
	Features
	Review helpfulness operationalization
	Approach
	Case study

	Conclusion

