A note on the linearly weighted kappa coefficient for ordinal scales

S. Vanbelle and A. Albert

Medical Informatics and Biostatistics, School of Public Health, University of Liège, Liège, Belgium

Abstract

A frequent criticism formulated against the use of weighted kappa coefficients is that the weights are arbitrarily defined. We show that using linear weights for a K-ordinal scale is equivalent to deriving a kappa coefficient from K-1 embedded 2×2 tables.

Key words: absolute weights, interpretation, agreement, disagreement

1 INTRODUCTION

Cohen’s kappa coefficient (Cohen, 1960) is widely used to quantify agreement between two raters on a nominal scale (Ludbrook, 2002). It corrects the observed percentage of agreements between the raters for the effect of chance.

* Sophie Vanbelle, Medical Informatics and Biostatistics, School of Public Health, University of Liège, CHU Sart Tilman, 4000 Liège, Belgium, sophie.vanbelle@ulg.ac.be

Preprint submitted to Elsevier 10 December 2008
A value of 0 implies no agreement beyond chance, whereas a value of 1 corresponds to a perfect agreement between the two raters. There are situations where disagreements between raters may not all be equally important. For example, on an ordinal scale, a greater "penalty" will be applied if the two categories chosen by the raters are farther apart. To account for these inequalities, Cohen (1968) introduced weights in the formulation of the agreement index leading to the weighted kappa coefficient. Although the weights are in general arbitrarily defined, those introduced by Cicchetti and Allison (1971) and by Fleiss and Cohen (1973) are the most commonly used. The former are linear and the latter have a quadratic form. Cohen (1968) showed that, under specific conditions, the weighted kappa coefficient is equivalent to the product-moment correlation coefficient. Moreover, Fleiss and Cohen (1973) and Schuster (2004) showed that the weighted kappa with a quadratic weighting scheme is equivalent to the intraclass correlation coefficient. Hereafter, we show that the weighted kappa coefficient defined with linear weights for a K-ordinal scale can be derived from (K-1) embedded 2×2 contingency tables.

2 DEFINITION OF THE WEIGHTED KAPPA COEFFICIENT

Consider two raters who classify a sample of n subjects (or objects) into K categories of an ordinal scale (see Table 1), where n_{ij} is the number of items classified into category i by rater 1 and category j by rater 2, n_i the number of subjects classified into category i by rater 1 and n_j be the number of subjects classified into category j by rater 2. Denote by p_{ij}, p_i, and p_j the corresponding proportions ($i, j = 1, \cdots, K$).
Table 1

Two-way contingency table resulting from the classification of n items by 2 raters on an ordinal scale with K categories

<table>
<thead>
<tr>
<th></th>
<th>Rater 1</th>
<th>1</th>
<th>\ldots</th>
<th>j</th>
<th>\ldots</th>
<th>K</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n_{11}</td>
<td>n_{1j}</td>
<td>\ldots & n_{1K} & n_1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>n_{i1}</td>
<td>n_{ij}</td>
<td>\ldots & n_{iK} & n_i.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>n_{K1}</td>
<td>n_{Kj}</td>
<td>\ldots & n_{KK} & n_K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>$n_{.1}$</td>
<td>$n_{.j}$</td>
<td>\ldots & $n_{.K}$ & n.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The weighted kappa coefficient can be defined in terms of agreement weights by

$$\kappa_w = \frac{p_0 - p_e}{1 - p_e}$$ \hspace{1cm} (1)

where $p_0 = \sum_{i=1}^{K} \sum_{j=1}^{K} w_{ij} p_{ij}$ and $p_e = \sum_{i=1}^{K} \sum_{j=1}^{K} w_{ij} p_i p_j$ with $0 \leq w_{ij} \leq 1$ and $w_{jj} = 1$ ($i, j = 1, \ldots, K$), or in terms of disagreement weights by

$$\kappa_w = 1 - \frac{q_0}{q_e}$$ \hspace{1cm} (2)

where $q_0 = \sum_{i=1}^{K} \sum_{j=1}^{K} v_{ij} p_{ij}$ and $q_e = \sum_{i=1}^{K} \sum_{j=1}^{K} v_{ij} p_i p_j$ with $0 \leq v_{ij} \leq 1$ and $v_{jj} = 0$ ($i, j = 1, \ldots, K$). However, the weighted kappa coefficient can also be obtained using unscaled disagreement weights, i.e., v_{ij} not restricted to the $[0,1]$ interval.

