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Problem statement

Customer Review

Yrvrveveys it went through fine and works quite well
By Mike Joe on 8 January 2018
Colour: Heather Grey Fabric | Style: Amazon Echo | Verified Purchase

| had a bit of a problem seting it up as | had two delivered a day apart and one was a present and had to be de-regi L I de-regis the wrong one as Amazon
gave them identifications and | didn't know which was which. Anyway after | had serted that, it went through fine and works quite well. The only problem | can foresee with this kind
of kit which is developing rapidly is how future-proof it is and for how leng updates will be provided as new features get added. It would be gaod if Amazon could give some idea on
their development path.

18 people found this helpful

Heipul | | Mot Helpful ~ Comment Report abuse Permalink
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Problem statement

Predict review helpfulness with review, product and reviewer-related features.
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Literature review

e Vast literature on the topic of review helpfulness prediction
e but highly fragmented and heterogeneous

o Contradictory and conflicting findings

— literature review to synthesize and critically analyze the extant research.
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NS S Positive Negative Moderated
Review
Length [30, 40, [25,45] [39, 20, 11, (35, 8] [11] by product type & rating,
19, 43, 36, 18, 27, S for E* & 1—2*
25, 42, 6, 25, 46, 4,
13] 17, 22, 28,
21]
[4] by product type & price, »
for Se.* & higher-priced prod-
ucts
[6, 31] by product type, » for
Se.*
[35] by review type (positive ef-
fect for comparatives reviews, negative
effect for suggestive reviews)
[18, 4] threshold nb words
Readability [39, 30, [40,45] [1, 11, 27, [1, 46, 22] [1] by reviewer experience, »
19, 23] 22, 13] for less experienced rev.
[11] by product type & rating,
S for Se.* & 1 —2*
Age [30, 25, [39, 23, [36,19,31] [8] [23] by product type, » for
42,31 29] Se.r
[29] by reviews sourc
Amazon. com thariﬁe!]; Sitd
com
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Amazon.com
Yelp.com
Yelp.com

NS S Positive Negative Moderated
Review
Sentiment [30, 11, [40,46] [39,1,43,4, [39, 1, 11, [39] by product type, » for

19, 36, 13] 36, 13] Se.”

5 23,

43, 42,

21]
[43] by product type, » for
E.*
[11] by product type & rating,
S for Se.*, 1 — 3* & for E.*,
1-2"
[1] by reviewer experience, »
for less experiences rev.
[36] by polarity, » for neutral
reviews
[4] by price, S for higher-
priced products

Total people voting 35, 5, [39] [6, 4] [11, 22] [11] by product type & rating,
17, 28] SforE* & 1—3*
v LIEGE
université

A-S. Hoffait HEC Ligge 11



NS S Positive Negative Moderated
Reviewer
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27, 4, 13] Se.*
13]
[20] by length, » for longer
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Amazon.com
Yelp.com
TripAdvisor

Contradictory & conflicting findings

Factors contributing to contradiction & confusion:

> different data sources (Amazon.com, Yelp.com, TripAdvisor, etc)
> various pre-processing applied to collected reviews

> huge variety of features (190 listed features) and several proxies for
measuring same variables

> different operationalizations for review helpfulness

> different methodologies

A-S. Hoffait HEC Ligge 13
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Predicting and assessing review helpfulness with review, product and
reviewer-related features

— still an open problem

Our proposal:

predict review helpfulness based on product, review & reviewer-related
features

propose a new method based on lasso & tobit regression

assess its performance against baselines (such as random forest, SVM,
tobit/linear regression)

) L
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Features

e 190 different features in the current literature

e Select features

» most often used

> and/or identified as important in review helpfulness prediction
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Features

Features classified into three categories according to our taxonomy

Features

Pro
Rating Type Price Nb reviews // \\Expenence Authority Disclosure

Length Readability Age Sentiment Nb people
voting

A-S. Hoffait HEC Ligge 17



Features

e Product
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Features

e Product

> rating(?)

> average rating

> extremity ((absolute) difference between individual rating and average
rating)

> product type
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Features

e Product

> rating(?)

> average rating

> extremity ((absolute) difference between individual rating and average
rating)

> product type

Search goods

> nb reviews per product
w LIEGE
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Features

e Product

> rating(?)

> average rating

> extremity ((absolute) difference between individual rating and average
rating)

> product type (experience or search goods)

> nb reviews per product

* median rating

* extremity computed based on median ((absolute) difference between
individual rating and median rating)

* neutral (star rating of 3 or not)

A-S. Hoffait HEC Ligge 19
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Features

o Review
> length (words count, characters count, sentences count)
> review age (elapsed days since the posting date)
> readability (ARI, CLI, FOG, FK, SMOG, AGL)
> polarity
> sentiment (with 3 different lexicons)
> total people voting
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Features

o Review
> length (words count, characters count, sentences count)
> review age (elapsed days since the posting date)
> readability (ARI, CLI, FOG, FK, SMOG, AGL)
> polarity
> sentiment (with 3 different lexicons)
> total people voting

emotion (anger, sadness, joy, disgust, fear, surprise, anticipation, trust)
Paul Ekman
tf-idf of words & of their parts-of-speech (POS) tags