Cohen’s kappa coefficient is a particular case of the weighted kappa coefficient where $w_{ij} = 1$ ($v_{ij} = 0$) for $i = j$ and $w_{ij} = 0$ ($v_{ij} = 1$) for $i \neq j$.

3
(i, j = 1, · · · , K). Cicchetti and Allison (1971) proposed "linear" weights of
the form \(w_{ij} = 1 - |i - j|/(K - 1) \), whereas Fleiss and Cohen (1973) used
the quadratic weights \(w_{ij} = 1 - (i - j)^2/(K - 1)^2 \). The disagreement weights
\(v_{ij} = (i - j)^2 \) are also commonly used (Ludbrook (2002); Agresti (2002)) as
are the linear disagreement weights \(v_{ij} = |i - j| \).

Cohen (1968) showed that if the marginal distributions of the 2 raters are
the same and if the weights of disagreement are defined as \(v_{ij} = (i - j)^2 \), the
weighted kappa coefficient is equivalent to the product-moment correlation co-
efficient. Furthermore, Fleiss and Cohen (1973) showed that using the weights
\(v_{ij} \), the weighted kappa coefficient has the same interpretation as the intra-
class correlation coefficient of reliability when systematic variability between
raters is included as a component of total variation. More recently, Schus-
ter (2004) explicitly decomposed the weighted kappa coefficient defined with
the quadratic disagreement weights in terms of rater means, rater variances
and rater covariance in the context of a two-way analysis of variance. To the
best of our knowledge, no interpretation was given for the weighted agreement
coefficient with linear agreement or disagreement weights.

3 THE REVISITED WEIGHTED KAPPA COEFFICIENT

Hereafter, we shall focus on the linear weights introduced by Cicchetti and
Allison (1971) \((w_{ij} = 1 - |i - j|/(K - 1)) \) and revisit the weighted kappa coef-
ficient for an ordinal scale. The interpretation of the agreement index obtained
with the linear disagreement weights \((v_{ij} = |i - j|) \) will follow straightforwardly
Table 2
Reduction of the $K \times K$ contingency table into a 2×2 classification table by selecting a cut-off level k ($k = 1, \ldots, K$) on the ordinal scale (see text)

<table>
<thead>
<tr>
<th>Rater 1</th>
<th>$\leq k$</th>
<th>$> k$</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq k$</td>
<td>$N_{11}(k)$</td>
<td>$N_{12}(k)$</td>
<td>$N_{1\cdot}(k)$</td>
</tr>
<tr>
<td>$> k$</td>
<td>$N_{21}(k)$</td>
<td>$N_{22}(k)$</td>
<td>$N_{2\cdot}(k)$</td>
</tr>
<tr>
<td>Total</td>
<td>$N_{1\cdot}(k)$</td>
<td>$N_{2\cdot}(k)$</td>
<td>n</td>
</tr>
</tbody>
</table>

since

$$w_{ij} = 1 - \frac{v_{ij}}{K - 1}.$$ \hspace{1cm} (3)

For any "cut-off" value k ($k = 1, \ldots, K - 1$), the $K \times K$ contingency table (see Table 1) can be reduced into a 2×2 classification table by summing up all observations below and above the first k rows and first k columns (see Table 2) where

$$N_{11}(k) = \sum_{i=1}^{k} \sum_{j=1}^{k} n_{ij} \quad N_{12}(k) = \sum_{i=1}^{k} \sum_{j=k+1}^{K} n_{ij}$$

$$N_{21}(k) = \sum_{i=k+1}^{K} \sum_{j=1}^{k} n_{ij} \quad N_{22}(k) = \sum_{i=k+1}^{K} \sum_{j=k+1}^{K} n_{ij}$$

Let $F_{lm}(k) = \frac{1}{n} N_{lm}(k)$, $F_{l\cdot} = \frac{1}{n} N_{l\cdot}(k)$ and $F_{m\cdot} = \frac{1}{n} N_{m\cdot}(k)$ be the corresponding joint and marginal frequencies ($l, m = 1, 2; k = 1, \ldots, K - 1$). Finally, denote by

$$p_o(k) = F_{11}(k) + F_{22}(k)$$ \hspace{1cm} (4)
and
\[p_e(k) = F_1(k)F_1(k) + F_2(k)F_2(k) \]
(5)

the observed and expected weighted agreements corresponding to Table 2.

Now, consider the quantities
\[p_o^* = \frac{1}{K-1} \sum_{k=1}^{K-1} p_o(k) \]
(6)

and
\[p_e^* = \frac{1}{K-1} \sum_{k=1}^{K-1} p_e(k) \]
(7)

We show that \(p_o^* = p_o \) and \(p_e^* = p_e \) where \(p_o \) and \(p_e \) are respectively the ”linearly” weighted proportions of observed and expected agreement, as defined by Cicchetti & Allison (1971).

Since

\[p_o^* = \frac{1}{K-1} \sum_{k=1}^{K-1} \left(\sum_{i=1}^{k} \sum_{j=1}^{k} p_{ij} + \sum_{i=k+1}^{K} \sum_{j=k+1}^{K} p_{ij} \right) \]

\[= \frac{1}{K-1} \sum_{k=1}^{K-1} \left(\sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} - \sum_{i=k+1}^{K} \sum_{j=1}^{K} p_{ij} - \sum_{i=1}^{K} \sum_{j=k+1}^{K} p_{ij} \right) \]

\[= \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} - \frac{1}{K-1} \sum_{k=1}^{K-1} \left(\sum_{i=1}^{k} \sum_{j=k+1}^{K} p_{ij} + \sum_{i=k+1}^{K} \sum_{j=1}^{k} p_{ij} \right) \]
(8)

and

\[p_o = \sum_{i=1}^{K} \sum_{j=1}^{K} \left(1 - \frac{|i-j|}{K-1} \right) p_{ij} \]

\[= \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} - \frac{1}{K-1} \sum_{i=1}^{K} \sum_{j=1}^{K} |i-j|p_{ij} \]

\[= \sum_{i=1}^{K} \sum_{j=1}^{K} p_{ij} - \frac{1}{K-1} \sum_{i=1}^{K} \sum_{j=1}^{i+j} (i-j)p_{ij} - \frac{1}{K-1} \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} (j-i)p_{ij}, \]
(9)
it suffices to prove that
\[
\sum_{k=1}^{K-1} \left(\sum_{i=1}^{k} \sum_{j=k+1}^{K} p_{ij} + \sum_{i=k+1}^{K} \sum_{j=1}^{k} p_{ij} \right) = \sum_{i=1}^{K-1} \sum_{j=i+1}^{K} (j - i) p_{ij} + \sum_{i=1}^{K} \sum_{j=1}^{i} (i - j) p_{ij} \tag{10}
\]

We have successively,
\[
\sum_{k=1}^{K-1} \left(\sum_{i=1}^{K} \sum_{j=1}^{k} p_{ij} + \sum_{i=1}^{K} \sum_{j=1}^{k} p_{ij} \right) = \sum_{i=1}^{K-1} \sum_{j=1}^{K} p_{ij} + \sum_{i=1}^{K-1} \sum_{j=1}^{K} p_{ij}
\]
\[
+ \sum_{i=2}^{K} \sum_{j=1}^{K-1} p_{ij} + \sum_{i=3}^{K} \sum_{j=1}^{K-1} p_{ij} + \cdots + \sum_{i=K}^{K} \sum_{j=1}^{K-1} p_{ij}
\]
\[
= \sum_{j=2}^{K-1} (j - 1) p_{1j} + \sum_{i=2}^{K-1} \sum_{j=3}^{K} p_{ij} + \cdots + \sum_{i=K}^{K} \sum_{j=1}^{K} p_{ij}
\]
\[
+ \sum_{j=1}^{K-1} (K - j) p_{Kj} + \sum_{i=2}^{K-1} \sum_{j=1}^{K} p_{ij} + \cdots + \sum_{i=K}^{K} \sum_{j=1}^{K} p_{ij}
\]
\[
= \sum_{j=2}^{K-1} (j - 1) p_{1j} + \sum_{j=2}^{K-1} (j - 2) p_{2j} + \cdots + \sum_{j=K}^{K} (j - (K - 1)) p_{K-1,j}
\]
\[
+ \sum_{j=1}^{K-1} (K - j) p_{Kj} + \sum_{j=1}^{K-2} (K - 1 - j) p_{K-1,j} + \cdots + \sum_{j=1}^{K-(K-1)} (K - (K - 1) - j) p_{K-(K-1),j}
\]
\[
= \sum_{i=1}^{K} \sum_{j=i+1}^{K} (j - i) p_{ij} + \sum_{i=1}^{K} \sum_{j=1}^{i} (i - j) p_{ij} \tag{11}
\]