N
tf — l'dft’d = tf;_s7d X idfy = tft,d X log (—

dft) :!; LIEGE

université
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Features

e Reviewer
> experience (nb reviews written by a reviewer)

> cumulative helpfulness (all helpful votes of a reviewer to total votes of a
reviewer)

» real name disclosed

A-S. Hoffait HEC Liege 21
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Review helpfulness operationalization

e If numerical variable: helpfulness ratio (HR)

HR — # helpful votes
#total votes

o If categorical variable:

[ 1 if HR>06
“10 if HR<06

A-S. Hoffait HEC Ligge 23
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Approach in current literature

e 17 different methods listed in current literature

e Predominant method: Tobit regression (only for feature analysis)

A-S. Hoffait HEC Ligge 25



Approach in current literature

o 17 different methods listed in current literature
e Predominant method: Tobit regression (only for feature analysis)

o Best performing method: Random forest

A-S. Hoffait HEC Ligge 25



Approach

1. Baselines with existing features:

e Random forest
e Support Vector Machine (SVM)
e Tobit regression

e Linear regression
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o Tobit regression

y Tobit Model
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Approach

1. Baselines with existing features:

o Tobit regression

y Tobit Model

e Linear regression
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Approach

2. New approach with existing features:
e Lasso
d
. 2
min ||y — X + A i| L1 penalt
inlly = XA+ A3 [5] L1 penaty
¢ Ridge

d
. 2 2
mﬁm lly = X8|I+ A E 37 L2 penalty

Jj=1
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Approach

2. New approach with existing features:
e Lasso & tobit

e Deep neural networks

Neural Network Deep Learning
%1. v

ok A A A

I 7 i 57

SO @ A ﬁ'ﬁ‘f&4 X
LN

7X

© Input Layer @ Hidden Layer © Output Layer

<Y/

HEC Ligge 31

A-S. Hoffait



Approach

1. Baseline with existing features:
e Random forest
e Support Vector Machine (SVM)
o Tobit regression
o Linear regression

2. New approach with existing features:
e Lasso
o Ridge
e Lasso & tobit
e Deep neural networks

3. Baseline with existing & new features

4. New approach with existing & new features .
w LIEGE
université
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10-fold cross-validation

Training set J
Training folds Test fold
[ . L 1
pweon || | [ ] [ | | | = &
= [T = ~ 0

v [T T T T T TN T ] =6 o

wweon [T T T T T TTT]= o

]
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Case study

Dataset* 83.68 million reviews collected on Amazon.com

"reviewerID": "A2SUAM1J3GNN3B",

"asin": "0000013714",

"reviewerName": "J. McDonald",

"helpful": [2, 31,

"reviewText": "I bought this for my husband who plays the
piano. He is having a wonderful time playing these old hymns.
The music 1is at times hard to read because we think the book
was published for singing from more than playing from. Great
purchase though!",

"overall": 5.0,

"summary": "Heavenly Highway Hymns",

"unixReviewTime": 1252800000,

"reviewTime": "09 13, 2009"

* R. He, J. McAuley. Modeling the visual evolution of fashion trends with one-class collaborative filtering.
WWW, 2016

J. McAuley, C. Targett, J. Shi, A. van den Hengel. Image-based recommendations on styles and ut;ttl.rEGE
SIGIR, 2015 t université
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Amazon.com

Dataset

For one product:

37,126 reviews

but only 13,133 received a vote

— Analysis performed on 35% of the initial dataset
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POS tags & tf-idf

Matrix 13,133 x 20

nns vbg vbp vbn vbz vbd jr jjs nnp prp pos
1 008 022 0.27 0 0 0 0 0 0 0 0
2 0.12 0 0.2 0.2 0 0 0 0 0 0 0
3 0 0 0.27 0.27 0.35 0 0 0 0 0 0
4 0.12 0 0 0. 0.00 0.41 0 0 0 0 0
5 0.08 0.03 0.06 0.09 025 0.06 0.15 0.15 0 0 0

rbr  wdt nnps wrb wpl rbs prpl pdt sym

1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 0 0

— sparsity

A-S. Hoffait

HEC Licge
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Words & tf-idf

Matrix 13,133 x 4,795

appeal big boring detective english expectations guy love
1 0.61 0.38 0.47 0.49 0.56 0.63 0.41 0.20
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0.05 0 0 0

— high-dimensionality & sparsity

A-S. Hoffait HEC Ligge 38



Info on dataset

52.5% helpful reviews & 47.5% of non-helpful reviews

< hopefully no problem of imbalanced dataset

A-S. Hoffait HEC Ligge 39
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Cumulative helpfulness Average rating
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Polarity

Readability
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Real name disclosed
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Conclusion

Predict review helpfulness with review, product and reviewer-related features.

e propose a novel regression method based on lasso (or ridge) and tobit
e assess its performance for review helpfulness prediction

e compare this new method with baselines

— Random forest
- SVM

— Tobit regression
— Regression

e assess existing & new features (POS tags, tf-idf, median rating...)

A-S. Hoffait HEC Ligge 46



Thank you!

If you have any question:

ashoffait@uliege.be
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