Thus, \(p_0^* = p_0 \). The proof for \(p_e^* = p_e \) proceeds similarly. Thus, using the linear agreement weights introduced by Cicchetti and Allison (1971), the observed and expected weighted agreements are merely the mean values of the corresponding proportions of all \(2 \times 2 \) tables obtained by collapsing the first \(k \) categories and last \(K - k \) categories \((k = 1, \ldots, K - 1)\) of the original \(K \times K \) classification table. When considering the linear disagreement weights,
the observed and expected weighted disagreements correspond to the sum of
the observed and expected proportions of disagreement of the \(K - 1 \) embedded
\(2 \times 2 \) tables, respectively.

4 EXAMPLE

Gilmour et al. (1997) conducted an agreement study to compare two meth-
ods for assessing cervical ectopy, defined as the presence of endocervical-type
columnar epithelium on the portio surface of the cervix. A computerized
planimetry method was developed for measuring cervical ectopy, and the re-
liability of that method was compared with direct visual assessment. Pho-
tographs of the cervix of 85 women without cervical disease were assessed for
cervical ectopy by three medical raters who used both assessment methods.
The response of interest, cervical ectopy size, was an ordinal variable with
four categories: (1) minimal, (2) moderate, (3) large and (4) excessive. The
contingency table for two of the three raters using the visual method is dis-
played in Table 3. In each cell, the first term corresponds to the cell count,
the second term to the linear agreement weight and the third one to the linear
disagreement weight.

When computing the weighted observed and expected agreements, we obtain
\(p_o = 0.800, \ p_e = 0.583 \), yielding \(\kappa_w = 0.520 \). Since \(K = 4 \), three "embedded"
\(2 \times 2 \) tables can be constructed as described before (see Table 4). From these
tables, we calculate
\[
p_o^* = \frac{1}{3} \sum_{k=1}^{3} p_o(k) = \frac{0.812 + 0.788 + 0.800}{3} = 0.800
\]
and
\[
p_e^* = \frac{1}{3} \sum_{k=1}^{3} p_e(k) = \frac{0.618 + 0.506 + 0.626}{3} = 0.583.
\]
These are as expected equal to \(p_o \) and \(p_e \), respectively. It should be remarked that the av-
Table 3

Two-way contingency table resulting from cervical ectopy ratings using the visual method by two raters

<table>
<thead>
<tr>
<th>Rater 1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater 2</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.67</td>
<td>0.33</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>0.67</td>
<td>1.0</td>
<td>0.67</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>0.33</td>
<td>0.67</td>
<td>1.0</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>11</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.33</td>
<td>0.67</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>29</td>
<td>18</td>
<td>11</td>
<td>85</td>
</tr>
</tbody>
</table>

- **a** Observed counts
- **b** Linear agreement weights $w_{ij} = 1 - |i - j|/(K - 1)$
- **c** Linear disagreement weights $v_{ij} = |i - j|$
average kappa coefficient derived from the tables, namely \(\pi = \frac{1}{3} \sum_{k=1}^{3} \kappa(k) = (0.507 + 0.572 + 0.465)/3 = 0.515 \), differs from \(\kappa_w \). The weighted observed and expected disagreements are equal to \(q_o = 0.600 \) and \(q_e = 1.25 \), respectively, yielding a weighted kappa coefficient of \(\kappa_w = 0.52 \). From the embedded tables, we have \(q^*_o = \sum_{k=1}^{3} q_o(k) = 0.188 + 0.212 + 0.200 = 0.600 \) and \(p^*_e = \sum_{k=1}^{3} q_e(k) = 0.382 + 0.494 + 0.374 = 1.25 \), as expected.

5 DISCUSSION

The weighted kappa coefficient is widely used to quantify the agreement between 2 raters on an ordinal scale. The weights are generally given a priori and defined arbitrarily. Graham and Jackson (1993) observed that the value of the weighted kappa coefficient can vary considerably according to the weighting scheme used and henceforth may lead to different conclusions. In practice, the linear (Cicchetti and Allison, 1971) and quadratic (Fleiss and Cohen, 1973) weighting schemes are the most widely used. Quadratic weights have received much attention in the literature because of their practical interpretation. For instance, Fleiss and Cohen (1973) and Schuster (2004) showed that using the weights \(v_{ij} = (i - j)^2 \), the weighted kappa coefficient can be interpreted as an intraclass correlation coefficient in a two-way analysis of variance setting. In this article, we focused on the linearly weighted kappa coefficient defined by Cicchetti and Allison (1971) or equivalently defined by the linear disagreement weights \(v_{ij} = |i - j| \) and strove to give an intuitive interpretation of it. Specifically, we showed that the observed and expected weighted agreements are merely the mean values of the corresponding proportions of all \(2 \times 2 \)
Table 4

All possible embedded 2×2 classification tables ($k = 1, 2, 3$) derived from the original 4×4 contingency table for cervical ectopy ratings by two raters

<table>
<thead>
<tr>
<th>Rater 2</th>
<th>Rater 1</th>
<th>≤ 1</th>
<th>> 1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1</td>
<td>13</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>> 1</td>
<td>14</td>
<td>56</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>58</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rater 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater 1</td>
</tr>
<tr>
<td>≤ 2</td>
</tr>
<tr>
<td>> 2</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

$p_o(1) = 0.812; q_o(1) = 0.188$

$p_e(1) = 0.618; q_e(1) = 0.382$

$\kappa(1) = 0.507$

$p_o(2) = 0.788; q_o(2) = 0.212$

$p_e(2) = 0.506; q_e(2) = 0.494$

$\kappa(2) = 0.572$

<table>
<thead>
<tr>
<th>Rater 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rater 1</td>
</tr>
<tr>
<td>≤ 3</td>
</tr>
<tr>
<td>> 3</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

$p_o(3) = 0.800; q_o(3) = 0.200$

$p_e(3) = 0.626; q_e(3) = 0.374$

$\kappa(3) = 0.465$
tables obtained by collapsing the first k categories and last $K - k$ categories
$(k = 1, \cdots, K - 1)$ of the original $K \times K$ classification table. It should be noted,
however, that the weighted agreement coefficient derived from the original ta-
ble is not equal to the mean value of the non-weighted $K - 1$ κ coefficients
obtained from the 2×2 collapsed tables. When using linear disagreement
weights, the weighted observed and expected disagreements are obtained by
the sum rather than the average of the corresponding elements of the 2×2
tables. In other words, the linearly weighted kappa coefficient can simply be
derived from $K - 1$ embedded 2×2 classification tables. The linear form of
the kappa coefficient, besides its simplicity, presents some advantages over the
quadratic version. As demonstrated by Brenner and Kliebsch (1996), it is less
sensitive to the number of categories and should therefore be preferred when
the number of categories of the ordinal scale is large. As a conclusion, we have
shown that the linearly weighted kappa coefficient for a K-ordinal table can
be naturally derived from non-weighted observed and expected agreements
(disagreements) computed from $K - 1$ embedded 2×2 classification tables.

References

and Sons.

the number of categories. Epidemiology 7, 199–202.

scoring eeg sleep recordings. American Journal EEG Technology 11, 101–
109.

and Psychological Measurement 20, 37–46.

